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 Helicopters and drones are widely used in military and post-disaster reconnaissance. But less 
attention has been paid to collaborative reconnaissance between the two, especially when drones 
can be launched and retrieved multiple times. We propose a synchronous routing problem of 
helicopter and heterogeneous multi-drone for reconnaissance, which is a new variant of the 
orienteering problem (OP), where the drones can visit multiple mission nodes and can reconnoiter 
the retrieval nodes in a single trip, with the goal of maximizing the information collected. The 
problem is formulated as a mixed integer linear programming (MILP) model, and then an adaptive 
simulated annealing algorithm (A-SA) is designed to solve the problem. Specifically, a universal 
high-efficiency heuristics solution evaluation method based on segment sorting is proposed. The 
time complexity of this method is O(n). The numerical experiments illustrate the accuracy and 
efficiency of the algorithm. The results also show that allowing the drones to conduct 
reconnaissance on the retrieval nodes can positively impact the solution. 
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1. Introduction 

 
Helicopters and drones are modern high-tech aircraft that can perform a variety of reconnaissance missions in various 
situations. For instance, during post-disaster reconnaissance, they can rapidly arrive at the impacted area equipped with high-
definition cameras and transmit real-time data. 
 
The US Army validated the technology of the UH-60 Black Hawk helicopter to launch the ALTIUS-600 drone during the 
2020 Project Fusion exercise (Mizokami, 2020), as shown in Fig. 1(a). Similarly, since 2020, Russia has installed drone launch 
capabilities in Mi-28NM helicopters. South Korea signed an agreement with Israel in the same year to jointly develop air-
launched drones for LAH-armed helicopters. Recently, in October 2021, the Defense Advanced Research Projects Agency 
(DARPA) successfully retrieved an X-61 Gremlin drone from the air during testing, proving the technical feasibility of 
retrieving small drones in the air and returning them to their mother aircraft (Losey, 2021), as shown in Fig. 1(b). Using a 
helicopter as the mother aircraft for the aerial launch of drones has many advantages, including fewer takeoff and landing 
restrictions, fast maneuvering response, a wide range of use, and strong load-bearing capacity. This approach can effectively 
compensate for the shortcomings of drone endurance. Helicopters can carry a maximum payload of up to many tons, which 
allows them to carry multiple small drones. Moreover, the drone launch device is a tubular automatic system, allowing for the 
simultaneous launch of multiple drones. Therefore, helicopter-based deployment of multiple small drones for collaborative 
reconnaissance has excellent potential.  
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(a) (b)  
Fig. 1. (a) Launching drone; (b) Receiving drone 

 
The collaborative reconnaissance approach using helicopters and drones presents various benefits. Firstly, helicopters enable 
drones to arrive at mission locations from a closer distance, thereby increasing the number of possible launch locations and 
extending the effective flight range. Secondly, pairing drones with helicopters during reconnaissance operations can expand 
the reconnaissance range beyond the helicopter's capabilities. Moreover, drones can be employed in hazardous or inaccessible 
areas for safe reconnaissance. Avi et al. (2022) also noted the advantages of combining drones and helicopters in emergency, 
medical, or search-and-rescue missions to enhance the situational awareness capability of helicopters. 
 
Collaboration between helicopters and drones is similar to that between trucks and drones. However, the driving range of 
trucks is generally assumed to be infinite, whereas helicopters have limited range. Moreover, the motion routes of trucks and 
helicopters differ significantly. Trucks typically travel along highways or roads, and the road restricts their direction. In 
contrast, helicopters can move freely along a curved or straight route and are not limited by ground routes. Additionally, the 
collaboration between helicopters and drones is ideal for search and rescue, reconnaissance, and surveillance, whereas the 
collaboration between trucks and drones mainly applies to logistics. 
 
We drew inspiration from the collaboration between trucks and drones to propose a new orienteering problem (OP) variant. 
Our variant involves solving the route planning and mission location allocation for collaborative reconnaissance of helicopters 
and drones. The objective is to gather as much information as possible in the mission area within a limited endurance. An 
example of a solution is illustrated in Fig. 2 for a problem with 10 mission nodes and 2 drones. Due to the rapid development 
of technology, drone models are being updated rapidly, making it possible for helicopters to carry multiple heterogeneous 
drones. Therefore, we refer to this problem as the heterogeneous drones–helicopter orienteering problem (HDHOP). 
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Fig. 2. An illustrative example of the HDHOP solution with ten mission nodes and two drones. The green represents 

nodes that are not reconnoitered, the black represents nodes that are reconnoitered by the helicopter, the red represents nodes 
that are reconnoitered by drone 1, and the yellow denotes nodes that are reconnoitered by drone 2 
 
The contributions of this paper are summarized as follows: 
 
• We conducted a study on a new collaborative orienteering problem that involves multiple heterogeneous drones and a 

helicopter. In this problem, a helicopter carries several small drones, and together the helicopter and drones perform 
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synchronous routing for reconnaissance. The drones can be launched and retrieved from the helicopter and can conduct 
reconnaissance in multiple mission locations within their endurance. 

• We proposed that the drone retrieval nodes can be reconnoitered by drone. In this case, the drones can fully utilize the 
remaining battery power if they arrive at the retrieval node before the helicopter. Moreover, we enable the drones to 
travel directly from the launch nodes to the retrieval nodes without passing through other nodes, which can sometimes 
optimize the objective. Helicopter launch and retrieval are automated systems, thus we enable the launch and retrieval 
of drones to be carried out simultaneously with helicopter reconnaissance operations, providing greater flexibility in the 
timing of launch and retrieval. 

• We developed an adaptive simulated annealing (A-SA) algorithm and introduced a new feasibility evaluation method 
based on segment sorting for the heuristic solution. Significantly, the proposed method has O(n) time complexity. 

 
This paper is structured as follows: Section 2 thoroughly reviews the pertinent literature. In Section 3, an elaborate introduction 
to the problem is presented, along with the development of a mathematical model. The A-SA algorithm and the segment-
sorting evaluation method are outlined in Section 4. Section 5 describes the outcomes of numerical experiments. Finally, 
Section 6 outlines the conclusion and potential aspects for future research. 
 
2. Literature review 
 
To our knowledge, there has not yet been a direct study of the collaborative routing optimization problem between helicopters 
and drones. Our work relates to orienteering problems and problems with large aircraft launching small drones. In terms of 
solving methods, we mainly refer to the relevant techniques of vehicle–drone collaborative problems. 
 
2.1 The orienteering problem 
 
The orienteering problem (OP) is an optimization problem that originated from orienteering, a sport that involves racing and 
navigating in unfamiliar terrain. The problem has been addressed by several researchers (Golden et al., 1987) and consists in 
maximizing the total score of a set of nodes with prizes, subject to a constraint on travel costs between nodes. Although there 
is a vast body of literature on the OP, these foundational problems do not directly apply to the problem at hand. Interested 
readers are referred to recent surveys on the OP by Vansteenwegen et al. (2011) and Gunawan et al. (2016). While the 
underlying network of the HDHOP can be transformed into an OP-like problem, the multiple collaboration constraints in the 
HDHOP make it different from the classic OP. Therefore, the methods developed for the OP cannot be directly used to solve 
the HDHOP. In this study, we developed a special heuristic algorithm to address the unique characteristics of the HDHOP. 
 
2.2 Problem with launching small drones from large aircraft 
 
In recent years, there has been significant research on launching drones from trucks, but less attention has been paid to 
launching small drones from large aircraft. To the author's knowledge, only a few papers have focused on this topic. Poikonen 
and Golden (2020) studied the routing in the sky of airborne warehouses and drone releases to customers, while Wang et al. 
(2022) built upon this research and were the first to schedule the resupply of flying warehouses with drones from an 
earthbound depot via a shuttle. Unlike Poikonen and Golden (2020), Wang et al. (2022) assumed a fixed position for the 
airborne warehouse. Liu et al. (2020) researched the recovery of drone swarms by a mother aircraft and suggested that using 
"launch–recovery–relaunch" mode could significantly improve the efficiency of drone swarms. In a recent study, Avi et al. 
(2022) proposed a strategy to enhance the situational awareness of helicopters in emergency, medical, or search-and-rescue 
missions by employing them in collaboration with unmanned vertical take-off and landing drones. Meanwhile, Wen and Wu 
(2022) researched a new logistics delivery problem, utilizing a large drone to transport multiple small drones to distribution 
regions, then the small drones went to serve customers. The small drones could land at an automatic airport, distinguishing 
their study from previous ones. 
 
2.3 Synchronization routing problem for a truck with multiple drones 
 
The truck–drone routing problem was initially proposed by Murray and Chu (2015) as a flying sidekick traveling salesman 
problem (FSTSP) with a single truck–drone pair. Agatz et al. (2018) later presented a similar problem, called the traveling 
salesman problem with drones (TSP-D), which allows the drone to be retrieved by the truck at the same node where the drone 
was launched. Subsequently, several papers have extended the FSTSP and TSP-D. For a comprehensive review of truck–
drone routing problems, readers may refer to Macrina et al. (2020), Chung et al. (2020), and Moshref-Javadi and Winkenbach 
(2021). Our problem is similar to the synchronization routing problem for a truck with multiple drones. 
 
The traveling salesman problem with multiple drones (TSP-mD) was proposed by Yoon (2018) and Tu et al. (2018). The 
multiple flying sidekicks traveling salesman problem (mFSTSP) was proposed by Murray and Raj (2020) and Moshref-Javadi 
et al. (2020) based on Murray and Chu’s (2015) FSTSP. In the mFSTSP, a delivery truck and a fleet of drones collaborate to 
deliver small packages to customers, and Murray and Raj (2020) compared several different models for flight endurance. 
Subsequently, many studies expanded the research based on a single truck with multiple drones, such as the multi-visit 
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problem (Luo et al., 2021), non-customer rendezvous locations (Mahmoudi and Eshghi, 2022; Salama and Srinivas, 2022), 
flexible time windows (Luo et al., 2022), uncertain navigation environments (Zhao et al., 2022), and arc retraversing (Morandi 
et al., 2023). Cavani et al. (2021) demonstrated an exact decomposition approach based on the compact MILP and a branch-
and-cut algorithm that solved TSP-mD instances with up to 24 customers to prove optimality. 
 
The vehicle routing problem with drones (VRPD) is a generalized form of the TSP-D (Wang et al., 2016). In the VRPD, a 
fleet of trucks collaborates with a fixed number of drones to serve customers. Subsequently, several VRPD variants with 
multiple drones per truck emerged, and various scenarios were introduced. For example, Wang and Sheu (2019) considered a 
service hub for storing drones, Kitjacharoenchai et al. (2019) allowed drones to be retrieved from any truck, Schermer et al. 
(2019) considered launching and retrieving drones at the same node, Kitjacharoenchai et al. (2020) allowed drones to serve 
multiple customers but prohibited launching or retrieving multiple drones at the same node, and Masmoudi et al. (2022) 
extended the VRP-D to include a flight of drones equipped with multiple package payload departments and considered 
customer time windows. Some extensions simplified the problem, while others made the problem more realistic. Tamke and 
Buscher (2021) derived the first branch-and-cut algorithm, which can optimally solve instances with up to 30 nodes.  
All of the existing literature assumes that drone retrieval nodes are serviced by trucks. 
 
