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 In the face of burgeoning data volumes, latency issues present a formidable challenge to cloud 
computing. This problem has been strategically tackled through the advent of fog computing, 
shifting computations from central cloud data centers to local fog devices. This process minimizes 
data transmission to distant servers, resulting in significant cost savings and instantaneous 
responses for users. Despite the urgency of many fog computing applications, existing research 
falls short in providing time-effective and tailored algorithms for fog computing task scheduling. 
To bridge this gap, we introduce a unique local search mechanism, Card Sorting Local Search 
(CSLS), that augments the non-dominated solutions found by the Bi-objective Simplified Swarm 
Optimization (BSSO). We further propose Fast Elite Selecting (FES), a ground-breaking one-front 
non-dominated sorting method that curtails the time complexity of non-dominated sorting 
processes. By integrating BSSO, CSLS, and FES, we are unveiling a novel algorithm, Elite Swarm 
Simplified Optimization (EliteSSO), specifically developed to conquer time-efficiency and non-
dominated solution issues, predominantly in large-scale fog computing task scheduling 
conundrums. Computational evidence reveals that our proposed algorithm is both highly efficient 
in terms of time and exceedingly effective, outstripping other algorithms on a significant scale. 
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1. Introduction 

 
As the era of the Internet of Things (IoT) unfolds, the staggering volume of data generated from smart devices such as mobile 
phones, automobiles, wearable devices, and more, is set to create a seismic shift in the data landscape. According to the 
International Data Corporation (IDC), by 2025, an estimated 80 billion interconnected devices will have produced an 
astronomical 180 trillion gigabytes of fresh data. This proliferation of data poses a significant challenge for traditional cloud 
computing services, which may struggle to handle the sheer volume and, subsequently, face increasingly extended response 
latencies. Many IoT applications demand real-time or low latency responses (Yannuzzi et al., 2014), thus amplifying the 
urgency to address these constraints. Conventional cloud computing (Perera et al., 2017), may no longer be able to 
accommodate the massive influx of data from multitudes of IoT devices and respond within acceptable latency timescales. 
Therefore, the advent of fog computing represents a new computing paradigm, decentralizing the cloud structure, and offering 
a promising solution to the latency challenges posed by this unprecedented data deluge. 
 
The concept of fog computing was first clearly articulated by Bonomi et al. (2012). They characterized the fog computing 
paradigm, painting a vision where it functions as an intermediary computing power positioned between the cloud and the 
users. It aids the cloud in shouldering the hefty computational demands emerging from an extensive array of smart devices. 
However, it's essential to understand, as pointed out (Matt & Engineering, 2018), that fog computing is not replacing cloud 
computing. Instead, it is viewed as a complementary structure that extends the cloud computing services right to the network 
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edge, as detailed by Bitam et al. (2018). Furthermore, Vaquero et al. defined fog computing as a situation typically comprising 
numerous ubiquitous, heterogeneous, and decentralized devices (Vaquero & Rodero-Merino, 2014). These devices 
communicate and potentially cooperate amongst themselves, often without the need for third-party intervention. Chiang et al. 
explored the challenges and opportunities of fog, highlighting how fog computing addresses the inherent issues within the IoT 
framework (Chiang & Zhang, 2016). They also underlined the critical issue of End-to-End architectural tradeoffs, a significant 
topic our study seeks to discuss. 
 
The architectural landscape of fog computing is indeed diverse and various models have been proposed in recent research. 
Here, we present a broad overview of the general structure, as depicted in Fig. 1. Fundamentally, this architecture consists of 
three distinct layers: the cloud layer, the fog layer, and the device layer. 
 

 
Fig. 1. Architecture of fog computing 

 
The top of fog computing architecture, cloud center layer, is responsible for storing data, analyzing and decision making. 
Massive amounts of data are transmitted through this layer and sent to appropriate fog devices according to the results of the 
scheduling algorithm. Fog device layer consists of network devices such as routers, access points, gateways and switches. 
They are distributed among edge devices and cloud centers, and responsible for collecting raw data from edge devices or 
analyzing information from the cloud center. In addition, fog servers can store sensed data and process real-time analyses. 
Moreover, fog servers can preprocess raw data before transmitting to the cloud center. Edge devices contain a variety of IoT 
devices and devices with CPU processors, e.g., laptops, smart vehicles, smart phones. Edge devices are distributed 
geographically and usually not fixed. They receive data when a specified event occurs, then collect and send data to the upper 
layer server, fog server for immediate response or storage. There are some features of fog computing which made it different 
from cloud computing, such as low latency and location awareness, wide-spread geographical distribution, mobility, very 
large number of nodes, predominant role of wireless access, strong presence of streaming, real time applications and 
heterogeneity (Bonomi et al., 2012). Some of these features have changed some properties of task scheduling in fog 
computing. First and foremost, low latency and location awareness facilitate the broker to assign the tasks to the nearby fog 
devices. Besides, a vast number of nodes made the problem large and complex. A study compared the processing cost and 
transmission cost between fog and cloud computing paradigms against different numbers of terminal nodes (Sarkar & Misra, 
2016), and it shows that fog computing costs significantly less than cloud computing. Moreover, the impact on cost reduction 
becomes more obvious when the number of terminal nodes rises. Finally, heterogeneity created the conflict between makespan 
and cost. That is, if a task is arrived at, the scheduler will assign it to the cloud for a shorter timespan or it will violate Service 
Level Agreement (SLA) and the service provider will be penalized. However, it will lead to the cost being high instead. 
  
Though fog computing is a simple concept that distributes the computation load to local areas, much research hasn’t been 
done yet. For instance, algorithm simulation time is too long for a large distribution system. Most of the research is utilizing 
linear optimization methods to schedule in the fog computing paradigm to acquire high-quality solutions. Nevertheless, the 
linear optimization algorithms require considerably much more heavy computation burden than any other machine learning 
algorithms, e.g., Simplified Swarm Optimization (SSO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), to 
converge and lack of flexibility when the objective functions were changed. In addition, the number of tasks in the fog 
computing paradigm is usually tremendous, that is, the computation burden will increase exponentially. Moreover, nearly all 
research applying linear optimization approaches has a critical constraint, the size of solution dimension, many of them set up 
a little cloud and fog device to acquire high-quality solutions within a limited time constraint. However, some fog computing 
applications are time sensitive. Such approaches are not applicable in such cases. 
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Recently, more and more efforts have been devoted to machine learning algorithms in fog computing task scheduling problem, 
e.g., Bee Swarm (Bitam et al., 2018), GA (Han et al., 2018), Evolutionary Algorithm (EA) (Binh et al., 2018), All of them 
focused on the algorithm application level but didn’t pay attention to the simulation delay. Simulation delay is a critical issue 
in time-sensitive applications which is caused by the required time of the optimization algorithm to converge. Such problems 
will be worsened when the number of tasks and fog nodes increases. Though machine learning algorithms require relatively 
less time than linear optimization methods, the execution time is still time-consuming especially in large scale problems. 
Hence, we devote the efforts in algorithm time complexity reduction and parallel computation to reduce the impact of 
simulation delay. 
  
Up to present, Bee swarm, GA and EA, algorithms which are good at discrete problems have been studied in this problem 
(Deng et al., 2016; Fard et al., 2012). However, these algorithms are time-consuming in multi-objective problems, due to the 
high time complexity of non-dominated sorting skills. In contrast, SSO based algorithms are not only strong in discrete 
problems but also run fast for it requires only one front to update, such as BSSO (Yeh, Zhu, et al., 2023). Furthermore, the 
structure of SSO is flexible, it could be varied to adapt to any kind of problem. In addition, SSO has demonstrated its powerful 
performance in cloud computing task scheduling problems (Yeh, Zhu, et al., 2023). For the shorter required time in converging 
and high flexibility in structure, we develop an efficient and effective strategy by means of SSO. 
  
To the best of our understanding, the previous research in fog computing task scheduling problem usually combines two 
evaluators as one fitness value. One researcher set a predetermined balance coefficient α between makespan and cost then 
optimized the fitness value as close to 1 as possible (Binh et al., 2018). Another research set weights for memory and CPU 
execution time then combined them as a fitness evaluator (Bitam et al., 2018). Although these strategies have the advantage 
of shorter simulation time (because of the lower time complexity), the weights are not easy to determine at first. Moreover, 
one-fitness strategies produce one solution at a time. On the other hand, multi-objective optimization strategies produce a 
group of solutions that provide the decision maker with a variety of choices. However, it requires more time for its higher 
time complexity. Both two ways of strategy have their benefits and flaws. In this paper, we devote ourselves to a multi-
objective optimization strategy to explore the future road of this strategy in this problem. 
  
This research aims at accelerating the simulation time by minimizing time complexity and utilizing parallel computing. On 
top of that, we devote ourselves to developing a local search method to assist the algorithm to converge faster in this problem. 
In this study, we aimed to shorten the simulation delay in three ways. Firstly, time complexity, we proposed a one-front non-
dominated sorting technique, Fast Elite Selecting, for the multi-objective algorithms that require only one front in solution 
updating. In such way, the time complexity is reduced from to  to  (NF is the number of first front solutions among N solutions 
which is always less or equal to than N), and the speed of simulation could be raised. Secondly, for effectiveness, we proposed 
a novel local search method, Card Sorting Local Search, that helps the algorithm search highly potential areas where some 
non-dominated solutions might exist. Finally, we distribute the computation on four CPU threads, and we let each thread 
execute one independent optimization algorithm. In this way, the simulation delay is reduced by parallel computing. 
  
