

* Corresponding author Phone: +1 909-8692653
E-mail: masehian@cpp.edu (E. Masehian)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2023 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.9.005

International Journal of Industrial Engineering Computations 14 (2023) 589–608

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Fitness landscape analysis of the simple assembly line balancing problem type 1

Somayé Ghandia and Ellips Masehianb*

aDepartment of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
bIndustrial and Manufacturing Engineering Dept., California State Polytechnic University, Pomona, United States
C H R O N I C L E A B S T R A C T

Article history:
Received March 24 2023
Received in Revised Format
July 12 2023
Accepted September 12 2023
Available online
September 12 2023

 As the simple assembly line balancing problem type 1 (SALBP1) has been proven to be
NP-hard, heuristic and metaheuristic approaches are widely used for solving middle to
large instances. Nevertheless, the characteristics (fitness landscape) of the problem’s
search space have not been studied so far and no rigorous justification for implementing
various metaheuristic methods has been presented. Aiming to fill this gap in the literature,
this study presents the first comprehensive and in-depth Fitness Landscape Analysis
(FLA) study for SALBP1. The FLA was performed by generating a population of 1000
random solutions and improving them to local optimal solution, and then measuring
various statistical indices such as average distance, gap, entropy, amplitude, length of the
walk, autocorrelation, and fitness-distance among all solutions, to understand the
complexity, structure, and topology of the solution space. We solved 83 benchmark
problems with various cycle times taken from Scholl’s dataset which required 83000
local searches from initial to optimal solutions. The analysis showed that locally optimal
assembly line balances in SALBP1 are distributed nearly uniformly in the landscape of
the problem, and the small average difference between the amplitudes of the initial and
optimal solutions implies that the landscape was almost plain. In addition, the large
average gap between local and global solutions showed that global optimum solutions in
SALBP1 are difficult to find, but the problem can be effectively solved using a single-
solution-based metaheuristic to near-optimality. In addition to the FLA, a new
mathematical formulation for the entropy (diversity) of solutions in the search space for
SALBP1 is also presented in this paper.

© 2023 by the authors; licensee Growing Science, Canada

Keywords:
Simple Assembly Line Balancing
Problem Type 1
Fitness Landscape Analysis
Distribution and Correlation
Measures
Local Search

1. Introduction

The broader assembly planning (AP) problem has three main subproblems: assembly sequence planning (ASP), assembly
path planning (APP), and assembly line balancing (ALB) (Somaye Ghandi & Ellips Masehian, 2015). This study deals with
a special type of ALB with wide applications in the manufacturing industry. Suppose that n assembly operations (such as
welding, riveting, and screwing) in a facility are partitioned into j elementary tasks, each taking tj time to complete. The
challenge in ALB is to assign these tasks to m assembly workstations such that all workstations have equal assembly times,
and the precedence relations between the tasks are satisfied. The ALB problem is further classified into two NP-hard
subproblems: Simple Assembly Line Balancing (SALB) and Generalized Assembly Line Balancing (GALB) (Scholl &
Becker, 2006), as described below:

SALB: This category is suitable for modeling (single-sided) assembly lines that produce a unique model of a single product
with deterministically-known input parameters (Capacho Betancourt, 2007). A single-sided assembly line consists of a

590

sequence of m workstations usually connected by a conveyor belt, through which the product units flow. Each workstation
performs a subset of the n operations necessary for manufacturing the products. Each product unit remains at each station
for a fixed time called the ‘cycle time’, c. In these assembly lines, workstations are consecutively arranged in a straight line.
Each product unit proceeds along this line and visits each workstation once (Gonçalves & De Almeida, 2002).

SALB problems have been categorized into some types:
i. Type 1 (SALBP1) minimizes the number of workstations (m) for a given fixed cycle time (c).

ii. Type 2 (SALBP2) minimizes the cycle time for a given number of workstations.
iii. Type E (Efficiency) (SALBP-E) maximizes the line efficiency (E) by minimizing c and m simultaneously and

considering their interrelationships. Most research on SALBP focuses on SALBP1 and SALBP2, and few studies deal
with the optimization of assembly line balancing efficiency or SALBP-E (Wei & Chao, 2011).

iv. Type F (feasibility) (SALBP-F) determines if a feasible line balance exists for a given combination of m and c.

GALB: This category of ALB problems is appropriate for balancing more complex assembly lines and has the following
classifications (Capacho Betancourt, 2007):

i. General two-sided assembly line balancing (2S–ALB) deals with lines with pairs of operating workstations positioned
opposite to each other and each workstation performing a different task (Yadav et al., 2019).

ii. Mixed-model assembly line balancing (MALB) involves lines that assemble several models of a basic product in an
intermixed sequence. Considering that tasks have different times for different models, the problem is to optimize the
balance (load) of the stations or any cost-oriented objective function by determining the best cycle time and assignment
of tasks to the workstations.

iii. U–line assembly line balancing (UALBP) deals with single-product assembly lines in which workstations are arranged
on both sides of a U-shaped path. Thus, operators can work on either side of the path while simultaneously performing
both early and late tasks of the assembly.

iv. The robotic assembly line balancing problem (RALBP) involves flexible assembly lines comprising human workers,
robots, and equipment (Chutima, 2022; Li et al., 2018).

On the other hand, solution approaches to the SALBP1 are categorized into two classes:

1- Exact solution approaches, which can find the optimal solution accurately but are not efficient enough for NP-hard
optimization problems and their execution time increases exponentially with the problem size. In fact, the first methods
that were developed to solve the SALBP1 belonged to exact approaches. Exact approaches include lower bounds,
dominance rules, reduction rules, dynamic programming procedures, branch-and-bound procedures (Dolgui & Gafarov,
2019; Vilà & Pereira, 2013), and mathematical programming (Pastor & Ferrer, 2009; Scholl & Becker, 2006). In
branch-and-bound procedures, bounding strategies and preprocessing rules are usually applied to increase the
efficiency (Vilà & Pereira, 2013). Also, Intelligent techniques are elaborated to avoid complete enumeration (Dolgui
& Gafarov, 2019). In the existing mathematical programs, an initial pre-process usually is carried out to calculate the
range of workstations to which a task i may be assigned, aiming to reduce the number of variables of task–workstation
assignment (Pastor & Ferrer, 2009).

2- Approximate solution approaches, that are able to find good (near-optimal) solutions to NP-hard problems within short
runtimes. Approximate approaches are divided into three categories: problem-specific heuristics, metaheuristics, and
hyperheuristics.

Although problem-specific heuristic algorithms are developed based on the features and properties of the problem at hand,
they have the shortcomings of getting stuck in local optima or converging prematurely to such points. The following works
have utilized heuristic methods to solve the SALBP1: (Fathi et al., 2018; Hackman et al., 1989; Helgeson & Birnie, 1961;
Kilincci, 2011; Pape, 2015; Scholl & Voß, 1997; Talbot, 1985). The success of heuristic algorithms strongly depends on the
problem characteristics (Pape, 2015). Also, the effectiveness and efficiency of heuristic algorithms depend, among other
factors, on the fitness function used. The fitness function has a major role since, in addition to being used to identify the best
solution found, it is used to guide the search algorithm toward an area of the feasible region with promising, high-quality
solutions. Therefore, the fitness function must be closely correlated with the objective of the original problem in order to avoid
losing the best-found solution, due to miscalculation of the solution quality, and to avoid late convergence and consequently
higher computational times. In addition, the computation of the fitness function must be easy and fast due to the iterative
nature of heuristic methods (Fathi et al., 2018).

Metaheuristic algorithms are general search methods applicable to a wide range of problems and can find local optimal solutions
through exploration and exploitation in the search space. These algorithms allow the generation of several solutions due to the
incorporation of randomness in the procedure. On each iteration of these algorithms for solving the SALBP1, a task is chosen
from a subset of the candidates using a probabilistic rule which may take into account a priority rule and information obtained
by previous iterations (Bautista & Pereira, 2002). In the last two decades, numerous metaheuristic methods have been developed
for solving the SALBP1, including constructive procedures (Ponnambalam et al., 2000), genetic algorithms (GA) (Álvarez-
Miranda et al., 2021), tabu search (TS) (Abdeljaouad & Klement, 2021; Pape, 2015), simulated annealing (SA) (Nagy et al.,
2020), ant colony optimization (ACO) (Bautista & Pereira, 2002; Bautista & Pereira, 2007; Zhong & Ai, 2017), artificial
immune systems (AIS) (Zhang, 2018), discrete particle swarm optimization (PSO) (Dou et al., 2017), heuristics based on slope

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 591

indices (Baskar & Xavior, 2020), the firing sequence backward algorithm (Kilincci, 2011), and variable-depth local search
(Álvarez-Miranda et al., 2022).

Hyperheuristic algorithms are high-level, automatic search methods that manage a set of low-level heuristic algorithms to
solve complex computational problems. In most cases, by combining machine learning techniques, the process of selecting,
combining, generating, or matching several simple heuristic algorithms is used to efficiently solve computational search
problems. Unlike metaheuristic algorithms that are used to solve only one problem, hyperheuristics create a system to solve
classes of different problems. The following works have utilized hyperheuristic methods to solve the SALBP1: (Gonçalves &
De Almeida, 2002; Hu et al., 2023; Meng et al., 2021; Özbakır & Seçme, 2022; Seçme & Özbakır, 2019).

A survey of ASP- and ALB-related researches conducted between 2001 and 2011 that utilized soft computing approaches was
presented by (Rashid et al., 2012). Other comprehensive surveys of SALBP1 can be found in (Scholl & Becker, 2006),
(Mohammed et al., 2021), (Ravelo, 2022), and (Boysen et al., 2021).