2.4 Multiple drones per truck: evaluation of heuristics and solution feasibility  
 
Compared to exact algorithms, well-designed heuristics can find near-optimal solutions for large-scale problems within a 
reasonable run time for NP-hard problems. Consequently, the research community has widely adopted heuristic approaches 
to solve the TSP-D, VRP-D, and their variants. Heuristic and metaheuristic techniques for the synchronization routing problem 
in the scenario of a single truck accompanied by multiple drones were provided by Moshref-Javadi et al. (2020), Murray and 
Raj (2020), Luo et al. (2021), Mahmoudi and Eshghi (2022), Luo et al. (2022), Salama and Srinivas (2022), and Zhao et al. 
(2022). The computational complexity of methods for evaluating solution feasibility has hardly been discussed in almost all 
of the research work in heuristic algorithms. There are three types of solution feasibility evaluation methods in the existing 
literature. The first method is to check if the changed route segment violates the energy constraints of the drone when 
generating a new neighborhood (Moshref-Javadi et al., 2020; Kitjacharoenchai et al., 2020; Salama and Srinivas, 2022; 
Masmoudi et al., 2022), which can be called a drone-level feasibility evaluation. However, this cannot be considered a 
solution-level feasibility evaluation (Luo et al., 2021) and could result in an infeasible solution being accepted. The second 
method uses mathematical programming models for evaluation (Murray and Raj, 2020; Mahmoudi and Eshghi, 2022), which 
takes a long time when calculating large-scale instances. The third method is to make an evaluation based on the characteristics 
of the problem, which requires a deep understanding of the problem. Only Luo et al. (2021) proposed a two-level solution 
evaluation method. The solution is presented as a directed acyclic graph, and a critical route method is invoked to perform 
solution-level feasibility evaluation in O(n) time. However, there are limitations to this method, as it assumes that both the 
truck and the drone depart from the launch node simultaneously. 
 
2.5 Summary 
 
According to the literature reviewed in this section, four aspects warrant further investigation. Firstly, more attention has been 
paid to the collaborative operation between large aircraft and small drones, but studies are still needed that address the 
synchronous work between them. Secondly, in the problem of vehicle and drone collaboration, it has never been considered 
that the mission of the drone retrieval node is performed by the drone. Thirdly, more reliable and faster evaluation methods 
are needed to evaluate heuristic solution feasibility. Finally, the orientation problem of helicopter–drone collaboration has yet 
to be explored.  
 
3. Problem description and mathematical formulation 
 
This section provides a formal problem description and a MILP formulation of the HDHOP. 
 
3.1 Problem description 
 
The HDHOP considers a set of mission nodes, each with corresponding information. A helicopter and multiple drones with 
different speed and endurance limits will synchronously depart from a depot to collect information at mission nodes and then 
return to the depot. Each mission node can only be reconnoitered by a helicopter or a drone at most once. The helicopter and 
the drones can depart (or return) independently or fly in tandem. When flying in tandem, the drones are transported by the 
helicopter. The drones can fly multiple sorties, reconnoiter at least one mission node at a time, and directly travel from launch 
nodes to retrieval nodes. The drones can be launched from the helicopter at mission nodes or the depot. Once launched, the 
drones must return within the endurance limit to the depot or the helicopter at a mission node different from the launch nodes. 
If a drone or the helicopter arrives at the retrieval node early, it will hover until another aircraft arrives. The retrieval nodes of 
the drones can be reconnoitered by either the drones or the helicopter. The automatic flight control system controls the launch 
and retrieval of the drones, so the helicopter’s launch and retrieval drone operations can be conducted simultaneously with its 
reconnaissance operations. The objective of HDHOP is to collect as much information as possible within the endurance limit. 
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The following conditions are assumed: 
• In this study, the preparation time for drone launch and retrieval and the battery replacement time are considered to be 

zero, as these times can be ignored compared to the travel time from launch nodes to retrieval nodes. Similarly, we 
assume that the rate of energy consumption by the helicopter and the drones during takeoff, landing, and hovering is the 
same as it is during constant-speed flight. 

• Multiple drones can be launched on one node, but due to technological limitations and flight security considerations, 
only one drone can be retrieved on one node.  

• We assume that the helicopter and the drones fly at a constant speed, and the helicopter's speed is greater than the drones' 
speed. Their routes are measured using Euclidean distances. This measurement does not consider external factors such 
as wind speed and terrain. 

• If a drone sortie ends at the depot, the drone cannot be re-launched from the depot. 
• Each mission location is treated as a node to facilitate modeling and calculation. 
 
3.2 Mathematical formulation 
 
This section introduces the mathematical model for the described problem. We refer to Gonzalez et al.’s (2020) notations and 
model ideas. Firstly, we define the different sets, parameters, and variables needed to model the problem. Next, we present 
the constraints and group them based on role. 
 
3.2.1. Notation 
 
Table 1 
Sets 

G = {N, A} Graph defining the set of mission locations or nodes to be reconnoitered and the set of directed links 
connecting them. 

N Set of nodes of graph G. 
C Set of mission locations that need to be reconnoitered. 
o The origin node of the mission, o ∈ N. 
e The ending node of the mission, e ∈ N. 
A Set of directed links in G. 𝛿ିሺ𝑖ሻ Set of nodes that can be used to arrive at node i ∈ N using links in A. 𝛿ାሺ𝑖ሻ Set of nodes that can be arrived from node i ∈ N using links in A. 
K Set of the drones. 

 
Table 2 
Parameters 𝑇௠௔௫ு  The maximum level of helicopter endurance is expressed in time units. 𝑄௞ The maximum drone k ∈ K battery capacity (just when it is replaced) is expressed in time units. 𝑠௝ு Reconnaissance time of the helicopter at mission location j ∈ N, where 𝑠௢ு and 𝑠௘ு are equal to 0. 𝑠௝௞஽  Reconnaissance time of the drones at mission location j ∈ N, where 𝑠௢஽ and 𝑠௘஽ are equal to 0. 𝑡௜௝ு The helicopter running time at the link (i, j) ∈ A. 𝑡௜௝௞஽  The drone k running time at the link (i, j) ∈ A. 𝑟௝ Information size of mission location j ∈ N, where 𝑟௢ and 𝑟௘ are equal to 0. 

M A big enough constant. 
 
Table 3 
Variables 𝑧௝ு ∈  {0,1} The binary variable equals one if the node j ∈ N is reconnoitered by the helicopter. 𝑧௝஽ ∈  {0,1} The binary variable equals one if the node j ∈ N is reconnoitered by any drone. 𝑥௜௝ ∈  {0,1} The binary variable equals one if the link (i, j) ∈ A is traversed by the helicopter. 𝑦௜௝௞ ∈  {0,1} The binary variable equals one if the link (i, j) ∈ A is traversed by the drone k. 𝑡௝௅  ≥  0 The continuous variable measures the latest earliest departure time from node j ∈ N for the drones 

and the helicopter. 0 ≤  𝑏௞௝ି  ≤  𝑄௞ The continuous variable that measures the drone k battery level when the drone is just coming to 
node j ∈ N. 0 ≤  𝑏௞௝ା  ≤  𝑄௞ The continuous variable that measures the drone k battery level when the drone is just departing 
from node j ∈ N. 
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3.2.2. Model formulation 
 
We can formulate the HDHOP as the next MILP model: 
 

Objective function   𝑚𝑎𝑥   ෍(𝑧௝ு + 𝑧௝஽)𝑟௝௝∈ே  (1) 

subject to the following:    
 
(A) Helicopter route constraints: ෍ 𝑥௜௝  =  ෍ 𝑥௝௠௠∈ఋశ(௝)  ≤  1    ∀𝑗 ∈ 𝐶 ௜∈ఋష(௝)  (2) ෍ 𝑥௢௝  =  1    ௝∈ఋశ(௢)  (3) ෍ 𝑥௜,௘  =  1    ௜∈ఋష(௘)  (4) 

(B) Drone route constraints: ෍ 𝑦௜௝௞  =  ෍ 𝑦௝௠௞  ≤  1௠∈ఋశ(௝)    ∀𝑗 ∈ 𝐶,𝑘 ∈ 𝐾 ௜∈ఋష(௝)  (5) ෍ 𝑦௢௝௞  =  1    ∀𝑘 ∈ 𝐾௝∈ఋశ(௢)  (6) ෍ 𝑦௜,௘௞  =  1    ∀𝑘 ∈ 𝐾    ௜∈ఋష(௘)  (7) 

(C) Helicopter–drone route constraints: ෍ 𝑦௠௝௞ᇱ௞ᇱ∈௄\{௞},௠∈ఋష(௝),௠ஷ௜  ≤  |𝐾|(2 −  𝑥௜௝  +  𝑦௜௝௞  −  ෍ 𝑦௟௝௞௟∈ఋష(௝),௜ஷ௟ )   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (8) ෍ 𝑦௜௝௞ᇱ௞ᇱ∈௄\{௞},௜∈ఋష(௝)  ≤  |𝐾|(1 +  ෍ 𝑥௜௝௜∈ఋష(௝)  −  ෍ 𝑦௜௝௞௜∈ఋష(௝) )   𝑗 ∈ 𝐶,∀𝑘 ∈ 𝐾 (9) 

