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 The challenge presented by simultaneous buffer and service rate allocation in manufacturing 
systems represents a difficult non-deterministic polynomial problem. Previous studies solved this 
problem by iteratively utilizing a generative method and an evaluative method. However, it 
typically takes a long computation time for the evaluative method to achieve high evaluation 
accuracy, while the satisfactory solution quality realized by the generative method requires a 
certain number of iterations. In this study, a data-driven hybrid approach is developed by 
integrating a tabu search–non-dominated sorting genetic algorithm II with a whale optimization 
algorithm–gradient boosting regression tree to maximize the throughput and minimize the average 
buffer level of a manufacturing system subject to a total buffer capacity and total service rate. The 
former algorithm effectively searches for candidate simultaneous allocation solutions by 
integrating global and local search strategies. The prediction models built by the latter algorithm 
efficiently evaluate the candidate solutions. Numerical examples demonstrate the efficacy of the 
proposed approach. The proposed approach improves the solution efficiency of simultaneous 
allocation, contributing to dynamic production resource reconfiguration of manufacturing systems. 
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1. Introduction 

 
Uncertain factors inherent in manufacturing systems, such as varying service rates and blocking, may cause a loss in their 
system performance. One option to decrease this loss is to allocate additional buffers and utilize machines with high service 
rates (Jiao et al., 2018; Zeid et al., 2021). However, too many buffers will increase system redundancy, leading to longer 
sojourn time and higher cost, whereas an extremely high service rate will increase machine idle time (Smith, 2018). Therefore, 
it is necessary to carefully configure the buffers and service rates of machines applied in manufacturing systems. Numerous 
studies have separately investigated the buffer allocation problem (Gao et al., 2020; Shi & Gershwin, 2016; Weiss et al., 2019) 
or service rate allocation problem (Shaaban & McNamara, 2009; D. Song et al., 1998) in manufacturing systems. Numerical 
results have shown that a minor improvement in the optimization of buffer or service rate allocation may contribute 
significantly to cost savings, increased profits, and improved working efficiency (Ng et al., 2017). However, these studies did 
not explore superior system performance compared to separate optimization owing to the positive relationship between buffers 
and service rates (Nahas et al., 2014; Su et al., 2017). The simultaneous allocation problem is more difficult than the sole 
allocation problem, particularly in the case of multi-objective optimization (Xi et al., 2021). To date, limited research has been 
conducted on the simultaneous buffer and service rate allocation problem (SBSRAP) for multi-objective optimization. (Cruz, 
2009) maximized system throughput while simultaneously reducing the total buffer size and total service rate using a genetic 
algorithm.  (Ng et al., 2017) proposed a hybrid algorithm to maximize the system throughput and minimize the average waiting 
time. (Smith, 2018) optimized the SBSRAP to achieve threshold throughput using a hybrid approach employing sequential 
quadratic programming and the generalized expansion method. Although previous studies have proposed algorithms to 
achieve sufficient solution quality, the computation time required to do so has not been further discussed; as a result, the trade-
off between solution quality and computation efficiency has not been addressed. Furthermore, previous scholars (Gao et al., 
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2019, 2021; Oljira et al., 2020; Z. Song & Moon, 2019) typically utilized simulation and analytical methods as evaluative 
methods to calculate system performance and determine better candidate solutions for SBSRAP. However, simulation 
methods require long setting and simulation times, whereas analytical methods still require considerable time when executing 
a large number of iterations to search with acceptable accuracy (Shi & Gershwin, 2016; Weiss et al., 2019). Data-driven 
methods were an option to improve evaluation efficiency (Gao & Liu, 2023; Tsadiras et al., 2013). However, according to our 
best knowledge, there have been no previous studies related to performance prediction of manufacturing systems considering 
simultaneous buffer and service rate allocation (SBSRA). 
 

This article therefore proposes a data-driven hybrid approach in which the tabu search–non-dominated sorting genetic 
algorithm II (TS–NSGA-II) is integrated with the whale optimization algorithm–gradient boosting regression tree (WOA–
GBRT) to maximize the throughput and minimize the average buffer level (ABL) of a manufacturing system subject to a total 
buffer capacity and total service rate. The TS–NSGA-II is applied to obtain SBSRA solutions of sufficient quality. 
Furthermore, performance prediction models are developed based on the WOA–GBRT to decrease the evaluation time of the 
throughput and ABL. 
 

The contributions of this study are as follows: 
 

• Performance prediction models constructed by the WOA–GBRT efficiently predict the throughput and ABL, 
providing a new possibility in the field of rapid performance evaluation of manufacturing systems.  

• The proposed TS–NSGA-II balances global and local search abilities, improving the solution quality for the SBSARP 
in manufacturing systems. 