While reviewing the literature on SALBP1 methods, we noticed that although most approximate solution approaches
implement either single-solution-based (S-) metaheuristics (such as SA) or population-based (P-) metaheuristics (such as
ACO), they do not provide justifications and reasons for using their selected algorithm. However, the effectiveness and
efficiency of a metaheuristic algorithm for an optimization problem strongly depend on the landscape of the problem, and
depending on the shape of the landscape, specific types of search methods with certain intensification and diversification
capabilities will be more effective. Therefore, before selecting and implementing a metaheuristic algorithm for a particular
problem, it is important (and sometimes necessary) to analyze the search space of the problem and identify the distribution
and magnitude of its peaks and valleys. This analysis, known as Fitness Landscape Analysis (FLA), examines the shape of the
problem’s search space using the distribution of local optima and their relationships and distances to each other in the search
space and provides a good understanding of the structure of the solution spaces of the problem at hand.

To the best of our knowledge, so far there are only two studies that have performed FLA in the field of assembly planning:
(Somayé Ghandi & Ellips Masehian, 2015) and (Nourmohammadi et al., 2019). Both studies, however, have not addressed
SALBP1 exactly or properly in sufficient breadth or depth; thus, it was necessary to fill this gap and present a comprehensive
FLA for SALBP1, as we did in this paper, to provide a reference for researchers in the field.

Below, we highlight the differences between the present work and each of the works.

(1) The FLA in (Somayé Ghandi & Ellips Masehian, 2015) was performed for the ASP problem (sequencing the assembly of

parts in a product) and not for the ALB problem.
(2) Although an FLA was done for the SALBP1 in (Nourmohammadi et al., 2019), it had serious drawbacks and inaccuracies

listed as follows: (i) the FLA was done only for one small problem instance with 7 tasks, which is neither a benchmark
problem nor a practical case; (ii) only one operator type (i.e., swapping) was implemented for generating neighboring
solutions throughout the local search; (iii) no solution representation was presented and the way the local search was applied
to a given solution is unclear; (iv) the size of the studied population of solutions (only 500) was not sufficient to draw
inclusive conclusions; (v) some important FLA measures like Gap, Length of walks, and Autocorrelation were not computed
or analyzed; (vi) the function used for calculating the entropy was specific to the quadratic assignment problem (QAP) and
not to the SALBP1, where in addition to the sequence of tasks, their assignment to workstations is also critical; and most
importantly, (vii) their final conclusion about the shape of the landscape made based on the FLA results was incorrect (we
will talk about those later in Sec. 5). In this paper, we avoided the abovementioned drawbacks in our FLA by conducting it
for numerous benchmark problems (83 in total) with large solution populations of size 1000, and by implementing four
different neighborhood operators. In addition, we proposed a novel entropy function designed exclusively for SALBP1 and
reached a comprehensive conclusion regarding the structure of the landscape of SALBP1 based on a larger number of
statistical indices.

The results of the present study can be used to determine the class of heuristic optimization algorithms that will be more effective
in searching the solution space and finding near-optimal (if not optimal) solutions.

2. Problem definition and notations

To manufacture a product on an assembly line, the total amount of work must be partitioned into a set of n elementary operations
called tasks, which should be completed on a number of loaded stations (m) given a fixed cycle time (c). Performing task j
requires certain equipment of machines and/or skills of workers and takes time tj. If the set of tasks Tk is allocated to workstation
k, then the assembly time of workstation k is ttk = ∑tj, ∀j ∈ Tk. The goal of solving SALBP1 is to determine the minimum
number of stations, considering the following assumptions:

− One homogeneous product is mass-produced,
− The production process is predetermined,

592

− The line is paced with a fixed cycle time c,
− Tasks are performed without preemption and their operation times tj are deterministic,
− The only assignment restriction is the precedence constraints, which are either already known or are the output of an

ASP subproblem solved prior to the ALB problem,
− The product of the assembly line was processed sequentially and consecutively from station 1 to station m.
− Assembly machines and workers in all stations are similar.

A solution s to SALBP1 can be represented by a row vector of ordered pairs (πi, wi), where πi ∈{1, 2, …, n} is the i-th assembled
task, and wi ∈{1, 2, …, m} represents the number of workstations in which task πi is assembled. Fig. 1 shows the graphical
representation and encoding of an assembly line configuration in the form of (1, 1), (2, 1), …, (6, 4), which indicates that part
π1 (= 1) must be assembled at station 1, so T1 = {1}, then part π2 (= 2) must be added to the subassembly at workstation 1 (T1 =
{1, 2}), and so on.

Tasks and their relations can be visualized using a precedence graph (as depicted in Fig. 1(a)) containing a node for each task,
the time of each task, and arcs for designating precedence constraints. The assembly precedence matrix (APM) is an n×n
matrix in which each entry is denoted by a binary variable apmij that takes the value of 1 if task i is the predecessor of task j
and 0 otherwise. For the sample solution presented in Fig. 1(b), the number of workstations is m = 4, the cycle time c = 10
minutes, the total assembly time ttotal = t1 + t2 + … + t7 = 1 + 5 + 4 + 3 + 5 + 6 + 5 = 29 minutes, and the theoretical lower-
bound for the number of stations is m* = ⌈ttotal /c⌉ = ⌈29/10⌉ = ⌈2.9⌉ = 3. The precedence constraint for Task 2 indicates that its
processing requires all its predecessor tasks {1} to be completed. Task 2 must be completed to allow all successors {3, 5, 6} to
start. Task 1 is the direct predecessor, and Tasks 3 and 5 are the direct successors of Task 2.

 (a) (b)

(c)

Fig. 1. (a) Precedence relations of 7 tasks (circles) with their times (tj) (in minutes) shown above them for the Mertens (1967)
benchmark problem. (b) A feasible assembly line configuration of the tasks assigned to 4 workstations. (c) Encoding of the
configuration shown in (b).

2.1 How huge is the search space of the SALBP1 problem?

The total number of possible permutations of n tasks is n! and the minimum number of possible workstations for assembling
a particular task is m*. Therefore, the total number of feasible and infeasible solutions (i.e., the size of the entire search space)
equals n!(m*)n, which clearly shows that SALBP1 is NP-hard because of the combinatorial explosion of its solution space.
For example, for the small precedence graph shown in Fig. 1 with n = 7 tasks and m* = 3 (the theoretical lower-bound for the
number of stations), the size of the entire search space (including feasible and infeasible solutions) equals 7!×37 = 11,022,480.

In addition, because a solution encoding (such as the one shown in Fig. 1(c)) has 2n cells, the diameter of the search space
(i.e., the maximum distance between any two solutions) equals 2n as all cells in the two solutions may be different. In finding
a feasible solution to SALBP1, the precedence relations between the tasks must be observed to accommodate technological
and organizational conditions. This adds more complexity to finding the optimal solution that is also feasible. For the
precedence graph shown in Fig. 1 with n = 7 tasks, m* = 3 stations, and Cycle time c = 10 minutes, the total number of feasible
solutions that respect precedence relations is only 364 solutions (out of more than 11 million!). This clearly shows how hard
it is to find the optimal feasible solution in the vast search space of the SALBP1. For more clarification, all the feasible
solutions to the sequences [1, 2, 3, 4, 5, 7, 6] (13 in total) and [1, 2, 4, 5, 7, 6, 3] (16 in total) are shown in Fig. 2. For the
solutions in Fig. 2(a), the minimum number of workstations is m = 4, and for the solutions in Fig. 2(b), the minimum number
of workstations is m = 3, which is equal to the theoretical optimal number of stations m* = 3. Also, in general, the maximum
number of workstations is equal to the number of all tasks (e.g., n = 7) which refers to the situation of each task being processed
in a separate workstation. It is noted that the remaining 364 − (13+16) = 335 feasible solutions are based on other feasible
sequences (i.e., those that comply with the precedence relations) of the tasks.

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 593

3. Steps of Fitness Landscape Analysis

The landscape of a problem is completely defined by properties such as the objective function, neighborhood, and types of
solution representation. A graph G = (V, E) can be used to define the search space of a problem, where V is the set of vertices
and E is the set of edges. Each vertex corresponds to a solution to the problem represented by some encoding, and each edge
corresponds to a move operator used to generate new solutions.

1 1 2 2 3 3 4 4 5 5 7 6 6 7
1 1 2 1 3 2 4 3 5 4 7 5 6 6
1 1 2 2 3 2 4 3 5 4 7 5 6 6
1 1 2 2 3 3 4 3 5 4 7 5 6 6
1 1 2 2 3 3 4 4 5 4 7 5 6 6
1 1 2 2 3 3 4 4 5 5 7 5 6 6
1 1 2 1 3 1 4 2 5 3 7 4 6 5
1 1 2 1 3 2 4 2 5 3 7 4 6 5
1 1 2 1 3 2 4 3 5 3 7 4 6 5
1 1 2 1 3 2 4 3 5 4 7 4 6 5
1 1 2 1 3 1 4 2 5 2 7 3 6 4
1 1 2 1 3 1 4 2 5 3 7 3 6 4
1 1 2 1 3 2 4 2 5 3 7 3 6 4

1 1 2 2 4 3 5 4 7 5 6 6 3 7
1 1 2 1 4 2 5 3 7 4 6 5 3 6
1 1 2 2 4 2 5 3 7 4 6 5 3 6
1 1 2 2 4 3 5 3 7 4 6 5 3 6
1 1 2 2 4 3 5 4 7 4 6 5 3 6
1 1 2 2 4 3 5 4 7 5 6 6 3 6
1 1 2 1 4 1 5 2 7 3 6 4 3 5
1 1 2 1 4 2 5 2 7 3 6 4 3 5
1 1 2 1 4 2 5 3 7 3 6 4 3 5
1 1 2 1 4 2 5 3 7 4 6 5 3 5
1 1 2 1 4 1 5 2 7 2 6 3 3 4
1 1 2 1 4 1 5 2 7 3 6 4 3 4
1 1 2 1 4 2 5 2 7 3 6 4 3 4
1 1 2 1 4 2 5 3 7 3 6 4 3 4
1 1 2 1 4 1 5 2 7 2 6 3 3 3

(a) (b)
Fig. 2. All solutions generated based on the feasible sequences of (a) [1, 2, 3, 4, 5, 7, 6] and (b) [1, 2, 4, 5, 7, 6, 3]. Each row
represents the encoding of a solution, in which thick solid lines separate workstations colored uniquely, thin solid lines
separate tasks in the same workstation, and dashed lines distinguish task and workstation numbers.