(D) Synchronization constraints: 𝑡௝௅  ≥  𝑡௜௅  +  𝑡௜௝ு  +  𝑠௝ு  −  𝑀൫2 −  𝑥௜௝  −  𝑧௝ு൯   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾，𝑗 ≠  𝑒 (10) 𝑡௝௅  ≥  𝑡௜௅  +  𝑡௜௝ு  −  𝑀൫2 −  𝑥௜௝  −  𝑧௝஽൯   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (11) 𝑡௝௅  ≥  𝑡௠௅  +  𝑡௠௜ு  + 𝑡௜௝௞஽  +  𝑠௝௞஽  −  𝑀൫2 −  𝑦௜௝௞  +  𝑥௜௝  −  𝑥௠௜൯   (𝑖, 𝑗) ∈ 𝐴,𝑚 ∈ 𝛿ି(𝑖),∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒,𝑚 ≠  𝑗, 𝑖 ≠  𝑜 
(12) 𝑡௝௅  ≥  𝑡௢௅  +  𝑡௢௝௞஽  +  𝑠௝௞஽  −  𝑀(2 −  𝑦௢௝௞  +  𝑥௢௝  −  ෍ 𝑥௢௠௠∈ఋశ(௢),௠ஷ௝ )    𝑗 ∈ 𝐶,∀𝑘 ∈ 𝐾 (13) 𝑡௝௅  ≤  𝑡௜௅  +  𝑡௜௝௞஽  + 𝑠௝௞஽  +  𝑀(2 −  𝑦௜௝௞  + ෍ 𝑥௡௝௡∈ఋష(௝)  −  ෍ 𝑥௜௠௠∈ఋశ(௜),௠ஷ௝ )   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (14) 𝑡௝௅  ≥  𝑡௜௅  +  𝑡௜௝௞஽  + 𝑠௝௞஽  −  𝑀(1 −  𝑦௜௝௞  + ෍ 𝑥௜௠௠∈ఋశ(௜)  + ෍ 𝑥௟௝௟∈ఋష(௝) )   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (15) 𝑡௝௅  ≤  𝑡௜௅  +  𝑡௜௝௞஽  + 𝑠௝௞஽  +  𝑀(1 −  𝑦௜௝௞  + ෍ 𝑥௜௠௠∈ఋశ(௜)  + ෍ 𝑥௟௝௟∈ఋష(௝) )   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (16) 𝑡௝௅  ≥  𝑡௜௅  +  𝑡௜௝௞஽  + 𝑠௝௞஽  −  𝑀(3 −  𝑦௜௝௞  +  𝑥௜௝  −  ෍ 𝑥௠௝௠∈ఋష(௝),௠ஷ௜  −  𝑧௝஽)   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾，𝑗 ≠  𝑒 (17) 𝑡௝௅  ≥  𝑡௜௅  +  𝑡௜௝௞஽  −  𝑀(3 −  𝑦௜௝௞  +  𝑥௜௝ −  ෍ 𝑥௠௝௠∈ఋష(௝),௠ஷ௜  −  𝑧௝ு)   (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾，𝑗 ≠  𝑒 (18) 𝑡௘௅  ≥  𝑡௜௅  +  𝑡௜,௘ு  −  𝑀(1 −  𝑥௜,௘)    𝑖 ∈ 𝑁\𝑒 (19) 𝑡௘௅  ≤  𝑇௠௔௫ு  (20) 𝑡௢௅  =  0 (21) 

(E) Drone battery level constraints: 𝑏௞௝ି  ≥  𝑄௞  −  𝑄௞(2 −  𝑥௜௝  −  𝑦௜௝௞ )    (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (22) 𝑏௞௝ା  ≥  𝑄௞  −  𝑄௞(2 −  𝑥௜௝  −  𝑦௜௝௞ )    (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (23) 𝑏௞௝ି  ≤  𝑏௞௜ା  −  𝑡௜௝௞஽  +  𝑀(1 −  𝑦௜௝௞  +  𝑥௜௝)    (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾 (24) 



P. Zhao et al.  / International Journal of Industrial Engineering Computations 15 (2024) 261𝑏௞௝ା  ≤  𝑏௞௝ି  −  𝑠௝௞஽  +  𝑀(1 −  𝑦௜௝௞  +  ෍ 𝑥௟௝௟∈ఋష(௝) )   (𝑖, 𝑗) ∈ 𝐴,𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (25) 𝑏௞௝ା  ≥  𝑄௞  −  𝑄௞(2 −  𝑦௜௝௞  +  𝑥௜௝  −  ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜ )   (𝑖, 𝑗) ∈ 𝐴,𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (26) 𝑏௞௝ି  ≥  𝑡௝௅  −  𝑡௜௅  −  𝑡௜௝௞஽  −  𝑠௝௞ு  −  𝑀(2 −  𝑦௜௝௞  +  𝑥௜௝  −  𝑧௝ு)    (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾 (27) 𝑏௞௝ି  ≥  𝑠௝௞஽  + 𝑚𝑎 𝑥൛0, 𝑡௝௅  −  𝑡௜௅  −  𝑡௜௝௞஽  −  𝑠௝௞஽ ൟ  −  𝑀(3 −  𝑦௜௝௞  + 𝑥௜௝  −  ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜  −  𝑧௝஽)    (𝑖, 𝑗) ∈ 𝐴,∀𝑘∈ 𝐾 

(28) 𝑏௞௢ା  =  𝑄௞    ∀𝑘 ∈ 𝐾 (29) 
(F) Constraints on variable relationships: 𝑧௝஽  ≥  ෍ 𝑦௜௝௞௜∈ఋష(௝),௞∈௄  −  ෍ 𝑥௜௝௜∈ఋష(௝)    ∀𝑗 ∈ 𝐶 (30) 𝑧௝஽  ≤  1 −  𝑥௜௝  + ෍ 𝑦௟௝௞௟∈ఋష(௝),௞∈௄,௟ஷ௜     (𝑖, 𝑗) ∈ 𝐴, 𝑗 ≠  𝑒 (31) ෍ 𝑦௜௝௞௜∈ఋష(௝),௞∈௄  ≥  𝑧௝஽    ∀𝑗 ∈ 𝐶 (32) 𝑧௝ு  ≥  𝑥௜௝  −  ෍ 𝑦௟௝௞௟∈ఋష(௝),௞∈௄,௟ஷ௜    (𝑖, 𝑗) ∈ 𝐴, 𝑗 ≠  𝑒 (33) ෍ 𝑥௜௝௜∈ఋష(௝)  ≥  𝑧௝ு  ∀𝑗 ∈ 𝐶 (34) 𝑧௝ு  +  𝑧௝஽  ≤  1 + (2 −  𝑦௜௝௞  +  𝑥௜௝  − ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜ )  (𝑖, 𝑗) ∈ 𝐴, 𝑗 ≠  𝑒 (35) 𝑧௝ு  +  𝑧௝஽  ≥  1 − (2 −  𝑦௜௝௞  +  𝑥௜௝  −  ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜ ) (𝑖, 𝑗) ∈ 𝐴, 𝑗 ≠  𝑒 (36) 

 
Constraints (2) ensure that a node is visited by the helicopter at most once and correspond to the balance between incoming 
and outgoing links for the helicopter route. Constraints (3) and (4) ensure that the number of outgoing links from node o and 
incoming links at node e equal 1. Constraints (5)–(7) are equivalent to Constraints (2)–(4) but apply to drones instead of the 
helicopter. Constraints (8) ensure that each retrieval node only retrieves one drone. Constraints (9) restrict reconnaissance of 
each mission node to at most one drone. Constraints (10) –(18) calculate the departure time of the helicopter and drones at 
each mission node. Constraints (19)–(20) guarantee that the helicopter returns to the depot within the flight endurance limit. 
Constraints (21) enforce the departure time at the origin node. The methodology proposed by Gonzalez et al. (2020) is utilized 
to compute the remaining battery capacity of drones when they arrive at and depart from nodes based on Constraints (22)–
(26). Constraints (27) and (28) ensure the drones have sufficient battery capacity to be retrieved at the retrieval nodes. 
Constraints (29) set the initial battery capacity of drones in the depot to their maximum level. Constraints (30)–(36) indicate 
the relationship between binary variables. 
 
4. Heuristic algorithm 
 
This section presents a heuristic algorithm for solving the HDHOP. The simulated annealing (SA) and A-SA algorithms are 
introduced in Section 4.1. The solution’s coding scheme is presented in Section 4.2, and the algorithm for constructing the 
initial solution is presented in Section 4.3. The operators used in the A-SA are defined in Section 4.4. Finally, Section 4.5 
describes the efficient method of evaluating the feasibility of any solution. 
 
To ensure consistency, we use the term "helicopter route" to describe the sequence of mission nodes visited by the helicopter. 
Additionally, we differentiate between a single drone trip and a drone schedule. A single drone trip includes a launch node, a 
sequence of visited mission nodes, and a retrieval node, while a drone schedule comprises a series of non-overlapping single 
trips assigned to the same drone. These definitions align with those proposed by Luo et al. (2021).  
 
4.1 SA and A-SA algorithms  
 
SA, a widely recognized probabilistic search technique developed by Kirkpatrick et al. (1983), can escape from local optimal 
solutions by probabilistically accepting suboptimal solutions. SA has been successfully applied to a variety of truck–drone 
routing problems, including those studied by Gonzalez et al. (2020), Moshref-Javadi et al. (2020), Masmoudi et al. (2022), 
and Salama and Srinivas (2022). 
 
The A-SA algorithm, described as Algorithm 1, combines the ideas of the adaptive large neighborhood search (ALNS) and 
SA algorithms. Recent research by Masmoudi et al. (2022) also adopted this idea. The method is based on the simulated 
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annealing algorithm, which generates a series of solutions iteratively and utilizes the Metropolis criterion to accept some 
suboptimal solutions, enabling escape from local optima (Line 14). A-SA adjusts the operator weight based on performance 
during the search process (Line 17), dynamically selecting operators using roulette rules to enhance the efficiency and search 
space of the algorithm (Line 6). At each annealing, the new solution needs to undergo feasibility evaluation, and the objective 
value for infeasible solutions is 0 (Line 8). The initial temperature is set to 𝑇௦௧ and the internal loop (Line 5) stops when the 
temperature is below 𝑇଴. The maximum number of iterations for the outer loop (Line 4) is 𝑖𝑡𝑒𝑟𝑀𝑎𝑥, and the cooling coefficient 
is α. 
 
Secondly, if there is no improvement with multiple consecutive iterations, it may indicate that the current operator weights 
are difficult to optimize for the current solution and need to be reset. Thus, if “noImpv2” consecutive iterations do not yield 
any improvements, the operator weights and scores will be reset (Line 27). 
 
Finally, the algorithm will be restarted from other initial solutions to explore different search regions if consecutive “noImpv1” 
iterations are not improving (Line 24). This helps to enhance search region diversity and avoid excessive iteration around 
local optimal solutions. This technique is called the multi-start method in the literature. It has been successfully applied to 
various heuristic algorithms, such as multi-start Tabu search (Luo et al., 2021) and adaptive multi-start simulated annealing 
(Masmoudi et al., 2022). 
 

