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 Efficiency in logistics is often affected by the fair distribution of the customers along the routes 
and the available depots for goods delivery. From this perspective, in this study, the Multi-depot 
Vehicle Routing Problem (MDVRP), by considering two objectives, is addressed. The two 
objectives in conflict for MDVRP are the distance traveled by vehicles and the standard deviation 
of the routes’ length. A significant standard deviation value provides a small distance traveled by 
vehicles, translated into unbalanced routes. We have used a weighted average objective function 
involving the two objectives. A Variable Neighborhood Search algorithm within a Chu-Beasley 
Genetic Algorithm has been proposed to solve the problem. For decision-making purposes, several 
values are chosen for the weight factors multiplying the terms at the objective function to build up 
a non-dominated front of solutions. The methodology is tested in large-size instances for the 
MDVRP, reporting noticeable results for managerial insights. 
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1. Introduction 

 
One of the functions of logistics companies is to implement and control the movement of goods from points of origin to 
customers' locations within the supply chain, considering efficient and cost-effective operations in their fleet. In the academic 
environment, a mathematical representation of the goods transport in a logistics company is provided by the Vehicle Routing 
Problem (VRP) and its variants, which includes the minimization of the total distance traversed by a fleet of vehicles to meet 
the demand of geographically dispersed customers, subject to operational constraints. Involved in the VRP framework, the 
Multi-Depot Vehicle Routing Problem (MDVRP) corresponds to an essential and challenging approach in logistics 
management that has been considered mainly during the last decade by researchers and practitioners (Jayarathna et al., 2021; 
Karakatič & Podgorelec, 2015; Jayarathna et al., 2020). According to the MDVRP dynamics, several depots are presented 
from which the vehicles start and end their respective routes, delivering the demand to the customers that are spatially 
distributed. Each route is assigned to the same depot, and each customer must be visited only once. 
 
The MDVRP is a variant of the VRP considered within the NP-hard optimization problems and, therefore, computationally 
hard to solve. Due to the combinatorial explosion, exact algorithms are not a proper alternative to obtain an optimal or at least 
a good quality solution for the MDVRP, particularly for large-size instances (Zacharia et al., 2021). Conversely, in real-world 
applications and academic studies, there have been aspects of equity and fairness related to balancing resources. Although 
more expensive, balanced routes in the MDVRP follow better exploitation of resources and equilibrium in the workload 
distribution. Additionally, a higher level of customer satisfaction can be obtained with improved decisions of routing and 
scheduling based on balancing, which results in more customers being served promptly (Ho et al., 2008). Additionally, the 
unbalanced routes represent the least expensive solutions, inefficient when considering the incomplete usage of available 
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resources, such as vehicle capacity. Non-monetary benefits, i.e., employee satisfaction, increment in customer service, and 
flexible resource availability, follow equity in resource utilization and a fair workload distribution (Mancini et al., 2021). The 
contributions of this study are listed as follows, combining practical approaches found so far in the MDVRP subject: 
 

- A hybrid methodology between metaheuristic techniques using a VNS algorithm embedded in a CBGA is 
implemented, which has reported good performance and results in other MDVRP works-related. 

- Two objectives under conflict are considered in the objective function: distance traveled and route balancing. The 
route balancing is calculated in terms of the standard deviation of the length of the routes. 

- For route balancing, instead of the traditional difference between the longest and the shortest route, we use the 
standard deviation of the length of the routes, which is an effective measurement index to describe the level of parity 
in a routing solution. A more significant standard deviation indicates unbalanced routes. 

- For decision-making purposes, we present the results in terms of a non-dominated front of solutions. 
 
The remainder of this paper is organized as follows: Section 2 describes a review of the literature around the MDVRP; Section 
3 explains the MDVRP mathematical model considering the distance traveled and route balancing terms; in Section 4, the 
hybrid methodology between the Chu-Beasley Genetic Algorithm and the Variable Neighborhood Search is proposed. Section 
5 depicts the experimental results of the proposed methodology. Finally, Section 6 presents the concluding remarks and 
avenues of research. 
 
2. Literature review 
 
In the specialized literature, the theoretical research around the MDVRP is abundant, showing a variant of the VRP that is 
widely related to a real-life application where the logistic companies account for not only one depot but several depots to 
deliver the goods and meet the customers’ demand. According to the systematic survey performed in (Karakatič & Podgorelec, 
2015), several GA approaches can be identified, with different versions for the genetic operators. The tournament/linear-
ranking selection, crossover, and exchange mutation are implemented for the benchmark instances for comparison purposes. 
Our review has targeted the heuristics and meta-heuristics algorithms used for solving the MDVRP, emphasizing the genetic 
algorithm GA, the Variable Neighborhood Search VNS algorithm, and the hybrid techniques, preserving a chronological 
order. 
 
Early contributions are identified that utilize different ways to solve the MDVRP. In Chao et al. (2013), high-quality routes 
are obtained when the assignment of customers is used prior to the application of the heuristic. Although the heuristic is not 
referred with one of the current techniques used to solve the MDVRP, the authors explain it considering a two-phase heuristic: 
In the first step, the customers are assigned to each depot, then in the second step, the traditional CVRP is solved for each 
depot. Following the timeline and a similar approach as presented in Chao et al. (2012), the authors of Renaud et al. (1996) 
develop a Tabu Search for the MDVRP considering the intensification and diversification strategies to increase the likelihood 
of moving out from a local optimum, which is often an issue when solving NP-hard problems with meta-heuristic techniques. 
Genetic algorithms are also found in the early research around the MDVRP as an alternative to providing high-quality 
solutions within reasonable computational time by using different types of selection, crossover and mutation operators, and 
diverse chromosomes for the problem representation (Skok et al., 2020). Similarly, the efforts performed in (Filipec et al., 
2000) are focused on reducing the search space domain for rapid convergence with a heuristic technique applied in the 
population initialization and over the genetic operators. Later, some references show strategies in the mutation stage, such as 
inter-depot exchanging provided by (Ombuki-Berman & Hanshar, 2009), resulting in competition for the MDVRP and an 
indirect encoding that remains flexible in the algorithm when other objectives and constraints are added.  
 
The research in (Surekha & Sumathi, 2011) develops an assignment of each customer to the nearest depot before applying the 
Clark and Wright algorithm to improve the initial solution for the GA. In the same manner, Yücenur and Çetin (2011) studied 
the performance clustering combined with the application of the genetic operators when solving the MDVRP, with 
considerably less computational time. Other practices in the framework of “cluster first then route” are found in (Geetha, 
Vanathi, & Poonthalir, 2012), which presents a hybrid methodology between the GA and the particle swarm optimization 
PSO algorithm, including a hybrid PSO algorithm that comprises k-means clustering and customers exchange between routes. 
This approach is used in delivering pharmacy programs and waste collection. Unlike the traditional techniques Li et al. (2012) 
and (Luo & Chen, 2014) propose a novel optimization method population-based known as Shuffled Frog Leaping Algorithm 
SFLA for the MDVRP. This approach is based on the memetic evolution of a group of frogs seeking the place with the 
maximum amount of food. On the other side, a hybrid granular tabu search algorithm is applied to the MDVRP and introduced 
by Escobar et al. (2014) based on previous research on the capacitated location routing problem. This approach presents a 
perturbation procedure to escape from the local optimum using different diversification strategies and local movements.  
 