The content of this research is organized in section 1, we introduce the background of fog computing including the reason 
for its emergence and some explicit definitions and concepts. Besides, motivation and purposes are depicted. Then we 
review the papers of task scheduling problems in fog computing, multi-objective algorithms and SSO in section 2. In section 
3, the problem statement is presented. Section 4 illustrates the methodologies, Card Sorting Local search, Fast Elite 
Selection and BSSO. We evaluate the performance of the proposed algorithm against other multi-objective algorithms in 
section 5. Finally, we summarize the contribution and point out the future work in section 6.  
 
 

 Related Work 
 

2.1. Task Scheduling Problem in Fog Computing 
 
Deng et al. (2016) tackled the challenge of balancing power consumption and computational latency by breaking the problem 
down into three sub-issues. The first of these was finding an optimal compromise between computational latency and power 
consumption, achieved through the use of convex optimization techniques (He et al., 2014). The second sub-problem involved 
identifying the best tradeoff between power consumption and computational delay in cloud computing, where a nonlinear 
integer programming approach was applied (Li & Sun, 2006). The third and final issue aimed at minimizing communication 
delay in the WAN subsystem, treated as an assignment problem and addressed using the Hungarian method (Kuhn, 1955). 
However, a primary limitation of this study was the use of a centralized approach for optimization, reducing the delay and 
power consumption, which is a poor fit for a fog computing infrastructure. This approach could lead to a performance 
bottleneck at the central node during workload allocation, subsequently degrading the overall system performance. 
 
Recognizing the performance bottleneck issue of the centralized optimization approach, alternative strategies have been 
explored. Bitam et al. proposed a bio-inspired optimization method known as the Bees Life Algorithm (BLA) to handle the 
job scheduling challenge in a fog computing environment (Bitam et al., 2018). This involved breaking jobs down into tasks 
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and allocating them across different fog devices considering factors such as CPU execution time and allocated memory size. 
During the foraging step, they employed a greedy local search process aiming to identify the optimal solution amongst various 
options. Despite demonstrating impressive performance in handling large-scale problems, this approach failed to consider 
specific attributes of the fog computing paradigm. For example, the tradeoff dilemma of whether to send tasks to the cloud, 
the communication costs incurred due to the distance between two distinct fog devices, and the penalties arising from Service 
Level Agreement (SLA) violations were overlooked. 
 
Han et al. (2018) introduced an enhanced genetic algorithm for a hybrid cloud and fog computing infrastructure (Han et al., 
2018). Here, the cost - incorporating the operational cost of virtual machines and the penalties from SLA violations - was 
considered as a performance evaluation metric. As a result, the impact of the makespan was simultaneously considered along 
with the penalty. However, like previous research, this study neglected to consider the tradeoff issue of whether to dispatch 
tasks to the cloud, creating a conflict between the makespan and cost that was not fully addressed. 
 
2.1. Multi-Objective Algorithm in Task Scheduling Problem 
 
In our understanding, the application of multi-objective algorithms in task scheduling within the realm of fog computing has 
been quite limited. Nevertheless, finding an optimal balance between makespan and cost within the fog computing paradigm 
is of paramount importance. 
 
In this regard, Fieldsend et al. introduced a Multi-Objective Algorithm (MOA) to address the issue of conflicting metrics, 
applying a non-dominated tree to determine the global best for each particle (Fieldsend & Singh, 2002). Colleo et al. brought 
forward a multi-objective particle swarm optimization. Differing from other proposals that extended PSO to resolve multi-
objective optimization problems, their algorithm employed an external repository of particles which subsequently guided the 
flight of other particles (Coello et al., 2004). Further, Zhou et al. proposed a Multi-Objective Evolutionary Algorithm (MOEA) 
to tackle the task scheduling problem in grid computing (Zhou et al., 2011). Liu et al. suggested a multi-objective genetic 
algorithm to resolve the task scheduling issue in cloud computing (Liu et al., 2013). Jena introduced Task Scheduling multi-
objective nested Particle Swarm Optimization (TSPSO) for task scheduling, employing two performance evaluation metrics: 
power consumption and cost (Jena, 2015). Fard et al. proposed a Multi-Objective List Scheduling (MOLS) approach for 
workflow application scheduling in heterogeneous systems like Grids and Clouds (Fard et al., 2012). Basing on the Bi-
objective Dynamic Level Scheduling algorithm (BDLS) aimed at maximizing reliability and minimizing execution time 
(Doğan & Özgüner, 2005), Yin (2018) proposed a Multi-Objective Simplified Swarm Optimization to address the conflict in 
cloud computing, taking into account both makespan and power consumption (Yin, 2018). Most recently, Yeh et al. suggested 
a Bi-Objective Simplified Swarm Optimization (BSSO) (Yeh, Zhu, et al., 2023), eliminating the gBest updating mechanism 
to encourage convergence in multi-objective cloud computing task scheduling problems. In our study, we likewise adopt 
BOSSO to address the task scheduling issue in the fog computing paradigm. 
 
2.3. Simplified Swarm Optimization 
 
Yeh's proposition of Simplified Swarm Optimization represents a novel, population-based stochastic optimization method. As 
a member of the swarm optimization family, it's recognized for its simplicity and efficiency, garnering significant interest 
from researchers. It has been effectively employed to solve discrete problems in numerous studies (Huang & Yeh, 2019; Yeh, 
2009; Yeh, 2012, 2017; Yeh et al., 2011; Yeh, 2014; Yin, 2018). These instances of successful application demonstrate its 
potential in addressing complex optimization problems. And SSO has been applied to various problems, such as the 
redundancy allocation problems and reliability redundancy allocation problems(Jiang et al., 2023; Yeh, 2019, 2021; Yeh et al., 
2021; Yeh, 2009; Yeh, 2017; Yeh et al., 2011; Yeh, 2014), quantum computing (Su et al., 2022), neural network hyperparameter 
optimization (Yeh, Lin, et al., 2023), Vehicle Routing Problem (Yeh & Tan, 2021), multi-level programming (Yeh et al., 2022) 
and so on. 
 
In simplified swarm optimization algorithm, we set three parameters, 𝐶௚ , 𝐶௣  and 𝐶௪ . where 𝐶௚ >𝐶௣ >𝐶௪ . The update 
mechanism of SSO is defined by Eq. (1): 
 

𝑋௜௝௧ = ⎩⎪⎨
⎪⎧𝑥௜௝௧ିଵ     if     𝜌 ∈ ሾ0,𝐶௪ሻ𝑝௜௝௧ିଵ     if     𝜌 ∈ ൣ𝐶௪ ,𝐶௣൯𝑔௝     if     𝜌 ∈ ൣ𝐶௣,𝐶௚൯𝑥     if     𝜌 ∈ ൣ𝐶௚, 1൧  (1) 

 
Note that 𝑥௜௝௧  is the jth variable of ith solution at iteration t, 𝜌 is a uniform random number within [0, 1], 𝑝௜௝௧ିଵ is jth the variable 
of pbest (best ith solution among t-1 iterations), 𝑔௝is jth the variable of gbest (i.e. best solution among t-1 iterations) and 𝑥 is a 
random variable between the lower bound and the upper bound of the feasible solution space.  
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For each update process, 𝜌is generated first. If 𝜌 is located in [0, Cw), the value of variable will maintain the same as last 
generation. If 𝜌 is located in [Cw, Cp), the value of the variable will be generated from pbest. If 𝜌 is located in [Cp, Cg), the 
value of the variable will be generated from gbest. Otherwise, a random value, 𝑥, will be generated and replace the current 
variable.  
 
In this study, we employ the Bi-objective Simplified Swarm Optimization (BSSO) as our primary approach for solution 
updates. BSSO, a recent innovation by Yeh (Yeh, Zhu, et al., 2023), extends the principles of the original Simplified Swarm 
Optimization (SSO) method (Yeh, 2009). The main distinction between Multi-objective Simplified Swarm Optimization and 
BSSO lies in the gBest updating mechanism. In BSSO, the pBest is removed and each non-dominated solution in the external 
archive is treated as a gBest. This approach enhances both the speed of convergence and solution diversity and has 
demonstrated superior performance over other notable algorithms such as MOPSO, MOSSO, and NSGA-II. 
 
SSO is characterized by a straightforward update mechanism, the stepwise function, which can be adapted into different forms 
according to specific applications (Huang & Yeh, 2019; Yeh, 2009; Yeh, 2012, 2017; Yeh et al., 2011; Yeh, 2014; Yin, 2018). 
This flexibility extends to multi-objective problems as well. Unlike single-objective problems, multi-objective optimization 
problems do not have a singular gBest solution. Instead, each solution in the non-dominated solution archive is treated as 
equivalent to a gBest solution. Therefore, in each generation, BSSO randomly selects a non-dominated solution from the 
archive to serve as the gBest solution. The pseudocode for this procedure is presented on the next page: 
 
Table 1  
BSSO pseudo code 

Proposed technique: Bi-Objective Simplified Swarm Optimization 
Initialization:  
population X= {𝑋ଵ,𝑋ଶ, …𝑋ே} 
non-dominated solution archive A= ൛𝐴ଵ,𝐴ଶ …𝐴ேಷൟ  
1.   for gen= 0 to Ngen do 
2. Randomly pick a solution 𝐴௥ to be gBest solution 

3. for sol=0 to Nsol do 
4.  for var=0 to Nvar do 
5.   r1 =𝜌 ∈ ሾ0,1ሿ 
6.   If (r1<Cg) then  
7.    Xsol, var = Ar, var  
8.   Else if (r1 <Cw) then 
9. 
10. 
11. 
12. 
13. 

   continue 
Else  

 r2=𝜌 ∈ ሾ0, Nvmሿ 
Xsol, var = r2 

end if 
14. end for 
15. 
16. 

end for 
Combine updated solutions X* with archive as XNsol +NF 

A* = Fast non-dominated sort (XNsol +NF) 
If (size of A* >predetermined archive size) then  17. 