Algorithm 1. A-SA 
1: Input: 𝑇௦௧ ,𝑇଴,𝑛𝑜𝐼𝑚𝑝𝑣𝑀𝑎𝑥1,𝑛𝑜𝐼𝑚𝑝𝑣𝑀𝑎𝑥2, 𝑖𝑡𝑒𝑟𝑀𝑎𝑥,𝛼  
2: 𝑆 ← Construct a new initial solution  
3: 𝑆௕௘௦௧ ← 𝑆, 𝑛𝑜𝐼𝑚𝑝𝑣1 ← 0, 𝑛𝑜𝐼𝑚𝑝𝑣2 ← 0, 𝑇௖ ← 𝑇௦௧, 𝑖𝑡𝑒𝑟 ← 0, Initialize operator weights and scores 
4: While iter < 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 𝐝𝐨  
5: While 𝑇௖ > 𝑇଴ 𝐝𝐨 
6: Select an operator q from all operators using a roulette wheel rule 
7: 𝑆௡௘௪ ← 𝑞(𝑆) 
8: Feasibility evaluation of 𝑆௡௘௪, if infeasible, ƒ(𝑆௡௘௪) = 0 
9: If ƒ(𝑆௡௘௪) ≥  ƒ(𝑆) then 
10: 𝑆 ←  𝑆௡௘௪ 
11: If ƒ(𝑆௡௘௪) ≥ ƒ(𝑆௕௘௦௧） then 
12 𝑆௕௘௦௧ ←  𝑆௡௘௪ 
13: End if 
14: Else if random (0,1) < exp (ƒ(ௌ೙೐ೢ)ିƒ(ௌ)೎் ) then 
15: 𝑆 ←  𝑆௡௘௪ 
16: End if 
17 Update the weight and score of operator q 
18: 𝑇௖ ← α𝑇௖ 
19: noImpv1 ← 𝑛𝑜𝐼𝑚𝑝𝑣1 + 1, noImpv2 ← 𝑛𝑜𝐼𝑚𝑝𝑣2 + 1 
20: If 𝑆௕௘௦௧ is improved then 
21: noImpv1 ← 0, noImpv2 ← 0 
22: End if 
23: If noImpv1 > 𝑛𝑜𝐼𝑚𝑝𝑣𝑀𝑎𝑥1 then 
24: noImpv1 ← 0, 𝑆 ←  construct a new initial solution 
25: End if 
26: If noImpv2 > 𝑛𝑜𝐼𝑚𝑝𝑣𝑀𝑎𝑥2 then 
27: noImpv2 ← 0, reset operator weights and scores 
28: End if 
29: iter ← iter + 1, 𝑇௖ ← 𝑇௦௧ 
30: End while 
31: End while 
32: Output: 𝑆௕௘௦௧ 

 

 
4.2 Solution coding scheme 
 
A solution to the problem includes information about which mission nodes are assigned to the helicopter or the drones, the 
sequence of mission nodes visited by the helicopter and the drones, and the launch and retrieval nodes of all drone trips. The 
solution in Fig. 2 is represented in Fig. 3, where green squares indicate unvisited nodes and red squares indicate the drone 
reconnoiters retrieval node in a single trip when its value is 1. Otherwise, the red square value is 0. 
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Fig. 3. Fig. 2 solution coding scheme  
4.3 Initial solution construction 
 

Algorithm 2. Construction algorithm 
1: Input: N 
2: C ← N \ {o, e} is the unprocessed mission node sequence 
3: Randomly select one node n from C and insert it in the middle of the route (o, e) 
4: Remove n from C 
5: Helicopter route h ← (o, n, e) 
6: While not exceeding helicopter endurance do   
7: For c in C do 
8: Attempt to insert c at the optimal insertion position in h, and calculate information increase rate 
9: End for 
10: Update h ← Select the route with the highest information increase rate after insertion 
11: Remove c in h from C 
12: End while 
13: Let 𝐿௞ be a set of launch nodes that drone k can use 
14: Let 𝑅௞ be a set of retrieval nodes that drone k can use 
15: While true do 
16: For each drone k do 
17: c ← randomly select a node from C 
18: For each feasible pair of 𝑙௞ and 𝑟௞ where  𝑙௞ ∈ 𝐿௞ and 𝑟௞ ∈ 𝑅௞ do 
19: Attempt to generate a single drone trip (𝑙௞, c, 𝑟௞), and calculate information increase rate 
20: End for 
21: Retain u ← (𝑙௞, c, 𝑟௞) as the single drone trip with the highest rate of information increase for drone k 
22: Remove c in u from C, remove 𝑙௞ in u from 𝐿௞ and remove 𝑟௞ in u from 𝑅௞ 
23: End for 
24: Until feasible single drone trips cannot be generated 
25: End while 
26: While true do 
27: Randomly select a single drone trip for any drone k 
28: For each node in C do 
29: Attempt to insert at the optimal position in the single drone trip and calculate information increase rate 
30: End for 
31: Retain u ← u as the single drone trip with the highest rate of information increase after insertion 
32: Remove the selected insertion node from C 
33: Until there is no feasible insertion 
34: End while 
35: Output: helicopter’s initial route, drones’ initial schedule  

 
Based on the characteristics of the problem, we develop a construction algorithm (Algorithm 2) that guarantees the generation 
of feasible solutions. The helicopter route is created by randomly selecting the first insertion node to ensure solution diversity 
(Line 3). Then, we choose the insertion node with the highest rate of information increase (information gain per unit resource 
consumption) at the optimal insertion position (minimal change in travel time caused by insertion) (Line 10) sequentially until 
we reach the maximum endurance limit of the helicopter. 
 
Secondly, each drone is selected by looping (Line 16) and one node is randomly chosen from the unvisited nodes (Line 17). 
Then, a set of single drone trips is generated using this selected node and each feasible pair of launch and retrieval nodes. 
Only the single drone trip with the highest information increase rate in the set is retained (Line 21). The above operation is 
repeated until no more feasible single drone trips can be generated. 
 
Finally, a single drone trip is randomly selected (Line 27), and each unvisited node attempts to insert itself into the optimal 
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position of the single drone trip (Line 29), generating a set of single drone trips visiting an additional node. Only the single 
drone trip with the highest information increase rate in the set is retained (Line 31). The above operation is repeated until there 
is no feasible insertion. 
 
To make the generated solutions feasible, we ensure there will be no situation where the helicopter is waiting for the drones. 
Specifically, the above sets of single drone trips must meet the following conditions, and the travel time does not include 
waiting time: 
 
• The drones' travel time must not exceed their maximum endurance. 
• The drones' travel time must not exceed the corresponding helicopter’s travel time (from the launch node of the single 

drone trip to the retrieval node). 
• The corresponding helicopter’s travel time must not exceed the drones' maximum endurance. 
 
4.4 Operators for A-SA 
 
Heuristic methods that utilize insertion and swap operators are commonly used to solve the orienteering problem (Kim et al., 
2020). Thus, these operators were extended for use in the HDHOP, considering the problem’s unique characteristics. A total 
of eight operators are proposed. Note that the nodes eligible for swap or insertion in a single drone trip exclude the launch and 
retrieval nodes. The helicopter route nodes, including the launch and retrieval nodes, are eligible for swap or insertion. 
Furthermore, the launch and retrieval nodes of the affected single drone trip must be updated after swap or insertion. 
 
4.4.1 Insertion operators 
 
• For all single drone trips, when the drones arrive at a retrieval node, if any drone's remaining endurance is sufficient for 

the reconnaissance mission, then the retrieval node reconnaissance mission is transferred from the helicopter to the 
drone(s). Then, randomly select a drone to generate a trip from the launch node to the retrieval node and conduct 
reconnaissance. Finally, select the unvisited node with the highest rate of information increase after insertion at the 
optimal location on the helicopter route, and insert the node into the helicopter route. 

• Select the single drone trip with the highest remaining endurance upon arrival at the retrieval node. If the drone 
reconnoiters the retrieval node on this trip, change the retrieval node to be reconnoitered by the helicopter. Among the 
unvisited nodes, select the node with the highest information increase rate after being inserted at the optimal position on 
this single drone trip, and insert the node in the trip. 

• Randomly select a single drone trip. If this trip goes directly from the launch node to the retrieval node, select the 
unvisited node with the highest information increase rate after being inserted at the optimal position in this trip, and insert 
it into this trip. If this trip does not go directly from the launch node to the retrieval node, randomly remove a node from 
this trip, select the unvisited node with the highest information increase rate after insertion at the optimal position in this 
trip, and insert it into this trip. 

• Randomly select a single drone trip. If the drone reconnoiters the retrieval node, change it to be reconnoitered by the 
helicopter. Combine the helicopter route nodes and unvisited nodes into a single set, then randomly select a node from 
this set to insert at the optimal position of this drone trip. If the insertion node is a launch or retrieval node in any drone 
trip, set the subsequent node of the insertion node in the helicopter route as the launch node for the affected single drone 
trip and the previous node as the retrieval node for the affected single drone trip (Luo et al., 2021). 

• Randomly select a node from the unvisited nodes, then randomly select a drone with a feasible launch and retrieval node 
pair to create a single drone trip for this selected node. 

 
4.4.2 Swap operators 
 
• Combine nodes of the helicopter route and unvisited nodes into a set, then randomly select two nodes to swap positions; 

at least one of them should be a node on the helicopter route. If these swapped nodes are launch or retrieval nodes in any 
drone trip, update the launch and retrieval nodes of the affected drone trip to the node after the swap. 

• Combine nodes of the helicopter route and unvisited nodes into a set and randomly select a node. Then randomly select 
a single drone trip, which must not be a direct trip from the launch node to the retrieval node. Swap the two selected 
nodes. If the swapped node is a launch or retrieval node in the other drone trip, update the launch and retrieval nodes of 
the affected drone trip to the node after the swap. 

• Randomly select a single drone trip, which must not be a direct trip from the launch node to the retrieval node. Swap 
nodes between any two positions in this trip, or swap any node in this trip with an unvisited node. If swapping with an 
unvisited node, select the swapped node with the highest rate of information increase after the swap among the unvisited 
nodes.  
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4.5 Solution feasibility evaluation 
 

The feasibility of any solution depends on its structure and whether energy consumption is within the maximum endurance 
level. Since the drones' launch and retrieval operations can be done simultaneously with the helicopter’s reconnaissance 
operations, the launch and retrieval timing in single drone trips is not fixed. When evaluating the feasibility of the endurance 
level, a solution is feasible when the minimum waiting time for the helicopter and the drones is feasible. Algorithm 3 is used 
to evaluate the feasibility of the solutions. The objective value is set to 0 if the solution is not feasible. Section 4.5.1 explains 
the feasibility evaluation of the solution's structure, Section 4.5.2 discusses the calculation of the minimum waiting time, and 
Section 4.5.3 describes the feasibility evaluation of the solution's endurance level. 
 