 

The remainder of this article is structured as follows. Section 2 presents the problem statement. The solution methodology is 
addressed in Section 3. Numerical examples are then provided to demonstrate the effectiveness of the proposed hybrid 
approach in Section 4. Finally, conclusions and future research directions are summarized in Section 5. 
 
2. Problem statement 
 

2.1 Assumptions 

The assumptions underlying the manufacturing systems considered in this study are as follows: 

 
Fig. 1. Model of a manufacturing system. 

There are 𝐼 machines and 𝐼 − 1 buffers in a manufacturing system, as shown in Fig. 1 (Spinellis et al., 2009), in which 
the circles represent machines, the squares represent buffers, and the arrows represent the directions of part 
movement. 

Each buffer has a finite capacity that denotes the temporary storage area. 
Each machine has a service rate that denotes the working efficiency. 
The service rate of a machine obeys an exponential distribution. 

 

2.2 Notation 

The notations in this study are shown in Table 1. 
 
Table 1  
Notions in this study. 

Items Descriptions 𝑖 a machine or a buffer. 𝐼 is the maximum number of machines. 𝑏௜ buffer capacity in buffer 𝑖. 𝑏ത buffer allocation solution. 𝐵 total buffer capacity. 𝜇௜ service rate 𝜇̅ service rate allocation solution. 𝑈 total service rate 𝐹𝐿௥ 𝑟th rank floor; 𝐹𝐿௕௘௦ is the Pareto optimal front. 𝑗ௐை஺,𝑗ேௌீ஺,𝑗்ௌ an iteration in WOA, NSGA-II and TS, respectively. 𝐽ௐை஺, 𝐽ேௌீ஺ and 𝐽்ௌ are the maximum iteration numbers. 𝑁ௐை஺ the maximum number of neighborhood hyperparameters in WOA-GBRT. 𝑛ேௌீ஺,𝑛்ௌ number of individuals in NSGA-II and TS, respectively. 𝑁ேௌீ஺ and 𝑁்ௌ are the total numbers of individuals. 𝑛௖௥௢,𝑛௠௨௧ number of individuals in the crossover and mutation operation, respectively. 𝑁௖௥௢ and 𝑁௠௨௧ are the total numbers of individuals. 𝑃௖௥௢ crossover operation probability. 𝑃௠௨௧ mutation operation probability. 𝑐̅ an individual that is a solution of SBSRA; 𝑐̅∗ is a neighborhood individual. Π௢௥௜ ,Π௖௥௢ , sets storing individuals in the TS–NSGA-II or candidate hyperparameters in the WOA. 

Machine 1 Machine 2 Machine 

Buffer 1 Buffer 



S. Shi and S. Gao / International Journal of Industrial Engineering Computations 14 (2023) 709Π௠௨௧ ,Π௡௘௪, Π௛௬௣ 𝛥𝑏 changing value of buffer capacity 𝛥𝜇 changing value of service rate 𝜂 learning rate. 𝜂௕௘௦ is the best learning rate in the WOA–GBRT. 𝜒 number of trees, generally defined as n_estimators. 𝜒௕௘௦ is the best number of trees in the WOA–GBRT. 𝜎 mean squared error (MSE). 𝜎௕௘௦ is the best MSE in the WOA–GBRT. 𝛾 tabu tenure. 𝛽௜ buffer occupation level of station 𝑖; 𝛽 represents the ABL. 𝜃 throughput. 𝑟𝑎𝑛𝑑(𝑋,𝑌) a random number between 𝑋 and 𝑌. 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(𝑋,𝑌) a random integer between 𝑋 and 𝑌 𝑟𝑜𝑢𝑛𝑑(𝑋) rounding value of 𝑋. 𝑖𝑛𝑡(𝑋) an integer that is less than or equal to 𝑋. 
 
2.3 Optimization problem 

The goal of the study is to maximize the throughput and minimize the ABL of a manufacturing system subject to total buffer 
capacity and total service rate. This problem can be expressed as follows: 

 
Find 𝑏ത = (𝑏ଵ,⋯𝑏௜ ⋯ ,𝑏ூିଵ) and 𝜇̅ = (𝜇ଵ,⋯𝜇௜ ⋯ ,𝜇ூ) 
 

to maximize 𝜃 and minimize 𝛽, 
 

subject to 
 ∑ 𝑏௜ூିଵ௜ୀଵ = 𝐵,    (1) ∑ 𝜇௜ூ௜ୀଵ = 𝑈, (2) 𝑏௜ ≥ 1, 𝑏௜ 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, (3) 𝜇௜ ≥ 0.1, the accuracy of μi is to one decimal place. (4) 
 

where Eq. (1) and Eq. (2) regulate the decision variables 𝑏ത and 𝜇̅, respectively, and Eq. (3) and Eq. (4) represent bounds for 
these respective decision variables. 
 

