

* Corresponding author
E-mail: liuzhenyao49@gmail.com (Z. Liu)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2023 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.7.004

International Journal of Industrial Engineering Computations 14 (2023) 723–748

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Bi-Objective simplified swarm optimization for fog computing task scheduling

Wei-Chang Yeha, Zhenyao Liua* and Kuan-Cheng Tsenga

aIntegration and Collaboration Laboratory, Department of Industrial Engineering and Engineering Management, National Tsing Hua
University, Hsinchu, Taiwan
C H R O N I C L E A B S T R A C T

Article history:
Received March 1 2023
Received in Revised Format
May 10 2023
Accepted July 31 2023
Available online
July, 31 2023

 In the face of burgeoning data volumes, latency issues present a formidable challenge to cloud
computing. This problem has been strategically tackled through the advent of fog computing,
shifting computations from central cloud data centers to local fog devices. This process minimizes
data transmission to distant servers, resulting in significant cost savings and instantaneous
responses for users. Despite the urgency of many fog computing applications, existing research
falls short in providing time-effective and tailored algorithms for fog computing task scheduling.
To bridge this gap, we introduce a unique local search mechanism, Card Sorting Local Search
(CSLS), that augments the non-dominated solutions found by the Bi-objective Simplified Swarm
Optimization (BSSO). We further propose Fast Elite Selecting (FES), a ground-breaking one-front
non-dominated sorting method that curtails the time complexity of non-dominated sorting
processes. By integrating BSSO, CSLS, and FES, we are unveiling a novel algorithm, Elite Swarm
Simplified Optimization (EliteSSO), specifically developed to conquer time-efficiency and non-
dominated solution issues, predominantly in large-scale fog computing task scheduling
conundrums. Computational evidence reveals that our proposed algorithm is both highly efficient
in terms of time and exceedingly effective, outstripping other algorithms on a significant scale.

© 2023 by the authors; licensee Growing Science, Canada

Keywords:
Fog Computing
Task Scheduling
Local Search
Simplified Swarm Optimization
Multi-Objective
Non-Dominated Sorting

1. Introduction

As the era of the Internet of Things (IoT) unfolds, the staggering volume of data generated from smart devices such as mobile
phones, automobiles, wearable devices, and more, is set to create a seismic shift in the data landscape. According to the
International Data Corporation (IDC), by 2025, an estimated 80 billion interconnected devices will have produced an
astronomical 180 trillion gigabytes of fresh data. This proliferation of data poses a significant challenge for traditional cloud
computing services, which may struggle to handle the sheer volume and, subsequently, face increasingly extended response
latencies. Many IoT applications demand real-time or low latency responses (Yannuzzi et al., 2014), thus amplifying the
urgency to address these constraints. Conventional cloud computing (Perera et al., 2017), may no longer be able to
accommodate the massive influx of data from multitudes of IoT devices and respond within acceptable latency timescales.
Therefore, the advent of fog computing represents a new computing paradigm, decentralizing the cloud structure, and offering
a promising solution to the latency challenges posed by this unprecedented data deluge.

The concept of fog computing was first clearly articulated by Bonomi et al. (2012). They characterized the fog computing
paradigm, painting a vision where it functions as an intermediary computing power positioned between the cloud and the
users. It aids the cloud in shouldering the hefty computational demands emerging from an extensive array of smart devices.
However, it's essential to understand, as pointed out (Matt & Engineering, 2018), that fog computing is not replacing cloud
computing. Instead, it is viewed as a complementary structure that extends the cloud computing services right to the network

724

edge, as detailed by Bitam et al. (2018). Furthermore, Vaquero et al. defined fog computing as a situation typically comprising
numerous ubiquitous, heterogeneous, and decentralized devices (Vaquero & Rodero-Merino, 2014). These devices
communicate and potentially cooperate amongst themselves, often without the need for third-party intervention. Chiang et al.
explored the challenges and opportunities of fog, highlighting how fog computing addresses the inherent issues within the IoT
framework (Chiang & Zhang, 2016). They also underlined the critical issue of End-to-End architectural tradeoffs, a significant
topic our study seeks to discuss.