18. 
19.  A*= crowdingDistanceSelector(A*) 
20. 
21. 

 end if  
end for 

Output: non-dominated solution archive A= ൛𝐴ଵ,𝐴ଶ …𝐴ேಷൟ 
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 Problem Statement 
 

3.1. System Model 
 
A cloud system is composed of the cloud server and multiple fog devices. Each fog device is located at different areas. Each 
fog device receives requests from the users and upload the data information to cloud computing infrastructure. After receiving 
the task scheduling request, the cloud server runs the optimization procedure to determine assignments. When the algorithm 
is done, tasks are assigned to different processors, either fog devices or the cloud. 
 

 
 

Fig. 2. System model 
 
In this paper, virtual machine migration is not considered. Each task can be processed only on one processor, the fog devices 
are not allowed to halt and transfer tasks to other fog devices. Furthermore, one virtual machine can only process one task at 
once. The encoding of the solution is based on the assignment of each task. Each dimension represents the destination of a 
task. For example, assume the total number of tasks is 6, and there is a solution (3, 4, 1, 5, 2, 3). It means 1st task is assigned 
to processor 3 and 2nd task is assigned to processor 4, etc. 

 
Fig. 3. Source locating  

 
If the task is assigned to other processors away from its origin, a transmission cost is considered. 
 
3.2. Notations 
 
In BSSO, the integer variable represents the number of components in the node, and it is necessary to use multi-state BAT to 
find out all the state vectors 𝑋 = ሺ𝑥ଵ, 𝑥ଶ, … ,𝑥௠ሻ, each state vector represent an integer combination. The traditional multi-
state BAT algorithm is proposed by Yeh (Yeh, 2021). The pseudocode for traditional multi-state BAT is shown below: 
 
In this subsection, we list notations in the following. 3.2.1 shows the indexes and coefficients; 3.2.2 shows the functions which 
are used for the calculation of objective functions. 
 
Notations for mathematical model are listed and introduced as follows: 
 𝑇௜: ith task of set T. 𝑃௝: jth processor of set P. 𝑇𝐶𝑈: transmission cost per unit distance. 𝑃௢ : fixed violation cost when the makespan of an assignment violated the SLA regulation. 𝑃௧ : variable violation cost  
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Notations for Card-Sorting BSSO are listed and introduced as follows: 𝑁𝑔𝑒𝑛: generation number. 𝑁𝑠𝑜𝑙: particle number of each generation. 𝑁𝑣𝑎𝑟: number of tasks of current service request. 𝑁𝑣𝑚: number of processors of the fog computing system. gen: current BSSO generation sol: current BSSO solution var: current BSSO variable 𝐶௚: a positive parameter which determines the probability of updating variable from non-dominated solutions. 𝐶௪: a positive parameter which determines the probability of remaining original variable of the solution. 𝐶௦: a positive parameter which determines the probability of card sorting current solution. 
 

3.3. Mathematical Model 
 
We formulate our problem in a mathematical model. An objective function is defined to evaluate the quality of a solution and 
our goal is to minimize two performance evaluation metrics, makespan and cost. 
 
3.3.1 Model 
 

Objective function:  𝑀𝑖𝑛𝑚𝑖𝑧𝑒  𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (2) Minimize Cost =  Execution Cost +  Idle Time Cost +  Transmission Cost ሺ+ Penalty ሻ  (3) 
 
3.3.2 Makespan 
 
Makespan is determined by the completion time of the last task. The formula is shown as formula 4: 

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥௝ୀଵಾ 𝑇𝑖𝑚𝑒௉ೕ = 𝑚𝑎𝑥௝ୀଵಾ ෍ 𝐸𝑇൫𝑇௜,𝑃௝൯௡൫௉ೕ൯
௜ୀଵ  

 

(4) 

We calculate the execution time of ith task processed jth processor, and sum up for the total execution time of execution time 
of jth processor, 𝑇𝑖𝑚𝑒௉ೕ.Then determine the longest execution time as 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛௜. 
 
3.3.3 Cost 
 
In this research, cost is composed of four elements which are execution cost, idle cost, transmission cost and penalty 
respectively. Execution cost is determined by the unit processing cost of processors multiplying execution time on each 
processor. Execution cost is determined by the unit processing cost of processors multiplying execution time on each processor. 
The execution cost formula is as shown in formula 5. 
 𝐶𝑜𝑠𝑡 =  ෍𝐶𝑜𝑠𝑡௉ೕெ

௝ୀଵ = ෍𝐸𝐶𝑈൫𝑃௝൯ெ
௝ୀଵ × 𝑇𝑖𝑚𝑒௉ೕ (5) 

 
We calculate 𝑇𝑖𝑚𝑒௉ೕas mentioned in makespan and multiply the execution cost per unit time of jth processor as 𝐶𝑜𝑠𝑡௉ೕ, then 
sum up 𝐶𝑜𝑠𝑡௉ೕ. Then 𝐶𝑜𝑠𝑡௜ is calculated. Even when a processor is not tackling tasks, standby power consumption should be 
considered. This metric is aim to reduce some the occurence of extremely unbalance solutions which would lead the utilization 
of fog computing system low. Hence, we can untilize this evaluator to leverage the system utilization (Tasiopoulos et al., 
2019). The Idle Time Cost is shown as the formula 6. 
 ෍𝐸𝐶𝑈(𝑃௝)ெ
௝ୀଵ × (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝑇𝑖𝑚𝑒(௉ೕ)) (6) 

 
The processor idle cost is calculated by multiplying the cost of each processor by its idle time. 



  

 

730

When a task is sent away from the local area, transmission cost should be considered. Specifically, the cost linearly rose with 
the increase of distance between two computational devices. We calculate the transmission cost by measuring the distance 
from the receiving fog node to processing fog node. In practice, we multiply unit transmission cost by a predetermined fog 
node distance matrix as shown in formula 7. 
 ෍𝑇𝐶𝑈ெ
௝ୀଵ × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௝(𝐹ௌ௧௔௥௧,𝐹ா௡ௗ) (7) 

 
If the makespan of an assignment exceeds the deadline, penalty cost is generated. The penalty function is shown below as 
formula 8: 
 𝑃௢ + 𝑃௧ × (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒) (8) 
 𝑃௢  is the fixed penalty expense which is aroused when the makespan exceeds the deadline which was predetermined by 
contract.𝑃

ｔ
 is the variable cost of exceeding time. 

 Methodology 
 
In this chapter, we present the methodologies used in this study. Firstly, we introduce a fast non-dominated sorting technique 
in 3.1. Secondly, we present the elite Multi-Objective Simplified Swarm Optimization in 3.2. In 3.3, we proposed a new local 
search method, Card Sorting Mechanism. Lastly, two performance metrics which measure the obtained Pareto front are 
presented. 
 
4.1. Non-dominated Sorting 
 
Multi-objective optimization usually refers to problems with two important metrics but conflict with each other. For example, 
in this study, an assignment with comparatively lower makespan usually costs more than other assignments with higher 
makespan. Hence, the ultimate goal of optimization in such case is to seek for a non-dominated solution set which combines 
a variety of assignment combination and close enough to the Pareto Front 𝑃∗ which is the best non-dominated solution set in 
reality (Li, 2003). Non-dominated sorting is to distinguish the dominance relationship from each solution in set {𝑋ଵ,𝑋ଶ, . . .𝑋ே} 
and store as a descending order set {𝐹ଵ,𝐹ଶ, . . .𝐹௄}. A proper non-dominated solution set satisfies the following conditions: 
 

1. All the solutions in a certain front is non-dominated with each other. ∀𝑋௜ ,𝑋௝ ∈ 𝐹௞:𝑋௜ ൏̸ 𝑋௝ 𝑎𝑛𝑑 𝑋௝ ൏̸ 𝑋௜ ,𝑘 = 1,2, . . . , 𝑘 
2. Any front with higher index will dominate those with lower index. ∀𝑋 ∈ 𝐹௞:∃𝑋 ′ ∈ 𝐹௞ିଵ:𝑋 ′ ൏ 𝑋,𝑘 = 2,3, . . . ,𝑘 
 

 
Fig. 4. Visualization of sorting result 

 
Fig. 4 shows the dominance relationship of solution set X. In this case, we minimize both objectives 1 and 2. Hence, the 
solutions being closer to the lower-left corner is better. Those circle-marked solutions belong to front 1 which dominates the 
rest fronts in current solution set. Triangle-marked and rectangle-marked solutions belong to front 2 and 3 respectively. A 
popular non-dominated sorting algorithm, Fast non-dominated sorting was first proposed in 2002 (Deb et al., 2002). Each 
solution𝑝 is compared with each other and store the comparison result by updating 𝑆௣ or 𝑛௣. 𝑆௣ is a set that stores solutions 
dominated by 𝑝. 𝑛௣ is a counter that count the number of solutions dominating 𝑝. If solution 𝑝 that dominate the compared 
solution, 𝑆௣ will be increased by one. Otherwise, if solution 𝑝 is dominated, its 𝑛௣ will be increased by 1. For each front 
creation, it stores the solutions with 𝑛௣ equals to 0. After all the iterations, fast non-dominated sorting is done. Fast non-
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dominated sorting has a time complexity of O(𝑀𝑁ଶ)  is dominated, its 𝑛௣  for it must conduct 𝑀𝑁(𝑁 − 1)   fitness 
comparisons (N is the population size). Moreover, it requires a space complexity of O(𝑁ଶ) to record two assistant indexes. 
 