3. Solution methodology 

Fig. 2 presents the framework of the proposed hybrid approach. The TS–NSGA-II is proposed to achieve a trade-off between 
solution quality and computation efficiency. The WOA–GBRT is proposed to build performance prediction models based on 
historical data generated by the generalized expansion method (GEM) (Kerbache & MacGregor Smith, 1988). The prediction 
models can rapidly predict the throughput and ABL of a manufacturing system with acceptable accuracy.  
 

 
Fig. 2. Framework of the proposed hybrid approach 

 
3.1 WOA–GBRT-based prediction model 

The GBRT effectively solves both classification and regression problems by employing ensembles of regression trees as weak 
learners to generate a power learner  (Ke et al., 2017). Consequently, the GBRT was used to build performance prediction 
models. Furthermore, the WOA in the previous literature (Mirjalili & Lewis, 2016) was used to optimize the hyperparameters 
in the GBRT. 

The proposed TS-NSGA-II

Performance prediction models

Generate candidate 
solutions of SBSRA 

Evaluate the candidate solutions 
and select better ones

The proposed 
WOA-GBRT GEM

Provide fitting 
algorithm

Provide historical data, including SBSRA solutions and 
their corresponding throughput and ABL
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3.1.1 Generation of throughput and ABL data for manufacturing systems 

The GEM was used to calculate the throughput and occupation probabilities of the buffers in a manufacturing system. The 
buffer occupation level (𝛽௜) was evaluated based on the occupation probabilities, and the ABL (𝛽) was calculated according 
to literature (Ng et al., 2017). Four patterns were considered to generate data sets of the throughput and ABL based on a 
manufacturing system comprising five or eight machines. As shown in Table 2, the parameters in each sample included  𝑏ത 
and 𝜇̅, as well as the corresponding 𝜃 and 𝛽. Note that 𝑏ത and 𝜇̅ were generated randomly subject to the total buffer capacity 
and total service rate. 
 

Table 2 
Throughput and ABL data generated by the GEM. 

Pattern number 
(𝐼,𝐵,𝑈) Features Labels Number of samples 

1 (5, 16, 5) 𝑏ത, 𝜇̅ 𝜃,𝛽 20000 
2 (5, 20, 5) 

3 (5, 16, 7.5) 
4 (8, 28, 8) 

3.1.2 WOA–GBRT 
 
The WOA was utilized to optimize two critical hyperparameters involving the learning rate 𝜂 and n_estimators 𝜒. The default 
values were used for the other hyperparameters. For details on the hyperparameter selection process, readers can refer to the 
sklearn documentation (Sklearn, n.d.). For the details on the WOA, readers can refer to literature (Mirjalili & Lewis, 2016). 
Fig. 3 shows the flowchart of the WOA–GBRT. 
 

 
Fig. 3. Flowchart of the WOA–GBRT. 

3.2 TS–NSGA-II 

In the TS–NSGA-II, the NSGA-II is responsible for global search, and a diversification strategy is utilized to intensify the 

Select the best hyperparameter corresponding to minimum in ; 
Update 

Update by the generated neighborhood hyperparameters 

Select the current best hyperparameter corresponding to minimum in ;
Update 

Start

Initialize the parameters in WOA and GBRT

End

Yes

Randomly generate initial hyperparameters

Build prediction models based on GBRT according to ;
Obtain of the prediction models

No

Generate neighborhood hyperparameters of the current best hyperparameter 
using the WOA
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diversity performance. As the TS has been proven to be effective in obtaining near-optimal solutions (Glover et al., 2021; 
Papadopoulos et al., 2013) and capable of utilization with an evolutionary algorithm (Su et al., 2017), it was used to intensify 
the local search and extend the search scope in every iteration. Fig. 4 shows the flowchart of the TS–NSGA-II. 
 
3.2.1 Coding and initialization 

The coding can be defined as 𝑐̅ = (𝜇ଵ, 𝑏ଵ,𝜇ଶ,⋯ , 𝑏ூିଵ,𝜇ூ), 𝑖 = 1,⋯ , 𝐼. Each candidate solution to the SBSRAP corresponds 
to an individual in the TS–NSGA-II. The 𝑁ேௌீ஺ initial individuals in the TS–NSGA-II can be generated randomly with the 
constraints given in Eqs. (1-4). 
 