The architectural landscape of fog computing is indeed diverse and various models have been proposed in recent research.
Here, we present a broad overview of the general structure, as depicted in Fig. 1. Fundamentally, this architecture consists of
three distinct layers: the cloud layer, the fog layer, and the device layer.

Fig. 1. Architecture of fog computing

The top of fog computing architecture, cloud center layer, is responsible for storing data, analyzing and decision making.
Massive amounts of data are transmitted through this layer and sent to appropriate fog devices according to the results of the
scheduling algorithm. Fog device layer consists of network devices such as routers, access points, gateways and switches.
They are distributed among edge devices and cloud centers, and responsible for collecting raw data from edge devices or
analyzing information from the cloud center. In addition, fog servers can store sensed data and process real-time analyses.
Moreover, fog servers can preprocess raw data before transmitting to the cloud center. Edge devices contain a variety of IoT
devices and devices with CPU processors, e.g., laptops, smart vehicles, smart phones. Edge devices are distributed
geographically and usually not fixed. They receive data when a specified event occurs, then collect and send data to the upper
layer server, fog server for immediate response or storage. There are some features of fog computing which made it different
from cloud computing, such as low latency and location awareness, wide-spread geographical distribution, mobility, very
large number of nodes, predominant role of wireless access, strong presence of streaming, real time applications and
heterogeneity (Bonomi et al., 2012). Some of these features have changed some properties of task scheduling in fog
computing. First and foremost, low latency and location awareness facilitate the broker to assign the tasks to the nearby fog
devices. Besides, a vast number of nodes made the problem large and complex. A study compared the processing cost and
transmission cost between fog and cloud computing paradigms against different numbers of terminal nodes (Sarkar & Misra,
2016), and it shows that fog computing costs significantly less than cloud computing. Moreover, the impact on cost reduction
becomes more obvious when the number of terminal nodes rises. Finally, heterogeneity created the conflict between makespan
and cost. That is, if a task is arrived at, the scheduler will assign it to the cloud for a shorter timespan or it will violate Service
Level Agreement (SLA) and the service provider will be penalized. However, it will lead to the cost being high instead.

Though fog computing is a simple concept that distributes the computation load to local areas, much research hasn’t been
done yet. For instance, algorithm simulation time is too long for a large distribution system. Most of the research is utilizing
linear optimization methods to schedule in the fog computing paradigm to acquire high-quality solutions. Nevertheless, the
linear optimization algorithms require considerably much more heavy computation burden than any other machine learning
algorithms, e.g., Simplified Swarm Optimization (SSO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), to
converge and lack of flexibility when the objective functions were changed. In addition, the number of tasks in the fog
computing paradigm is usually tremendous, that is, the computation burden will increase exponentially. Moreover, nearly all
research applying linear optimization approaches has a critical constraint, the size of solution dimension, many of them set up
a little cloud and fog device to acquire high-quality solutions within a limited time constraint. However, some fog computing
applications are time sensitive. Such approaches are not applicable in such cases.

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 725

Recently, more and more efforts have been devoted to machine learning algorithms in fog computing task scheduling problem,
e.g., Bee Swarm (Bitam et al., 2018), GA (Han et al., 2018), Evolutionary Algorithm (EA) (Binh et al., 2018), All of them
focused on the algorithm application level but didn’t pay attention to the simulation delay. Simulation delay is a critical issue
in time-sensitive applications which is caused by the required time of the optimization algorithm to converge. Such problems
will be worsened when the number of tasks and fog nodes increases. Though machine learning algorithms require relatively
less time than linear optimization methods, the execution time is still time-consuming especially in large scale problems.
Hence, we devote the efforts in algorithm time complexity reduction and parallel computation to reduce the impact of
simulation delay.