4.2. Fast Elite Selecting 
 
To reduce computation burden and shorten the simulation time for task scheduling. We proposed Fast Elite Sorting technique 
(FES) for the multi-objective algorithm that requires only one front in each generation. The simple procedure is presented in 
Table 2. 
 
Table 2  
Fast Elite Selecting procedure 

Proposed technique: Fast Elite Selecting 
Input: Solution set X= {𝑋ଵ,𝑋ଶ, . . .𝑋ே} 
Initialization: DefaultFront1 = X   //Assume all solutions are in front 1. 

1.  for each𝑋௜ ∈DefaultFront1 do 

2. for each𝑋௝ ∈DefaultFront1 do 

3.  if (𝑋௜ dominate 𝑋௝) then 

4.     remove 𝑋௝ from DefaultFront1 

5.  else if (𝑋௝ dominate 𝑋௜) then  

6.   remove 𝑋௜ from DefaultFront1 and break 

7.  end if  

8. end 

9.  end 
Output: Front1 solution set F= {𝑋ଵ,𝑋ଶ, . . .𝑋ேಷభ} 

 
In this initialization of FES, we assume all the solutions are in front 1 and let DefaultFront1 include all the solutions. Then, 
for each solution𝑋௜in DefaultFront1, we compare it with other solution 𝑋௝ and see if 𝑋௝ is dominated. If 𝑋௝ is dominated, it 
will be immediately removed from DefaultFront1 because it is impossible to be in front 1. With the same idea, 𝑋௜  is 
dominated by 𝑋௝ instead, the iteration will be broken and go to the next DefaultFront1 element 𝑋௜ାଵ. This step will continue 
until each element in DefaultFront1 is iterated. After that, the survival of solutions in DefaultFront1 is the winner being 
dominated by nobody. The advantage of FES is its time complexity. The complexity can be expressed as O(𝑀𝑁ிଶ). (M is the 
number of objective functions and 𝑁ி  is the number of first front non-dominated solutions which is always less or equal to 
than N) The best case of time complexity of FES is O(𝑀𝑁) where the first solution dominates all the others and end at first 
solution. On the other hand, the worst case lies in all the solutions are non-dominated with each other, then the time complexity 
will be O(𝑀𝑁ଶ)  which is the same time complexity of fast non-dominated sort. 
 
It is because BSSO requires only one front for updating the solutions in each generation, so applying fast non-dominated 
sorting technique in BSSO becomes redundant for pairwise comparison. With the benefit of FES, computation burden can be 
significantly reduced especially when the size of solution set is large. The reason should be contributed to the remove right 
after comparison idea. We remove solutions being dominated from DefaultFront1 right after comparison. Hence, comparison 
times can be reduced. On the other hand, fast non-dominated sorting requires 𝑁ଶ on any conditions. 
 
4.3. Card Sorting Local Search 
 
4.3.1 Idea of Card Sorting Local Search (CSLC) 
 
Card Sorting Fable:  
 
Card Sorting is a procedure when you are playing poker games like Big two. In the beginning of Big two, the dealer shuffles 
the cards and deals 13cards to 4 players. Before the players check the cards, everyone expects their luck to be fair (non-
dominated concept). However, after sorting the cards, some will realize that their cards are not better, but some lucky man 
will get a full house, four of a kind bomb or even straight flush (dominating solutions). 
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Explanation: 
 
This story explicitly illustrated the idea of CSLS. Imagining that the cards each player gets is a non-dominated solution. Some 
cards will be found to be better after the card sorting procedure, but some do not. Like CSLS, it cannot assure any solution to 
be better after updating but it can make sure the solution will not be worse. It is worth mentioning that, CSLS doesn’t require 
anything but the solution itself (Every player can only play his/her own cards). The detailed procedures are presented in Table 
4. 
 
4.3.2 The CSLS Operation Explanation 
 
CSLS can start from the final output of any multi-objective algorithm, non-dominated solution set. In the initialization state, 
Lgen, the iteration time, is initialized based on the scale of the scenario. Cs, the card sorting percentage, is predetermined by 
ANOVA test. CardSortingDistance is also associated with the size of problems. About the above-mentioned parameters, we 
will discuss it in detail in the next section. In this section, we discuss the details of this approach and append the pseudo code 
in Table 3. 
 
For each solution in non-dominated solution set archive A, we determine a random number r1 with an interval [0, 1]. This 
random number is to determine the operation of this solution. If r1 < Cs, then we do card sorting. If not, we force a random 
task of this solution to be processed on the cloud. 
 
If r1 < Cs, then we set Sorting times to be 0, and do card sorting. Note that for each solution, we need only one effective card 
sorting operation. This is the reason we used while here because this card sorting may not success at the first pick of the cards. 
For instance, if we get Ti and Ti+CardSortingDistance and they are both originally assigned to Pj, then a card sorting here will fail due 
to the same processor. Therefore, we must check if the two cards (two tasks) share the same value (processors). If not, then 
card sort. If yes, then record it by counter and move the index, Card1, to the next and continue the while loop until this card 
sorting operation is successful. 
 

Fig. 5. An example of two trial card sorting in 2nd 
solution 

Fig. 6. Updated Solutions 
 

 
 

A card sorting example is shown in Fig. 5, 1st solution has successfully done a card sorting at once, while 2nd solution failed 
in first trial, but moved to next variable and succeeded this time. The results are presented in Fig. 6. 

 
If r1 > Cs, CardForcing operation is conducted, card forcing means forcing a random card to be a certain card that the magician 
meant to. In fog computing task scheduling problem. The cloud processor is extraordinarily special for its astonishing high 
processing rate but significantly high operation cost. As a result, we make Cf number of tasks to be processed on the cloud 
and see if the solution could be better. The illustration of CardForcing technique is shown in Fig. 7. 
 
 

 
Fig. 7. CardForcing operation 
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Table 3  
Pseudo code of CSLS 

Proposed technique: Card Sorting Local Search  
Input: Non-dominated Solution set archive A= {𝐴ଵ,𝐴ଶ, …𝐴ே} 
Parameter initialization: Lgen, Cs, CardSortDistance. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

for Ai in A do 

 counter = 0 
r1 =𝜌 ∈ ሾ0,1ሿ 
Card1 =𝜌 ∈ ሾ0, ”𝑁𝑣𝑎𝑟”ሿ 
if (r1< Cs) then 

 Sorting times= 0 
While (Sorting times <1) do 

 Card1 = Card1 %Nvar 
Card2 = (Card1 +CardSortingDistance) %Nvar 
if (Card1≠Card2) then  

 Swap Card1 with Card2 
else 

 counter+1 
if (counter>3) 

 break while  
else 

 Card1 +1 
end if  

end if  
end while 

else 
 Pick Cf×Nvar  random cards and force them to process on the cloud 

24. end if 

25.  end for 

 
4.3.3 Parameters 
 
Before introducing the approach, the parameters description is listed in Table 4. 
 
Table 4  
CSLS parameters description 

Parameter Description 
Lgen Local search times 

Cs Card sorting rate 
Cf Percentage of card forcing variables 

CardSortingDistance Swapping distance of one sorting operation 
 𝐿𝑔𝑒𝑛 = Nvar2  (9) 

 
In card sorting operation, the probability of any variable to be chosen was𝑃൫𝑋௝൯ = ଵ୒୴ୟ୰ (let 𝑋௝ be the event that𝑗௧௛ variable is 
chosen to be swapped). However, if a variable has been chosen to be𝑋௝ , the variable 𝑋௝ା஼௔௥ௗௌ௢௥௧௜௡௚஽௜௦௧௔௡௖௘  can also be 
considered the one to be chosen, for swapping is a bilateral operation. Therefore, we set the iteration number, Lgen to be half 
of Nvar. Then we expect there are more than half of the variables to be swapped ( E൫𝑋௝൯=𝑃 ൫𝑋௝൯ × 𝐿𝐺𝑒𝑛= ଵ୒୴ୟ୰ × ୒୴ୟ୰ଶ = ଵଶ ). 
 𝐶𝑎𝑟𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = Nvar𝑁𝑣𝑚 − 1 (10) 
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CardSortingDistance is determined by the average task number received by processors. The idea is to make sure the card 
sorting operation is meaningful and effective. In this study, every task has been marked by its source of area and the solution 
is composed in location order. If the CardSortingDistance is too short, the card sorting operation is meaningless. The difference 
between an inappropriate CardSortingDistance an appropriate one is shown in Fig. 8 and Fig. 9. 
 
In Fig. 9, a meaningless card sorting is operated. Task 1 and 2 originally been processed on the same processor and sent from 
the same location but swapped again. 
 

  
Fig. 8. Inappropriate CardSortingDistance Fig. 9. Appropriate CardSortingDistance 

 
Fig. 10 shows an available sorting operation; T1 and T3 were sent from different locations. After sorting, an additional 
transmission is saved. This example shows valid card sorting that brings the potential of searching for a better solution. As a 
result, an appropriate CardSortingDistance setting is necessary. We calculate the average number of tasks from each fog device 
of one scheduling request and divide it by the number of fog devices. The reason is to avoid swapping with the same local 
processor which makes it meaningless. 
 
4.3.4 An Insight of Card Sorting Local search 
 
In this section, we go deep into the insight of CSLS, and see what it did to a solution. The followings are the benefits gained 
from the novel mechanisms: 
 

 The card sorting is between the processors. 
Reason: We card sort until the chosen variables are unequal, then an effective operation is completed. 
Advantage: Reduce redundant and meaningless operations. 