3.2.2 Individual ranking 
 
The non-dominated sorting II method (Deb et al., 2002) is used to rank individuals by dividing them into different floor ranks. 
For individuals in the same floor rank, the crowding distance is used to rank their priorities. A larger crowding distance 
denotes better priority. In this study, the crowding distance was calculated using a method presented in the literature (Su et 
al., 2017). Assuming an individual and its two adjacent individuals are marked as 𝑛, 𝑛 − 1, and 𝑛 + 1, respectively, the 
crowding distance of individual 𝑛 can be calculated by 𝑑௡ = |𝜃௡ିଵ − 𝜃௡ାଵ| + |𝛽௡ିଵ − 𝛽௡ାଵ|. (5) 
 

 

Randomly generate initial individuals

Start

Initialize the parameters in TS and NSGA-II

End
Yes

Predict the throughput and average buffer level of individuals in , 
and give their floor rank and crowing distance

Select the individuals in and renew , 
and submit the best individual in to tabu list

Update tabu list

Yes

No

No

Abstract the individuals from and append them into 

Select individuals from based on the proportion to generate new 
individuals by crossover operation, and append them into 

Select individuals from based on the proportion to generate new 
individuals by mutation operation, and append them into 

Predict the throughput and average buffer level of the individuals , , and 
, and obtain their floor ranks and crowding distances

Update by 

Select the best 
individuals 

from , , 
and , and 

append them into Initialize and 

Initialize 

Randomly generate a neighborhood individual
based on an individual in using Eq. (7),

and append it into 

Yes

No

Diversification 
strategy condition
met?

Delete 10% 
individuals in 
and replace them by 

randomly 
generating the same 

amount of 
individuals

Yes

No
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Fig. 4. Flowchart of the TS–NSGA-II. 
3.2.3 TS in the TS–NSGA-II 

(1) Neighborhood structure and move representation 

The number of neighborhood individuals is problem-dependent and can be expressed as follows: 𝑁்ௌ = 𝐼 − 1.    (6) 
                      

The move representation can be defined as random changes in the values of the buffer capacities and service rates of two 
locations in a candidate individual. Assuming that 𝑐̅ = (⋯ , 𝑏௏ଵ,⋯ , 𝜇ௐଵ,⋯ , 𝑏௏ଶ,⋯ ,𝜇ௐଶ⋯ ) is an individual. Here,  𝑉1, 𝑉2, 𝑊1, and 𝑊2 mark randomly selected buffers and machines, respectively. A neighborhood solution can be expressed as 
follows: 𝑐̅∗ = (⋯ , 𝑏௏ଵ − 1,⋯ , 𝜇ௐଵ − 0.1,⋯ , 𝑏௏ଶ + 1,⋯ ,𝜇ௐଶ + 0.1,⋯ ),    𝑖𝑓 𝑏௏ଵ − 1 ≥ 1 𝑎𝑛𝑑  𝜇ௐଵ − 0.1  ≥  0.1. (7) 
After each iteration of the TS, the individuals in 𝐹𝐿ଵ are chosen to generate neighborhood individuals in the next iteration if 
the stopping criterion is not satisfied. 
 

(2) Moved attribute and tabu tenure 
 

According to previous studies (Gao, 2022; Glover et al., 2021), the buffer and machine locations describing the change in 
capacity and service rate [(𝑉2,𝑉1), (𝑊2,𝑊1)] are selected as the moved attribute. The tabu tenure employed is expressed 
as follows: 
 𝛾 = 𝑗ேௌீ஺ + 𝑗்ௌ. (8) 
 

If the tabu list becomes full, the moved attribute that first entered the tabu list is removed. 
 

(3) Stopping criterion for the TS 
 

A maximum number of iterations is set as the stopping criterion of the TS, denoted by 𝐽்ௌ.  
 

3.2.4 Crossover operation 
 𝑁௖௥௢ individuals are selected from 𝛱௢௥௜ based on the proportion 𝑃௖௥௢, and 𝑁௡௘௪ neighborhood individuals are generated by 
iteratively selecting each pair of the selected 𝑁௖௥௢  individuals to generate a neighborhood individual. Thus, 𝑁௡௘௪  can be 
calculated b 
 𝑁௡௘௪ = (𝑁௖௥௢ − 1) + (𝑁௖௥௢ − 2)⋯+ 1. (9) 
 

                      
The specific crossover process is shown in Fig. 5. The crossover operations of the buffers and service rates are respectively 
described by 
 𝑏௏ଵ = ቐ 𝑖𝑛𝑡 ቀ௕ೇభభ ା௕ೇభమଶ ቁ , 𝑟𝑎𝑛𝑑(0,1) < 0.5𝑖𝑛𝑡 ቀ௕ೇభభ ା௕ೇభమଶ ቁ  + 1, 𝑟𝑎𝑛𝑑(0,1) ≥ 0.5,   