Two solutions s1 and s2 are neighbors if s1 (resp. s2) can be reached from s2 (resp. s1) by implementing a move operator.
Neighbor solutions are connected via an edge in the graph. Computing and analyzing statistical measures, such as the
distribution and correlation of local optima in the landscape of the problem, can guide and enable us to infer the ruggedness
and shape of the fitness landscape, thus proposing a suitable metaheuristic in that context (Talbi, 2009).

In this section, we present the steps of our fitness landscape analysis for the SALBP1, briefly listed as follows:
1. Selection of Test Problems – Our FLA is performed on 83 test problem instances based on 11 sample assembly line

balancing problems with various cycle times.
2. Generation of an Initial Population – For each test problem, we first generate an initial uniform random population U of

1000 random starting assembly line configurations (solutions), each encoded using the method shown in Fig. 1(c).
3. Performing Local Search – A simple hill-climbing local search algorithm is applied to each solution until either a local

optimum is reached or a preset number of iterations (e.g., 20) is completed. We then define the optimal population O as
the set of all locally optimal solutions obtained from the local search.

Calculation of FLA Measures – By having populations U and O, FLA is performed for the studied test problems by calculating
some statistical measures of the correlations and distribution of the local optima in the search space of the SALBP1 problem.

3.1 Step 1: Selection of Test Problems

Because the structure of the problem instance affects the fitness landscape of a problem, we investigated 83 SALBP1 instances
from 11 different SALBP1 benchmark problems with various cycle times taken from the well-known Scholl database1, as
shown in Table 1, to reach a reliable and context-free conclusion regarding the fitness landscape shape of the general SALBP1
problem. Table 1 also presents the size of the solution space of each benchmark instance calculated based on the discussion
in Sec. 2.1.

3.2 Step 2: Generation of an Initial Population

To generate the set U, an initial uniform random population of solutions of size N (= 1000) with sufficient diversity, we first
created N random permutations of n tasks (called priority lists) and then built solution representations based on the lists. To
do so, we employed two types of task assignment procedures, shallow and deep, each producing half of the population, as
described below.

1 https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/

594

Table 1
The specifications of the investigated benchmark test problems

Test NT CT LB TMIN TMAX Test NT CT LB TMIN TMAX

Arcus–83 83

5048 16 3.45E+224

7.578554 E+283

Scholl–
297 297

1394 50 4.496614E+1111

2.933998 E+1341

5853 14 5.31E+219 1422 50 4.496614E+1111
6842 12 1.47E+214 1452 48 2.440292E+1106
7571 11 1.08E+211 1483 47 4.697406E+1103
8412 10 3.95E+207 1515 46 7.904426E+1100
8898 9 6.28E+203 1548 46 7.904426E+1100
10816 8 3.57E+199 1584 44 1.459618E+1095

Arcus–
111 111

5755 27 1.341586E+339

1.892741 E+407

1620 44 1.459618E+1095
8847 18 3.814949E+319 1659 42 1.458255E+1089
10027 16 8.008639E+313 1699 42 1.458255E+1089
10743 15 6.199696E+310 1742 40 7.423552E+1082
11378 14 2.93E+307 1787 39 4.027009E+1079
17067 9 1.47E+286 1834 38 1.796894E+1076

Heskiaoff 28

138 8 5.90E+54

1.010568 E+70

1883 37 6.526891E+1072
205 5 1.14E+49 1935 36 1.908258E+1069
216 5 1.14E+49 1991 35 4.436122E+1065
256 4 2.20E+46 2049 34 8.091568E+1061
324 4 2.20E+46 2111 33 1.141391E+1058
342 3 6.97E+42 2177 32 1.225569E+1054

Jackson 11

7 8 3.43E+17

1.138873 E+19

2247 31 9.845038E+1049
9 6 1.45E+16 2322 30 5.805064E+1045
10 5 1.95E+15 2402 29 2.460366E+1041
13 4 1.67E+14 2488 28 7.323685E+1036
14 4 1.67E+14 2580 27 1.492218E+1032
21 3 7.07E+12 2680 26 2.022454E+1026

Jaeschke 9

6 8 4.87E+13

1/405871 E+14

2787 25 1.765944E+1022
7 7 1.46E+13

Tonge 70

176 21 4.30E+192

1.718968 E+229
8 6 3.66E+12 364 10 1.20E+170
10 4 9.51E+10 410 9 7.51E+166
18 3 7.14E+09 468 8 1.97E+163

Mitchell 21
14 8 4.71E+38

2.985033 E+47
527 7 1.72E+159

15 8 4.71E+38

7

6 6 1.41E+09

4.150657 E+9

21 5 2.44E+34 7 5 3.94E+08

Sawyer 30

25 14 6.42E+66

5.461321 E+76

 8 5 3.94E+08
27 13 6.95E+65 Mertens 10 3 1.10E+07
30 12 6.30E+64 15 2 6.45E+05
36 10 2.65E+62 18 2 6.45E+05
41 8 3.28E+59 Kilbridge

45

57 10 1.20E+101

2.967392 E+130

54 7 5.98E+57 & Wester 79 7 1.28E+94
75 5 2.47E+53 92 6 1.24E+91

 110 6 1.24E+91

 138 4 1.48E+83

 184 3 3.53E+77
NT = No. of tasks (n), CT = Cycle time (c), LB = Lower bound of the number of stations (m*),TMIN = Theoretical minimum size of the entire search space,
n!(m*)n, TMAX = Theoretical maximum size of the entire search space, n!(n)n

Shallow task assignment: In this procedure, a random priority list (permutation) of tasks (named L) is generated, and then
the first station is created with a total time tt1 = 0 and idle time I1 = c. Next, through an iterative process and starting from the
left, the first unassigned task in L (say task j), which has a completion time less than or equal to the idle time of the first station,
is assigned to that station, and the station’s total and idle times are updated as tt1 = tt1 + tj and I1 = I1 – tj. After each assignment,
list L is scanned again to find other tasks to be assigned to the current station. If such a task cannot be found, the number of
stations is incremented by one (i.e., a new station is created with total and idle times equal to zero and c, respectively) and the
list is re-scanned from the left to assign another task to the newly created station. This procedure is repeated until all the tasks
are assigned to some station.

We name this method ‘shallow’ because the resulting solutions may be infeasible due to the precedence relations of the tasks
being not considered. However, the generation of such solutions contributes to the diversity of the initial pool, which is
essential for the success of metaheuristics. For example, applying this procedure to the random priority list L = [3, 1, 4, 5, 7,
6, 2] for the tasks presented in Fig. 1(a) generates the infeasible solution (3, 1), (1, 1), (4, 1), (5, 2), (7, 2), (6, 3), (2, 4) after
sorting based on the station number. This procedure is repeated for N/2 random priority lists to create half of the initial
population U.
Deep task assignment: In this procedure, a random priority list (permutation) of tasks (L) is generated. Then, in each iteration i
of the procedure, the first unassigned task in L (e.g., task πi = j) is selected and assigned to the current station k only if Ik ≥ tj and
all direct predecessors of task j (DPj) have already been assigned. For example, applying this procedure to the random priority
list L = [3, 1, 4, 5, 7, 6, 2] for the tasks presented in Fig. 1(a) generates the solution (1, 1), (4, 1), (7, 1), (2, 2), (3, 2), (5, 3), (6,

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 595

4) after sorting based on the station number. Basically, deep task assignment is based on the shallow task assignment, but
additionally considers precedence relations.

We name this method ‘deep’ because the resulting solutions are merely feasible, as the precedence relations of the tasks are
considered. This procedure is repeated for N/2 random priority lists to create the other half of the initial population U. The
generation of random priority lists, followed by the above two procedures, constitutes the algorithm used to create a uniform
random population U in the landscape analysis of SALBP1.

3.3 Step 3: Performing Local Search

After generating the initial population U of 1000 solutions using the shallow and deep task assignment methods, the steepest
descent (hill-climbing) local search is performed on each solution to reach a solution with a local minimum fitness value. In
each iteration of the local search, a neighboring feasible solution to an initial solution is generated using a randomly selected
neighborhood generation operator (introduced in this subsection) and is kept only if it improves (decreases) the fitness function
value. Iterations repeat until either a local optimum is reached, or a certain number of non-improving iterations are repeated.
Fig. 3. Presents the pseudocode of the used local search.

Fig. 3. Procedure of the hill-climbing local search performed on each initial solution of the population U.

3.3.1 Neighborhood-Generation Operators

We use four different neighborhood-generation operators–exchange, insertion, inversion, and float shift–to generate
neighboring solutions, as explained below. The fourth operator, float shift, is originally designed by us.
Exchange operator: This operator randomly selects two tasks from a task priority list and exchanges (swaps) their positions.
As an example, in Fig. 4, consider the priority list L1 and its corresponding solution s1 obtained by the deep task assignment.
Two tasks, 3 and 2, were randomly selected and switched to yield a new list L2. Then, the new neighboring solution s2 is
generated by implementing the deep task assignment on L2 and sorting based on the workstations. By applying this operator,
the total size of the neighborhood for any solution equals the number of ways two tasks can be selected in a list of size n,
which can be expressed as C(n, 2) = n(n − 1)/2, where n is the total number of tasks and C() is the combination function.

Fig. 4. The exchange neighborhood generation operator.

Insertion operator: In this operator, a task in the priority list is randomly selected and relocated to another position on the list.
For example, in Fig. 5, assume that for the initial solution s1 and its corresponding task list L1, task 2 is randomly selected and
moved to the new random position 2, resulting in task list L2 and neighboring solution s2 (after the deep assignment of stations).
By applying this operator, the size of the neighborhood for any solution is n(n−1), because n tasks can be selected as the
beginning, and n − 1 different positions (all but the current position of the task) can be selected as the destination of the
relocation.