Hybrid methodologies are also found in (Liu, Jiang, & Geng, 2014) and (Mirabi, 2014) performing within the GA, 
improvement strategies in the individual before introducing it in the current population, and employing the electromagnetism 
algorithm. This algorithm is based on the attraction-repulsion principle of the electromagnetism theory, where electrically 
charged particles are considered the population spread in the solution space. A decomposition approach is proposed in (de 
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Oliveira et al., 2016) for a parallel environment. For this work, the general problem is split into several subproblems that 
evolve independently. Each subproblem corresponds to a CVRP where a unique depot attends to all the customers. Unlike 
other studies that opt for clustering and routing, the research in (Singh et al., 2021) highlights that both stages should be done 
as a joint exercise to ensure the optimal solution. In this regard, different versions of GA are implemented, differing in the 
following crossover operators: single point, cyclic and uniformed ordered crossover. Likewise, in (Prabu, Ravisasthiri, Sriram, 
& Malarvizhi, 2019), a population initialization strategy for the GA is proposed that generates a special population featured 
by quality, randomness, and diversity. A different technique is addressed in (Li et al., 2019b) for the MDVRP, using an 
improved ant colony optimization algorithm that involves an innovative approach for obtaining a better solution with 
pheromone updating. In this case, the MDVRP introduces the environmental component, minimizing travel time and 
emissions while maximizing profit. Correspondingly, in (Li et al., 2019) it is shown a similar work as presented in (Li et al., 
2019b), considering the time windows constraints and an initial stage of the k-means clustering algorithm to decompose the 
problem into several subproblems to reduce the complexity in the solving procedure. 
 
Recent contributions in the MDVRP are found to be applied for carbon emissions, time-dependent networks, hazardous 
materials transportation, waste collection, and food distribution. In (Zhang et al., 2020) is presented a variant of the MDVRP 
named multi-depot green vehicle routing problem MDGRP, in which the vehicles must refuel in the alternative fuel stations 
during the service process, and the objective function corresponds to the minimization of the carbon emissions. It uses a 
Partition-based algorithm and a two-stage methodology based on an ant colony algorithm to solve the problem. Hybrid 
methodologies are often used, such as Hou et al. (2021) and Hou et al. (2021), where the GA works together with the Variable 
Neighborhood Search Algorithm VNS to provide rapid convergence. The initial solution is generated through a clustering 
process that considers the spatial-temporal parameter of the customer respect with the depot. Other hybrid approaches are 
presented in (Zhou et al., 2021; Yu et al., 2022). The proposal in Zhou et al. (2021) deals with the conflict between two 
objectives: the risk and cost of transportation. The result comprises a set of Pareto optimal solutions that are provided using 
the GA with the e-constraint method. Similarly, Yu et al. (2022) and Moonsri et al. (2021) described a combined approach 
with genetic algorithms that work in conjunction with simulated annealing; and a hybrid differential evolution algorithm to 
solve the MDVRP considering a heterogeneous fleet vehicle, time windows, and inventory constraints.  
 
Unlike the works reported in the literature, our study tackles the MDVRP with an embedded framework of the VNS algorithm 
in the CBGA instead of using the two-phase methodologies that are commonly used (Geetha et al., 2012; Shen et al., 2018; 
Zhang et al., 2020). Compared with Hou et al. (2021) and Dengkai et al. (2021), in this study, the VNS uses six different 
neighborhood structures, some of which involve two routes from the individual by using swapping and insertion operators. 
Mainly, the neighborhood structures Intra-insertion, Intra-swap, Inter-insertion, and Inter-swap are used in our proposal to 
refine the local search, and the structures Intra-2opt and Inter-2opt are employed for search diversification and escape from 
the local optima trap (Peng et al., 2020). Additional to the research performed from the route balancing perspective for the 
traditional vehicle routing problem, in this study, the workload distribution is considered by using the standard deviation of 
the length of the routes applied for the MDVRP, which has a different connotation since the routes are in most of the cases, 
served by different depots. According to Matl and Hartl (2017), the standard deviation for route balancing is likely the most 
well-known statistical measure for dispersion, compared with other measures in the route balancing context, such as the min-
max approach, lexicographic mi-max, the difference between the largest and shortest routes and, the mean absolute deviation. 
 
3. Mathematical formulation of the MDVRP with route balancing 
 
The MDVRP is an extension of the CVRP where more than one depot is considered, seeking optimal routes with minimum 
traveled distance. Additionally, the vehicle must start and end at the same depot. The maximum number of vehicles per depot 
is provided as input data (Subramanian, Ucho, & Satoru, 2013), so it can be suitable to know the minimum of vehicles needed 
to meet the customer's demand to reduce the search space in the solution method. Additionally, the location of the customers 
and depots is known, the fleet of vehicles is limited and homogeneous, i.e., the cargo capacity is the same for all the vehicles, 
and the customer's demand is deterministic (Tang et al., 2016).  
 
Mathematically, the MDVPR is defined by a complete graph 𝐺 = (𝑉,𝐴) where 𝑉 = ሼ1, … ,𝑛 + 𝑤ሽ is the set of vertices and 𝐴 = ሼ(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗ሽ  is the set of arcs. The set of vertices 𝑉  is split into two subsets: 𝑉௖ = ሼ1, … ,𝑛ሽ  and 𝑉ௗ =ሼ𝑛 + 1, … ,𝑛 + 𝑤ሽ representing the sets of customers and depots, respectively. Each depot has a maximum number of available 
vehicles with maximum load capacity, belonging to set 𝐾. A non-negative demand 𝑑௜ is associated for each vertex 𝑖 belonging 
to the set of customers 𝑉௖. A distance matrix 𝑑𝑖𝑠𝑡௜,௝ related to the set of arcs 𝐴 is necessary to quantify the objective function, 
that is, in terms of the total distance traveled by the fleet of vehicles. In the MDVRP, the performed routes are obtained at 
minimum cost in such a way that: each route starts and ends in the same depot, each customer is visited by just one vehicle, 
and the route demand cannot exceed the vehicle capacity. 
 