(10)  

𝜇ௐଵ = 𝜇ௐଵଵ + 𝜇ௐଵଶ2  
(11) 

 
where 𝑏௏ଵଵ  and 𝜇ௐଵଵ  are the capacity of buffer 𝑉ଵ and service rate of machine 𝑊ଵ, respectively, in the first selected individual; 𝑏௏ଵଶ  and 𝜇ௐଵଶ  are the capacity of buffer 𝑉ଵ and service rate of machine 𝑊ଵ, respectively, in the second selected individual. 
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Fig. 5. Flowchart of crossover operation 

3.2.5 Mutation operation 
 
Mutation operations are conducted on individuals selected from 𝛱௢௥௜  with the proportion 𝑃௠௨௧  to generate 𝑁௠௨௧ 
neighborhood individuals. The specific mutation process is shown in Fig. 6. The mutation values for the buffer and service 
rate are respectively given by 
 Δ𝑏 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(1,𝑋), (12) Δ𝜇 = 𝑟𝑎𝑛𝑑(0.1,𝑌),   (13) 
 
where 
 𝑋 = 𝑟𝑜𝑢𝑛𝑑(𝐵/(𝐼 − 1)),   (14) 𝑌 = 𝑈/𝐼. (15) 
 

 
Fig. 6. Flowchart of mutation operation 
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3.2.6 Diversification strategy 
 
The diversification strategy employed in this study is described as follows: 
 

If the number of Pareto optimal solutions has not changed within a certain number of iterations, 10% of the new individuals 
in Π௡௘௪ will be replaced by randomly generated individuals. The value of the iteration number is problem-dependent and set 
to one-fifth of 𝐽ேௌீ஺. 
 

3.2.7 Stopping criterion for the NSGA-II 
 

A maximum number of iterations was set as the stopping criterion of the NSGA-II, denoted by 𝐽ேௌீ஺. 
 

4. Numerical examples 
 

The numerical examples in this study comprised two experiments. Experiment 1 was conducted to test the effectiveness of 
the proposed WOA–GBRT-based performance prediction model by comparing it to the polynomial regression (PR), decision 
tree (DT), random forest (RF), and ANN prediction algorithms. To make the DT, RF, and WOA–GBRT more comparable, 
all hyperparameters for the decision trees in the three algorithms were the same. Furthermore, an ANN model with two hidden 
layers (Huang, 1999; Tsadiras et al., 2013) was used, and its number of neurons was determined based on a comparison of 
different ANN models. 

Experiment 2 evaluated different manufacturing systems with five machines. The TS–NSGA-II was compared to the classical 
NSGA-II to determine the effectiveness of the TS–NSGA-II for manufacturing systems. To ensure that the results of the two 
algorithms were comparable, the coding, initialization, crossover operation, mutation operation, and stopping criterion used 
in the NSGA-II were the same as those used in the TS–NSGA-II. Moreover, the enumeration algorithm (EA) was used as the 
benchmark to obtain Pareto solutions and demonstrate the absolute solution quality of the TS-NSGA-II. In addition, three 
patterns were considered. Each pattern consists of 20 replicate calculations because of random initialization, and their mean 
value (MV) and median absolute deviations (MADs) are used to evaluate algorithm performance and robustness.  
 
The WOA–GBRT, PR, DT, RF, ANN, TS–NSGA-II, NSGA-II, and EA were all written in Python 3.5.1 and executed for all 
experiments on a laptop computer with a 3.2 GHz Intel Core 4 CPU. In addition, the performance prediction models were 
trained using the sklearn library (version 0.19.0). 
4.1 Comparison criteria 
 
4.1.1 Comparison indicators in Experiment 1 
 
The predictive values considered in this study were the system throughput 𝜃 and ABL 𝛽. The MSE, mean absolute error 
(MAE), and decision factor (𝑅ଶ) (Sklearn, n.d.) were determined for both of these values, and their averages served as the 
final evaluation measures. The MSE, MAE, and 𝑅ଶ values should all be in the 0–1 range; low MSE and MAE values and high 𝑅ଶ values indicate superior predictive performance. Readers can refer to the Sklearn document (Sklearn, n.d.) for details. 
 