Fig. 5. The insertion neighborhood generation operator.

Algorithm Local_Search

1. Set s = current solution
2. While termination criterion is not met
3. Generate sʹ // Generate a neighbor by randomly applying an operator on s
4. If sʹ is feasible AND f(s′) < f(s) // As calculated in Sec. 3.3.2
5. Then s ← s′ // Replace s with the better neighbor s′
6. End
7. End
8. s* ← s′ // Record s* as the local optimum

596

Inversion operator: This operator randomly selects two positions in the list and reverses the sequence of all the tasks between
these two positions. For example, in Fig. 6, for the initial solution s1 and its corresponding task list L1, two positions (1 and 7) are
randomly selected, and the new list after applying the inversion operator is L2, which yields the neighboring solution s2 after deep
task assignment. Through enumeration of all possible pairs of tasks that are two or more positions apart, it can be shown that for
a list of n tasks, by applying this operator, the total size of the neighborhood of any solution is n(n−1)/2 − (n−1) − (n−2) =
(n−2)(n−3)/2.

Fig. 6. The inversion neighborhood generation operator.

Float shift operator: Before introducing this neighborhood operator, we define a new concept called the float of a task as
follows. For any task j in a feasible priority list L, Float Fj is the set of positions πf (locations) in the array L between (and not
including) the latest direct predecessor and the earliest direct successor of task j. Here, a feasible priority list is a list of tasks
in a feasible solution with satisfied assembly precedence relations; that is, no task appears in the list before any of its
predecessors. For example, considering the precedence graph in Fig. 1(a), the floats of tasks in L = [1, 2, 4, 3, 5, 7, 6] will be
as follows: F1 = {π1}, F2 = {π2, π3}, F3 = {π3, π4, π5, π6, π7}, F4 = {π2, π3, π4, π5}, F5 = {π3, π4, π5, π6}, F6 = {π7}, and F7 = {π4,
π5, π6}.

The float shift operator randomly selects a task in a feasible priority list and relocates it to another position in its float set,
thereby maintaining the tasks between all its predecessors and successors. Fig. 7 shows the result of implementing this operator
on a given feasible priority list for Task 3, which moves from its current 4th position to the 7th position, which is within the float
of Task 3, F3 = {π3, π4, π5, π6, π7}. The neighborhood size of this operator for a list with length n has an upper bound of n(n − 2)
because n tasks can be selected and relocated to n − 2 positions (reserving the first and last positions of the list for the
predecessor and successor tasks). More precisely, the neighborhood size is equal to ()1

1n
ii

F
=

− , where | Fi | is the
cardinality (size) of the set Fi. An advantage of the Float shift operator is that it maintains the feasibility of the solutions, while
there is no guarantee that solutions obtained from the exchange, insertion, and inversion operators will remain feasible.

Fig. 7. The Float Shift neighborhood generation operator.

An important property of any neighborhood generating operator is its connectivity property, which guarantees that any solution
in the search space can be reached from any starting solution through successive applications of merely that operator.
Fortunately, all the abovementioned neighborhood generation operators possess connectivity properties. Additionally, it is
worth noting that after applying the exchange, inversion, or float-shift operators, the number of stations changed from four to
three, thereby minimizing the number of required workstations.

3.3.2 Calculating the Fitness of a Solution

Two important properties of any solution to SALBP1 are its feasibility and quality, which are used to guide the search to
converge to the final solution by selecting the best neighbor of a solution in each iteration. A solution s = (π1, w1), (π2, w2), …,
(πn, wn) is feasible if any task πi (∀i = 2, …, n) is not a predecessor of any already assembled task πj (∀j < i). More formally,
solution s is feasible if the number of its unsatisfied precedence constraints (UPC) equals zero. In fact, UPC(sl) is the number
of times a predecessor of a particular task is assembled after that task has been assembled in solution sl, calculated in Eq. (1),
where the variable apm is defined as in Sec. 2:

1

,
2 1

() 0
i j

n i

l
i j

UPC s apmπ π

−

= =

= = .
(1)

In addition, to measure the feasibility of any solution sl generated and evaluated during the search, we define the Percentage
of Unsatisfied Precedence Constraints, PUPC(sl), as follows:

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 597

1

,
2 1

2
()0 () 1

total number of possible p
t n

airs

of
d

ta
e

s
o

k
s
s

otal number of u satisfied prece enc c n trai
(,2) (1)

nts i j

n i

i jl
l

apm
UPC sPUPC s
C n n n

π π

−

= =≤ = = = ≤
−


.

(2)

As part of the fitness of solution sl, we are also interested in minimizing m, the number of workstations in the assembly line,
as well as the Smoothness Index SI(sl) calculated in Eq. (3), as presented by (Baykasoglu, 2006; Hong & Cho, 1999), in which
ttk and ttmax are defined earlier. A small SI(sl) for solution sl implies that the processing times in all workstations are almost
equal, which contributes to a smooth and level distribution of the workload and enhances worker and equipment utilization.

()2
max

10 ()

m

k
k

l

tt tt
SI s c

m
=

−
≤ = <


.

(3)

expressed as ,can now be defined as a weighted aggregation of the above criteria lsof The total fitness function

(4) () ()() 1 () ()l l lf s PUPC s SI s mα β γ= + ⋅ ⋅ ⋅ + ⋅ .
The first term in Eq. (4) counts the total number of unsatisfied precedence constraints among all checked precedence
constraints for solution sl, and the second term calculates the total weighted sum of the smoothness indices and the number of
stations in the assembly line. In the SALBP1 we try to minimize the function f(s) so that feasible and smooth solutions with
least workstations are favored, and therefore to bias the search toward feasible solutions (as feasibility is the most important
feature of a solution), we set the values of the weighting factors in (4) to α = 3 (the coefficient of PUPC), β = 1 (the coefficient
of SI), and γ = 2 (the coefficient of m), thus prioritizing feasibility over smoothness, and smoothness over the number of
workstations.

3.4 Step 4: Calculation of FLA Measures

Two groups of statistical measures are calculated to describe the properties of the fitness landscape of the SALBP1 problem:
Distribution measures and Correlation measures, as defined below:
(1) Distribution measures study the topology of locally optimal solutions in the objective and search spaces. For landscape analysis,

several measures are calculated for both the U and O populations, together with their relative variations (∆). Our investigated
distribution measures are Dmm(P) (the average distance between each pair of solutions) and its variation ∆Dmm, ent(P) (entropy
in the search space) and its variation ∆ent, Amp(P) (amplitudes of solutions) and its variation ∆Amp, and Gap(P). It is noted that
we designed a new mathematical formula for calculating the entropy in the search space of the SALBP1, as presented in Sec.
3.4.1. Also, whenever required, we use the Hamming distance dH(s1, s2) to measure the distance between any two solutions,
defined as the number of bitwise differences in their encodings. For example, dH(s1, s2) = 7 for solutions s1 and s2 in Fig. 4.

 (2) Correlation measures are used to analyze the correlation between the relative distance of solutions and their quality, as well
as the correlation between the distance of solutions to the best-known solution and their quality gap. These measures include
Lmm (average length of the walks), ρ(dH) (autocorrelation function), and FDC (fitness–distance correlation). FDC analysis can
be visualized using the FDC scatterplot, presented in the Sec. 6.

Table 2 lists and defines the major distribution and correlation measures typically used for FLA, expressed for a general
population P of size | P |. When needed, P is replaced with populations U or O. More details about these measures can be
found in (Talbi, 2009).

3.4.1 A New Entropy Measure for SALBP1

Entropy, or lack of predictability, is a concept first used in the 19th century for describing the degree of disorder or randomness
in a thermodynamic system, which then was statistically formulated by Paul Shannon in 1948 as a measure of random losses
of information in telecommunication signals. The concept was later evolved as a measure of irregularity or diversity in a
population in Information Theory. Entropy has found wide applications in many scientific fields such as thermodynamics,
physics, information sciences, biology, cosmology, and economics. In the context of optimization problems, the concentration
or dispersion of solutions can be assessed through the concept of entropy. When the entropy is weak or close to zero, it
indicates a concentration of solutions, whereas high entropy implies a significant dispersion of solutions within the search
space. Although Shannon proposed the general formulation for the entropy of population X in terms of a discrete set of
probabilities pi as follows:

1
() () log ()

n

i i
i

H X p x p x
=

= −
(5)

598

Table 2
Distribution and Correlation measures and their average numeric values for FLA

 Formula Description
D

ist
ri

bu
tio

n
M

ea
su

re
s

() { }
1 1,

,

(,)
2

() 1
1 max (,)

P P

H i j
i j j i

H i j
i j

d s s
Dmm P

P P P d s s
= = ≠

∀

≤ = ≤
− ⋅

 

The normalized average Hamming distance between any two solutions
of the population set P. It is an indicator of the concentration of a
population P of solutions in the whole search space S.

() ()
()

1Dmm

Dmm U Dmm O
Dmm U

−
Δ = ≤

The relative difference between normalized average Hamming
distances of initial uniform random solutions (Dmm(U)) and the
normalized average Hamming distances of local optimum solutions
(Dmm(O)).

()
()

1 1 10 () 1
1

n n m

ijk ijk
i j k

q P q
ent P

n P
= = =

−
≤ = ≤

−



Entropy ∈ [0, 1]: The diversity of solutions in the search space, where
qijk is the number of all solutions in P that have task i in the j-th position
of the assembly sequence assembled in workstation k, or
mathematically, πj = i and wj = k. It is an indicator of the diversity of
solutions in a population.

() ()
()

1ent

ent U ent O
ent U

−
Δ = ≤

Entropy variation: The relative distance between the entropy of initial
uniform random solutions (ent(U)) and the entropy of local optimum
solutions (ent(O)).