Nomenclature 

Sets:  
  𝑉௖ Customer nodes 



  

 

340 𝑉ௗ Depot nodes 𝑉 Customers and depots 𝑉 = 𝑉௖ ∪ 𝑉ௗ    𝐾 Vehicles 
  
Parameters:  

  𝑑𝑖𝑠𝑡௜௝ Distance between nodes 𝑖 and 𝑗   𝑄௞ Load capacity of the vehicle 𝑘 𝑑𝑒𝑝_𝑠𝑡𝑎𝑟𝑡 Vector of depot nodes 𝑑𝑒𝑝_𝑒𝑛𝑑 Copy vector of depot nodes 𝛼 Weight factor for the traveled distance term in the objective function 𝛽 Weight factor for the standard deviation term in the objective function 
  

Variables:  
  𝑥௜௝௞ Binary decision variable that takes the value of 1 if vehicle 𝑘 goes from node 𝑖 to node 𝑗 and 0 otherwise   Y௜௞ Binary decision variable that takes the value of 1 if customer at node 𝑖 is visited by vehicle 𝑘 𝑑௜ Demand at node 𝑖 𝑡௜௝௞ Remaining merchandise to be delivered at arc 𝑖, 𝑗 by vehicle 𝑘 

 
The first objective function represents the minimization of costs presented as follows: 
 min𝑍 =෍෍෍𝑑𝑖𝑠𝑡௜௝ · 𝑥௜௝௞௞௝௜   (1) 

On the other hand, route balancing is also introduced in the MDVRP mathematical representation, providing the multi-
objective approach for this research. In the field of route balancing, some of the references reviewed tackle this area using 
multi-objective approaches, considering the minimization of both: the distance traveled by vehicles and the most extended 
route length and the shortest route length (Jozefowiez et al., 2007, 2009; Borgulya, 2008). Other objectives related to route 
balancing are framed within the number of customers visited per route, the time required to perform the route, and the 
waiting/delayed time of the route (Zhou et al., 2013). Although route balancing can also be associated with variables such as 
time and demand per customer, in most cases, the route length is the dominant approach for route balancing, as this represents 
a variable that contributes to a fairer workload distribution over the routes. Consequently, the number of customers at each 
route is balanced since the customers are uniformly distributed in the space. In this sense, according to (Galindres, Toro, & 
Gallego, 2018), the route balancing index length-related can be effectively measured by the standard deviation SD of the 
length of the routes, i.e., second objective function, as shown in Equation (2): 𝑆𝐷 =ඨ෍(𝑙௥ − 𝜇)௥∈் |𝑇|ൗ   (2) 

Being 𝑙௥ the route length belonging to the set of routes  𝑇, 𝜇 the average of the length of the routes in the solution, and |𝑇| the 
number of routes. Accordingly, the general objective function is described by Eq. (3), considering the minimization of the 
distance (1) and the route balancing (2). 
 min𝑍 =𝛼෍෍෍𝑑𝑖𝑠𝑡௜௝ · 𝑥௜௝௞௞௝௜ + 𝛽ඨ෍(𝑙௥ − 𝜇)௥∈் |𝑇|ൗ  (3) 

The first term of Equation (3) corresponds to (1) multiplied by a factor 𝛼, and the second term corresponds to (2) multiplied 
by a factor 𝛽. Note that both terms are affected by the weight factors that provide dominance over each objective.      
subject to: ෍Y௜௞௞ = 1 ∀𝑖 ∈ 𝑉௖ (4) 

෍𝑥௜௝௞௝∈௏೎ = Y௜௞ ∀𝑖 ∈ 𝑉௖ ,𝑘 ∈ 𝐾 (5) 



A. A. Londoño et al. / International Journal of Industrial Engineering Computations 15 (2024) 341

෍෍𝑥௜௝௞௞∈௄௜∈௏೎ = 1 ∀𝑗 ∈ 𝑉௖, 𝑖 ≠ 𝑗 (6) 

෍𝑥௜௛௞௜∈௏೎ − ෍ 𝑥௛௝௞௝∈௏೎ = 0 ∀ℎ ∈ 𝑉, 𝑘 ∈ 𝐾 (7) 

෍෍𝑑௜ · 𝑥௜௝௞ ≤ 𝑄௞௝∈௏௜∈௏೎  ∀𝑘 ∈ 𝐾 (8) 

෍𝑥௜௝௞௝∈௏೎ ≤ 1 ∀𝑖 ∈ 𝑉ௗ 𝑖 ∈ 𝑑𝑒𝑝௦௧௔௥௧(௞),𝑘 ∈ 𝐾  (9) 

෍𝑥௜௝௞௜∈௏೎ ≤ 1 ∀𝑗 ∈ 𝑉ௗ 𝑗 ∈ 𝑑𝑒𝑝௘௡ௗ(௞),𝑘 ∈ 𝐾  (10) 

෍𝑥௝௜௞௜∈௏ = 0 ∀𝑗 ∈ 𝑉ௗ 𝑗 ∉ 𝑑𝑒𝑝௦௧௔௥௧(௞),𝑘 ∈ 𝐾  (11) 

෍𝑥௝௜௞௝∈௏ = 0 ∀𝑖 ∈ 𝑉ௗ 𝑖 ∉ 𝑑𝑒𝑝௘௡ௗ(௞),𝑘 ∈ 𝐾  (12) 

෍ ෍ 𝑥௜௛௞ − ෍ ෍ 𝑥௛௝௞௝௝∈ௗ௘௣_௘௡ௗ(௞)௛∈௏೎௛∈௏೎ = 0௜∈௏௜∈ௗ௘௣_௦௧௔௥௧(௞)  ∀𝑘 ∈ 𝐾 

 
(13) 

෍𝑡௤௝௞௝∈௏௝ஷ௤
≤෍ൣ𝑡௜௤௞ − 𝑑𝑖𝑠𝑡௜௤ · 𝑥௜௤௞൧௜∈௏௜ஷ௤ + 𝑄 · ⎣⎢⎢

⎡1 −෍𝑥௜௤௞௜∈௏௜ஷ௤ ⎦⎥⎥
⎤
 

∀𝑞 ∈ 𝑉௖ ∀𝑘 ∈ 𝐾 
(14) 

𝑡௜௤௞ ≥ 0 

∀𝑖 ∈ 𝑉 ∀𝑞 ∈ 𝑉 𝑖 ≠ 𝑞 ∀𝑘 ∈ 𝐾 

(15) 

𝑡௜௤௞ ≤ 𝑄 · 𝑥௜௤௞ 

∀𝑖 ∈ 𝑉 ∀𝑞 ∈ 𝑉 𝑖 ≠ 𝑞 ∀𝑘 ∈ 𝐾 

(16) 

෍ ෍ 𝑡௜௤௞ ≤ ෍𝑑௜௜∈௏೎௤∈௏೎௜∈௏೏௜ୀௗ௘௣_௦௧௔௥௧(௞)
 ∀𝑘 ∈ 𝐾 (17) 

Expressions (4) and (5) guarantee that each customer is visited by one vehicle. In Eq. (6), the number of arcs entering a 
customer node is equivalent to one. Eq. (7) assure that the number of arcs entering a node equals the number of arcs leaving 
the same node, either a customer or a depot. Expressions in (8) establish that the sum of the customers' demands belonging to 
a route must be less than the load capacity of the vehicle visiting such route. Eq. (9) and Eq. (10) ensure that a vehicle returns 
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to the same depot if it leaves a determined depot. Conversely, Eq. (11) and Eq. (12) avoid the vehicles arriving at a different 
depot from which they depart. Eq. (13) guarantees that the number of arcs leaving and entering a depot node are equal. 
Expressions (14) to (16) are for subtours elimination purposes, tracking the merchandise flow through the arcs of the route. 
Lastly, Eq. (17) assures that the total demand of the customers is greater or equal to the sum of the flow through the arcs. 
 