4.1.2 Comparison indicators in Experiment 2 

The number of Pareto optimal solutions (𝑁௦௢௟), the number of Pareto solutions (𝑁௦௢௟^ ),  average distance (ℎ௔௩௘), and Zitlzler 
measure (Γ஺ଵ,஺ଶ ) were used to evaluate convergence performance. High 𝑁௦௢௟  and 𝑁௦௢௟^ , and low ℎ௔௩௘  indicate superior 
convergence.  Furthermore, Γ௑,௒ denotes the percentage of solutions obtained by algorithm 𝐴1 dominated by or equal to at 
least one solution obtained by algorithm 𝐴2. Algorithm 𝐴1 is considered to have better convergence than algorithm 𝐴2 if Γ஺ଵ,஺ଶ is lower than Γ஺ଶ,஺ଵ. Readers can refer to literature (Su et al., 2017)  for the details of 𝑁௦௢௟, 𝑁௦௢௟^ , and ℎ௔௩௘, and literature 
(Huang, 1999) for the details of Γ௑,௒. 
 
The diversity metric (Δ) and limit distance (𝜏) were used to evaluate the algorithm diversity performance. A smaller Δ 
represents a more uniform solution distribution, and 𝜏 indicates the distribution of the solution scope. Readers can refer to 
literature (Su et al., 2017) for the details of Δ and 𝜏. Additionally, the computation time 𝑡 was evaluated for all methods to 
compare their computation efficiencies. 
 
4.2 Experiment 1 for the WOA–GBRT 
 

4.2.1 Setting 
 

Four performance prediction models were constructed based on different total buffer capacities, total service rates, and 
numbers of machines, as shown in Table 2. For the initial parameters of the WOA–GBRT, 𝑁ௐை஺ was set to 10 and 𝐽ௐை஺ was 
set to 30 for all four patterns. 
 

4.2.2 Results and discussion 
 



S. Shi and S. Gao / International Journal of Industrial Engineering Computations 14 (2023) 715

Fig. 7 and Fig. 8 show the predicted throughput and ABL, respectively, obtained using the prediction models and the actual 
values in the testing samples. The closer the plots in each figure to the diagonal line passing through the origin, the smaller 
the difference between the predicted and actual values in the testing samples, indicating a higher predictive accuracy.  

 

Fig. 7. Comparison of predictive throughput and actual 
values of the PR, DT, RF, ANN, and WOA–GBRT 

Fig. 8. Comparison of the predictive ABL and actual values 
of the PR, DT, RF, ANN, and WOA–GBRT 

 
 
Table 3  
MAE, MSE and 𝑅ଶ values of the PR, DT, RF, ANN, and WOA–GBRT 

Pattern number (𝐼,𝐵,𝑈) PR DT RF ANN WOA–GBRT 
1 

 (5, 16, 5) 
MAE (%) 1.2738 1.1226 0.7717 1.6691 0.2685 
MSE (%) 0.0300 0.0267 0.0134 0.0503 0.0017 𝑅ଶ 0.55 0.95 0.98 0.90 0.99 

2  
(5, 20, 5) 

MAE (%) 1.5461 0.9769 0.7080 2.3566 0.2581 
MSE (%) 0.0443 0.0216 0.0121 0.0963 0.0019 𝑅ଶ 0.56 0.96 0.98 0.86 0.99 

3  
(5, 16, 7.5) 

MAE (%) 1.2452 1.1980 0.8235 1.2855 0.2494 
MSE (%) 0.0297 0.0321 0.0159 0.0335 0.0017 𝑅ଶ 0.68 0.97 0.98 0.97 0.99 

4  
(8, 28, 8) 

MAE (%) 1.187 1.0571 0.7838 1.7240 0.4400 
MSE (%) 0.0447 0.0292 0.0241 0.0865 0.0160 𝑅ଶ 0.35 0.87 0.93 0.71 0.95 

 
Table 3 summarizes the MAE, MSE, and 𝑅ଶ values of the PR, DT, RF, ANN, and WOA–GBRT. The following conclusions 
were drawn from this table: 

• The WOA–GBRT achieves the best MAE, MSE, and 𝑅ଶ values among the models tested. The MAE and MSE of the 
WOA–GBRT are close to 0, whereas the 𝑅ଶ is close to 1, indicating that the WOA–GBRT provides the highest 
predictive accuracy. 

• The predictive performance of the DT is unsatisfactory. However, its regression performance can be significantly 
improved by using it as a weak learner ensembled in large numbers to realize a learner as strong as the RF and GBRT. 
The final prediction results of both the RF and GBRT are obtained by analyzing the results of several decision trees, 
which iteratively reduces the predictive error. Consequently, the predictive accuracy and robustness of these models 
can be improved. 