Up to present, Bee swarm, GA and EA, algorithms which are good at discrete problems have been studied in this problem
(Deng et al., 2016; Fard et al., 2012). However, these algorithms are time-consuming in multi-objective problems, due to the
high time complexity of non-dominated sorting skills. In contrast, SSO based algorithms are not only strong in discrete
problems but also run fast for it requires only one front to update, such as BSSO (Yeh, Zhu, et al., 2023). Furthermore, the
structure of SSO is flexible, it could be varied to adapt to any kind of problem. In addition, SSO has demonstrated its powerful
performance in cloud computing task scheduling problems (Yeh, Zhu, et al., 2023). For the shorter required time in converging
and high flexibility in structure, we develop an efficient and effective strategy by means of SSO.

To the best of our understanding, the previous research in fog computing task scheduling problem usually combines two
evaluators as one fitness value. One researcher set a predetermined balance coefficient α between makespan and cost then
optimized the fitness value as close to 1 as possible (Binh et al., 2018). Another research set weights for memory and CPU
execution time then combined them as a fitness evaluator (Bitam et al., 2018). Although these strategies have the advantage
of shorter simulation time (because of the lower time complexity), the weights are not easy to determine at first. Moreover,
one-fitness strategies produce one solution at a time. On the other hand, multi-objective optimization strategies produce a
group of solutions that provide the decision maker with a variety of choices. However, it requires more time for its higher
time complexity. Both two ways of strategy have their benefits and flaws. In this paper, we devote ourselves to a multi-
objective optimization strategy to explore the future road of this strategy in this problem.

This research aims at accelerating the simulation time by minimizing time complexity and utilizing parallel computing. On
top of that, we devote ourselves to developing a local search method to assist the algorithm to converge faster in this problem.
In this study, we aimed to shorten the simulation delay in three ways. Firstly, time complexity, we proposed a one-front non-
dominated sorting technique, Fast Elite Selecting, for the multi-objective algorithms that require only one front in solution
updating. In such way, the time complexity is reduced from to to (NF is the number of first front solutions among N solutions
which is always less or equal to than N), and the speed of simulation could be raised. Secondly, for effectiveness, we proposed
a novel local search method, Card Sorting Local Search, that helps the algorithm search highly potential areas where some
non-dominated solutions might exist. Finally, we distribute the computation on four CPU threads, and we let each thread
execute one independent optimization algorithm. In this way, the simulation delay is reduced by parallel computing.

The content of this research is organized in section 1, we introduce the background of fog computing including the reason
for its emergence and some explicit definitions and concepts. Besides, motivation and purposes are depicted. Then we
review the papers of task scheduling problems in fog computing, multi-objective algorithms and SSO in section 2. In section
3, the problem statement is presented. Section 4 illustrates the methodologies, Card Sorting Local search, Fast Elite
Selection and BSSO. We evaluate the performance of the proposed algorithm against other multi-objective algorithms in
section 5. Finally, we summarize the contribution and point out the future work in section 6.

 Related Work

2.1. Task Scheduling Problem in Fog Computing

Deng et al. (2016) tackled the challenge of balancing power consumption and computational latency by breaking the problem
down into three sub-issues. The first of these was finding an optimal compromise between computational latency and power
consumption, achieved through the use of convex optimization techniques (He et al., 2014). The second sub-problem involved
identifying the best tradeoff between power consumption and computational delay in cloud computing, where a nonlinear
integer programming approach was applied (Li & Sun, 2006). The third and final issue aimed at minimizing communication
delay in the WAN subsystem, treated as an assignment problem and addressed using the Hungarian method (Kuhn, 1955).
However, a primary limitation of this study was the use of a centralized approach for optimization, reducing the delay and
power consumption, which is a poor fit for a fog computing infrastructure. This approach could lead to a performance
bottleneck at the central node during workload allocation, subsequently degrading the overall system performance.