4. Proposed solution algorithm: CBGA-VNS 
 

Due to the NP-hard nature, the mathematical model of the MDVRP with route balancing presented in Section 3 is solved by 
using a hybrid methodology based on the Variable Neighborhood Search VNS algorithm embedded in the Chu-Beasley 
Genetic Algorithm CBGA, named in this work as CBGA-VNS. In particular, this combination of metaheuristic techniques 
provides the ability to escape from local optima and converge rapidly to a high-quality feasible solution. The computational 
flow of the combined CBGA-VNS is presented in Fig. 1. 
 
 

 
Fig. 1. CBGA-VNS computational flow to solve the MDVRP 

 
As presented in Fig. 1, the initial population of individuals is randomly generated with the subsequent evaluation of the 
objective function (3). If the convergence criterion is met, the best individual is reported. Otherwise, it is proceeded with the 
genetic operators of selection, crossover, and mutation belonging to the GA. Although the GA is characterized as robust, of 
high parallelism, and has strong search ability, the convergence speed is slow and tends to fall into a local optimum. The VNS 
algorithm is performed with the corresponding neighborhood structures as long as the individual is a feasible solution before 
evaluating whether the individual can be introduced to the current population. The VNS algorithm has a strong local search 
capability, providing a means to escape from local optima and search over other regions of the solution space. A total of six 
neighborhood structures are embedded in the GA from N1 to N6. Each structure is executed over the individual to improve 
the objective function. The following neighborhood structure is executed if the objective function still needs to be improved. 
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Otherwise, the process returns to the first structure. Note that the VNS iteration increases when the solution is improved, and 
all structures are examined if the objective function (3) is not improved. This process is executed until a maximum of iterations 
of the VNS is reached. Later, the individual is introduced to the current population using the guidelines for population 
modification established in the CBGA until a convergence criterion has been complied. The neighborhood structures of the 
VNS algorithm and the CBGA operators in the context of the solution representation adopted for this problem are explained 
in further detail in the following subsections. Algorithm 1 describes the general procedure of the CBGA-VNS.     
 

Algorithm 1. General procedure of the CBGA-VNS 

1: Input: 

2: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒:𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒;  

3: 𝑁𝐼஼஻ீ஺:𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐶𝐵𝐺𝐴; 
4: Output: Best individual 𝑆 in the current population  

5: 𝑝𝑜𝑝௦௧௔௥௧ = ൣ𝑖𝑛𝑑ଵ 𝑖𝑛𝑑ଶ …   𝑖𝑛𝑑௣௢௣௦௜௭௘൧; % 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

6: 𝑍௙௜௧௡௘௦௦(𝑝𝑜𝑝௦௧௔௥௧); %𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑝𝑜𝑝௦௧௔௥௧ 
7: 𝑝𝑜𝑝௖௨௥௥   𝑝𝑜𝑝௦௧௔௥௧;  
8: 𝒘𝒉𝒊𝒍𝒆 𝑖 ≤ 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 

9:     ሾ𝑖𝑛𝑑௔, 𝑖𝑛𝑑௕ሿ = 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝௖௨௥௥); % 𝑖𝑛𝑑௔ 𝑎𝑛𝑑 𝑖𝑛𝑑௕ 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠  
10:   𝑖𝑛𝑑௫ = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑖𝑛𝑑௔, 𝑖𝑛𝑑௕); % 𝑖𝑛𝑑௫ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑟𝑜𝑚 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑖𝑛𝑑௔ 𝑎𝑛𝑑 𝑖𝑛𝑑௕ 

11:   𝑖𝑛𝑑௠௨௧ = 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑑௫); % 𝑖𝑛𝑑௠௨௧ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑓 𝑖𝑛𝑑௫ 

12:    𝒊𝒇 𝑖𝑛𝑓𝑒𝑎𝑠(𝑖𝑛𝑑௠௨௧) = 0  𝒕𝒉𝒆𝒏 

13:    𝑆  𝑖𝑛𝑑௠௨௧; % 𝑆 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

14:             𝑖𝑛𝑑௏ேௌ = 𝑉𝑁𝑆(𝑆); % 𝑉𝑁𝑆 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑣𝑒𝑟 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆 

15:                𝒆𝒍𝒔𝒆 

16:               𝒈𝒐 𝒕𝒐 𝟗 

17:    𝒆𝒏𝒅𝒊𝒇  

18: 𝑝𝑜𝑝௡௘௪ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑖𝑛𝑑௏ேௌ,𝑝𝑜𝑝௖௨௥௥); %𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑡𝑜 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒 𝑖𝑛𝑑௏ேௌ 𝑖𝑛 𝑝𝑜𝑝௖௨௥௥ 

19: 𝑝𝑜𝑝௖௨௥௥  𝑝𝑜𝑝௡௘௪; 
20: 𝑖𝑛𝑐𝑢𝑚𝑏 = 𝑚𝑖𝑛 ቀ𝑍௙௜௧௡௘௦௦(𝑝𝑜𝑝௖௨௥௥)ቁ ; % 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 
20: 𝒆𝒏𝒅𝒘𝒉𝒊𝒍𝒆 

21: Return 𝑖𝑛𝑐𝑢𝑚𝑏 

 
4.1. Chu-Beasley Genetic Algorithm CBGA 
 
A genetic algorithm is a metaheuristic technique based on the evolution of the species, framed within the survival capability 
of the most robust population over time. As the species evolve, better individuals with improved features are introduced into 
the current population. Continuous and discrete optimization problems can be solved by using the intelligent probabilistic 
search attributed to the genetic algorithm, using three basic rules of evolution, namely genetic operators: selection, crossover, 
and mutation (Montoya, Gil-González, & Orozco-Henao, 2020). These rules are applied to each generation of individuals 
evaluated by a fitness measure comprising the value of (3) and infeasibility. The CBGA was initially designed to solve the 
generalized assignment problem (Chu & Beasley, 1997), with reports of its adjustment to other types of problems with 
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noticeable results. Unlike the traditional genetic algorithm, the CBGA presents features that make it competitive in solving 
large-size problems. According to population replacement criteria, only one individual is replaced in the generation.   
 
The algorithm's performance to solve the MDVRP can be affected contingent upon the solution representation. The MDVRP 
solution or the chromosome is often represented by an array of stops describing the customers visited sequentially. This 
representation is depicted in Figure 2 and has been widely used by genetic algorithms researchers working on complex 
optimization problems (Skok et al., 2020). Fig. 2 describes an example of the chromosome representing the MDVRP solution, 
composed of thirteen customers and three depots. The array encompasses the routes one after the other, delimited by their 
respective depots.  