 Card sorting swaps tasks which are sent near each other. 
Reason: It is due to the setting of CardSortingDistance. 
Advantage: It lets the task has a chance to be processed on the processor near the source. Hence, the solution has a 
chance to be better by striking a better load balance or reduction of transmission cost. 
 

 
Fig. 10. Solution before card sorting 

 
In Fig. 10, a solution X = ሼ1,1,1,0,2,3,0,3,1,2,3,3,4,2,0,4,2,3,0,0ሽ  is conducting local search (bold numbers are the chosen 
number to be swapped). A random Card1 12 is picked and Card2 16 which is CardSortingDistance 4 ( ୒୴ୟ୰୒୴୫ିଵ = 4) far from 
Card1 is determined, too.  
 
Before card sorting, the computation load was unbalanced and makespan was high. Besides, due to the unbalanced assignment, 
idle time cost was also high. 
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Fig. 11. Makespan after CardSorting Fig. 12. Solution illustration before CardForcing 

 
After card sorting, T12 and T16 are swapped. As you can see in Figure 11, Makespan is shortened and P1 became a new 
bottleneck of this assignment. On the other hand, the benefit of CardForcing is illustrated in Fig.12. In Fig. 12, 9th task and 
12th task was forced to process on the cloud. The updated solution after CardForcing is in Fig. 13. 
 

 
 

Fig. 13. Solution illustration after CardForcing 
 
As shown in Fig. 13, the makespan was shortened because the computation burden in bottle neck, P3, was released to the 
cloud. As a result, a new solution is generated and the makespan has also been shorten again. 
 
4.4. Proposed Strategy 
 
4.4.1 The Overview of Task Scheduling in Fog Computing 
 
In order to present every method that was previously introduced clearly, we visualized the main algorithms combining with 
the tasks scheduling procedures in Fig. 14.  
 

 
Fig. 14. Task scheduling procedures in this study 

 
Those blocks with dotted line mean the new proposed methods in this study. The description of each step is shown in the 
following: 
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Step 0: cloud center sends a signal to the data center broker to schedule an assignment to different processors. The broker 
received the signal and started BSSO initialization.  
Step 1: The broker starts the BSSO update and execute Card Sorting Local Search after the completion of BSSO. 
Step 2: According to the results of algorithm, assign tasks to determined processors. 
 
4.4.2 EliteSSO Strategy 
 
In this subsection, we present the whole procedures in pseudo code as follows: 
 
Table 5  
EliteSSO strategy 

Proposed strategy: EliteSSO strategy 
1. BSSO Initialization:   
1. X = InitializePopulation()     //Randomly generation initial solutions 
2. A = FastEliteSelecting(X)    //Select solutions of X in front1. 
Output: population X, non-dominated solution set archive A 
 
2. BSSO Update 
Input: population X, non-dominated solution set archive A 
1.  for gen =0 to Ngen do 
2. 
3. 
4. 
5. 
6. 
7. 

gBest = selectGbest(A) //Randomly select one gBest from A 
for sol =0 to Nsol do 

 StepwiseUpdate(Xsol, gBest)  //Elite selection SSO 
end for  
TempX = merge (X*, A)  //merge two sets  
A* = FastEliteSelecting (TempX) 

8.  end for  
Output: non-dominated solution archive A 
 
3.Card Sorting Local Search 
Input: non-dominated solution set archive A 
1.  while LGen is not reached do 
2.    X = SetArchiveAsSolutions(A)  //update archive as new X 
3.    X* = CardSorting(X)      
4.    TempX = merge (X*, A) 
5.    A* = FastEliteSelecting (TempX) 
6.  end while 
Output: non-dominated solution archive A 

  
 Experiments 

 
In this chapter, we listed the experimental data and scenarios in section 5.1. In section 5.3, we introduce two performance 
metrics, IGD and spread. An ANOVA test for Card Sorting Local Search parameter, Cs, is conducted in 5.3. Most importantly, 
the experiment results are presented in 5.4. 
 
5.1. Datasets 
 
We set three different scales of problems, small, medium and large, to evaluate all the algorithms. In addition, for a general 
and fair comparison, each of them has three different datasets. The contents of each dataset are presented in Table 6 to Table 
8. Tasks length and tasks source are attached in Appendix A, processing rates and execution cost are attached in Appendix 
B. 
 
Table 6  
Dataset 1 

Scenarios Small Medium Large 
Cloud # 1 1 1 

Fog device # 4 7 9 
Tasks # 30 50 100 

Deadline 80 100 140 
Po 50 100 200 
Pt 3 5 10 

TCU 1 1 1 
Idle cost  5% execution cost 5% execution cost 5% execution cost 
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 Fixed Violation Cost = instant penalty when the makespan exceed the deadline 
 TCU = transmission cost/unit distance 
 Po: fixed violation cost when the makespan of an assignment violate the SLA regulation. 
 Pt: variable violation cost  
 
Table 7  
Dataset 2 

Scenarios Small Medium Large 
Cloud # 1 1 1 

Fog device # 4 7 9 
Tasks # 30 50 100 

Deadline 70 90 130 
Po 80 130 230 
Pt 4 6 15 

TCU 2 2 2 
Idle cost  3% execution cost 3% execution cost 3% execution cost 

 
Table 8  
Dataset 3 

Scenarios Small Medium Large 
Cloud # 1 1 1 

Fog device # 4 7 9 
Tasks # 30 50 100 

Deadline 75 85 130 
Po 20 120 225 
Pt 2 6 13 

TCU 0.5 0.5 0.5 
Idle cost  2% execution cost 2% execution cost 2% execution cost 

 
5.2. Performance Metrics 
 
The result of the 50 independent experiments for each of the 8 combinations is shown in Table 11-14. The values in the table 
are the fitness values obtained by the algorithm In this section, we introduce three performance metrics used in this study. 
They are Inverted Generation Distance (IGD), Spacing (Spc) and Error Rate (ER).  
 
Inverted Generation Distance 
 
IGD is a widely used performance metric for measuring the proximity of convergence and diversity of the discovered Pareto 
front (Czyzżak & Jaszkiewicz, 1998). The IGD formula is derived as follows formula 11: 
 𝐼𝐺𝐷 = ඥ∑ 𝑑(𝑣,𝑃)ଶ௩∈௉∗|𝑃 ∗|  (11) 

 
For each solution 𝑣  in pareto front, we find a solution 𝑃 with minimum Euclidean distance𝑑(𝑣,𝑃)  in the non-dominated 
solution set found by the algorithm and sum them up then divide it by the size of simulated Pareto front P*. 
 

Spacing 
 
Spacing(Spc) is used to measure the extent of the non-dominated solutions are distributed along the discovered (Schott, 1995) 
as shown in formula 12. 
 

𝑆𝑝𝑐 = ඩ 1𝑛 − 1෍ ௡
௜ିଵ ൫𝑑௜ − 𝑑̅൯ଶ (12) 

where 𝑑௜ = min௝ ൫ห𝑓ଵ௜ − 𝑓ଵ௝ห + ห𝑓ଶ௜ − 𝑓ଶ௝ห൯, 𝑖, 𝑗 = 1,2, …𝑛. Where n is the number of discovered non-dominated solutions. If the 
value of this metric is zero, it indicated that all members of the discovered Pareto front are equidistantly spaced. 
 
Error Rate 
 
Error Rate (ER) is to calculate the percentage of true Pareto solutions among discovered temporary non-dominated solutions𝑃 
(Van Veldhuizen, 1999) is shown as formula 13 below: 
 𝐸𝑅 = ∑ 𝑒௜௡௜ୀଵ𝑛  (13) 
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 𝑛 is the number of solutions in 𝑃.𝑒௜ is a binary variable. If the solution found in P is the same solution in P*, then the 𝑒௜ will 
be 0. Otherwise, if the solution is not the solution in P*, 𝑒௜ will be 1. Hence, this metric is the lower the better. 
 
5.3. CSLS Parameter Design 
 
There are two customizable parameters in CSLS, Cs and Cf respectively. Cs represents the card sorting rate and Cf indicates the 
percentage of card forcing variables. However, Cf is strongly interact with Cs. It is tough to determine an appropriate 
combination for them. Hence, for a simple and convincing parameter design. We conduct a one-way ANOVA test to determine 
Cs only and fix Cf =0.1 for our experiments. 
 
For each size of problem, we set 3 different levels: Cs =0.75, Cs =0.85 and Cs =0.95. For each level, we execute 40 runs We 
set three different level of the proposed algorithm with Cs=0.75, Cs=0.85 and Cs=0.95, and compare it with other multi-
objective optimization algorithms, i.e., MOPSO and NSGA-II. As we mentioned above, the collected data is better to meet 
the normality test. We present the normality test in 5.3.1 and provide the ANOVA table in 5.3.2. Interval plots are presented 
in 5.3.3 to distinguish the difference of each level. Finally, the discussion and conclusion are offered in 5.3.4 
 
5.3.1. Normality Test 
 
In this subsection, normality tests are conducted on each metric. The figures are shown below: 
 

  

  
Fig. 15. Normality tests 

 
To summarize, Spc and Nnds meets the normality assumption, but IGD and ER do not. That is, we mainly rely on the results 
of Spc and Nnds to design the Cs but also refer to the results of IGD and ER. 
 