()((
0 ()

()

))

s P

w bP f s f s
Amp P P

f s
∀ ∈

⋅ −
≤ = ≤



Amplitude: the relative difference between the objective values of the
worst (i.e., maximum) (sw) and the best (i.e., minimum) (sb) solutions
in the population set P.

() ()
()

1Amp
Amp U Amp O

Amp U
−

Δ = ≤
The relative differences between the amplitudes of initial (U) and locally
optimal (O) solutions. It indicates the distribution of optimum solutions
in the search space and reveals whether the search space is rugged or not.

()()
()

(*)

(*)
s O f s

Gap O
f s

f sO
∀ ∈ −

=
⋅



Gap: the relative difference between the objective value of local
optimum solutions and the global optimum solution s*.

C
or

re
la

tio
n

M
ea

su
re

s

1
()

P

i
il s

Lmm
P

==


Average length of walk: required number of steps needed for finding a
local optimum solution from a random solution si ∈ U.

() ()
,

(,)

2

() ()

1 () 1H i j

i j
i j P

d d s s

f

f s f f s f

d
P

ρ
σ

∀ ∈
=

− ⋅ −

− ≤ = ≤
⋅



Autocorrelation function: computes the correlation of all solution pairs
having a Hamming distance of dH in the search space, where f̅ is the
average fitness value of the whole population and σf

2 is its variance.

cov(,)

f d

F D
FDC

σ σ
=

Fitness-Distance Correlation: the correlation between the quality of local
optimum solutions and their distance from the global optimum solution.
The set F = {f1, f2, …, fn} contains the fitness values of solutions and the
set D = {dH1, dH2, …, dHn} contains the Hamming distances of the
solutions to the best-known solution.

There is no universally applicable formulation for entropy as it varies depending on the specific optimization problem being
addressed. To the best of our knowledge, there has been no entropy formulation customized for Assembly Line Balancing
problems in general, and the SALBP1 in particular. To fill this gap, in this paper, we are introducing an original formulation
for entropy as follows:

()
()

1 1 10 () 1
1

n n m

ijk ijk
i j k

q P q
ent P

n P
= = =

−
≤ = ≤

−



(6)

in which qijk is named the locality variable and counts the number of all solutions in population P that have task i in the j-th
position of the assembly sequence assembled in workstation k. Mathematically expressed, πj = i and wj = k.

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 599

For a problem instance with n tasks and m workstations, the total number of locality variables will be n2m, and in a population
P, the minimum and maximum values of any locality variable qijk is 0 and | P |, respectively. For example, for the 13-member
population of solutions shown in Fig. 2(a), some locality variables are as follows: q1,1,1 = 13, q2,2,1 = 8, q2,2,2 = 5, q3,3,1 = 3,
q7,6,6 = 1, q7,6,5 = 5, q6,7,4 = 3, q2,1,k (∀k) = 0, and q2,2,3 = 0.

In a population P of solutions for SALBP1, the maximum entropy ent(P) = 1 indicates the highest possible diversity of
solutions, which occurs in the following cases: (1) All solutions have distinct task sequences; or (2) If two or more solutions
have completely or partially equal task sequences, same tasks with equal positions among those solutions are allocated to
workstations in a different way in each solution. In either of these cases, for any task i, there will be only one unique
combination of j and k (among all n×m possible combinations) for which qijk = 1, and for the remaining n·m−1 combinations
of j and k, we have qijk = 0. Also, in a population P of solutions for SALBP1, the minimum entropy ent(P) = 0 indicates the
lowest possible diversity of solutions, which occurs when all solutions in the population are completely similar and therefore
only for one unique combination of i, j, and k, qijk = | P |, and for all remaining n2m−1 combinations of i, j, and k, qijk = 0.

4. Fitness Landscape Analysis Computational Results

For conducting the fitness landscape analysis for the SALBP1, the hill-climbing local search algorithm was applied to a
population U of 1000 solutions for each of the 83 instances introduced in Sec. 3.1, to obtain 83,000 local optimal solutions,
and then the statistical measures introduced in Sec. 3.4 were calculated for each instance. In addition, the average values of
all measures for each test problem set, as well as the total averages of all measures over all the problem sets were calculated.
The computational results are reported in Table 3. Here we expand on some noticeable facts:

1. While most ∆Dmm values are positive, there are few negative values, mostly in the Tonge dataset, which occur when the

average distance between all local optima pairs were greater than the average distance between all pairs of initial random
solutions. This implies that in those instances, local optimal solutions cover a larger part of the search space compared to
the initial random solutions.

2. While most ∆ent values are positive, there are few negative values, mostly in the Sawyer, Scholl–297, and Tonge datasets,
which imply that the average diversity of locally optimal solutions in the search space was greater than those of initial
random solutions.

3. While most FDC values are positive, there are few negative values, mostly in the Heskiaoff dataset, which show that the
landscape is ‘misleading’, meaning that solutions closer to the global optimum are not necessarily high quality or feasible,
leading the search away from the optimum. This fact will be further discussed in Sec. 6.

Table 3
Results of computing statistical measures for 83 SALBP1 instances from 11 benchmark problem sets.

Instance
№

Cycle
Time, c

Distribution measures

Correlation measures

Dmm(O) ∆Dmm ent(O) ∆ent Amp(O) ∆Amp Gap(O) Lmm ρ(2) ρ(4) ρ(6) FDC
Arcus–83 test problems

1 5048 0.307 0.2133 0.013 −0.0974 3.59 −0.909 0.641

43.50 0.5000 0.4686 0.4978 0.66
2 5853 0.365 0.0056 0.069 0.0023 2.16 −0.020 2.417 1.92 0.5000 0.5000 0.4461 0.79
3 6842 0.304 0.1575 0.065 0.0637 2.42 −0.404 1.281 26.02 0.4995 0.4050 0.4383 0.14
4 7571 0.308 0.1246 0.065 0.0580 2.61 −0.248 0.705 17.98 0.5000 0.5000 0.4957 0.50
5 8412 0.294 0.1193 0.064 0.0754 2.20 −0.012 0.551 22.84 0.5000 0.4927 0.5000 −0.04
6 8898 0.293 0.1236 0.069 −0.0784 4.58 −0.741 3.139 25.01 0.4998 0.5000 0.5000 0.67
7 10816 0.319 0.0044 0.069 −0.0027 1.56 −0.007 0.947 1.52 0.5000 0.4998 0.4912 0.12

Average 0.313 0.1069 0.059 0.0029 2.73 −0.334 1.383 19.83 0.4999 0.4808 0.4813 0.41
Arcus–111 test problems

8 5755 0.422 0.0293 0.039 −0.0109 1.97 −0.145 1.612

8.09 0.5000 0.4998 0.4912 0.87
9 8847 0.381 0.0899 0.038 0.0304 2.55 −0.405 1.957 22.53 0.5000 0.5000 0.4963 0.82
10 10027 0.349 0.1319 0.038 0.0432 2.58 −0.444 1.431 30.34 0.5000 0.5000 0.5000 0.72
11 10743 0.345 0.1183 0.038 0.0375 2.34 −0.262 1.072 27.47 0.5000 0.5000 0.5000 0.65
12 11378 0.285 0.2679 0.036 0.0961 3.97 −1.091 0.412 39.30 0.5000 0.5000 0.5000 0.73
13 17067 0.358 0.0126 0.039 0.0068 2.31 −0.178 10.427 8.64 0.5000 0.5000 0.5000 0.24

Average 0.357 0.1083 0.038 0.0339 2.62 −0.421 2.818 22.73 0.5000 0.5000 0.4979 0.67

600

Table 3
Results of computing statistical measures for 83 SALBP1 instances from 11 benchmark problem sets (Continued)

Instance
№

Cycle
Time, c

Distribution measures

Correlation measures

Dmm(O) ∆Dmm ent(O) ∆ent Amp(O) ∆Amp Gap(O) Lmm ρ(2) ρ(4) ρ(6) FDC

Heskiaoff test problems
14 138 0.368 0.0866 0.592 0.0406 1.60 −0.181 0.896 19.01 0.5000 0.5000 0.5000 0.61
15 205 0.337 0.0803 0.588 0.0340 1.62 −0.035 4.419 21.37 0.5000 0.4998 0.4672 −0.04
16 216 0.355 −0.0160 0.606 −0.0108 1.96 −0.171 2.302 9.27 0.5000 0.4983 0.4443 0.42
17 256 0.343 0.0054 0.605 0.0058 1.50 −0.051 9.092 4.58 0.4800 0.5000 0.4800 −0.20
18 324 0.334 0.0048 0.603 0.0066 1.44 −0.056 2.205 6.08 0.5000 0.5000 0.5000 0.44
19 342 0.315 0.0219 0.602 0.0116 1.89 −0.362 13.491 11.59 0.5000 0.4997 0.4996 −0.04

Average 0.342 0.0304 0.599 0.0146 1.67 −0.143 5.401 11.98 0.4967 0.4996 0.4819 0.20
Jackson test problems

20 7 0.139 0.5734 0.189 0.4584 0.87 −0.109 0.017

10.31 0.5000 0.4984 0.4996 0.72
21 9 0.327 0.0001 0.353 0.0002 0.82 0.000 0.301 0.01 0.4995 0.4995 0.4958 0.84
22 10 0.214 0.3386 0.256 0.2937 1.20 −0.274 0.215 14.77 0.4763 0.4892 0.5000 0.90
23 13 0.192 0.3459 0.246 0.3049 1.42 −0.114 0.078 14.43 0.5000 0.4984 0.4976 0.63
24 14 0.281 0.0000 0.348 0.0000 1.07 0.000 0.428 0.02 0.5000 0.4540 0.4996 0.71
25 21 0.293 0.0005 0.355 0.0006 1.09 −0.001 0.723 0.04 0.5000 0.4067 0.4637 0.18

Average 0.241 0.2097 0.291 0.1763 1.08 −0.083 0.294 6.60 0.4960 0.4744 0.4927 0.66
Jaeschke test problems