Recognizing the performance bottleneck issue of the centralized optimization approach, alternative strategies have been
explored. Bitam et al. proposed a bio-inspired optimization method known as the Bees Life Algorithm (BLA) to handle the
job scheduling challenge in a fog computing environment (Bitam et al., 2018). This involved breaking jobs down into tasks

726

and allocating them across different fog devices considering factors such as CPU execution time and allocated memory size.
During the foraging step, they employed a greedy local search process aiming to identify the optimal solution amongst various
options. Despite demonstrating impressive performance in handling large-scale problems, this approach failed to consider
specific attributes of the fog computing paradigm. For example, the tradeoff dilemma of whether to send tasks to the cloud,
the communication costs incurred due to the distance between two distinct fog devices, and the penalties arising from Service
Level Agreement (SLA) violations were overlooked.

Han et al. (2018) introduced an enhanced genetic algorithm for a hybrid cloud and fog computing infrastructure (Han et al.,
2018). Here, the cost - incorporating the operational cost of virtual machines and the penalties from SLA violations - was
considered as a performance evaluation metric. As a result, the impact of the makespan was simultaneously considered along
with the penalty. However, like previous research, this study neglected to consider the tradeoff issue of whether to dispatch
tasks to the cloud, creating a conflict between the makespan and cost that was not fully addressed.

2.1. Multi-Objective Algorithm in Task Scheduling Problem

In our understanding, the application of multi-objective algorithms in task scheduling within the realm of fog computing has
been quite limited. Nevertheless, finding an optimal balance between makespan and cost within the fog computing paradigm
is of paramount importance.

In this regard, Fieldsend et al. introduced a Multi-Objective Algorithm (MOA) to address the issue of conflicting metrics,
applying a non-dominated tree to determine the global best for each particle (Fieldsend & Singh, 2002). Colleo et al. brought
forward a multi-objective particle swarm optimization. Differing from other proposals that extended PSO to resolve multi-
objective optimization problems, their algorithm employed an external repository of particles which subsequently guided the
flight of other particles (Coello et al., 2004). Further, Zhou et al. proposed a Multi-Objective Evolutionary Algorithm (MOEA)
to tackle the task scheduling problem in grid computing (Zhou et al., 2011). Liu et al. suggested a multi-objective genetic
algorithm to resolve the task scheduling issue in cloud computing (Liu et al., 2013). Jena introduced Task Scheduling multi-
objective nested Particle Swarm Optimization (TSPSO) for task scheduling, employing two performance evaluation metrics:
power consumption and cost (Jena, 2015). Fard et al. proposed a Multi-Objective List Scheduling (MOLS) approach for
workflow application scheduling in heterogeneous systems like Grids and Clouds (Fard et al., 2012). Basing on the Bi-
objective Dynamic Level Scheduling algorithm (BDLS) aimed at maximizing reliability and minimizing execution time
(Doğan & Özgüner, 2005), Yin (2018) proposed a Multi-Objective Simplified Swarm Optimization to address the conflict in
cloud computing, taking into account both makespan and power consumption (Yin, 2018). Most recently, Yeh et al. suggested
a Bi-Objective Simplified Swarm Optimization (BSSO) (Yeh, Zhu, et al., 2023), eliminating the gBest updating mechanism
to encourage convergence in multi-objective cloud computing task scheduling problems. In our study, we likewise adopt
BOSSO to address the task scheduling issue in the fog computing paradigm.

2.3. Simplified Swarm Optimization

Yeh's proposition of Simplified Swarm Optimization represents a novel, population-based stochastic optimization method. As
a member of the swarm optimization family, it's recognized for its simplicity and efficiency, garnering significant interest
from researchers. It has been effectively employed to solve discrete problems in numerous studies (Huang & Yeh, 2019; Yeh,
2009; Yeh, 2012, 2017; Yeh et al., 2011; Yeh, 2014; Yin, 2018). These instances of successful application demonstrate its
potential in addressing complex optimization problems. And SSO has been applied to various problems, such as the
redundancy allocation problems and reliability redundancy allocation problems(Jiang et al., 2023; Yeh, 2019, 2021; Yeh et al.,
2021; Yeh, 2009; Yeh, 2017; Yeh et al., 2011; Yeh, 2014), quantum computing (Su et al., 2022), neural network hyperparameter
optimization (Yeh, Lin, et al., 2023), Vehicle Routing Problem (Yeh & Tan, 2021), multi-level programming (Yeh et al., 2022)
and so on.