• The total buffer capacity, total service rate, and the number of machines increase from Patterns 1 to 4, enlarging the 
scope of solutions and making the training data increasingly complex. This increases the difficulty of building 
performance prediction models, decreasing the prediction accuracy of the WOA–GBRT. Furthermore, compared to 
the limited impact of the change in total buffer capacity or total service rate, an increase in the number of machines 
is found to severely decrease the predictive accuracy of the WOA–GBRT, as indicated by a comparison of Patterns 
1–3 with Pattern 4. Consequently, it will be challenging to build prediction models with high predictive accuracy for 
large-scale manufacturing systems. 
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4.3 Experiment 2 for the TS–NSGA-II 
 

4.3.1 Setting 
 
The manufacturing systems comprising five machines (Patterns 1–3) were evaluated in Experiment 2. Owing to the 
insufficient predictive accuracy of previously constructed prediction models at this stage, the manufacturing system involving 
eight machines (Pattern 4) was not tested. The input parameters of Patterns 1, 2, and 3 are listed in Table 2. The parameters 
of the NSGA-II and TS–NSGA-II are listed in Table 4. 
 
Table 4 
Parameter settings for the NSGA-II and TS–NSGA-II. 

Parameter NSGA-II TS–NSGA-II 𝐽ேௌீ஺ 400 40 𝐽்ௌ / 10 𝑁ேௌீ஺ 60 60 𝑃௖௥௢ 0.8 0.8 𝑃௠௨௧ 0.05 0.05 
 
4.3.2 Results and discussion 
 
Table 5 and Fig. 9 compare the performances of the NSGA-II and TS–NSGA-II. Fig. 10 shows the MVs of different evaluation 
indicators for NSGA-II and TS-NSGA-II, respectively. Fig. 11 presents the number of Pareto solutions obtained by the NSGA-
II and TS–NSGA-II.  
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Fig. 9. Performance comparison of the NSGA-II and TS–NSGA-II. 

 

 
Fig. 10. MVs of different evaluation indicators for the NSGA-II and TS–NSGA-II. 
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Table 5 
Performance comparison of the NSGA-II and TS–NSGA-II. 

Pattern number (𝐼,𝐵,𝑈) 
Algorithm 𝑁௦௢௟ 𝑁௦௢௟^  ℎ௔௩௘ Γ஺ଵ,஺ଶ Δ 𝜏 𝑡 (s) 

MV MAD MV MAD MV MAD MV MAD MV MAD MV MAD MV MAD 

1 
(5, 16, 5) 

EA 105 / 105 / 0 / / / 0.7389 / 0.7166 / 8.75h / 

NSGA-II 77 3 10 2 0.0181 0.0015 0.66 0.05 0.5655 0.0160 0.6732 0.0237 1005.61 63.57 

TS-NSGA-II 101 2 44 4 0.0089 0.0008 0.07 0.02 0.6325 0.0128 0.6331 0.0298 1112.27 29.18 

2 
(5, 20, 5) 

EA 101 / 101 / 0 / / 101 0.8997 / /0.8132 / 33.11h / 

NSGA-II 76 9 13 3 0.0245 0.0051 0.74 0.05 0.8589 0.0357 0.7483 0.0404 2722.12 61.71 

TS-NSGA-II 74 4 53 1 0.0040 0.0013 0.04 0.02 0.9623 0.0151 0.7484 0.0155 2829.58 30.29 

3 
(5, 16, 7.5) 

EA 336 / 336 / 0 / / / 0.8977 / 1.1027 / 132.02h / 

NSGA-II 97 2 19 4 0.0089 0.0010 0.66 0.04 0.7643 0.0246 0.8903 0.0585 1202.45 48.26 

TS-NSGA-II 124 2 72 1 0.0024 0.0002 0.04 0.02 0.6552 0.0228 0.8319 0.0323 2038.66 36.91 

Note: h denotes hour. 

 

Fig. 11. Number of Pareto solutions obtained by the NSGA-II and TS–NSGA-II 
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(1) Convergence analysis 
 
The number of Pareto solutions obtained by the TS–NSGA-II is 340% greater than that obtained by the NSGA-II for Pattern 
1. With increasing total buffer capacity and total service rate, the solution scope is extended, and the number of Pareto 
solutions obtained by both the TS–NSGA-II and NSGA-II increase. In addition, the numbers of Pareto solutions obtained by 
the TS–NSGA-II for Patterns 2 and 3 were respectively 307% and 279% greater than those obtained by the NSGA-II. This 
result demonstrates the improved convergence performance of the TS–NSGA-II and implies that it can still achieve superior 
convergence as the problem scale increases. 
 
The average distances of the TS–NSGA-II are 49%, 16%, and 27% of those of the NSGA-II for Patterns 1, 2, and 3, 
respectively, indicating the superior convergence of the TS–NSGA-II. Consequently, the Pareto optimal solutions obtained 
by the TS–NSGA-II are shown in Fig.  9 to be closer to the Pareto front obtained by the EA than those obtained by the NSGA-
II.  
 