 

 
Fig. 2. Solution representation of the MDVRP 

 

The constraints of the mathematical model presented in Eq. (3) to Eq. (17) warranty the feasibility of the individuals in the 
population. Fig. 3 presents an infeasible solution for a fleet of vehicles with a capacity of 150. Notice that Route 1 is not 
feasible because the vehicle cannot meet the total demand of the customers along the route, which is 175. Route 2 is a sub-
tour, needing more depots. The travel performed by the vehicle in Route 3 needs to comply with the constraint that mandates 
starting and concluding the route in the same depot. For Route 5, although the vehicle starts and ends in the same depot, the 
route could be feasible as the vehicle visits the same customer twice.       

 

 
Fig. 3. Example of infeasible MDVRP solution. Vehicle capacity of 150  

 
Feasibility is warranted by using the fitness function 𝑍௙௜௧௡௘௦௦, which encompasses the objective function and the penalty terms 
related to the infeasibility in the constraints, as presented in Eq. (18). 

𝑍௙௜௧௡௘௦௦ = 𝛼෍෍෍𝑑𝑖𝑠𝑡௜௝ · 𝑥௜௝௞௞௝௜ + 𝛽ඨ෍(𝑙௥ − 𝜇)௥∈் |𝑇|ൗ + 𝐼𝑛𝑓𝑒𝑎𝑠 (18) 
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A. A. Londoño et al. / International Journal of Industrial Engineering Computations 15 (2024) 345𝐼𝑛𝑓𝑒𝑎𝑠1 and 𝐼𝑛𝑓𝑒𝑎𝑠2 are the penalty terms associated with: overload cargo capacity and routes starting and concluding in 
different depots, respectively. A descriptive representation of the fitness function computation is given in Algorithm 2. 
Subtours formation and customers visited more than once are avoided during the development of the genetic operators.  
 

 Algorithm 2. Computing fitness function for MDVRP solution 

1: Input: Solution 𝑆, 𝑄, 𝑑, 𝑑𝑖𝑠𝑡௜௝, 𝛼, 𝛽  

2: Output: Fitness function 𝑍௙௜௧௡௘௦௦  
3: 0  𝑑௧௥௔௩௘௟ 
4: 0  𝐼𝑛𝑓𝑒𝑎𝑠 

5: 𝑟ଵ, … , 𝑟   𝑅𝑜𝑢𝑡𝑒𝑠_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑆) 

6: 𝒇𝒐𝒓 𝑖 = ሼ1, … ,𝑇ሽ 𝒅𝒐 

7:     𝑙௥೔  𝑙𝑒𝑛𝑔𝑡ℎ(𝑟௜) %𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟௜  
8:     𝑑௥೔ 𝑑𝑒𝑚𝑎𝑛𝑑(𝑟௜) %𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟௜ 
9:       0  𝐼𝑛𝑓𝑒𝑎𝑠1 %𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑢𝑒 𝑡𝑜 𝑛𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟௜ 
10:     0  𝐼𝑛𝑓𝑒𝑎𝑠2 %𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑎𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑒𝑝𝑜𝑡𝑠 
11:     𝒊𝒇 𝑑𝑒𝑚𝑎𝑛𝑑(𝑟௜) > 𝑄 𝒕𝒉𝒆𝒏 

12:         𝐼𝑛𝑓𝑒𝑎𝑠1  𝐵𝑖𝑔𝑀1 · (𝑑𝑒𝑚𝑎𝑛𝑑(𝑟௜) − 𝑄) 

13:    𝒆𝒏𝒅𝒊𝒇  

14:    𝒊𝒇 𝑟௜(1)  ≠ 𝑟௜(𝑒𝑛𝑑) 𝒕𝒉𝒆𝒏 

15:        𝐼𝑛𝑓𝑒𝑎𝑠2  𝐵𝑖𝑔𝑀2 · 𝑎𝑏𝑠൫ 𝑟௜(𝑒𝑛𝑑) − 𝑟௜(1)൯ · 𝑙௥೔ 
16:    𝒆𝒏𝒅𝒊𝒇  

17:  𝐼𝑛𝑓𝑒𝑎𝑠  𝐼𝑛𝑓𝑒𝑎𝑠 +  𝐼𝑛𝑓𝑒𝑎𝑠1 +  𝐼𝑛𝑓𝑒𝑎𝑠2  
18: 𝑑௧௥௔௩௘௟  𝑑௧௥௔௩௘௟ + 𝑙௥೔ 
19: 𝒆𝒏𝒅𝒇𝒐𝒓 

20: 𝑆𝑇𝐷  𝐷𝑒𝑠𝑣_𝑠𝑡𝑎𝑛𝑑(𝑟ଵ, … , 𝑟 ) 

21: 𝑍௙௜௧௡௘௦௦  𝛼 · 𝑑௧௥௔௩௘௟ + 𝛽 · 𝑆𝑇𝐷 + 𝐼𝑛𝑓𝑒𝑎𝑠  
22: Return 𝑍௙௜௧௡௘௦௦ 

 
4.2. Initial population and genetic operators 
 
This work adopts the standard practice for evolutionary algorithms, which includes randomly choosing the initial population 
to cover the entire search of space (Garcia-Najera & Bullinaria, 2011), despite the execution time for convergence is increased. 
With some knowledge about the MDVRP, by applying different heuristics for population initialization, the population can 
lead to a portion of the search space likely to provide local optimum solutions with a decreased execution time (Wink, Bäck, 
& Emmerich, 2012). The individuals can be feasible or infeasible due to the random nature of this initialization. They must 
differ from each other to warrant diversity, which must be warrantied throughout the algorithm development. This set of 
solutions is likely to obtain some solutions with the same objective function. Furthermore, their codification must be different. 
Once the initial population is generated, the genetic operators of selection, crossover, and mutation are applied.  Tournament 
selection is set for the MDVRP, considering two tournaments applied for the current generation of solutions. In each of them, 𝑘 individuals of the current population are chosen to participate. The number of individuals 𝑘 is usually chosen within 2 to 4. 
The process is as follows: 𝑘 individuals of the current population are randomly chosen; their objective functions are compared, 
and the best fitness function is stored as the first parent. This process is repeated to find the second parent, considering that 
both parents must be different. 
 
After selecting the two parents, the crossover operator is applied by interchanging their integer codifications in a one-point 
crossover process. This change results in two offspring, composed of a portion of the first parent's information and another 
portion of the information of the second parent. Only one offspring can pass to the next stage of the algorithm, which 
corresponds to mutation; the other offspring is randomly discarded. The point chosen for crossover must not correspond to a 
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depot for the first or the second parent. If the previous requirements are not in compliance with the crossover point, the 
resulting individuals could present routes with only one depot or no customers, which can perform issues in further algorithm 
steps. The resulting offspring may sometimes present different depots at the routes' beginning and end. This fact is translated 
into an infeasible solution penalized in its fitness function. For the example in Fig. 3, Fig. 4 shows the points along the 
chromosomes that are restricted for crossover points in grey.  

 
Fig. 4. Points that cannot be chosen for crossover  

 
Once the crossover process is performed, the mutation is executed on the selected offspring. Before the mutation stage, it is 
checked if the offspring has repeated customers in its routes. Otherwise, the processes of selection and crossover are performed 
again until reaching offspring with different customers along the routes. The mutation stage involves the extraction of a 
random customer along one of the routes and inserting it into another randomly chosen route of the current offspring. This 
situation corresponds to a specific neighborhood structure used in the VNS algorithm, which is explained in more detail in 
the following section. 
 