5.3.2. ANOVA 
 
For a common parameter for every size of problem, we execute 40 runs for each scale and combine for analysis. To combine 
the results of a distinct scale of problems, all the metrics are normalized to [0,1] interval by min-max normalization. The 
ANOVA model information and results are shown below: 
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Table 9  
ANOVA table 

Metric Source DF SS MS F-value P-value 
IGD 

 
Factor 
Error 
Total 

2 
357 
359 

0.4521 
19.3811 
19.8333 

0.22607 
0.005429 

4.16 0.016 

 S=0.0263 R-sq=2.68%         R-sq(adj)=1.73% 
Spc Factor 

Error 
Total 

2 
357 
359 

0.9357 
20.26510 
21.1867 

0.46786 
0.5673 

8.25 
 

0.000 
 

 S=0.238171 R-sq=4.42%         R-sq(adj)=3.88% 
ER IGD 

Error 
Total 

2 
357 
359 

0.01826 
1.10520 

0.009132 
0.003096 

2.95 0.054 

 S=0.0556400 R-sq=1.63%         R-sq(adj)=1.07% 
Nnds IGD 

Error 
Total 

2 
357 
359 

0.0737 
21.6918 

0.03684 0.61 0.546 

 S=0.24698 R-sq=0.34%         R-sq(adj)=0% 
 
We can infer from Table 9 that different levels on IGD and Spc are significantly unequal. However, for ER and Nnds, we have 
no strong evidence to prove the difference between each level. In the following, we distinguish the difference between each 
level by interval plots. 
 
From the ANOVA table, interval plots in Fig. 16, we can infer the following. 
: 
1. Statistically, the Spc data acquired by Cs=0.85 is significantly better than the other levels. 
2. IGD and ER data do not pass the assumption of normality. However, they all point to the same level, Cs=0.85. 
3. Nnds passes the normality assumption, but there exists no significant difference between each level. Nevertheless, it 

still shows that the level, Cs=0.85, is a little bit better than the other.  
 
In summary, all the results of metrics point to the level, Cs=0.85. That means, we should leave 15% probability for the Card 
forcing operation which can help the CSLS search non-dominated solutions more effectively. 
 

  

  
Fig. 16. interval plots 
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5.4 Experimental Results 
 
In this section, we present the experiment results. We generated 3 datasets for each size of problem. Hence, 9 different 
experiments are conducted. For each experiment, we execute 40 runs for each algorithm. The parameter of each algorithm 
and CSLS is shown in Table 10 
 
Table 10  
Algorithm parameters 

BSSO 
Cg 0.7 
Cw 0.9 

EliteSSO 
Cg 0.7 
Cw 0.9 

MOPSO 
w 0.871111 
C1 1.496180 
C2 1.496180 

NSGA-II 
Crossover percentage 0.7 
Mutation percentage 0.3 

Mutation rate 0.05 
CSLS 

Cs 0.85 
Cf 0.1 

 
For each size of problems, we set different size of particle number and generation numbers. The related information is 
organized in Table 11. 
 
Table 11  
Particle, generation number and archive size 

Small BSSO MOPSO NSGA-II EliteSSO 
Nsol 50 50 50 50 
Ngen 1000 1000 1000 1000 

Archive 50 50 50 50 
Medium BSSO MOPSO NSGA-II EliteSSO 

Nsol 100 100 100 100 
Ngen 1000 1000 1000 1000 

Archive 100 100 100 100 
Large BSSO MOPSO NSGA-II EliteSSO 
Nsol 150 150 150 150 
Ngen 1000 1000 1000 1000 

Archive 150 150 150 150 
 
The results of small, medium, and large are presented in Table 12, Table 13 and Table 14. The final non-dominated solutions 
of each result are shown after each table. Also, a brief discussion of the results is attached to the end of the figures. All 
algorithms are coded in Eclipse Java on a 64-bit Windows 10 PC, implemented on an Intel Core i7-7500U CPU @ 2.70 GHz 
notebook with 12 GB of memory. In addition, we conducted 10 runs on four different threads for every algorithm (i.e., each 
algorithm was conducted 40 runs.). 
 
 

   
Fig. 17. Small size dataset pareto front 
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Table 12  
Experimental results of small size problem 

S1 

Algo.      𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത              σ் 
BSSO 

MOPSO 
NSGA-II 
EliteSSO 

0.6249 
0.3710 
0.5892 
0.5124 

0.2693 
0.0238 
0.1797 
0.2445 

17.0903 
18.5076 
23.3736 
15.9746 

6.9479 
9.3089 
10.3677 
9.5279 

0.8805 
0.9869 
0.9893 
0.8720 

0.2644 
0.0193 
0.0494 
0.1840 

8.9500 
10.0250 
2.3250 
20.5000 

6.2247 
3.5531 
1.8893 
9.9800 

7.8046 
5.8975 
10.5644 
6.4351 

0.9779 
0.3651 
0.3488 
0.7545 

S2 

Algo.      𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത               σ் 
BSSO 

MOPSO 
NSGA-II 
EliteSSO 

0.6899 
0.3703 
0.5152 
0.5909 

0.2373 
0.0327 
0.1511 
0.2534 

17.7102 
20.4190 
17.8956 
16.9341 

5.9968 
11.459 
8.2646 
9.3648 

0.9371 
0.9861 
0.9942 
0.8928 

0.1655 
0.0259 
0.0360 
0.1647 

11.9750 
10.7250 
2.9000 
21.6500 

8.2749 
3.2786 
1.9723 
10.0288 

7.6923 
5.2376 
9.6751 
5.7790 

0.9497 
0.3226 
0.2996 
0.4812 

S3 

Algo.      𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത              σ் 

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

0.6610 
0.2988 
0.4077 
0.4830 

0.2529 
0.0236 
0.0834 
0.2400 

16.5421 
19.1278 
25.7452 
13.6351 

4.7461 
10.4615 
9.1027 
3.4612 

0.9191 
0.9743 
0.9945 
0.8674 

0.2163 
0.0313 
0.0200 
0.1316 

11.4000 
18.2500 
2.6750 
24.9000 

6.7483 
4.6301 
1.5064 
11.2978 

8.3106 
7.2008 
11.0483 
6.2987 

0.8701 
0.7665 
0.5097 
0.4981 

 
 

In small scale problems, MOPSO has a strong competitiveness in IGD with EliteSSO. However, EliteSSO has a better ability 
in searching for the final non-dominated solutions. In addition, EliteSSO has a better diversity for its Spc dominated all the 
other algorithms.  Note the interesting part in the third front in Fig. 17, the gap was caused by the deadline. The deadline set 
in dataset 2 is 70, that is, the assignments on the right-hand side are still worthy even they exceeded the deadline and get 
penalized. It is because the assignments assign many tasks to fog devices to save the cost instead of executing on the cloud. 
 
Table 13  
Experimental results of medium size problem 

M1 
Algo.     𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത                σ் 
BSSO 

MOPSO 
NSGA-II 
EliteSSO 

0.2951 
0.6627 
0.5848 
0.2714 

0.0270 
0.0761 
0.0542 
0.0340 

14.5437 
26.4642 
36.132 
10.2454 

4.2349 
7.64556 
10.7435 
4.1356 

0.9983 
1.0000 
1.0000 
0.9241 

0.0058 
0.0000 
0.0000 
0.0601 

11.150 
0.1750 
0.1250 
50.800 

5.6460 
0.3800 
0.3307 
5.9841 

21.898 
18.840 
50.649 
18.546 

2.3124 
1.0688 
1.4013 
1.2998 

M2 
Algo.     𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത                 σ் 

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

0.3841 
0.6656 
0.6127 
0.3347 

0.0591 
0.0810 
0.0834 
0.0374 

16.2154 
27.5213 
34.5256 
14.1525 

4.4420 
6.5413 
11.2414 
4.5796 

0.9982 
1.0000 
1.0000 
0.9407 

0.0065 
0.0000 
0.0000 
0.0721 

9.1250 
0.1000 
0.0750 
49.900 

4.5232 
0.3000 
0.2634 
6.6250 

21.318 
18.900 
49.079 
16.470 

1.3276 
1.5734 
1.6549 
0.7728 

M3 
Algo.     𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത                 σ் 

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

0.291 
0.542 
0.522 
0.260 

0.037 
0.050 
0.058 
0.027 

15.6693 
28.0490 
31.9854 
13.6744 

4.0185 
8.7335 
12.0512 
5.9447 

0.9944 
1.0000 
1.0000 
0.9277 

0.0118 
0.0000 
0.0000 
0.0409 

11.000 
0.2500 
0.0750 
58.550 

4.1292 
0.6982 
0.2634 
9.5130 

23.578 
19.888 
51.842 
18.357 

1.7260 
1.2219 
3.0614 
0.8437 

 

   
Fig. 18. Medium size dataset pareto front 

 
From the above figures, we can see that nearly all the final non-dominated solutions are found by EliteSSO. Also, EliteSSO 
has dominated all the other algorithms in IGD, ER, Spc, Nnds and Time. BSSO has also demonstrated its power in medium-
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sized problems. However, due to the Fast Elite selecting technique, EliteSSO is faster than BSSO, even it has applied local 
search technique, CSLS. 
 