In simplified swarm optimization algorithm, we set three parameters, 𝐶௚ , 𝐶௣ and 𝐶௪ . where 𝐶௚ >𝐶௣ >𝐶௪ . The update
mechanism of SSO is defined by Eq. (1):

𝑋௜௝௧ = ⎩⎪⎨
⎪⎧𝑥௜௝௧ିଵ if 𝜌 ∈ ሾ0,𝐶௪ሻ𝑝௜௝௧ିଵ if 𝜌 ∈ ൣ𝐶௪ ,𝐶௣൯𝑔௝ if 𝜌 ∈ ൣ𝐶௣,𝐶௚൯𝑥 if 𝜌 ∈ ൣ𝐶௚, 1൧ (1)

Note that 𝑥௜௝௧ is the jth variable of ith solution at iteration t, 𝜌 is a uniform random number within [0, 1], 𝑝௜௝௧ିଵ is jth the variable
of pbest (best ith solution among t-1 iterations), 𝑔௝is jth the variable of gbest (i.e. best solution among t-1 iterations) and 𝑥 is a
random variable between the lower bound and the upper bound of the feasible solution space.

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 727

For each update process, 𝜌is generated first. If 𝜌 is located in [0, Cw), the value of variable will maintain the same as last
generation. If 𝜌 is located in [Cw, Cp), the value of the variable will be generated from pbest. If 𝜌 is located in [Cp, Cg), the
value of the variable will be generated from gbest. Otherwise, a random value, 𝑥, will be generated and replace the current
variable.

In this study, we employ the Bi-objective Simplified Swarm Optimization (BSSO) as our primary approach for solution
updates. BSSO, a recent innovation by Yeh (Yeh, Zhu, et al., 2023), extends the principles of the original Simplified Swarm
Optimization (SSO) method (Yeh, 2009). The main distinction between Multi-objective Simplified Swarm Optimization and
BSSO lies in the gBest updating mechanism. In BSSO, the pBest is removed and each non-dominated solution in the external
archive is treated as a gBest. This approach enhances both the speed of convergence and solution diversity and has
demonstrated superior performance over other notable algorithms such as MOPSO, MOSSO, and NSGA-II.

SSO is characterized by a straightforward update mechanism, the stepwise function, which can be adapted into different forms
according to specific applications (Huang & Yeh, 2019; Yeh, 2009; Yeh, 2012, 2017; Yeh et al., 2011; Yeh, 2014; Yin, 2018).
This flexibility extends to multi-objective problems as well. Unlike single-objective problems, multi-objective optimization
problems do not have a singular gBest solution. Instead, each solution in the non-dominated solution archive is treated as
equivalent to a gBest solution. Therefore, in each generation, BSSO randomly selects a non-dominated solution from the
archive to serve as the gBest solution. The pseudocode for this procedure is presented on the next page:

Table 1
BSSO pseudo code

Proposed technique: Bi-Objective Simplified Swarm Optimization
Initialization:
population X= {𝑋ଵ,𝑋ଶ, …𝑋ே}
non-dominated solution archive A= ൛𝐴ଵ,𝐴ଶ …𝐴ேಷൟ
1. for gen= 0 to Ngen do
2. Randomly pick a solution 𝐴௥ to be gBest solution

3. for sol=0 to Nsol do
4. for var=0 to Nvar do
5. r1 =𝜌 ∈ ሾ0,1ሿ
6. If (r1<Cg) then
7. Xsol, var = Ar, var
8. Else if (r1 <Cw) then
9.
10.
11.
12.
13.

 continue
Else

 r2=𝜌 ∈ ሾ0, Nvmሿ
Xsol, var = r2

end if
14. end for
15.
16.

end for
Combine updated solutions X* with archive as XNsol +NF

A* = Fast non-dominated sort (XNsol +NF)
If (size of A* >predetermined archive size) then 17.