Algorithm 3. Solution feasibility-evaluation 
1: Input: 𝑆௡௘௪  
2: If 𝑆௡௘௪ has infeasible structure then 
3: ƒ(𝑆௡௘௪) = 0 
4: Else if 𝑆௡௘௪ is infeasible at endurance-level then 
5: ƒ(𝑆௡௘௪) = 0 
6: End if 
7: Output: ƒ(𝑆௡௘௪) 

 
4.5.1 Structural feasibility evaluation 
 
A solution is feasible at the structure level only if two conditions are met: (1) there is no scheduling for each drone, as shown 
in Fig. 4; and (2) the helicopter can retrieve only one drone at each node except for the depot. 

a c d f a c d f

b e b

e

 
Fig. 4. Two prohibited drone schedules (Ponza, 2016) 

 

4.5.2 Calculate the minimum waiting time 
 

The combined drone and helicopter routes between the same drone launch nodes and their corresponding retrieval nodes is 
defined as a route segment. S is defined as the length of the drones' available launch time window at the mission nodes. The 
earliest launch times are when the drones are retrieved by the helicopter or when the helicopter and the drones arrive 
simultaneously at the nodes. The drones' latest launch times are when the helicopter leaves the nodes' timing. In Fig. 5, a 
indicates the time when the helicopter arrives at the node, and d is the time when the helicopter leaves the node. The total time 
span is the helicopter’s reconnaissance time plus its waiting time at this node. When a node is reconnoitered by a drone, the 
reconnaissance time of the helicopter at the node is equal to 0. When there is no helicopter waiting at the node, the waiting 
time of the helicopter is also 0. Three scenarios for the launch time window of a drone at any node are as follows:  
 

• When the helicopter and the drones arrive at the node simultaneously, or when a drone arrives first (shown in Fig. 5(a); 
• When the helicopter arrives first, and the drones arrive before the helicopter completes the reconnaissance of the node 

(shown in Fig. 5(b); 
• When the helicopter is waiting for a drone at a node (shown in Fig. 5(c). 

a d a d a d
(a) (b) (c)  

Fig. 5. Launch time window  
Table 4 
Route segment related parameters 

TH The travel time for the helicopter from leaving the launch node to reach the retrieval node. 
TD The travel time for the drone from leaving the launch node to reach the retrieval node. 
SD The time required for the drone to conduct reconnaissance for the retrieval node. 
SH The time required for the helicopter to conduct reconnaissance for the retrieval node. 
WH The minimum waiting time for the helicopter at the retrieval node. 
WD The minimum waiting time for the drone at the retrieval node. 
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In a route segment, if a drone is launched at the earliest time at the launch node and the helicopter still needs to wait at the 
retrieval node, then this waiting time for the helicopter is the minimum waiting time, which is calculated by Formulas (37) 
and (38). This also indicates that if the drone is launched any time before the helicopter leaves the launch node, the helicopter 
must wait at the retrieval node. 
 

If the retrieval node is reconnoitered by the helicopter: 
 

WH = TD - TH - SH - S (37) 
 

If the retrieval node is reconnoitered by the drone: 
 

WH = TD + SD - TH - S (38) 
 

In a route segment, if the drone is launched at the launch node at the latest time and still needs to wait at the retrieval node, 
then this waiting time is the minimum waiting time, which is calculated by Formulas (39) and (40). This also indicates that if 
the drone is launched any time before the helicopter leaves the launch node, the drone must wait at the retrieval node. 
 

If the retrieval node is reconnoitered by the helicopter: 
 

WD = TH - TD (39) 
 

If the retrieval node is reconnoitered by the drone: 
 

WD = TH - TD - SD (40) 
 

4.5.3 Endurance-level feasibility evaluation 
 

The solutions are feasible at the endurance level only if the total energy consumption of each drone and the helicopter during 
flight, reconnaissance, and waiting does not exceed the maximum endurance level. The algorithm is detailed as Algorithm 4. 
 

Algorithm 4. Endurance-level feasibility evaluation 
1: Input: 𝑆௡௘௪ 
2: Sort the route segments according to the order of retrieval nodes on the helicopter route 
3: For each route segment after sorting do 

4: Calculate the waiting time of the helicopter or drones at the retrieval node and update the launch time 
window accordingly 

5: If the single drone trip energy consumption exceeds its maximum endurance level then 
6: ƒ(𝑆௡௘௪) = 0 
7: End if 
8: End for 
9: Calculate helicopter route energy consumption 
10: If the energy consumption of the helicopter route exceeds its maximum endurance level then 
11: ƒ(𝑆௡௘௪) = 0 
12: End if 
13: Output: ƒ(𝑆௡௘௪) 

 
Helicopter and drone energy consumption affect each other between route segments, and this influence is transmitted 
according to the order of the retrieval nodes on the helicopter route. Therefore, we can evaluate each route segment according 
to the order of the retrieval nodes on the helicopter route and update the launch time window and the helicopter or drone 
waiting time of each route segment retrieval node in turn. We call this a segment-sorting evaluation (SSE). An example is 
shown in Fig. 6, where route segment 1 impacts the earliest drone launch time at node 3 and the helicopter travel time of route 
segments 2 and 4. Route segment 2 affects the helicopter travel time of route segments 3 and 4, and route segment 3 affects 
the helicopter travel time of route segment 4. Thus, the sequence of evaluation should be 1–2–3–4. 
 

1 2 3 4 5 6
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Fig. 6. Example of evaluation sequence  
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The calculation time of the SSE is directly proportional to the number of route segments with an upper limit of n/2. Thus, the 
time complexity of SSE is O(n). Furthermore, this method can be extended to address the problem of retrieving multiple 
drones at the same retrieval nodes. However, it needs to determine the time window of the retrieval nodes. 
 
5. Numerical examples 
 
This section presents the calculation results of the HDHOP test instances. First, the test instances are described in Section 5.1. 
Second, the algorithm's parameters are determined through parameter tuning (Section 5.2). Next, an experiment is conducted 
to verify that the proposed SSE has a faster evaluation speed than the method based on mathematical models (Section 5.3). 
Fourth, the performance of the A-SA algorithm is evaluated on small-scale instances by comparing it with the Gurobi solver 
(Section 5.4). Fifth, large-scale instance experiments are conducted (Section 5.5), including a comparison with the SA 
algorithm. Finally, the effects of allowing the drones to reconnaissance at retrieval nodes are analyzed (Section 5.6). The 
experimental method in this section refers to the numerical experimental method proposed by Gu et al. (2022) and Matijević 
(2023). 
 
The MILP model was solved using Gurobi 10.0.0, and the A-SA algorithm was implemented using Python 3.9.13. All 
computational work was conducted on a Lenovo PC with a 4-core Intel i5-1135G7 processor and 16 GB of RAM, running 
Microsoft Windows 10 in 64-bit mode. A stopping criterion was defined based on the maximum number of iterations. The 
maximum number of iterations for each instance, denoted as iterMax, was determined according to the number of nodes N: 
10 iterations when N < 100; 20 iterations when 100 ≤ N. 
 
5.1 HDHOP test instances 
 
These instances were modified based on benchmark instances (kroA100, kroA150, kroA200, kroB100, kroB150, kroB200, 
lin105, lin318 in gen2, gen3, gen4) proposed by Kobeaga et al. (2018) for the orienteering problem. The reconnaissance time 
for each mission node by the helicopter is limited to less than 5 minutes and is generated using random number seeds. The 
reconnaissance time for the drones at each mission node is proportional to the helicopter’s time, and the proportional 
coefficient is the ratio of the helicopter's speed to the drone's speed. All instances cannot obtain feasible solutions to visit all 
nodes through A-SA, to ensure consistent difficulty. 
 
5.2 Parameter setting 
 
In our numerical experiment, the helicopter carried three distinct models of drones. For detailed data, please consult Table 5. 
 
Table 5 
Helicopter and drone flight parameters 

Vehicle Speed Endurance 
Helicopter 350 km/h 6 h 

Drone1 100 km/h 2 h 
Drone2 90 km/h 4 h 
Drone3 80 km/h 5 h 

 
In the A-SA algorithm, the initial temperature (𝑇௦௧) is set to 100 and the termination temperature (𝑇଴) is set to 10. The operators' 
initial weights and scores are set to 1. The number of consecutive unimproved times (noImpvMax2) is set to one-fifth of 
iterMax, and noImpvMax1 is set to one-tenth of iterMax. The cooling rate (α) is determined to be 0.99975, as suggested by 
Demir et al. (2012) and Masmoudi et al. (2016). Operator scores are updated according to the rules outlined in Table 6. 
 
Table 6 
Operators score updates criteria 

State Score ƒ(𝑆௡௘௪) > ƒ(𝑆) and ƒ(𝑆௡௘௪) > ƒ(𝑆௕௘௦௧) 1.5 ƒ(𝑆௡௘௪) > ƒ(𝑆) and ƒ(𝑆௡௘௪) ≤ ƒ(𝑆௕௘௦௧) 1.2 ƒ(𝑆௡௘௪) = ƒ(𝑆) and ƒ(𝑆௡௘௪) = ƒ(𝑆௕௘௦௧) 0.7 ƒ(𝑆௡௘௪) = ƒ(𝑆) and ƒ(𝑆௡௘௪) ≠ ƒ(𝑆௕௘௦௧) 0.5 ƒ(𝑆௡௘௪) < ƒ(𝑆) and meets Metropolis 0.3 ƒ(𝑆௡௘௪) < ƒ(𝑆) and does not meet Metropolis 0.1 
 
We adopted the weight update method described by Ropke and Pisinger (2006), using a reaction factor 𝛽. To examine the 
influence of varying 𝛽 values, we chose the lin105 instance from gen2, gen3, and gen4. Then, we selected N nodes sequentially, 
starting from the Gth node in lin105, to generate 18 new instances, where N took values of 10, 25, and 50. The newly generated 
test instances were named lin105-genX-𝑁-𝐺. The results are presented in Table 7, with column 𝑆௔ indicating the average 
objective value and column 𝑇௔ indicating the average calculation time in seconds. Our observations suggest that reaction 
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factor 𝛽 significantly influences the solutions. For 𝛽 = 0.3, the calculation time was relatively short, but the obtained objective 
value was lower. The best solution was obtained using 𝛽 = 0.9, with the highest objective value and a moderate increase in 
calculation time. Hence, we set reaction factor 𝛽 to 0.9 for subsequent experiments. The detailed results for each instance are 
provided in Appendix B Table B1. 
 
Table 7 
Calibration experiment results for strength of reaction factor 

N 𝛽 =0.1 𝛽 =0.3 𝛽 =0.5 𝛽 =0.7 𝛽 =0.9 𝑆௔ 𝑇௔ 𝑆௔ 𝑇௔ 𝑆௔ 𝑇௔ 𝑆௔ 𝑇௔ 𝑆௔ 𝑇௔ 
10 187.17 26.05 187.17 27.45 187.17 26.61 187.17 28.22 187.17 28.16 
25 496.83  20.59  502.00  19.85  510.17  20.38  512.17  21.83  512.17  21.48  
50 635.67  66.18  626.67  56.72  633.17  62.67  635.83  60.56  639.33  60.36  

Average 439.89  37.61  438.61  34.67  443.50  36.55  445.06  36.87  446.22  36.67  
 
5.3 Acceleration analysis of SSE 
 
This section presents an experiment that was conducted to evaluate the performance of SSE. The critical path method (CPM) 
proposed by Luo et al. (2021) assumes that vehicles and drones must depart simultaneously, making it unsuitable to evaluate 
the feasibility of HDHOP solutions. We customized a linear programming (LP) model for HDHOP to evaluate the feasibility 
of the solutions. The constraint conditions for LP are from Constraints (10)–(29) in Section 3.2.2. We compared the evaluation 
efficiency of SSE and LP. Please note that the time complexity of SSE is 𝑂(n), which is a linear relationship with the instance 
size. 
 