4.3. Variable Neighborhood Search VNS algorithm                 
 
After the mutation stage in the CBGA, a local refinement is implemented on the offspring previously introducing it into the 
population. This procedure is carried out by the Variable Neighborhood Search VNS algorithm, considering different 
neighborhood structures applied to the current offspring (Bo, Lifan, Yuxin, & Xiding, 2020). These VNS structures work 
randomly and correspond to the operators listed as follows: 
 

Intra-insertion (𝑁ଵ): One customer is chosen in the route and is relocated to the other two adjacent customers (Fig. 5). 
 

 
Fig. 5. Intra-insertion (𝑁ଵ). Customer 5 is relocated within the customers 6 and 3.  

 

Intra-swap (𝑁ଶ): The position of two customers, not necessarily adjacent, is interchanged in the same route (Fig. 6). 
 

 
Fig. 6. Intra-swap (𝑁ଶ). Customers 9 and 13 interchange of position in the same route. 

 
Inter-insertion (𝑁ଷ): Two routes are chosen from the current offspring. One of the customers of the first route is relocated 
within two adjacent customers in the second route (Fig. 7). 

↓ ↓ ↓ ↓ ↓ ↓ ↓
Parent 1→ 14 7 13 6 9 3 11 14 15 12 4 10 1 15 16 5 2 8 16

Parent 2 → 15 11 3 6 4 10 15 14 9 13 8 12 7 14 16 1 2 5 16
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Fig. 7. Inter-insertion (𝑁ଷ). Customer 13 from the first route is introduced within customers 12 and 4 of the second route. 

 
Inter-swap (𝑁ସ): The location of two customers from two different routes is interchanged (Fig. 8). 

 

 
Fig. 8. Inter-swap (𝑁ସ). Customers 7 and 13 from different routes are interchanged. 

 

Intra-2opt (𝑁ହ): One route is chosen from the current offspring. Then it is extracted a set of successive customers within two 
arcs. This set of customers is rearranged in inverse order. Subsequently, the resulting set is introduced again in the original 
arcs of the route (Fig. 9). 
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Fig. 9. Intra-2opt (𝑁ହ). The sequence of customers 9, 
4, 10 and 13 is reversed.   

Fig. 10. Inter-2opt (𝑁଺). Sequence of customers from two routes 
are swapped and interchanged between routes. 

 
Inter-2opt (𝑁଺): Two routes are chosen from the current offspring. The procedure performed is like operator 𝑁ହ, except that 
the resulting set of customers is introduced in the other route (Fig. 10). Following the flow diagram depicted in Fig. 1, a 
descriptive representation of the VNS is presented in Algorithm 3, considering a solution 𝑆 as the input, and an improved 𝑆′ 
as the output. Solution 𝑆′ can also be a non-improved solution if none of the neighborhood structures could improve 𝑆.     
 

Algorithm 3. Procedure of the VNS algorithm for a feasible solution 𝑆 

1: Input: Feasible solution 𝑆, 𝑉𝑁𝑆_𝑖𝑡𝑒𝑟_𝑚𝑎𝑥  
2: Output: Solution 𝑆′  
3: 1  𝑗; 
4: 𝒘𝒉𝒊𝒍𝒆 𝑗 ≤ 𝑉𝑁𝑆_𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 𝒅𝒐 
5:        𝒇𝒐𝒓 𝑛 = ሼ1, … ,𝑁𝑆ሽ 𝒅𝒐 %𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑁𝑆 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 
6:              𝑆′𝑁௡(𝑆);  %𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑁௡(𝑆)  
7:               𝒊𝒇 𝑍௙௜௧௡௘௦௦(𝑆′)  < 𝑍௙௜௧௡௘௦௦(𝑆) 𝒕𝒉𝒆𝒏 
8:                    𝑗 + 1  𝑗; 
9:                   𝑆ᇱ𝑆; 
10:              𝒈𝒐 𝒕𝒐 𝟓 %𝐼𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑, 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑎𝑔𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝑁ଵ    
12:           𝒆𝒏𝒅𝒊𝒇 
13:      𝒆𝒏𝒅𝒇𝒐𝒓 
14:                𝑗 + 1  𝑗; 
15: 𝒆𝒏𝒅𝒘𝒉𝒊𝒍𝒆 
16: Return 𝑆′ 
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5. Experimental results 
 
The proposed CBGA-VNS is computationally tested in several MDVRP benchmark instances designed by Cordeau 
(Networking and Emerging Optimization, 2006), considering those arrangements with 48 to 144 customers and 2 to 8 vehicles 
per depot for demand compliance. The algorithm was executed on a computer cluster with two AMD Epyc 7702 processors 
and 64 cores per processor, and 256GB of RAM, and MATLAB R2022a. For decision-making purposes, the CBGA-VNS is 
run for different values of 𝛼 and 𝛽, which are the factors affecting the terms of distance traveled and standard deviation, 
respectively, in the objective function. The standard deviation represents the unbalanced degree of the routes presented in the 
solution. Factor 𝛼 is set from 1 to 0.8 in steps of 0.01, and factor 𝛽 is set from 0 to 0.2 in steps of 0.01, conforming pairs of 𝛼 
and 𝛽  values for each run. In total, the CBGA-VNS runs 20 times, providing twenty solutions, where each solution is 
composed of a distance traveled and a standard deviation of the routes presented in the solution. Factors 𝛼 and 𝛽 were chosen 
in such a way that the distance traveled be more important than the standard deviation in the objective function, to increase 
the likelihood to obtain the best-known-solution BKS concerning distance traveled. Since the BKS is less likely to obtain for 
values of 𝛼 close to zero, in the experimental design we decided to run the methodology with 0.8 ≤ 𝛼 ≤ 1. Once the solutions 
are provided, the dominance criteria (Deb et al., 2002) are performed to obtain a set of non-dominated solutions. The CBGA 
parameters are set in 20 individuals per generation, three individuals per tournament in the selection operation, and 65 
thousand iterations for the stopping criteria. In the VNS, the parameter 𝑉𝑁𝑆_𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 was set to 1000.    
 
Table 1 shows the results for MDVRP instances P01 and P02, considering the non-dominated front of solutions. The first 
column is the MDVR instance, second and third columns are the distance traveled 𝐷௧௥௔௩ and standard deviation 𝑆𝑇𝐷ௗ௘௩ of 
the routes, respectively. The fourth, fifth, and sixth columns are the best-known solution BKS from the literature, the 
difference in percent Gap [%] between the best solution of the front and the BKS, and the routes of the best solution in the 
front, respectively. P01 and P02 have the same number of customers and depots, including their coordinates, in these two 
instances. The difference stands in the number of vehicles per depot and merchandise capacity for the vehicle. Although the 
vehicle capacity is more significant in P02 than in P01, there are more vehicles available in P01, which provides better results 
in terms of GAP as the more significant number of vehicles available per depot, the more the options to provide a feasible and 
better-quality solution. It is necessary to point out that 𝛼 and 𝛽 values are not strictly directed with the distance traveled 
obtained. For 𝛼 and 𝛽 equal to 1 and 0 respectively, the distance traveled is not necessarily the smallest value in the front of 
solutions.   
        