26 6 0.246 0.0123 0.931 0.0093 0.66 −0.003 0.199

0.01 0.5000 0.4984 0.4996 0.85
27 7 0.296 0.0000 0.955 0.0000 0.77 0.000 0.241 0.00 0.5000 0.4995 0.4958 0.93
28 8 0.271 0.0110 0.885 0.0092 0.83 −0.002 0.257 0.01 0.4443 0.4984 0.4976 0.90
29 10 0.240 0.0137 0.914 0.0106 1.10 −0.004 0.409 0.34 0.5000 0.4984 0.4976 0.88
30 18 0.288 0.0000 0.917 0.0000 1.04 0.000 0.178 0.00 0.5000 0.4067 0.4958 0.73

Average 0.268 0.0074 0.920 0.0058 0.88 −0.002 0.257 0.07 0.4889 0.4803 0.4973 0.86
Kilbridge & Wester test problems

31 57 0.372 0.0042 0.047 0.0013 1.32 −0.035 1.047

2.69 0.5000 0.5000 0.4801 0.77
32 79 0.325 −0.0870 0.043 −0.0981 1.98 −0.303 0.333 26.84 0.5000 0.5000 0.5000 0.67
33 92 0.286 0.0426 0.217 0.0105 2.33 −0.185 1.952 24.76 0.4984 0.5000 0.5000 0.54
34 110 0.281 −0.0530 0.415 −0.0449 1.68 −0.001 0.419 18.60 0.5000 0.5000 0.4984 0.36
35 138 0.300 −0.0890 0.436 −0.0843 1.82 −0.165 6.293 27.10 0.5000 0.5000 0.5000 0.28
36 184 0.273 0.0000 0.403 0.0001 1.91 −0.002 13.700 0.04 0.5000 0.5000 0.5000 0.44

Average 0.306 −0.0300 0.260 −0.0359 1.84 −0.115 3.957 16.67 0.4997 0.5000 0.4964 0.51
Mitchell test problems

37 14 0.243 0.8890 0.152 0.0357 2.11 −0.163 0.306

10.47 0.5000 0.5000 −0.1667 0.70
38 15 0.266 0.0015 0.162 0.0009 1.76 −0.001 0.411 0.09 0.5000 0.5000 0.5000 0.79
39 21 0.209 0.0503 0.142 0.0397 2.44 −0.240 0.624 8.65 0.5000 0.5000 −0.2637 0.85

Average 0.240 0.3136 0.152 0.0254 2.10 −0.135 0.447 6.40 0.5000 0.5000 0.0232 0.78

Mertens test problems
40 6 0.204 −0.0002 0.133 −0.0003 1.62 0.0000 0.181

0.02 0.5000 0.5000 0.5000 0.79
41 7 0.229 0.0000 0.125 0.0000 1.91 0.0000 0.195 0.00 0.5000 0.5000 0.5000 0.71
42 8 0.221 0.0004 0.128 0.0005 2.12 −0.0004 0.268 0.00 −0.0714 0.3606 0.5000 0.80
43 10 0.194 0.0004 0.116 0.0004 2.57 −0.0004 0.687 0.03 0.5000 0.5000 −0.2767 0.71
44 15 0.219 0.0000 0.128 0.0000 4.21 0.0000 0.433 0.00 0.5000 −0.0714 −0.2996 0.28
45 18 0.243 0.0000 0.119 0.0000 2.05 0.0000 0.232 0.00 0.5000 −0.0714 −0.1667 0.54

Average 0.218 0.0001 0.125 0.0001 2.41 −0.0001 0.333 0.01 0.4048 0.2863 0.1262 0.64

Sawyer test problems
46 25 0.337 −0.0170 0.947 −0.0255 1.63 −0.015 0.311

2.22 0.5000 0.4998 0.5000 0.76
47 27 0.328 0.0033 0.918 −0.0071 1.56 −0.003 0.407 0.25 0.4999 0.5000 0.5000 0.82
48 30 0.304 0.0672 0.979 −0.0254 0.51 −0.112 0.074 19.67 0.5000 0.4997 0.4912 0.54
49 36 0.281 0.0898 0.953 −0.0287 1.77 −0.204 0.190 32.33 0.5000 0.5000 0.4846 0.77
50 41 0.310 −0.0620 0.990 −0.1015 1.77 −0.187 0.608 23.54 0.5000 0.5000 0.4998 0.88
51 54 0.280 −0.0190 0.925 −0.0246 1.72 −0.040 0.864 6.05 0.4224 0.5000 0.5000 0.76
52 75 0.259 0.0112 0.879 0.0050 2.05 −0.054 0.967 5.15 0.5000 0.5000 0.5000 0.50

Average 0.300 0.0105 0.941 −0.0297 1.57 −0.088 0.489 12.75 0.4889 0.4999 0.4965 0.72

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 601

Table 3
Results of computing statistical measures for 83 SALBP1 instances from 11 benchmark problem sets (Continued)

Instance
№

Cycle
Time, c

Distribution measures

Correlation measures

Dmm(O) ∆Dmm ent(O) ∆ent Amp(O) ∆Amp Gap(O) Lmm ρ(2) ρ(4) ρ(6) FDC

Scholl–297 test problems
53 1394 0.388 −0.0510 0.005 −0.0559 2.59 −0.024 1.370

7.90 0.5000 0.5000 0.5000 0.56
54 1422 0.358 −0.0320 0.005 −0.0628 1.02 −0.011 0.469 6.72 0.5000 0.5000 0.5000 0.91
55 1452 0.304 0.0672 0.979 −0.0254 0.51 −0.112 0.074 19.67 0.5000 0.4997 0.4912 0.54
56 1483 0.281 0.0898 0.953 −0.0287 1.77 −0.204 0.190 32.33 0.5000 0.5000 0.4846 0.77
57 1515 0.434 −0.0030 0.001 −0.0027 1.86 −0.007 2.069 1.40 0.5000 0.4995 0.4886 0.67
58 1548 0.447 −0.0020 0.000 −0.0060 1.34 −0.013 1.865 6.70 0.4123 0.4995 0.5000 0.74
59 1584 0.404 0.0700 0.001 0.0143 2.28 −0.229 1.444 13.63 0.5000 0.5000 0.5000 0.47
60 1620 0.409 0.0249 0.001 0.0007 2.12 −0.148 1.548 4.84 0.5000 0.4532 0.5000 0.60
61 1659 0.421 0.0031 0.001 −0.0005 1.90 −0.029 1.985 1.12 0.4999 0.5000 0.4999 0.66
62 1699 0.402 0.0356 0.001 0.0047 2.13 −0.078 1.477 7.00 0.5000 0.5000 0.5000 0.58
63 1742 0.402 0.0433 0.001 0.0061 2.39 −0.206 1.307 8.53 0.5000 0.5000 0.4875 0.58
64 1787 0.381 0.1082 0.001 0.0220 1.18 −0.033 0.717 12.38 0.5000 0.5000 0.5000 0.51
65 1834 0.381 0.1089 0.001 0.0333 0.10 −0.087 0.352 13.92 0.5000 0.5000 0.5000 0.65
66 1883 0.400 0.0359 0.001 0.0219 0.13 −0.085 0.435 13.12 0.5000 0.5000 0.5000 0.57
67 1935 0.389 0.0622 0.001 0.0129 0.13 −0.085 1.443 18.10 0.5000 0.5000 0.5000 0.53
68 1991 0.397 0.0342 0.001 0.0205 2.11 −0.078 1.420 14.02 0.5000 0.3719 0.5000 0.54
69 2049 0.382 0.0858 0.001 0.0254 1.33 −0.227 1.032 14.02 0.5000 0.5000 0.4998 −0.15
70 2111 0.382 0.0289 0.001 0.0135 1.30 0.044 0.868 17.69 0.5000 0.5000 0.5000 0.59
71 2177 0.372 0.1004 0.001 0.0276 1.34 −0.035 1.671 14.28 0.5000 0.5000 0.5000 0.19
72 2247 0.374 0.0840 0.001 0.0300 1.35 0.409 1.590 15.38 0.5000 0.5000 0.5000 0.18
73 2322 0.369 0.0973 0.001 0.0284 1.14 −0.426 0.779 18.88 0.5000 0.5000 0.5000 0.15
74 2402 0.377 0.0402 0.001 0.0267 1.60 0.289 0.413 16.30 0.5000 0.5000 0.5000 0.44
75 2488 0.389 0.0097 0.001 0.0233 1.39 0.424 0.378 18.83 0.5000 0.4999 0.5000 0.51
76 2580 0.364 0.0705 0.001 0.0255 1.44 0.411 0.503 14.34 0.5000 0.5000 0.5000 0.29
77 2680 0.395 0.0002 0.001 0.0281 1.22 0.403 0.474 17.90 0.5000 0.4996 0.5000 0.35
78 2787 0.393 0.0053 0.001 0.0294 1.31 −0.421 1.475 20.30 0.5000 0.5000 0.5000 0.24

Average 0.393 0.0373 0.001 0.0090 1.52 −0.014 0.902 11.72 0.4966 0.4932 0.4991 0.48

Tonge test problems
79 176 0.369 −0.057 0.188 −0.0829 2.24 −0.033 0.538

14.65 0.5000 0.5000 0.5000 0.59
80 364 0.320 −0.013 0.180 −0.0250 3.59 −0.014 1.602 6.01 0.5000 0.5000 0.5000 0.67
81 410 0.301 −0.004 0.181 −0.0325 4.29 −0.331 1.516 24.91 0.5000 0.5000 0.5000 0.75
82 468 0.291 −0.001 0.177 −0.0066 3.65 −0.076 1.934 6.81 0.5000 0.5000 0.5000 0.50
83 527 0.304 −0.130 0.185 −0.0708 6.47 −0.804 1.273 42.72 0.5000 0.5000 0.5000 0.50

Average 0.317 −0.041 0.182 −0.0436 4.05 −0.252 1.373 19.02 0.5000 0.5000 0.5000 0.60

Total Average 0.299 0.068 0.275 0.014 2.043 −0.144 1.605 11.616 0.4880 0.4740 0.4170 0.594

5. Analysis of Distribution Measures

The entropy variation (∆ent) and the average normalized pairwise distance variation (∆Dmm) in the search space play key roles
in evaluating the distribution of the obtained local optimal solutions in the landscape. There are three combinations of the
values of these two measures (Talbi, 2009):

Case 1: A search space with high ∆ent and high ∆Dmm is called One-Massif or Massif Central, meaning that most local optimal
solutions are concentrated in a dense and small region, as shown in Fig. 8(a), first row. Therefore, using a single-solution
metaheuristic to search the space is more suitable than using a population-based metaheuristic because the latter would
waste more time searching for relatively sparse areas of the space.