The Zitlzler measure of the TS–NSGA-II for each pattern is lower than that of the NSGA-II, which also demonstrates the 
superior convergence performance of the TS–NSGA-II. Furthermore, the difference in the Zitlzler measure of the NSGA-II 
and the TS–NSGA-II for Pattern 1 is determined to be 0.66 and increased by 12% as the solution scope increased for Pattern 
2. The Zitlzler measure of the TS-NSGA-II and the NSGA-II for Pattern 1 is 0.07 and decreased by 42% in Pattern 3. This 
finding also proves that the convergence performance of the TS–NSGA-II is superior to that of the NSGA-II, especially for 
larger problems. 

(2) Diversity analysis 
 
The diversity metrics of the NSGA-II are 89% of those of the TS–NSGA-II for Patterns 1 and 2, respectively, indicating the 
superior diversity performance of the NSGA-II. The TS searches for candidate individuals around local areas. However, the 
number of new individuals retained in each update iteration is limited, leading to some individuals being around local areas 
and thereby decreasing the diversity. Consequently, the diversity performance of the TS–NSGA-II becomes unsatisfactory. 
For Pattern 3, the increase in the total service rate and extension of the solution scope increases the diversity metric of the 
TS–NSGA-II to greater than that of the NSGA-II because the TS–NSGA-II can detect more Pareto optimal solutions in the 
larger-scale problem, and the effect of the local search on the diversity performance decreases accordingly. The limited 
distances of the TS–NSGA-II are 94%, 100%, and 93% of those of the NSGA-II for Patterns 1, 2, and 3, respectively. As the 
TS focuses on Pareto optimal solutions around local areas, the search scope of the TS–NSGA-II is limited, resulting in a lower 
limited distance performance for Patterns 1 and 3.  

(3) Computation efficiency analysis 
 
The computation times of the TS–NSGA-II are similar to those of the NSGA-II for Patterns 1 and 2, but as the solution scope 
increases for Pattern 3, the computation time of the TS–NSGA-II grows to 1.7 times that of the NSGA-II. However, according 
to Fig. 11, the TS–NSGA-II obtains more Pareto solutions than the NSGA-II in the same computation time, although the 
NSGA-II can rapidly obtain solutions in the first few seconds. This results from the local search in the TS–NSGA-II, which 
improves the exploitation of candidate solutions in promising local areas. Moreover, the Pareto solutions obtained by the TS–
NSGA-II, and NSGA-II may decrease with time. Because the number of new individuals retained in each update iteration is 
limited, some of the obtained Pareto solutions may be neglected in the individual ranking process owing to their low crowding 
distances. 

(4) Robustness analysis 
 
Although the MAD of 𝑁௦௢௟ for the NSGA-II is lower than that for the TS-NSGA-II in Pattern 1, the TS-NSGA-II achieves 
lower MAD in other experiments, demonstrating the better robustness of the TS-NSGA-II. Because of the satisfactory global 
search ability of the TS-NSGA-II, it can reproduce a similar optimization process and obtain very close solutions.   

(5) Insight 
 
The proposed hybrid approach integrates local and global search strategies, balancing exploration and exploitation and 
generating superior convergence performance and computation efficiency than the NSGA-II. 
 
The diversity performance of the proposed approach decreases slightly compared to the NSGA-II. However, the difference 
between the TS–NSGA-II and NSGA-II is mainly situated in the low limit of the Pareto optimal front, which is hardly used 
in actual application.  
 
5. Conclusions and future work 
 
This article presented a data-driven hybrid approach integrating the TS–NSGA-II and WOA–GBRT to maximize the 
throughput and minimize the ABL of a manufacturing system. In the proposed hybrid approach, the WOA–GBRT-based 



  

 

720

performance prediction model can quickly calculate the throughput and ABL with acceptable accuracy; the TS–NSGA-II was 
used to effectively search for SBSRA solutions. To verify its effectiveness, two numerical examples were presented in which 
the results obtained using the proposed WOA–GBRT were compared to those obtained using the PR, DT, RF, and ANN, and 
the results obtained using the TS–NSGA-II were compared to those obtained using the NSGA-II and EA. These examples 
showed that the WOA–GBRT achieved high predictive accuracy for the throughput and ABL evaluation, and that the TS–
NSGA-II efficiently solved the SBSRAP. 
 
The primary objective of the study is to support efficient multi-objective optimization of manufacturing systems under 
multiple decision variables. Furthermore, the approach proposed to do so also establishes a foundation for efficient 
performance evaluation based on machine learning methods. 
 
The WOA–GBRT was used to build high-accuracy performance prediction models for a manufacturing system with five 
machines in this study. One direction for future research is to construct performance prediction models for large-scale 
manufacturing systems that provide sufficient accuracy.  
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