Table 1  
Results for P01 and P02 MDVRP instances 

Instance 𝜶 𝜷 𝑫𝒕𝒓𝒂𝒗 𝑺𝑻𝑫𝒅𝒆𝒗 BKS Gap [%] Routes of the best solution 

P01 
Available vehicles: 4 

No. customers: 50 
No. of depots: 4 

Capacity: 80 

0,98 
0,8 

0,97 
0,86 

1 
0,93 
0,96 
0,83 
0,92 
0,9 

0,91 

0,02 
0,2 
0,03 
0,14 

0 
0,07 
0,04 
0,17 
0,08 
0,1 
0,09 

577,46 
580,71 
589,52 
592,79 
599,03 
599,38 
599,62 
599,62 
599,83 
599,83 
602,55 

17,48 
16,51 
16,16 
15,63 
15,16 
13,81 
13,81 
13,81 
13,75 
13,75 
13,01 

576,87 0,10 

51-25-18-4-51 
54-29-2-16-50-21-54 
52-6-48-27-32-11-52 

54-20-3-36-35-54 
53-49-5-38-53 

53-9-34-30-39-10-53 
52-23-7-43-24-14-52 

51-17-37-15-33-45-44-51 
52-47-12-46-52 

52-1-22-28-31-26-8-52 
51-13-41-40-19-42-51 

P02 
Available vehicles: 2 

No. customers: 50 
No. of depots: 4 
Capacity: 160 

0,82 
0,97 
0,8 

0,89 
0,83 

0,18 
0,03 
0,2 
0,11 
0,17 

474,69 
488,42 
499,22 
503,32 
514,53 

12,94 
8,54 
7,41 
4,68 
3,82 

473,53 0,24 

51-17-4-18-25-13-41-40-19-42-51 
52-6-23-7-43-24-14-47-12-46-52 

53-9-50-16-29-20-36-35-21-34-30-53 
53-38-11-5-37-44-15-45-33-39-10-49-53 

54-2-22-1-32-27-48-8-26-31-28-3-54 
 
For a more significant number of customers, Table 2 presents the results for the instances P04, P05, and P07, composed of 
100 customers with some differences in other parameters. The spatial distribution of the customers is the same for the three 
instances. In the second and third columns, the values in bold correspond to the best solution found, belonging to the non-
dominated front of solutions. In the last column, the numbers in bold are the selected depots for the best solution in the front. 
Notice that instance P04 shows the worst result in optimality, in contrast with the other two instances. Compared with P04, 
instances P05 and P07 have more depots or greater vehicle capacity, which is an advantage in providing a better routing 
solution. Moreover, P04 and P07 present a more comprehensive range of options for routing, i.e., a total of six feasible 
solutions, with a difference of 13% and 7%, respectively, between the minimum and maximum values for distance traveled. 
Instance P05 only has two solutions that match the extreme points, with a difference of 3.2% in the distance traveled, 
translating into a few decision-making options.  
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Table 2  
Results for the MDVRP instances P04, P05 and P07 

 Instance 𝜶 𝜷 𝑫𝒕𝒓𝒂𝒗 𝑺𝑻𝑫𝒅𝒆𝒗 BKS Gap 
[%] Routes of the best solution 

P04 
Available 
vehicles: 8 

No. customers: 
100 

No. of depots: 2 
Capacity: 100 

0,9 
0,88 
0,92 
0,93 
0,95 
0,96 

0,1 
0,12 
0,08 
0,07 
0,05 
0,04 

1131,72 
1140,82 
1143,99 
1176,66 
1188,68 
1279,55 

15,23 
14,02 
10,67 
10,33 
8,36 
8,00 

1001,59 12,99 

101-56-23-67-39-25-55-101 
101-94-96-59-95-97-101 

102-30-20-71-65-35-9-51-102 
101-58-40-26-12-54-4-101 

102-18-60-84-17-45-8-48-7-88-102 
101-98-85-57-41-22-74-2-101 
101-92-93-91-16-86-38-42-101 

101-15-43-14-44-61-5-6-101 
102-1-50-29-24-80-68-76-102 
102-33-81-66-32-90-63-102 

102-10-11-64-49-36-46-31-102 
101-27-89-99-37-100-87-101 

102-69-28-77-3-79-78-34-70-102 
102-52-83-82-47-19-62-102 
101-73-75-72-21-53-13-101 

P05 
Available 
vehicles: 5 

No. customers: 
100 

No. of depots: 2 
Capacity: 200 

0,91 
0,89 

0,09 
0,11 

768,39 
793,00 

10,23 
9,94 750,03 2,45 

102-26-53-13-6-94-95-97-87-73-21-54-102 
101-82-7-62-10-63-90-32-30-70-31-88-52-

18-101 
101-89-58-40-2-57-15-43-42-37-98-93-85-

61-5-101 
101-45-46-47-36-49-64-11-19-48-8-83-101 
101-60-96-99-59-92-100-91-16-44-14-38-

86-17-84-101 
102-80-68-24-29-34-78-81-33-1-69-27-28-

12-102 
102-55-25-39-67-23-56-75-41-22-74-72-4-

102 
102-76-50-51-20-66-65-71-35-9-79-3-77-

102 

P07 
Available 
vehicles: 4 

No. customers: 
100 

No. of depots: 4 
Capacity: 100 

0,83 
0,89 
0,99 
0,81 
0,9 

0,95 

0,17 
0,11 
0,01 
0,19 
0,1 

0,05 

918,27 
923,26 
925,06 
937,17 
939,21 
983,34 

16,77 
16,10 
16,07 
15,08 
15,01 
12,76 

885,80 3,67 

104-69-1-50-33-81-9-51-104 
104-71-35-65-66-20-30-104 
104-10-11-19-62-88-31-104 
101-18-89-6-96-99-93-5-101 
101-60-59-100-91-85-84-101 

103-87-42-14-44-38-43-15-103 
103-13-58-21-72-22-41-103 

101-82-48-47-46-8-101 
102-3-79-78-34-29-24-102 

103-2-57-97-37-98-92-95-94-103 
102-54-55-25-39-4-102 

104-52-7-36-49-64-63-90-32-70-104 
102-76-77-68-80-102 

103-74-75-23-67-56-73-103 
101-83-45-17-86-16-61-101 
102-26-40-53-27-28-12-102 

 
Table 3 presents the results for the MDVRP instances P03, Pr02, and Pr08. The last column shows the front of non-dominated 
solutions. Notice that the minimum value of distance traveled in P03 and Pr02 are closer to their respective BKS values than 
the instance Pr08 result, which has a GAP close to 10%. Nevertheless, the non-dominated solutions front, for instance Pr08, 
has greater crowding distances than those presented in P03 and Pr02, providing a broader range of possibilities for decision-
making purposes. 
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Table 3  
Results for the MDVRP instances P03, Pr02 and Pr08 