Using the A-SA algorithm, we applied these two evaluation methods and recorded the computational time required to evaluate 
the feasibility of a single solution. The test instances were modified from kroA200 in gen2. The size of N ranged from 10 to 
160, resulting in a total of 16 instances. We conducted 50 runs for each instance and calculated the average evaluation time 
for each run. The recorded time was measured in milliseconds. 
 
We plotted the relationship between the SEE and LP average calculation time and the number of nodes (N) (Fig. 7). The results 
reveal that LP required a longer calculation time than SEE for feasibility evaluation. With an increasing number of nodes, LP 
exhibited a strong growth trend for calculation time, increasing from 3.2504 to 49953.6652 milliseconds. In contrast, SEE's 
calculation time showed a slight increase from 0 to 0.8360 milliseconds. These findings demonstrate the superiority of SEE 
over LP, particularly for large-scale test instances. Fig. 8 shows that the calculation time of SEE increased approximately 
linearly, supporting the statement about the time complexity of SEE. The results are summarized in Appendix B Table B2. 
 

  
Fig. 7. Comparison of LP and SSE calculation time Fig. 8. The relationship between SSE calculation time 

and N 
 
5.4 Comparison of HDHOP small-scale instances 
 
To evaluate the performance of the A-SA, we chose lin105 instances from gen2, gen3, and gen4 and sequentially selected N 
nodes beginning from the Gth node in lin105 to create 15 small-scale instances. These instances were solved using Gurobi 
10.0.0 based on the mathematical models proposed in Section 3.2.2. Some acceleration constraints were applied to make the 
model more compact and improve the solving speed of Gurobi, summarized in Appendix A. Based on a running time limit of 
1800 seconds, the number of nodes in the optimal solution for the scenario of three drones was nine (𝑁 = 9). We selected 
eight- and nine-node instances for the experiment based on this result. 
 
The summarized results are presented in Table 8, which includes the following notations: # Opt represents the instance 
numbers in optimal solutions found by Gurobi, and #𝑆௕ indicates the number of instances where A-SA achieved the same 
objective value as Gurobi. 𝑇௧௢௧ denotes the average time the Gurobi solver takes, while 𝑇௕ represents the average time required 
by the A-SA algorithm to achieve the same objective value. 
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For the instances involving eight nodes, A-SA successfully obtained the optimal solutions for all test instances within 
approximately 2 seconds, whereas Gurobi took a minimum of 147 seconds to achieve the same result. Regarding the instances 
with nine nodes, Gurobi found the optimal solutions in only three instances. In contrast, A-SA found solutions with equivalent 
objective values to Gurobi and accomplished this within a significantly shorter time. Thus, A-SA demonstrates superior 
performance. Please refer to Appendix B Table B3 for comprehensive details on each test instance.  
 
Table 8 
Comparison of Gurobi and A-SA for small Instances 

  N=8 N=9 
  Gurobi A-SA Gurobi A-SA 
Inst. series Inst. num #Opt 𝑇௧௢௧ #𝑆௕ 𝑇௕ #Opt 𝑇௧௢௧ #𝑆௕ 𝑇௕ 
lin105-gen2 5 5 193.02 5 1.75 1 1674.09 5 1.67 
lin105-gen3 5 5 147.38 5 1.33 1 1720.99 5 1.78 
lin105-gen4 5 5 178.97 5 1.21 1 1690.79 5 1.30 

 
5.5 Comparison of HDHOP large-scale instances 
 
To evaluate the effectiveness of the proposed A-SA algorithm in large-scale scenarios, we compared its performance with the 
simulated annealing (SA) algorithm, employing the same parameter settings for both algorithms. We generated 54 large-scale 
instances based on the kroA100, kroB100, kroA150, kroB150, kroA200, kroB200, and lin318 instances from gen2, gen3, and 
gen4. The detailed results of the experiments conducted on 100, 150, and 200 nodes, including from 10 runs, the best (𝑆௕) and 
average (𝑆௔௩௚) objective values, best (𝑇௕) and average (𝑇௔௩௚) operation times, and average gap (𝐺𝑎𝑝௔௩௚) between the best and 
average objective values, are summarized in Table 9. The results demonstrate that the A-SA algorithm outperformed the SA 
algorithm regarding the objective value, solution speed, and stability. Additionally, the A-SA algorithm exhibited remarkable 
computational efficiency. For the three-drone scenario, the average time to obtain the superior solution was approximately 
151.41 seconds for N = 100, less than 170 seconds for N = 150, and around 335.81 seconds for N = 200. Detailed information 
on each test instance is given in Appendix B Table B4. 
 
Table 9 
Comparing A-SA and SA: summarized results for large instances 

 N=100 N=150 N=200 
 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 
A-
SA 4495.44 127.42 4295.31 151.41 0.04 5513.72 136.81 5173.96 168.66 0.06 6014.56 256.75 5687.32 335.81 0.06 

SA 4336.22 159.63 3946.41 216.88 0.09 5198.78 305.24 4740.06 414.04 0.09 5641.50 512.06 5142.12 663.00 0.09 

 
5.6 Prohibiting drones from reconnoitering retrieval nodes 
 
To investigate the impact of drone reconnoiter retrieval nodes on objective value, we conducted a comparative analysis 
between two scenarios: when retrieval nodes can be reconnoitered by drones, and when they cannot. We generated 72 instances 
using the kroA100, kroB100, kroA150, kroB150, kroA200, kroB200, and lin318 instances from the gen2, gen3, and gen4 
datasets. The instance sizes were 25, 50, 100, and 200, and each size had Nu instances. Each instance was run 10 times while 
the average and maximum objective values were recorded. Appendix B Table B5 provides more details on each test instance. 
RD and NRD denote the situations where drones can and cannot reconnoiter retrieval nodes, respectively. Table 10 summarizes 
the experimental results. In the table, #𝑅𝐷௠௔௫ represents the number of instances where the maximum objective value of RD 
is greater than or equal to that of NRD, and #𝑅𝐷௔௩௚ represents the number of instances where the average objective value of 
RD is greater than or equal to that of NRD. The results of the analysis show that 68.06% of the maximum objective value at 
RD is not lower than at NRD, and 70.83% of the average objective value at RD is not lower than at NRD. This indicates that 
allowing the drones to reconnoiter retrieval nodes very likely helps to obtain a better objective value. This result aligns with 
the actual situation, allowing expanded solution numbers for drone reconnoiter retrieval nodes, and thereby increasing the 
likelihood of obtaining better objective value. 
 
 

Table 10 
Comparing RD and NRD 

 N=25 N=50 N=100 N=200 Avg #𝑅𝐷௠௔௫ 18.00 12.00 10.00 9.00 12.25 #𝑅𝐷௠௔௫/𝑁𝑢 100.00% 66.67% 55.56% 50.00% 68.06% #𝑅𝐷௔௩௚ 10.00 16.00 11.00 14.00 12.75 #𝑅𝐷௔௩௚/𝑁𝑢 55.56% 88.87% 61.11% 77.78% 70.83% 
 
6. Conclusion 
 

This paper has proposed the heterogeneous drones–helicopter orienteering problem, which involves the synchronous routing 
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of a helicopter with multiple heterogeneous drones for reconnaissance. The drones can visit multiple mission nodes in each 
trip. To solve this problem, we developed a mixed-integer linear programming (MILP) model. However, commercial solvers 
are limited to handling small-scale instances. To address medium-sized and large-scale instances, which better reflect real-
world scenarios, the A-SA algorithm and a novel evaluation method based on segment sorting were designed. We randomly 
generated some new instances based on benchmark instances from the orienteering problem and evaluated the performance 
of the proposed algorithm. Experiments showed that the new evaluation method can accelerate the evaluation of the 
synchronized routing problem for helicopters with multiple drones. Subsequently, the influence of whether or not drones can 
or cannot reconnoiter retrieval nodes was analyzed, and approximately 70% of the results of the examples show that allowing 
the drones to reconnoiter the retrieval nodes improves the objective value.   
 
Based on this work, future research could incorporate more real-world factors into the model, such as mission node dynamic 
information, terrain, and wind speed, and address the limitation of communication distance between drones and helicopters. 
In addition, we could explore the use of helicopters and drones in post-disaster transportation of emergency goods (such as 
blood and drugs) and study how to employ helicopters in collaboration with drones to perform different missions effectively. 
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Appendix A.  
 
Supplementary constraints 𝑡௝௅  ≥  𝑡௜௅  +  𝑡௜௝ு  +  𝑠௝ு  −  𝑀(1 −  𝑥௜௝  +  ෍ 𝑦௜௠௞௠∈ఋశ(௜),௞∈௄,௝ஷ௠  +  ෍ 𝑦௟௝௞௟∈ఋష(௝),௞∈௄,௟ஷ௜ )    (𝑖, 𝑗) ∈ 𝐴，𝑗 ≠ 𝑒 (A.1) 𝑡௝௅  ≤  𝑡௜௅  +  𝑡௜௝ு  +  𝑠௝ு  +  𝑀(1 −  𝑥௜௝  +  ෍ 𝑦௜௠௞௠∈ఋశ(௜),௞∈௄,௝ஷ௠  +  ෍ 𝑦௟௝௞௟∈ఋష(௝),௞∈௄,௟ஷ௜ )    (𝑖, 𝑗) ∈ 𝐴，𝑗 ≠ 𝑒 (A.2) 𝑡௘௅  ≤  𝑡௜௅  +  𝑡௜,௘ு  +  𝑀(1 −  𝑥௜,௘)    𝑖 ∈ 𝑁\𝑒 (A.3) 𝑏௞௝ି  ≥  𝑏௞௜ା  −  𝑡௜௝௞஽  −  𝑀(1 −  𝑦௜௝௞  +  𝑥௜௝)    (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾 (A.4) 𝑏௞௝ା  ≥  𝑏௞௝ି  −  𝑠௝௞஽  −  𝑀(1 −  𝑦௜௝௞  +  𝑥௜௝  +  ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜ )    (𝑖, 𝑗) ∈ 𝐴,𝑘 ∈ 𝐾, 𝑗 ≠ 𝑒 (A.5) (𝑇௠௔௫ு  +  max {𝑄௞})( ෍ 𝑥௜௝  +  ෍ 𝑦௜௝௞௜∈ఋష(௝),௞∈௄  )௜∈ఋష(௝)  ≥  𝑡௝௅    ∀𝑗 ∈ 𝐶 (A.6) 𝑄௞( ෍ 𝑦௜௝௞௜∈ఋష(௝) )  ≥  𝑏௞௝ି    ∀𝑗 ∈ 𝐶,𝑘 ∈ 𝐾 (A.7) 𝑄௞( ෍ 𝑦௜௝௞௜∈ఋష(௝) )  ≥  𝑏௞௝ା     ∀𝑗 ∈ 𝐶,𝑘 ∈ 𝐾 (A.8) 𝑡௝௅  −  𝑡௜௅  ≥  𝑏௞௜ା  −  𝑏௞௝ା  −  𝑀(1 −  𝑦௜௝௞  +  𝑥௜௝  + ෍ 𝑥௜௠௠∈ఋశ(௜),௝ஷ௠  + ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜ )    (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠  𝑒 (A.9) 𝑡௝௅ − 𝑡௜௅  ≤  𝑏௞௜ା  −  𝑏௞௝ା  +  𝑀(1 −  𝑦௜௝௞  + 𝑥௜௝  +  ෍ 𝑥௜௠௠∈ఋశ(௜),௝ஷ௠  +  ෍ 𝑥௟௝௟∈ఋష(௝),௟ஷ௜ )    (𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾, 𝑗 ≠ 𝑒 (A.10) 𝑧௝ு  +  𝑧௝஽  ≤  1    ∀𝑗 ∈ 𝐶 (A.11) 
 
Constraints (A1) and (A2) determine the time relationship for the helicopter non-launch and non-retrieval routes. Constraints 
(A3) and Constraints (19) in the model calculate the time for the helicopter to return to the depot. Constraints (A4) and 
Constraints (24) in the model calculate the power consumption between two nodes among drone routes. Constraints (A5) and 
Constraints (25) in the model calculate the power consumption of the drones to reconnoiter mission nodes. Constraints (A6) 
ensure that unvisited nodes' 𝑡௝௅  is equal to 0. Constraints (A7) and (A8) ensure that unvisited nodes' 𝑏௞௝ି  and 𝑏௞௝ା  are equal to 0. 
Constraints (A9) and (A10) enforce that the power consumption of the drones during a trip corresponds to the time difference 
between its consecutive nodes. Constraints (A11) guarantee that any mission node can be reconnoitered by the drones or the 
helicopter at most once.  
 