18.
19. A*= crowdingDistanceSelector(A*)
20.
21.

 end if
end for

Output: non-dominated solution archive A= ൛𝐴ଵ,𝐴ଶ …𝐴ேಷൟ

728

 Problem Statement

3.1. System Model

A cloud system is composed of the cloud server and multiple fog devices. Each fog device is located at different areas. Each
fog device receives requests from the users and upload the data information to cloud computing infrastructure. After receiving
the task scheduling request, the cloud server runs the optimization procedure to determine assignments. When the algorithm
is done, tasks are assigned to different processors, either fog devices or the cloud.

Fig. 2. System model

In this paper, virtual machine migration is not considered. Each task can be processed only on one processor, the fog devices
are not allowed to halt and transfer tasks to other fog devices. Furthermore, one virtual machine can only process one task at
once. The encoding of the solution is based on the assignment of each task. Each dimension represents the destination of a
task. For example, assume the total number of tasks is 6, and there is a solution (3, 4, 1, 5, 2, 3). It means 1st task is assigned
to processor 3 and 2nd task is assigned to processor 4, etc.

Fig. 3. Source locating

If the task is assigned to other processors away from its origin, a transmission cost is considered.

3.2. Notations

In BSSO, the integer variable represents the number of components in the node, and it is necessary to use multi-state BAT to
find out all the state vectors 𝑋 = ሺ𝑥ଵ, 𝑥ଶ, … ,𝑥௠ሻ, each state vector represent an integer combination. The traditional multi-
state BAT algorithm is proposed by Yeh (Yeh, 2021). The pseudocode for traditional multi-state BAT is shown below:

In this subsection, we list notations in the following. 3.2.1 shows the indexes and coefficients; 3.2.2 shows the functions which
are used for the calculation of objective functions.

Notations for mathematical model are listed and introduced as follows:
 𝑇௜: ith task of set T. 𝑃௝: jth processor of set P. 𝑇𝐶𝑈: transmission cost per unit distance. 𝑃௢ : fixed violation cost when the makespan of an assignment violated the SLA regulation. 𝑃௧ : variable violation cost

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 729𝑛൫𝑃௝൯: number of tasks allocated on jth processor. 𝐸𝑇൫𝑇௜ ,𝑃௝൯: the execution time of ith task processed on jth processor. 𝐸𝐶𝑈൫𝑃௝൯: the execution cost of jth processor per unit time.

Notations for Card-Sorting BSSO are listed and introduced as follows: 𝑁𝑔𝑒𝑛: generation number. 𝑁𝑠𝑜𝑙: particle number of each generation. 𝑁𝑣𝑎𝑟: number of tasks of current service request. 𝑁𝑣𝑚: number of processors of the fog computing system. gen: current BSSO generation sol: current BSSO solution var: current BSSO variable 𝐶௚: a positive parameter which determines the probability of updating variable from non-dominated solutions. 𝐶௪: a positive parameter which determines the probability of remaining original variable of the solution. 𝐶௦: a positive parameter which determines the probability of card sorting current solution.

3.3. Mathematical Model

We formulate our problem in a mathematical model. An objective function is defined to evaluate the quality of a solution and
our goal is to minimize two performance evaluation metrics, makespan and cost.

3.3.1 Model

Objective function: 𝑀𝑖𝑛𝑚𝑖𝑧𝑒  𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (2) Minimize Cost = Execution Cost + Idle Time Cost + Transmission Cost ሺ+ Penalty ሻ (3)

3.3.2 Makespan

Makespan is determined by the completion time of the last task. The formula is shown as formula 4:

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥௝ୀଵಾ 𝑇𝑖𝑚𝑒௉ೕ = 𝑚𝑎𝑥௝ୀଵಾ ෍ 𝐸𝑇൫𝑇௜,𝑃௝൯௡൫௉ೕ൯
௜ୀଵ

(4)

We calculate the execution time of ith task processed jth processor, and sum up for the total execution time of execution time
of jth processor, 𝑇𝑖𝑚𝑒௉ೕ.Then determine the longest execution time as 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛௜.