Case 2: A search space with high ∆ent and low ∆Dmm is called Multi-massif, meaning that local optima are localized in
several attraction areas, as shown in Fig. 8(a), second row. Therefore, population-based metaheuristics are better
choices than single-solution-based metaheuristics because the latter cannot sufficiently explore various solution clusters
scattered across the search space.

Case 3: A search space with low ∆ent and low ∆Dmm is called Uniform, meaning that local optima are scattered rather evenly
in the search space, as shown in Fig. 8(a), third row. Therefore, starting from a random initial solution, the local search
converges rapidly to a nearby local optimum.

602

 (a) (b)
Fig. 8. (a) Distribution of local optima in the landscape affected by ∆ent and ∆Dmm; (b) Four types of search space (Talbi, 2009).

Based on the computational results in Table 3, we plotted the scatterplot of average ∆ent vs. average ∆Dmm for all 11 benchmark
problem sets in Fig. 9, in which in addition to the benchmark sets, in which the total average with ∆̅Dmm = 0.068 and ∆̅ent = 0.014
is shown as a larger red blob. Since both ∆̅Dmm and ∆̅ent are small, ‘Case 3’ above is established, suggesting that overall, the local
optima in SALBP1 are generally uniformly scattered over the search space.

Further analyses specific to certain problem sets or instances therein are provided below:

i. The relatively higher average value of ∆Dmm for the Mitchel test problem (0.3136), especially for c = 14 (instance no. 37 in
Table 3, with ∆Dmm = 0.8890) indicates that its local optima are located far from each other over the search space. On the
other hand, since the average value of ∆ent for this test problem is almost close to the ∆̅ent = 0.014, it can be concluded that
the local optimal solutions of this problem are uniformly distributed in its search space. But their distance of solutions in this
space is on average greater than the distance of local optimal solutions of other sample problems.

ii. The relatively high average values of ∆Dmm and ∆ent for the Jackson test problem (0.2097 and 0.1763, respectively) indicate
that, unlike the other 10 test problems, ‘Case 1’ above is true for this problem, meaning that the distribution of the local
optima over the search space of this problem is One-massif.

Fig. 9. Average values of ∆ent and ∆Dmm for the studied 11 SALBP1 benchmark problem sets (blue dots), with their total
average shown as a large red blob (shadowed).

iii. The ∆Amp measure is another important criterion that describes the objective space. The total average value of ∆̅Amp =
−0.144 for all problem sets implies that the landscape is almost plain or rugged plain (as shown in Fig. 8(b)), and there is
no clear difference between the qualities of the local optimal solutions in different areas of the search space.

iv. As shown in Fig. 10, the Arcus-83, Arcus-111, and Tonge problem sets have unusually larger ∆Amp values (−0.334, −0.421,
and −0.252, respectively) compared to the other benchmark sets, suggesting that their landscapes are somewhat like a valley,
and the qualities of obtained local optimal solutions were clearly better than the qualities of their starting random solutions.

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

∆ e
nt

∆Dmm

Arcus–83
Arcus–111
Heskiaoff
Jackson
Jaeschke
Kilbridge & Wester
Merten
Mitchell
Sawyer
Scholl–297
Tonge
Total Average

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 603

.) solutionsO) and locally optimal (Upopulations of initial () between the AmpAverage amplitude variations (∆Fig. 10.

v. While most ∆amp values are negative in Table 3, there are few positive values in the Scholl–297 dataset, indicating that the
solution quality gap, i.e., f(sbest) – f(sworst), and the diversity of the initial population were larger than those of the optimal
population. This means that the local search was able to effectively converge the starting solutions toward relatively
comparable local optimal solutions.

vi. Across all benchmark problems, the relatively large total average gap between the global (or best-known) solutions and
the obtained local optimal solutions (Ga̅p̅(O) = 1.605 = 160.5%), as shown by the red blob in Fig. 11, indicates that global
optimum solutions in the SALBP1 problem are hard to find, and basic local search methods are unlikely to discover even
near-optimal solutions efficiently. In particular, the Arcus-111, Kilbridge & Wester, and Heskiaoff problem sets have
unusually large gaps (281.8%, 395.7%, and 540.1%, respectively), and hence, are more difficult to be solved to optimality
compared to other benchmark sets.

Fig. 11. Average gaps (Gap(O)) between the obtained local optimal solutions and global or best-known solutions of the solved
11 SALBP1 benchmark problem sets (blue asterisks), together with the total average gap over all the problems (the red asterisk).

vii. The two datasets Mertens and Jaeschke, which have the smallest number of tasks (7 and 9, respectively), stand out among
other problem sets due to their near-zero average ∆Dmm, ∆ent, and ∆ent. The average gaps (Ga̅p̅(O)) of these two datasets are
also the smallest among all problem sets. The mentioned measures are so low because their populations of initial and optimal
solutions (U and O) are not substantially different; meaning that the initial solutions generated by the shallow and deep task
assignment procedures were already good enough to be close to local optimal solutions. This may bring up the question
that how it is possible to produce such high-quality initial solutions even before improving them through a local search.
This is because of the small number of tasks in those datasets that lead to smaller solution spaces compared to the huge
search spaces of other datasets. In addition, the deep task assignment procedure guarantees the generation of feasible
solutions with their PUPC = 0 in the fitness function (4), which are naturally of good quality (i.e., have small fitness values).
As a result, we do not recommend these two datasets be included in future studies of SALBP1 due to their simplicity and
lack of challenge in solving.

6. Analysis of Correlation Measures

The average length of the walk measure (Lmm) provides an estimate of the landscape’s ruggedness and the correlation between
the distances of solutions to the best-known or global optimum solution and their quality gap. A small value of Lmm implies
that a short walk (or number of steps) is required to reach a nearby local optimum from a random solution; hence, the landscape

-0.45
-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

Arcus-83 Arcus-111 Heskiaoff Jackson Jaeschke Kilbridge &
Wester

Merten Mitchell Sawyer Scholl-297 Tonge

0%
50%

100%
150%
200%
250%
300%
350%
400%
450%
500%
550%
600%

Arcus-83 Arcus-111 Heskiaoff Jackson Jaeschke Kilbridge
& Wester

Merten Mitchell Sawyer Scholl-297 Tonge Total
Average

604

is rugged. The value of Lmm depends on the test problem and its cycle time. For example, analyzing the computational results
in the Table 2 reveals that the landscape of the Mertens test problem (with Lmm = 0.01) seems to be more rugged than other
problems, and hence converges faster to a local optimum solution.

In addition, we calculated the autocorrelation measure for three Hamming distances of dH = {2, 4, 6}, which yielded almost
equal average values for ρ(2), ρ(4), and ρ(6), as shown in the last row and the rightmost columns of Table 3. This implies that
variations in the objective values of any pair of solutions are not sensitive to their distance from each other; hence, the
landscape is rugged. Of course, it should be noted that the Mitchel test problem is an exception to this rule, and due to the
clear difference between the values of ρ(2), ρ(4), and ρ(6), the search space for this problem is flat.

Finally, we calculated the total average FDC value of all benchmark problems (= 0.594). This value is not sufficiently large
to conclude that the problem is of the ‘misleading’ type, implying that the move operator will not guide the search near the
global optimum. Among the studied problems, the Heskiaoff problem set had the smallest average FDC value (=0.20),
implying that finding its global optimal solution is more difficult than for other problems. To analyze the Heskiaoff problem
in more depth, we plotted the FDC diagrams of 1000 local optimal solutions for six different cycle times: c = 138, 205, 216,
256, 324, and 342. Fig. 12 presents the obtained FDC plots, in which the hollow (blue) circles indicate infeasible solutions
and solid (red) dots show feasible solutions. As stated earlier, the maximum Hamming distance between any two solution
encodings of an n-task assembly line is 2n, and so for the Heskiaoff test problem with 28 assembly tasks, the maximum value
on the x-axis in FDC plots will be 56. For this test problem, the FDC value is very small (even negative for scenarios with
cycle times of 205, 256, and 342), which shows that there is no correlation between the distance of the solutions to the best-
known solution and their fitness. Therefore, achieving a global optimal solution for this test problem is difficult and requires
an effective search algorithm.

Analyzing the FDC plots in Fig. 12 shows that:

− Almost all the distances of the local optimum solutions to the best-known solution are within the interval [18, 55],

indicating that the FDC is weak; therefore, the problem is difficult to solve. Moreover, in general, feasible solutions have
shorter Hamming distances to the best-known solution than to infeasible solutions.

− Feasible (red) and infeasible (blue) solutions overlap at much fitness–distance points. This indicates that discriminating
infeasible solutions from feasible solutions is difficult or impossible. It was noticed that in some cases (especially in Fig.
12(c) and (f)), feasible solutions had two concentration areas, implying that those with the same distance to the best-
known solution had different fitness values, adding more to the complexity.

(a) (b)

(c) (d)

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 605

(e) (f)

Fig. 12. FDC plots for 1000 local optimal solutions of the Heskiaoff test problem classified according to different cycle times:
(a) c = 137, (b) c = 205, (c) c = 216, (d) c = 256, (e) c = 324, and (f) c = 342. Blue circles indicate infeasible, and red dots
show feasible solutions.