Appendix B.  
Numerical experimental data 
 

Table B1 
Calibration experiment results of reaction factor 𝛽 

N=10 0.1 0.3 0.5 0.7 0.9 
Inst. 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 

lin105-gen2-10-1 233 27.19 233 26.73 233 25.15 233 25.30 233 27.82 
lin105-gen2-10-2 261 26.19 261 25.70 261 24.78 261 24.89 261 24.45 
lin105-gen3-10-1 63 25.31 63 28.63 63 26.27 63 30.18 63 27.38 
lin105-gen3-10-2 72 25.34 72 28.83 72 28.78 72 29.86 72 28.59 
lin105-gen4-10-1 233 25.98 233 26.46 233 27.76 233 29.28 233 36.27 
lin105-gen4-10-2 261 26.26 261 28.27 261 26.92 261 29.81 261 24.46 

Average 187.17 26.05 187.17 27.45 187.17 26.61 187.17 28.22 187.17 28.16 
N=25 0.1 0.3 0.5 0.7 0.9 
Inst. 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 

lin105-gen2-25-1 628 22.51 657 15.85 657 17.95 657 17.83 657 19.82 
lin105-gen2-25-2 613 18.17 613 17.49 675 18.76 674 18.33 674 21.62 
lin105-gen3-25-1 199 28.87 199 24.26 199 25.16 199 25.87 199 26.67 
lin105-gen3-25-2 209 20.06 212 17.78 198 23.45 212 22.71 212 21.60 
lin105-gen4-25-1 657 17.53 657 23.88 657 21.19 657 25.37 657 25.59 
lin105-gen4-25-2 675 16.39 674 19.81 675 15.78 674 20.84 674 13.56 

Average 496.83  20.59  502.00  19.85  510.17  20.38  512.17  21.83  512.17  21.48  
N=50 0.1 0.3 0.5 0.7 0.9  
Inst. 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 𝑆௕ 𝑇௕ 

lin105-gen2-50-1 803 31.08 769 22.6 803 35.12 803 40.86 824 42.88 
lin105-gen2-50-2 833 60.29 833 46.97 833 46.00 833 38.16 833 47.89 
lin105-gen3-50-1 255 76.05 256 75.32 240 83.28 256 102.72 256 85.31 
lin105-gen3-50-2 266 86.92 266 104.60 266 92.27 266 87.82 266 86.33 
lin105-gen4-50-1 824 77.45 803 45.26 824 56.55 824 57.40 824 48.15 
lin105-gen4-50-2 833 65.26 833 45.55 833 62.79 833 36.40 833 51.57 

Average 635.67  66.18  626.67  56.72  633.17  62.67  635.83  60.56  639.33  60.36  
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Table B2 
Summary of average computational time per method (in milliseconds) 

 N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 
LP 3.2504 52.7976 315.8955 732.5333 645.1020 1591.1075 3487.2586 4449.0487 

SSE 0.0000 0.1123 0.1925 0.2325 0.2740 0.3759 0.3803 0.4305 
 N=90 N=100 N=110 N=120 N=130 N=140 N=150 N=160 

LP 7783.3895 10081.7623 11820.9198 22159.5686 28218.0217 35054.5429 41800.4544 49953.6652 
SSE 0.4860 0.5347 0.5543 0.6345 0.7071 0.7573 0.8071 0.8360  

Table B3 
Comparison of Gurobi and A-SA for small Instances 

N=8 Gurobi A-SA 
Inst. Opt? 𝑆௕ 𝑇௧௢௧ 𝑆௕ 𝑇௕ 

lin105-gen2-8-1 Y 170 94.34 170 1.83 
lin105-gen2-8-2 Y 216 125.75 216 1.26 
lin105-gen2-8-3 Y 198 319.83 198 1.16 
lin105-gen2-8-4 Y 101 207.82 101 2.72 
lin105-gen2-8-5 Y 63 217.37 63 1.77 
lin105-gen3-8-1 Y 22 116.68 22 1.90 
lin105-gen3-8-2 Y 40 102.17 40 1.09 
lin105-gen3-8-3 Y 115 125.58 115 1.55 
lin105-gen3-8-4 Y 77 189.76 77 0.95 
lin105-gen3-8-5 Y 41 202.73 41 1.16 
lin105-gen4-8-1 Y 170 96.52 170 1.20 
lin105-gen4-8-2 Y 216 139.12 216 1.70 
lin105-gen4-8-3 Y 198 315.53 198 1.19 
lin105-gen4-8-4 Y 101 151.47 101 1.19 
lin105-gen4-8-5 Y 63 192.23 63 0.76 

N=9 Gurobi A-SA 
Inst. Opt? 𝑆௕ 𝑇௧௢௧ 𝑆௕ 𝑇௕ 

lin105-gen2-9-1 Y 231 1170.25 231 1.78 
lin105-gen2-9-2 N 218 1800.06 218 2.04 
lin105-gen2-9-3 N 205 1800.06 205 1.55 
lin105-gen2-9-4 N 101 1800.02 101 1.59 
lin105-gen2-9-5 N 88 1800.05 88 1.41 
lin105-gen3-9-1 Y 41 1404.76 41 2.38 
lin105-gen3-9-2 N 62 1800.03 62 2.02 
lin105-gen3-9-3 N 115 1800.05 115 2.00 
lin105-gen3-9-4 N 77 1800.07 77 1.09 
lin105-gen3-9-5 N 57 1800.02 57 1.41 
lin105-gen4-9-1 Y 170 1253.73 170 1.38 
lin105-gen4-9-2 N 231 1800.02 231 1.60 
lin105-gen4-9-3 N 218 1800.08 218 1.33 
lin105-gen4-9-4 N 101 1800.06 101 1.09 
lin105-gen4-9-5 N 88 1800.05 88 1.09 

 
Table B4 
Comparing A-SA and SA for large Instances 

N=100 
 A-SA SA 

Inst. 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 
kroA100-gen2 4783.00 116.46 4303.60 141.27 0.10 4107.00 150.74 3844.80 229.57 0.06 
kroB100-gen2 4645.00 141.68 4480.40 164.47 0.04 4497.00 155.86 4222.80 187.66 0.06 
kroA100-gen3 4721.00 123.10 4549.2 148.69 0.04 4311.00 141.58 3750.20 180.98 0.13 
kroB100-gen3 4029.00 118.82 3909.30 141.07 0.03 3913.00 155.95 3285.00 172.08 0.16 
kroA100-gen4 4583.00 118.35 4269.10 143.96 0.07 4092.00 156.75 3933.20 179.24 0.04 
kroB100-gen4 4568.00 128.39 4410.10 145.09 0.03 4528.00 176.11 4194.40 230.51 0.07 

kroA150-gen2-100-1 4668.00 140.88 4288.30 154.18 0.08 4247.00 159.27 4074.40 194.21 0.04 
kroB150-gen2-100-1 4270.00 129.09 4162.00 144.45 0.03 4116.00 160.10 4000.80 218.67 0.03 
kroA150-gen3-100-1 4619.00 138.03 4451.10 163.64 0.04 4560.00 137.51 3731.80 248.68 0.18 
kroB150-gen3-100-1 4589.00 124.83 4529.20 155.01 0.01 4572.00 158.87 4386.20 243.86 0.04 
kroA150-gen4-100-1 4271.00 123.81 4171.60 168.11 0.02 4663.00 147.89 4112.60 185.46 0.12 
kroB150-gen4-100-1 4646.00 129.83 4497.80 167.53 0.03 4339.00 187.61 3940.80 253.90 0.09 
KroA200-gen2-100-1 4373.00 143.38 4179.60 170.24 0.04 4083.00 194.84 3852.40 225.82 0.06 
KroB200-gen2-100-1 4675.00 141.71 4501.40 165.13 0.04 4697.00 172.15 4173.80 206.78 0.11 
KroA200-gen3-100-1 4317.00 131.46 4114.60 148.79 0.05 4310.00 144.19 3737.00 398.14 0.13 
KroB200-gen3-100-1 4027.00 133.83 3902.00 151.33 0.03 4021.00 166.61 3453.80 178.34 0.14 
KroA200-gen4-100-1 4529.00 104.68 4167.80 129.06 0.08 4440.00 164.48 4002.60 209.80 0.10 
KroB200-gen4-100-1 4605.00 105.24 4428.50 123.42 0.04 4556.00 142.79 4338.80 160.11 0.05      
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Table B4 
Comparing A-SA and SA for large Instances (Continued) 