 Instance 𝜶 𝜷 𝑫𝒕𝒓𝒂𝒗 𝑺𝑻𝑫𝒅𝒆𝒗 BKS Gap [%] Non-dominated solutions front 

P03 
Available vehicles: 3 

No. customers: 75 
No. of depots: 5 
Capacity: 140 

0,86 
0,8 
0,83 
0,89 
0,99 
0,94 

0,14 
0,2 
0,17 
0,11 
0,01 
0,06 

646,68 
648,04 
655,33 
657,02 
661,35 
661,81 

15,79 
15,14 
14,73 
11,26 
10,75 
8,74 

641,19 0,86 

 
 

Pr02 
Available vehicles: 2 

No. customers: 96 
No. of depots: 4 
Capacity: 195 

0,96 
0,99 
0,81 
0,98 

0,04 
0,01 
0,19 
0,02 

1328,65 
1345,26 
1367,78 
1371,03 

120,16 
91,60 
81,67 
60,51 

1307,61 1,61 

 

Pr08 
Available vehicles: 2 
No. customers: 144 

No. of depots: 6 
Capacity: 190 

0,96 
0,86 
0,9 
0,8 

0,04 
0,14 
0,1 
0,2 

1828,90 
1850,36 
1925,37 
1970,90 

40,56 
40,32 
33,94 
30,44 

1666,60 9,74 

 
 
Table 4 presents the results for the MDVRP instances P12, Pr01, and Pr07, showing a GAP of zero between the best solution 
found in the non-dominated front and the BKS reported in the literature. For validation purposes, the last column has presented 
the routes of the best solution in the non-dominated front described in columns 2 and 3 by the values in bold. The difference 
between the maximum and minimum distances obtained in the front, for the instances P12, Pr01, and Pr07 present a difference 
of 3.5%, 5.7%, and 4.4%, respectively, which means that instance Pr01 provides the broadest range in the distance traveled 
for the decision-making process, furthermore, Pr07 accounts with the greatest number of solutions in the front.  
 
Table 4  
Results for the MDVRP instances P12, Pr01 and Pr07 

Instance 𝜶 𝜷 𝑫𝒕𝒓𝒂𝒗 𝑺𝑻𝑫𝒅𝒆𝒗 BKS Gap 
[%] Routes of the best solution 

P12 
Available vehicles: 5 

No. customers: 80 
No. of depots: 2 

Capacity: 60 

0,99 
0,95 

0,01 
0,05 

1318,95 
1365,82 

22,38 
22,38 1318,95 0,00 

81-8-16-24-32-37-29-21-13-5-81 
82-45-53-61-69-77-75-40-67-59-51-43-82 
81-7-15-23-31-57-65-73-38-30-22-14-6-81 

82-48-56-64-72-80-79-71-63-55-47-82 
81-3-11-19-27-35-34-26-18-10-2-81 
81-1-9-17-25-33-36-28-20-12-4-81 

82-46-54-62-70-78-76-68-60-52-44-82 
82-41-49-39-74-66-58-50-42-82 

Pr01 
Available vehicles: 1 

No. customers: 48 
No. of depots: 4 
Capacity: 200 

1 
0,8 
0,91 
0,99 

0 
0,2 
0,09 
0,01 

861,32 
893,83 
909,08 
911,06 

53,14 
45,08 
43,42 
23,51 

861,32 0,00 

51-1-28-14-4-19-20-33-13-8-5-29-16-51 
49-35-9-42-46-43-39-32-44-31-36-41-7-37-49 

52-2-15-25-23-26-18-17-40-38-12-21-24-47-30-52 
50-22-27-3-6-48-45-11-10-34-50 

Pr07 
Available vehicles: 1 

No. customers: 72 
No. of depots: 6 
Capacity: 200 

0,84 
0,88 

1 
0,95 
0,87 
0,86 
0,94 
0,82 

0,16 
0,12 

0 
0,05 
0,13 
0,14 
0,06 
0,18 

1089,56 
1093,04 
1100,18 
1100,18 
1113,78 
1122,71 
1137,52 
1138,57 

62,84 
61,31 
60,69 
60,69 
50,22 
49,01 
48,95 
41,28 

1089,56 0,00 

73-27-60-11-6-33-65-10-31-20-18-71-36-73 
78-35-2-38-39-32-25-78 

75-69-62-44-34-22-54-56-3-16-15-45-8-75 
77-70-9-19-42-30-66-48-21-55-4-40-67-14-77 

76-13-59-51-17-41-50-57-24-63-5-72-53-46-28-29-52-76 
74-49-61-37-58-7-43-26-23-1-64-47-12-68-74 

 
Moreover, the distance range could be better with more 𝛼 and 𝛽 values used in the runs. On the other side, the differences in 
standard deviation for the P12, Pr01, and Pr07 instances between the maximum and minimum distances obtained in the front, 
are 0%, 126% and 52.2%, respectively, which means that for the instance P12 the work load distribution is the same for the 
two solutions presented in the front, therefore, the routing solution with a greater distance could be discarded as the unbalance 
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measure is equal to that routing with a smaller distance traveled. Instance Pr01 shows the greatest difference in terms of 
standard deviation, being an advantage for the assessment of different alternatives contingent upon the workload distribution 
required in the routing, although provides less options in the front of solutions compared with the instance Pr07.   
 
6. Concluding remarks 
 
Logistics operation is often affected by factors related to the equilibrium between the routes for goods transportation purposes. 
This situation is translated into a sense of fairness since the routes can be performed by different drivers and vehicle features, 
regardless of the vehicle's capacity. This work proposed a hybrid methodology encompassing the Chu-Beasley Genetic 
Algorithm with the Variable Neighborhood Search Algorithm, to address this perspective in the VRP with multiple depots 
and predetermined location customers. The hybridization of metaheuristic techniques promotes a rapid convergence in the 
algorithm, given that the local exploration allows finding promising quality regions that cannot be found with the traditional 
genetic operators. Two terms are in conflict in the objective function: the total distance traveled by vehicles and the standard 
deviation of the routes. This latter represents a significant index for route balancing, considering that the greater the standard 
deviation of the routes, the shorter the total distance traveled.  
 
Conversely, small values of standard deviation are found for routing solutions with longer distances in the routes, which 
means that the routing solutions are more balanced. It can be observed that the number of solutions presented in the non-
dominated front depends on the resolution for the values of 𝛼 and 𝛽 that correspond to the weights provided for each term of 
the objective function. The methodology solved some large-size instances of the literature, reaching the optimal solution for 
three MDVRP benchmark instances. Other experimenters reached near-optimal solutions with GAP close to zero. The non-
dominated front of solutions reflects a range of possibilities that support decision-making and managerial insight. In future 
works, it is proposed to improve the methodology by using population initialization procedures, particularly for the MDVRP, 
and adapt the embedded algorithm to other routing problems, such as the VRP with time windows.   
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