As a conclusion to the FLA, it can be stated that the fitness landscape of the SALBP1 is a rugged plain (as shown in Fig. 8(b))
with uniformly distributed local optima and no apparent correlation between the quality and distance of solutions to the global
optimum. Therefore, a single solution-based metaheuristic algorithm is more suitable for solving this problem.

7. Conclusion

Unlike its name, the Simple Assembly Line Balancing Problem Type 1 is not a simple problem. An optimal solution must
satisfy the precedence relations among all tasks and assign as many tasks as possible in as few assembly workstations as
possible, such that the total task time of each workstation does not exceed the given cycle time and the workloads of the
stations are as even (balanced) as possible. The problem is proven to be NP-hard, and thus, finding globally optimal solutions
for large instances is practically prohibitive.

Despite the considerable amount of work on solving SALBP1, there is no methodical study of the structure and landscape of
the problem; hence, choices of using (meta)heuristic solution methods have mostly been arbitrary and lacking strong
justification. In this paper, for the first time, we present a comprehensive and in-depth Fitness Landscape Analysis to
understand the structure and topology of the solution space of SALBP1. The analysis was carried out using seven distribution
and three correlation measures for 83 instances taken from 11 benchmark problem sets known in the literature, and revealed
that the problem’s landscape is more like a rugged plain with local optimums scattered all over the search space uniformly,
suggesting that a single-solution-based metaheuristic method would be more successful in searching the space and finding an
optimal or near-optimal solution than a population-based metaheuristic.

It is noted that since various benchmark problem sets with different number of tasks, precedence relations, and cycle times
were used, the outcome of the presented FLA adequately covers the SALBP1 in its totality, and therefore can be safely used
to describe the fitness landscape of the problem. Also, the new formula developed for measuring the entropy of solutions in
the search space of the SALBP1 is another novelty of the present paper.

FLA has seldom been performed for assembly line balancing problems; thus, as a future research direction, we propose
conducting such analyses for other types and sizes of SALB problems such as SALBP2, SALBP−E, SALBP−F, as well as for
GALB problems including 2S–ALB, MALB, and UALB.

References

Abdeljaouad, M. A., & Klement, N. (2021). Tabu search algorithm for single and multi-model line Balancing problems. In
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems:
IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part I (pp. 409-
415). Springer International Publishing.

Álvarez-Miranda, E., Pereira, J., Torrez-Meruvia, H., & Vilà, M. (2021). A Hybrid Genetic Algorithm for the Simple
Assembly Line Balancing Problem with a Fixed Number of Workstations. Mathematics, 9(17), 2157.

Álvarez-Miranda, E., Pereira, J., Vargas, C., & Vilà, M. (2022). Variable-depth local search heuristic for assembly line
balancing problems. International Journal of Production Research, 61(9), 3103-3121.

Fi
tn

es
s

Fi
tn

es
s

606

Baskar, A., & Xavior, M. A. (2020). Heuristics based on slope indices for simple type I assembly line balancing problems
and analyzing for a few performance measures. Materials Today: Proceedings, 22, 3171-3180.

Bautista, J., & Pereira, J. (2002, August). Ant algorithms for assembly line balancing. In International Workshop on Ant
Algorithms (pp. 65-75). Berlin, Heidelberg: Springer Berlin Heidelberg.

Bautista, J., & Pereira, J. (2007). Ant algorithms for a time and space constrained assembly line balancing problem. European
Journal of Operational Research, 177(3), 2016-2032.

Baykasoglu, A. (2006). Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line
balancing problems. Journal of Intelligent Manufacturing, 17(2), 217-232.

Boysen, N., Schulze, P., & Scholl, A. (2022). Assembly line balancing: What happened in the last fifteen years?. European
Journal of Operational Research, 301(3), 797-814.

Capacho Betancourt, L. (2007). ASALBP: the alternative subgraphs assembly line balancing problem. Formalization and
resolution procedures [PHD thesis, Technical University of Catalonia].

Chutima, P. (2022). A comprehensive review of robotic assembly line balancing problem. Journal of Intelligent
Manufacturing, 33(1), 1-34.

Dolgui, A., & Gafarov, E. (2019). Can a Branch and Bound algorithm solve all instances of SALBP-1 efficiently? IFAC-
PapersOnLine, 52(13), 2788-2791.

Dou, J., Li, J., & Zhao, X. (2017). A novel discrete particle swarm algorithm for assembly line balancing problems. Assembly
Automation, 37(4), 452-463.

Fathi, M., Fontes, D. B. M. M., Urenda Moris, M., & Ghobakhloo, M. (2018). Assembly line balancing problem: A
comparative evaluation of heuristics and a computational assessment of objectives. Journal of Modelling in Management,
13(2), 455-474.

Ghandi, S., & Masehian, E. (2015). A breakout local search (BLS) method for solving the assembly sequence planning
problem. Engineering applications of artificial intelligence, 39, 245-266.

Ghandi, S., & Masehian, E. (2015). Review and taxonomies of assembly and disassembly path planning problems and
approaches. Computer-Aided Design, 67, 58-86.

Gonçalves, J. F., & De Almeida, J. R. (2002). A hybrid genetic algorithm for assembly line balancing. Journal of heuristics,
8, 629-642.

Hackman, S. T., Magazine, M. J., & Wee, T. (1989). Fast, effective algorithms for simple assembly line balancing problems.
Operations research, 37(6), 916-924.

Helgeson, W., & Birnie, D. P. (1961). Assembly line balancing using the ranked positional weight technique. Journal of
industrial engineering, 12(6), 394-398.

Hong, D. S., & Cho, H. S. (1999, October). Generation of robotic assembly sequences using a simulated annealing. In
Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment
Friendly Robots with High Intelligence and Emotional Quotients (Cat. No. 99CH36289) (Vol. 2, pp. 1247-1252). IEEE.

Hu, Y., Liu, C., Zhang, M., Jia, Y., & Xu, Y. (2023). A novel simulated annealing-based hyper-heuristic algorithm for
stochastic parallel disassembly line balancing in smart remanufacturing. Sensors, 23(3), 1652.

Kilincci, O. (2011). Firing sequences backward algorithm for simple assembly line balancing problem of type 1. Computers
& Industrial Engineering, 60(4), 830-839.

Li, Z., Janardhanan, M. N., Nielsen, P., & Tang, Q. (2018). Mathematical models and simulated annealing algorithms for the
robotic assembly line balancing problem. Assembly Automation, 38(4), 420-436.

Meng, K., Tang, Q., Zhang, Z., & Yu, C. (2021). Solving multi-objective model of assembly line balancing considering
preventive maintenance scenarios using heuristic and grey wolf optimizer algorithm. Engineering applications of artificial
intelligence, 100, 104183.

Mohammed, F. D., Zakaria, M. Z., Ramli, M. F., Jusoh, M., Azizan, M., & Fadzli, N. (2021, May). Metaheuristic optimization
in solving assembly line balancing problems: A short review. In AIP Conference Proceedings (Vol. 2339, No. 1). AIP
Publishing.

Nagy, L., Ruppert, T., & Abonyi, J. (2020). Analytic hierarchy process and multilayer network-based method for assembly
line balancing. Applied Sciences, 10(11), 3932.

Nourmohammadi, A., Fathi, M., & Ng, A. H. (2019). Choosing efficient meta-heuristics to solve the assembly line balancing
problem: A landscape analysis approach. Procedia CIRP, 81, 1248-1253.

Özbakır, L., & Seçme, G. (2022). A hyper-heuristic approach for stochastic parallel assembly line balancing problems with
equipment costs. Operational Research, 1-38.

Pape, T. (2015). Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational
tests and improvements. European Journal of Operational Research, 240(1), 32-42.

Pastor, R., & Ferrer, L. (2009). An improved mathematical program to solve the simple assembly line balancing problem.
International Journal of Production Research, 47(11), 2943-2959.

Ponnambalam, S., Aravindan, P., & Naidu, G. M. (2000). A multi-objective genetic algorithm for solving assembly line
balancing problem. The International Journal of Advanced Manufacturing Technology, 16(5), 341-352.

Rashid, M. F. F., Hutabarat, W., & Tiwari, A. (2012). A review on assembly sequence planning and assembly line balancing
optimisation using soft computing approaches. The International Journal of Advanced Manufacturing Technology, 59(1-
4), 335-349.

S. Ghandi and E. Masehian / International Journal of Industrial Engineering Computations 14 (2023) 607

Ravelo, S. V. (2022). Approximation algorithms for simple assembly line balancing problems. Journal of Combinatorial
Optimization, 43(2), 432-443.

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing.
European Journal of Operational Research, 168(3), 666-693.

Scholl, A., & Voß, S. (1997). Simple assembly line balancing—Heuristic approaches. Journal of Heuristics, 2, 217-244.
Seçme, G., & Özbakır, L. (2019). An assembly line balancing application on oven production line with hyper-heuristics.

International Journal of Operations Research and Information Systems (IJORIS), 10(3), 44-58.
Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74). John Wiley & Sons.
Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation of heuristic line balancing techniques.

Management science, 32(4), 430-454.
Vilà, M., & Pereira, J. (2013). An enumeration procedure for the assembly line balancing problem based on branching by

non-decreasing idle time. European Journal of Operational Research, 229(1), 106-113.
Wei, N.-C., & Chao, I.-M. (2011). A solution procedure for type E simple assembly line balancing problem. Computers &

Industrial Engineering, 61(3), 824-830.
Yadav, A., Kulhary, R., Nishad, R., & Agrawal, S. (2020). Parallel two-sided assembly line balancing with tools and tasks

sharing. Assembly Automation, 40(6), 833-846.
Zhang, H. Y. (2019). An immune genetic algorithm for simple assembly line balancing problem of type 1. Assembly

Automation, 39(1), 113-123.
Zhong, Y.-g., & Ai, B. (2017). A modified ant colony optimization algorithm for multi-objective assembly line balancing.

Soft Computing, 21(22), 6881-6894.

608

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