Table 14  
Experimental results of large size problem 

L1 

Algo.     𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത                   σ்  

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

0.6229 
1.0922 
0.9409 
0.4300 

0.0759 
0.1135 
0.0798 
0.0410 

15.4398 
76.1219 
28.8946 
11.8291 

4.5254 
13.1457 
11.8243 
4.8247 

1.0000 
1.0000 
1.0000 
0.9305 

0.0000 
0.0000 
0.0000 
0.0579 

2.8000 
0.1000 
0.0250 
64.4000 

2.5120 
0.3000 
0.1561 
8.4876 

64.1200 
71.4048 

174.0804 
51.6086 

3.5634 
3.4427 
10.2135 
1.8958 

L2 
Algo.     𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത                   σ்  

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

0.4238 
1.0104 
0.7518 
0.3251 

0.0424 
0.0713 
0.0850 
0.0314 

12.64613 
86.1468 
28.5113 
9.4253 

5.3751 
15.1584 
11.7432 
5.2142 

1.0000 
1.0000 
1.0000 
0.9439 

0.0000 
0.0000 
0.0000 
0.0654 

3.7500 
0.0250 
0.1000 
77.4750 

4.1638 
0.1561 
0.3742 
9.7082 

60.0497 
81.3329 

178.4684 
51.6956 

2.4371 
4.3876 
8.0741 
2.3856 

L3 

Algo.     𝐼𝐺𝐷തതതതത             σூீ஽              𝑆𝑝𝑐തതതതത              σௌ௣௖             𝐸𝑅തതതത               σாோ              𝑁௡തതതത                  σே௡                𝑇ത                   σ்  

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

0.3852 
0.6533 
0.6561 
0.3107 

0.0307 
0.0624 
0.0706 
0.0347 

14.88989 
40.69087 
31.90342 
10.8291 

5.2499 
12.9534 
12.9282 
5.1606 

1.0000 
1.0000 
1.0000 
0.9536 

0.0000 
0.0000 
0.0000 
0.0604 

1.7500 
0.1750 
0.1500 
82.6250 

2.0218 
0.4409 
0.4770 
11.2109 

82.3662 
95.3730 

194.3408 
71.2579 

4.4507 
6.8829 
8.6384 
5.0152 

 

   
Fig. 19. Large size dataset pareto front 

 
In large scale problems, the difference of each algorithm has been enlarged. EliteSSO acquired more high-quality solutions in 
shorter simulation time. In summary, the power of EliteSSO is strengthened along with the increase of problem size. In time 
efficiency, solution quality and solutions diversity, EliteSSO overwhelmed other algorithms in medium and large problems. 
 
5.4. Statistical Verification 
 
To verify the significant difference over the whole multiple comparison, we conducted Friedman’s test on the compared 
algorithms. We set the significance level α = 0.05 as a threshold to determine whether to reject hypothesis. IGD, Spc and ER. 
The statistical results based on three performance metrics, IGD, Spc and ER, are presented in Table 15 to Table 17: 
 

Table 15  
The results of Friedman’s test on IGD 

Friedman’s test 
Algo.                      Rankതതതതതതത                     Statistic               p-value 
BSSO 

MOPSO 
NSGA-II 
EliteSSO 

2.6667 
2.8889 
2.8889 
1.5556 

 
6.6 

 
0.086 

 

Table 16  
The results of Friedman’s test on Spc 

Friedman’s test 
Algo.                    Rankതതതതതതത                   Statistic              p-value 
BSSO 

MOPSO 
NSGA-II 
EliteSSO 

2 
1 

3.4444 
3.5556 

24.33 0.000 

 

 
Table 17  
The results of Friedman’s test on ER 

Friedman’s test 
                 Algo.                                                    Rankതതതതതതത                                                  Statistic                                                   p-value 

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

2.3333 
3.1667 

3.5 
1 

 
24.12 

 
0.000 
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According to the above results of Friedman’s tests, there exist significance difference among all algorithms on Spc and ER. 
Since the significant difference, we applied Holm’s method to further distinguish the differences pairwise between the 
proposed EliteSSO and other algorithms on Spc and ER. The results are shown in Table 18 and Table 19. 
 

Table 18  
Holm’s test on Spc 

Holm’s test 
Algo.                                        Statistic                                  p-value 

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

1.732 
4.330 
4.330 

0.083 
0.000 
0.000 

 

Table 19  
Holm’s test on ER 

Holm’s test 
 Algo.                                      Statistic                               p-value             

BSSO 
MOPSO 
NSGA-II 
EliteSSO 

2.191 
3.560 
4.108 

0.028 
0.000 
0.000 

 

 
According to the Holm’s test on Spc, EliteSSO has no significant difference with BSSO. Since EliteSSO searched for the 
potential non-nominated solutions around the final non-dominated solutions of BSSO. Nevertheless, EliteSSO has significant 
differences with MOPSO and NSGA-II. For another metric, ER, EliteSSO is superior to all the other algorithms. 
 

 Conclusion 
 
In conclusion, this study has made significant strides towards improving and streamlining BSSO through the introduction of 
the Fast Elite Selecting (FES) one-front non-dominated sorting technique. This novel method successfully reduced the time 
complexity of sorting techniques from 𝑂(𝑀𝑁ଶ) to  𝑂(𝑀𝑁𝑛𝑑𝑠ଶ) , marking a significant advance in computational efficiency. 
Furthermore, our research has expanded the potential of non-dominated solution exploration by proposing a local search 
approach named "Card Sorting". This method, specifically designed for task scheduling, has shown promising results in 
enhancing the exploration ability of non-dominated solutions. Addressing the critical issue of simulation delay in fog 
computing task scheduling, we have approached it from three distinct aspects: algorithm time complexity, solutions 
exploration, and parallel computing. In doing so, we have provided a new perspective on this problem and established a 
pathway for future research in addressing simulation delay issues. Lastly, we have also paved the way for further studies in 
utilizing multi-objective optimization algorithms for fog computing task scheduling problems. This signifies a new direction 
for this field, highlighting the potential of multi-objective optimization algorithms in solving such complex problems. Our 
study, therefore, serves not just as a demonstration of these novel approaches but also as a stepping stone for future research 
in these fields. We believe that the methods and perspectives introduced in this paper will significantly contribute to the 
ongoing efforts to optimize fog computing task scheduling and similar complex multi-objective optimization problems. 
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Appendix A 

 Tasks length and Task source 
A. 1. Length and source of each task in S1. 

No. Length Source No. Length Source No. Length Source 
1 9719 1 11 4879 2 21 12960 2 
2 10564 1 12 11602 2 22 13593 3 
3 13090 1 13 9629 2 23 11834 3 
4 16253 1 14 9278 2 24 7548 3 
5 8640 1 15 9434 2 25 11856 4 
6 12990 1 16 12224 2 26 12102 4 
7 6723 1 17 9575 2 27 7594 4 
8 7883 1 18 7207 2 28 6695 4 
9 14306 1 19 10140 2 29 13738 4 
10 8104 2 20 11194 2 30 10050 4 

 
A. 2. Length and source of each task in S2. 

No. Length Source No. Length Source No. Length Source 
1 17744 1 11 9823 2 21 8687 3 
2 10680 1 12 12383 2 22 13439 3 
3 8018 1 13 10480 2 23 7539 3 
4 13058 1 14 8921 2 24 11151 3 
5 9873 1 15 9721 2 25 11292 4 
6 12849 1 16 11835 2 26 6373 4 
7 6251 1 17 11923 2 27 12387 4 
8 9825 1 18 8374 3 28 7647 4 
9 8461 2 19 4443 3 29 7128 4 
10 7300 2 20 13042 3 30 7258 4 

 
 

A. 3. Length and source of each task in S3. 
No. Length Source No. Length Source No. Length Source 
1 10402 1 11 9282 3 21 9356 4 
2 13166 1 12 12975 3 22 11778 4 
3 7334 2 13 7071 3 23 7364 4 
4 13631 2 14 10078 3 24 9556 4 
5 11098 2 15 9513 3 25 9168 4 
6 8750 2 16 14252 3 26 9943 4 
7 11961 2 17 10596 3 27 15449 4 
8 11115 2 18 12046 3 28 8245 4 
9 10054 2 19 14209 3 29 9969 4 
10 10800 2 20 16246 3 30 9445 4 

 
A. 4. Length and source of each task in M1. 

No. Length Source No. Length Source No. Length Source 
1 12306 1 18 13099 2 35 10967 5 
2 10344 1 19 6014 2 36 5362 5 
3 13154 1 20 6812 3 37 7695 5 
4 11789 1 21 11654 3 38 13803 5 
5 13537 1 22 6985 3 39 10868 5 
6 8117 1 23 13273 3 40 9315 6 
7 10504 1 24 5833 3 41 9178 6 
8 15241 1 25 11476 3 42 9577 6 
9 9430 1 26 8333 3 43 4187 6 
10 12567 1 27 8863 4 44 9904 6 
11 11410 2 28 10473 4 45 10506 7 
12 9453 2 29 12786 4 46 9301 7 
13 17191 2 30 9748 4 47 14309 7 
14 16110 2 31 12044 4 48 12148 7 
15 10733 2 32 6285 4 49 6821 7 
16 10120 2 33 8407 5 50 11950 7 
17 14119 2 34 15797 5    
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A. 5. Length and source of each task in M2. 
No. Length Source No. Length Source No. Length Source 
1 7675 1 18 5324 3 35 10371 6 
2 7953 1 19 11958 3 36 12640 6 
3 16999 1 20 14635 3 37 5726 6 
4 8678 1 21 11964 4 38 10074 6 
5 9567 1 22 16906 4 39 10809 6 
6 6386 1 23 5407 4 40 10848 6 
7 13254 1 24 6950 4 41 6355 6 
8 11634 1 25 10660 4 42 11337 6 
9 7893 1 26 6396 4 43 9041 6 
10 9425 2 27 9385 4 44 13308 7 
11 13313 2 28 16265 4 45 10473 7 
12 12032 2 29 9633 4 46 12786 7 
13 6254 2 30 8987 4 47 9648 7 
14 8307 2 31 14892 5 48 12043 7 
15 16402 3 32 12926 5 49 6385 7 
16 12152 3 33 10899 5 50 8413 7 
17 6964 3 34 6034 5    