3.3.3 Cost

In this research, cost is composed of four elements which are execution cost, idle cost, transmission cost and penalty
respectively. Execution cost is determined by the unit processing cost of processors multiplying execution time on each
processor. Execution cost is determined by the unit processing cost of processors multiplying execution time on each processor.
The execution cost formula is as shown in formula 5.
 𝐶𝑜𝑠𝑡 = ෍𝐶𝑜𝑠𝑡௉ೕெ

௝ୀଵ = ෍𝐸𝐶𝑈൫𝑃௝൯ெ
௝ୀଵ × 𝑇𝑖𝑚𝑒௉ೕ (5)

We calculate 𝑇𝑖𝑚𝑒௉ೕas mentioned in makespan and multiply the execution cost per unit time of jth processor as 𝐶𝑜𝑠𝑡௉ೕ, then
sum up 𝐶𝑜𝑠𝑡௉ೕ. Then 𝐶𝑜𝑠𝑡௜ is calculated. Even when a processor is not tackling tasks, standby power consumption should be
considered. This metric is aim to reduce some the occurence of extremely unbalance solutions which would lead the utilization
of fog computing system low. Hence, we can untilize this evaluator to leverage the system utilization (Tasiopoulos et al.,
2019). The Idle Time Cost is shown as the formula 6.
 ෍𝐸𝐶𝑈(𝑃௝)ெ
௝ୀଵ × (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝑇𝑖𝑚𝑒(௉ೕ)) (6)

The processor idle cost is calculated by multiplying the cost of each processor by its idle time.

730

When a task is sent away from the local area, transmission cost should be considered. Specifically, the cost linearly rose with
the increase of distance between two computational devices. We calculate the transmission cost by measuring the distance
from the receiving fog node to processing fog node. In practice, we multiply unit transmission cost by a predetermined fog
node distance matrix as shown in formula 7.
 ෍𝑇𝐶𝑈ெ
௝ୀଵ × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௝(𝐹ௌ௧௔௥௧,𝐹ா௡ௗ) (7)

If the makespan of an assignment exceeds the deadline, penalty cost is generated. The penalty function is shown below as
formula 8:
 𝑃௢ + 𝑃௧ × (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒) (8)
 𝑃௢  is the fixed penalty expense which is aroused when the makespan exceeds the deadline which was predetermined by
contract.𝑃

ｔ
 is the variable cost of exceeding time.

 Methodology

In this chapter, we present the methodologies used in this study. Firstly, we introduce a fast non-dominated sorting technique
in 3.1. Secondly, we present the elite Multi-Objective Simplified Swarm Optimization in 3.2. In 3.3, we proposed a new local
search method, Card Sorting Mechanism. Lastly, two performance metrics which measure the obtained Pareto front are
presented.

4.1. Non-dominated Sorting

Multi-objective optimization usually refers to problems with two important metrics but conflict with each other. For example,
in this study, an assignment with comparatively lower makespan usually costs more than other assignments with higher
makespan. Hence, the ultimate goal of optimization in such case is to seek for a non-dominated solution set which combines
a variety of assignment combination and close enough to the Pareto Front 𝑃∗ which is the best non-dominated solution set in
reality (Li, 2003). Non-dominated sorting is to distinguish the dominance relationship from each solution in set {𝑋ଵ,𝑋ଶ, . . .𝑋ே}
and store as a descending order set {𝐹ଵ,𝐹ଶ, . . .𝐹௄}. A proper non-dominated solution set satisfies the following conditions:

1. All the solutions in a certain front is non-dominated with each other. ∀𝑋௜ ,𝑋௝ ∈ 𝐹௞:𝑋௜ ൏̸ 𝑋௝ 𝑎𝑛𝑑 𝑋௝ ൏̸ 𝑋௜ ,𝑘 = 1,2, . . . , 𝑘
2. Any front with higher index will dominate those with lower index. ∀𝑋 ∈ 𝐹௞:∃𝑋 ′ ∈ 𝐹௞ିଵ:𝑋 ′ ൏ 𝑋,𝑘 = 2,3, . . . ,𝑘