N=150 
 A-SA SA 

Inst. 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 
kroA150-gen2 5540.00 132.15 5271.80 148.78 0.05 5258.00 310.79 4988.40 360.06 0.05 
kroA150-gen3 6156.00 138.74 5467.40 173.44 0.11 5993.00 303.22 5147.60 373.28 0.14 
kroA150-gen4 5595.00 153.17 5300.00 162.54 0.05 5444.00 286.90 4987.60 353.31 0.08 
kroB150-gen2 5370.00 133.53 5093.30 177.18 0.05 4984.00 302.87 4736.40 417.25 0.05 
kroB150-gen3 6126.00 133.55 5639.70 199.43 0.08 5279.00 311.36 4805.00 395.10 0.09 
kroB150-gen4 5322.00 124.20 5013.90 147.07 0.06 5026.00 318.51 4622.80 365.42 0.08 

kroA200-gen2-150-1 5386.00 140.13 5081.80 165.44 0.06 5085.00 357.89 4678.00 419.57 0.08 
kroA200-gen3-150-1 5362.00 121.88 5007.60 192.39 0.07 5069.00 284.26 4500.60 557.84 0.11 
kroA200-gen4-150-1 5133.00 133.66 5033.50 150.94 0.02 5735.00 286.39 5128.80 447.32 0.11 
kroB200-gen2-150-1 5580.00 148.13 5377.40 160.01 0.04 5395.00 316.29 4896.40 328.28 0.09 
kroB200-gen3-150-1 5738.00 133.14 5448.20 174.25 0.05 5291.00 321.37 4994.00 364.29 0.06 
kroB200-gen4-150-1 5571.00 148.46 5343.80 168.50 0.04 5124.00 251.20 4595.80 315.61 0.10 

kroA200-gen2-150-10 5136.00 132.67 4806.70 155.74 0.06 4704.00 359.69 4405.60 568.20 0.06 
kroA200-gen3-150-10 5413.00 140.85 4854.30 166.35 0.10 4249.00 351.38 3750.80 434.25 0.12 
kroA200-gen4-150-10 5068.00 114.61 4876.10 178.18 0.04 5156.00 281.52 4726.00 587.36 0.08 
kroB200-gen2-150-10 5693.00 140.93 5317.80 161.12 0.07 5208.00 257.70 4968.00 354.39 0.05 
kroB200-gen3-150-10 5357.00 151.47 4870.00 175.99 0.09 5210.00 261.21 4642.40 385.70 0.11 
kroB200-gen4-150-10 5701.00 141.27 5327.90 178.55 0.07 5368.00 331.75 4746.80 425.42 0.12 

N=200 
 A-SA SA 

Inst. 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 𝑆௕ 𝑇௕ 𝑆௔௩௚ 𝑇௔௩௚ 𝐺𝑎𝑝௔௩௚ 
kroA200-gen2 6396.00 204.16 5960.50 274.52 0.07 5505.00 592.87 5078.20 721.21 0.08 
kroB200-gen2 6573.00 220.27 6186.50 272.33 0.06 6224.00 477.01 5720.00 611.11 0.08 
kroA200-gen3 5957.00 256.64 5797.90 327.44 0.03 5766.00 547.99 4929.40 653.35 0.15 
kroB200-gen3 6133.00 235.86 5827.00 317.38 0.05 5329.00 521.10 4675.80 620.41 0.12 
kroA200-gen4 6285.00 289.70 5988.90 371.21 0.05 6023.00 434.66 5690.60 553.70 0.06 
kroB200-gen4 6522.00 188.87 6122.90 312.35 0.06 6207.00 476.45 5831.00 536.48 0.06 

lin318-gen2-200-1 6392.00 280.17 6155.50 366.70 0.04 5375.00 551.41 5248.00 765.29 0.02 
lin318-gen3-200-1 4641.00 292.07 4051.70 382.99 0.13 4305.00 536.38 3569.00 746.23 0.17 
lin318-gen4-200-1 6251.00 258.30 5947.50 319.34 0.05 6205.00 530.27 5439.40 683.09 0.12 

lin318-gen2-200-10 6269.00 281.52 5909.90 376.89 0.06 5647.00 491.37 5427.40 611.39 0.04 
lin318-gen3-200-10 4884.00 271.68 4512.50 360.53 0.08 4575.00 466.98 4139.80 615.07 0.10 
lin318-gen4-200-10 6387.00 299.64 6184.10 387.25 0.03 6179.00 503.21 5667.80 628.65 0.08 
lin318-gen2-200-20 6307.00 284.63 6060.40 368.23 0.04 5782.00 600.48 5276.00 716.37 0.09 
lin318-gen3-200-20 4935.00 278.72 4603.00 324.56 0.07 4386.00 493.25 4143.60 771.90 0.06 
lin318-gen4-200-20 6369.00 302.23 6011.20 380.76 0.06 6441.00 593.97 5882.60 667.76 0.09 
lin318-gen2-200-30 6349.00 199.87 6082.00 281.74 0.04 6584.00 511.95 5663.80 658.08 0.14 
lin318-gen3-200-30 5184.00 270.59 4834.60 342.42 0.07 4652.00 426.31 4297.00 719.58 0.08 
lin318-gen4-200-30 6428.00 206.59 6135.60 277.97 0.05 6362.00 461.42 5878.80 654.35 0.08  

Table B5 
Comparing RD and NRD 

 N=25  N=50 
 RD NRD  RD NRD 

Inst. 𝑆௕ 𝑆௔௩௚ 𝑆௕ 𝑆௔௩௚ Inst. 𝑆௕ 𝑆௔௩௚ 𝑆௕ 𝑆௔௩௚ 
kroA100-gen2-25-1 1113.00 1034.40 1113.00 1050.70 kroA100-gen2-50-1 1825.00 1699.70 1820.00 1646.00 
kroA100-gen3-25-1 1114.00 1040.90 1114.00 1023.50 kroA100-gen3-50-1 1865.00 1711.70 1751.00 1658.50 
kroA100-gen4-25-1 1113.00 1059.40 1113.00 1073.70 kroA100-gen4-50-1 1796.00 1718.40 1837.00 1651.10 
kroA150-gen2-25-1 1113.00 1058.00 1113.00 1048.70 kroA150-gen2-50-1 1774.00 1659.10 1747.00 1655.40 
kroA150-gen3-25-1 1130.00 1024.90 1130.00 1039.70 kroA150-gen3-50-1 1792.00 1736.10 1771.00 1704.40 
kroA150-gen4-25-1 1113.00 1069.10 1113.00 1041.00 kroA150-gen4-50-1 1814.00 1671.90 1841.00 1633.90 
kroA200-gen2-25-1 1118.00 997.70 1106.00 997.80 kroA200-gen2-50-1 1779.00 1652.00 1875.00 1685.80 
kroA200-gen3-25-1 955.00 909.40 955.00 913.70 kroA200-gen3-50-1 1562.00 1424.00 1594.00 1490.40 
kroA200-gen4-25-1 1118.00 991.60 1060.00 1030.50 kroA200-gen4-50-1 1807.00 1656.90 1803.00 1622.00 
kroB100-gen2-25-1 1176.00 1155.50 1176.00 1151.30 kroB100-gen2-50-1 1924.00 1830.40 1985.00 1790.20 
kroB100-gen3-25-1 1169.00 1152.60 1169.00 1150.80 kroB100-gen3-50-1 1933.00 1779.80 1824.00 1722.20 
kroB100-gen4-25-1 1176.00 1157.40 1169.00 1134.10 kroB100-gen4-50-1 2060.00 1924.80 2023.00 1795.20 
kroB150-gen2-25-1 1138.00 1063.20 1060.00 995.50 kroB150-gen2-50-1 1793.00 1666.50 1853.00 1637.40 
kroB150-gen3-25-1 1034.00 968.00 1034.00 964.40 kroB150-gen3-50-1 1773.00 1584.10 1761.00 1554.20 
kroB150-gen4-25-1 1118.00 1067.60 1060.00 1019.40 kroB150-gen4-50-1 1903.00 1674.10 1864.00 1613.20 
kroB200-gen2-25-1 1176.00 1154.60 1176.00 1147.30 kroB200-gen2-50-1 2060.00 1873.40 1945.00 1823.20 
kroB200-gen3-25-1 1169.00 1145.10 1169.00 1146.60 kroB200-gen3-50-1 1813.00 1739.20 1774.00 1678.20 
kroB200-gen4-25-1 1176.00 1117.10 1164.00 1140.20 kroB200-gen4-50-1 2028.00 1881.70 1952.00 1856.30 

 
 
 
 
 
 



P. Zhao et al.  / International Journal of Industrial Engineering Computations 15 (2024) 275

Table B5  
Comparing RD and NRD (continued) 

 N=100  N=200 
 RD NRD  RD NRD 

Inst. 𝑆௕ 𝑆௔௩௚ 𝑆௕ 𝑆௔௩௚ Inst. 𝑆௕ 𝑆௔௩௚ 𝑆௕ 𝑆௔௩௚ 
kroA100-gen2 4783.00 4303.60 4508.00 4226.90 kroA200-gen2 6396.00 5960.50 6249.00 5950.80 
kroB100-gen2 4645.00 4480.40 4495.00 4340.70 kroB200-gen2 6573.00 6186.50 6450.00 6131.40 
kroA100-gen3 4721.00 4549.2 4679.00 4373.80 kroA200-gen3 5957.00 5797.90 6086.00 5727.80 
kroB100-gen3 4029.00 3909.30 4011.00 3929.70 kroB200-gen3 6133.00 5827.00 6392.00 5866.60 
kroA100-gen4 4583.00 4269.10 4499.00 4246.60 kroA200-gen4 6285.00 5988.90 6236.00 5892.30 
kroB100-gen4 4568.00 4410.10 4690.00 4365.40 kroB200-gen4 6522.00 6122.90 6353.00 5986.60 

kroA150-gen2-100-1 4668.00 4288.30 4414.00 4147.00 lin318-gen2-200-1 6392.00 6155.50 6305.00 6008.00 
kroB150-gen2-100-1 4270.00 4162.00 4363.00  4031.50  lin318-gen3-200-1 4641.00 4051.70 4574.00 4049.10 
kroA150-gen3-100-1 4619.00 4451.10 4687.00 4510.80 lin318-gen4-200-1 6251.00 5947.50 6321.00 5971.40 
kroB150-gen3-100-1 4589.00 4529.20 4699.00  4532.70  lin318-gen2-200-10 6269.00 5909.90 6347.00 5997.20 
kroA150-gen4-100-1 4271.00 4171.60 4588.00 4275.00 lin318-gen3-200-10 4884.00 4512.50 4622.00 4317.50 
kroB150-gen4-100-1 4646.00 4497.80 4314.00  4113.40  lin318-gen4-200-10 6387.00 6184.10 6418.00 6061.50 
KroA200-gen2-100-1 4373.00 4179.60 4398.00 4195.20 lin318-gen2-200-20 6307.00 6060.40 6660.00 6130.80 
KroB200-gen2-100-1 4675.00 4501.40 4630.00  4432.40  lin318-gen3-200-20 4935.00 4603.00 5110.00 4560.30 
KroA200-gen3-100-1 4317.00 4114.60 4362.00 4185.00 lin318-gen4-200-20 6369.00 6011.20 6530.00 5914.10 
KroB200-gen3-100-1 4027.00 3902.00 3972.00  3875.20  lin318-gen2-200-30 6349.00 6082.00 6791.00 6019.20 
KroA200-gen4-100-1 4529.00 4167.80 4347.00 4181.80 lin318-gen3-200-30 5184.00 4834.60 5165.00 4815.20 
KroB200-gen4-100-1 4605.00 4428.50 4613.00  4347.10  lin318-gen4-200-30 6428.00 6135.60 6336.00 5997.60 
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