 
A. 6. Length and source of each task in M3. 

No. Length Source No. Length Source No. Length Source 
1 10282 1 18 7868 3 35 10046 6 
2 10936 1 19 13993 3 36 11144 6 
3 11959 1 20 13553 3 37 4128 6 
4 11314 1 21 9610 3 38 15240 6 
5 8511 1 22 13610 4 39 5661 6 
6 11369 1 23 8992 4 40 3140 6 
7 14368 1 24 9928 4 41 12874 6 
8 8512 2 25 9362 4 42 7984 7 
9 8741 2 26 9811 4 43 11216 7 
10 15925 2 27 11686 4 44 6674 7 
11 8413 2 28 4694 4 45 5360 7 
12 7283 2 29 11383 5 46 8652 7 
13 7068 2 30 7417 5 47 11450 7 
14 13185 2 31 11179 5 48 6103 7 
15 10188 3 32 12307 5 49 14942 7 
16 6766 2 33 11824 5 50 8758 6 
17 9646 3 34 4959 5    

 
 
A. 7. Length and source of each task in L1. 

No. Length Source No. Length Source No. Length Source 
1 5745 1 35 7649 4 69 9389 7 
2 11441 1 36 9609 4 70 11283 7 
3 6921 1 37 4709 4 71 4649 7 
4 5759 1 38 7669 4 72 8974 7 
5 11204 1 39 10040 4 73 9310 7 
6 7005 1 40 12120 4 74 13240 7 
7 7470 2 41 9587 4 75 11625 7 
8 10155 2 42 4908 4 76 9567 7 
9 11157 2 43 11258 4 77 9832 7 
10 12669 2 44 8920 4 78 11054 7 
11 10961 2 45 8670 4 79 13825 8 
12 11123 2 46 1960 5 80 10040 8 
13 10792 2 47 13552 5 81 8597 8 
14 14891 2 48 8095 5 82 9239 8 
15 8519 2 49 10969 5 83 11748 8 
16 7995 2 50 14628 5 84 8207 8 
17 6485 2 51 12043 5 85 10906 8 
18 10578 2 52 13533 5 86 9497 8 
19 8450 2 53 11221 5 87 7264 8 
20 10150 2 54 13525 5 88 12620 9 
21 7136 3 55 9689 5 89 10739 9 
22 8902 3 56 8739 5 90 7874 9 
23 11303 3 57 11041 6 91 7013 9 
24 10551 3 58 7294 6 92 9437 9 
25 10744 3 59 11642 6 93 11609 9 
26 10803 3 60 14157 6 94 9322 9 
27 6413 3 61 7541 6 95 8618 9 
28 10042 3 62 12381 6 96 13325 9 
29 11425 3 63 12124 6 97 7102 9 
30 10306 3 64 13927 6 98 15348 9 
31 9437 3 65 11463 6 99 11774 9 
32 13268 4 66 10753 6 100 9038 9 
33 12902 4 67 16585 6    
34 7123 4 68 11550 6    
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A. 8. Length and source of each task in L2. 
No. Length Source No. Length Source No. Length Source 
1 7654 1 35 6132 3 69 9689 7 
2 10694 1 36 9652 3 70 12826 7 
3 13849 1 37 12838 3 71 11020 7 
4 9013 1 38 10567 4 72 6148 7 
5 8908 1 39 12317 4 73 12784 7 
6 10148 1 40 7460 4 74 14702 7 
7 11450 1 41 13996 4 75 12805 8 
8 9974 1 42 16511 4 76 4320 8 
9 11330 1 43 7891 4 77 10910 8 
10 14690 1 44 10741 4 78 11280 8 
11 10852 1 45 9768 4 79 9136 8 
12 6544 1 46 12900 5 80 7615 8 
13 12485 1 47 13888 5 81 14738 8 
14 7568 1 48 14978 5 82 11173 8 
15 4784 1 49 10313 5 83 5098 8 
16 15674 1 50 5634 5 84 10492 8 
17 6957 1 51 12188 5 85 13538 8 
18 10079 2 52 9781 5 86 3990 8 
19 12646 2 53 9445 5 87 11833 8 
20 13094 2 54 14499 5 88 11235 8 
21 11002 2 55 9847 5 89 18888 9 
22 9013 2 56 10130 5 90 9826 9 
23 11342 2 57 8242 5 91 7776 9 
24 11497 2 58 10816 6 92 7760 9 
25 14888 2 59 11621 6 93 11814 9 
26 11057 3 60 11907 6 94 10125 9 
27 9967 3 61 11853 6 95 9138 9 
28 9411 3 62 10661 6 96 8109 9 
29 10451 3 63 14438 6 97 8495 9 
30 8244 3 64 7254 6 98 11319 9 
31 8608 3 65 9408 6 99 9045 9 
32 8985 3 66 15378 6 100 13113 9 
33 9484 3 67 5012 7    
34 7036 3 68 7280 7    

 

A. 8. Length and source of each task in L3. 
No. Length Source No. Length Source No. Length Source 
1 14789 1 35 16189 4 69 10558 7 
2 3773 1 36 12561 4 70 8220 7 
3 10890 1 37 11396 4 71 10206 7 
4 15952 1 38 10480 4 72 9157 7 
5 10010 1 39 10583 4 73 7251 7 
6 13250 1 40 15582 4 74 10828 7 
7 4914 1 41 5526 4 75 8535 7 
8 9148 1 42 11805 4 76 5459 7 
9 9776 2 43 6109 4 77 11681 7 
10 9839 2 44 9204 5 78 5854 7 
11 7585 2 45 8136 5 79 6553 8 
12 8432 2 46 2970 5 80 4791 8 
13 12658 2 47 11552 5 81 9526 8 
14 18774 2 48 11100 5 82 14406 8 
15 13680 2 49 12190 5 83 8653 8 
16 17091 2 50 12032 5 84 9064 8 
17 6650 2 51 6617 5 85 7461 8 
18 10036 2 52 10895 5 86 11424 8 
19 11882 3 53 13733 5 87 6924 8 
20 11069 3 54 4726 5 88 8420 9 
21 8625 3 55 4892 6 89 13682 9 
22 6348 3 56 7116 6 90 8031 9 
23 8201 3 57 13532 6 91 8529 9 
24 14034 3 58 9137 6 92 12104 9 
25 9647 3 59 8903 6 93 6729 9 
26 12868 3 60 11369 6 94 14374 9 
27 12218 3 61 13020 6 95 6898 9 
28 12515 3 62 12655 6 96 11411 9 
29 10179 3 63 14565 6 97 9678 9 
30 7529 4 64 5871 6 98 14625 9 
31 11270 4 65 13150 6 99 10929 9 
32 10802 4 66 8269 6 100 19363 9 
33 6106 4 67 10179 6    
34 12858 4 68 9412 7    
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Appendix B 

Processing Rates and Cost 
 

Table B-1  
Processing Rates and Cost of SD1 

Problem Scale: Small   Data set: 1    
 Cloud Fog1 Fog2 Fog3 Fog4 

Processing 
Rate 4000 2000 1500 1000 500 

Cost 55 15 12 8 3 
 

Table B-2  
Processing Rates and Cost of SD2 

Problem Scale: Small   Data set: 2   
 Cloud Fog1 Fog2 Fog3 Fog4 

Processing 
Rate 4000 1500 1000 800 500 

Cost 55 12 8 5 3 
 

 
 

Table B-3  
Processing Rates and Cost of SD3 

Problem Scale: Small   Data set: 3    
 Cloud Fog1 Fog2 Fog3 Fog4 

Processing 
Rate 4000 2000 1500 1000 500 

Cost 55 15 12 8 3 
 

Table B-4  
Processing Rates and Cost of MD1 

Problem Scale: Medium   Data set: 1    
Cloud Fog1 Fog2 Fog3 Fog4 
4000 2500 2000 1500 1000 

55 32 27 15 8 
Fog5 Fog6 Fog7   
1000 500 500   

8 3 3   
 

 
 

Table B-5  
Processing Rates and Cost of MD2 

Problem Scale: Medium   Data set: 2    
Cloud Fog1 Fog2 Fog3 Fog4 
4000 2000 1000 1000 1000 

55 27 8 8 8 
Fog5 Fog6 Fog7   
800 800 500   
5 5 3   

 

Table B-6  
Processing Rates and Cost of MD3 

Problem Scale: Medium   Data set: 3   
Cloud Fog1 Fog2 Fog3 Fog4 
4000 2000 1000 1000 1000 

55 27 8 8 8 
Fog5 Fog6 Fog7   
800 800 500   

5 5 3   
 

 
 

Table B-7  
Processing Rates and Cost of LD1 

Problem Scale: Large   Data set: 1    
Cloud Fog1 Fog2 Fog3 Fog4 
5000 2000 2000 1500 1500 

65 27 27 15 15 
Fog5 Fog6 Fog7 Fog8 Fog9 
1000 1000 800 800 500 

8 8 5 5 3 
 

Table B-8  
Processing Rates and Cost of LD2 

Problem Scale: Large   Data set: 2    
Cloud Fog1 Fog2 Fog3 Fog4 
5000 2500 2500 2000 2000 

65 32 32 27 27 
Fog5 Fog6 Fog7 Fog8 Fog9 
1000 1000 800 800 500 

8 8 5 5 3 
 

 
 

Table B-9  
Processing Rates and Cost of LD3 

Problem Scale: Large   Data set: 3  
Cloud Fog1 Fog2 Fog3 Fog4 
5000 2500 2000 2000 2000 

65 32 27 27 27 
Fog5 Fog6 Fog7 Fog8 Fog9 
1000 1000 800 500 500 

8 8 5 3 3   
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