Fig. 4. Visualization of sorting result

Fig. 4 shows the dominance relationship of solution set X. In this case, we minimize both objectives 1 and 2. Hence, the
solutions being closer to the lower-left corner is better. Those circle-marked solutions belong to front 1 which dominates the
rest fronts in current solution set. Triangle-marked and rectangle-marked solutions belong to front 2 and 3 respectively. A
popular non-dominated sorting algorithm, Fast non-dominated sorting was first proposed in 2002 (Deb et al., 2002). Each
solution𝑝 is compared with each other and store the comparison result by updating 𝑆௣ or 𝑛௣. 𝑆௣ is a set that stores solutions
dominated by 𝑝. 𝑛௣ is a counter that count the number of solutions dominating 𝑝. If solution 𝑝 that dominate the compared
solution, 𝑆௣ will be increased by one. Otherwise, if solution 𝑝 is dominated, its 𝑛௣ will be increased by 1. For each front
creation, it stores the solutions with 𝑛௣ equals to 0. After all the iterations, fast non-dominated sorting is done. Fast non-

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 731

dominated sorting has a time complexity of O(𝑀𝑁ଶ) is dominated, its 𝑛௣ for it must conduct 𝑀𝑁(𝑁 − 1) fitness
comparisons (N is the population size). Moreover, it requires a space complexity of O(𝑁ଶ) to record two assistant indexes.

4.2. Fast Elite Selecting

To reduce computation burden and shorten the simulation time for task scheduling. We proposed Fast Elite Sorting technique
(FES) for the multi-objective algorithm that requires only one front in each generation. The simple procedure is presented in
Table 2.

Table 2
Fast Elite Selecting procedure

Proposed technique: Fast Elite Selecting
Input: Solution set X= {𝑋ଵ,𝑋ଶ, . . .𝑋ே}
Initialization: DefaultFront1 = X //Assume all solutions are in front 1.

1. for each𝑋௜ ∈DefaultFront1 do

2. for each𝑋௝ ∈DefaultFront1 do

3. if (𝑋௜ dominate 𝑋௝) then

4. remove 𝑋௝ from DefaultFront1

5. else if (𝑋௝ dominate 𝑋௜) then

6. remove 𝑋௜ from DefaultFront1 and break

7. end if

8. end

9. end
Output: Front1 solution set F= {𝑋ଵ,𝑋ଶ, . . .𝑋ேಷభ}

In this initialization of FES, we assume all the solutions are in front 1 and let DefaultFront1 include all the solutions. Then,
for each solution𝑋௜in DefaultFront1, we compare it with other solution 𝑋௝ and see if 𝑋௝ is dominated. If 𝑋௝ is dominated, it
will be immediately removed from DefaultFront1 because it is impossible to be in front 1. With the same idea, 𝑋௜ is
dominated by 𝑋௝ instead, the iteration will be broken and go to the next DefaultFront1 element 𝑋௜ାଵ. This step will continue
until each element in DefaultFront1 is iterated. After that, the survival of solutions in DefaultFront1 is the winner being
dominated by nobody. The advantage of FES is its time complexity. The complexity can be expressed as O(𝑀𝑁ிଶ). (M is the
number of objective functions and 𝑁ி is the number of first front non-dominated solutions which is always less or equal to
than N) The best case of time complexity of FES is O(𝑀𝑁) where the first solution dominates all the others and end at first
solution. On the other hand, the worst case lies in all the solutions are non-dominated with each other, then the time complexity
will be O(𝑀𝑁ଶ) which is the same time complexity of fast non-dominated sort.

It is because BSSO requires only one front for updating the solutions in each generation, so applying fast non-dominated
sorting technique in BSSO becomes redundant for pairwise comparison. With the benefit of FES, computation burden can be
significantly reduced especially when the size of solution set is large. The reason should be contributed to the remove right
after comparison idea. We remove solutions being dominated from DefaultFront1 right after comparison. Hence, comparison
times can be reduced. On the other hand, fast non-dominated sorting requires 𝑁ଶ on any conditions.

4.3. Card Sorting Local Search

4.3.1 Idea of Card Sorting Local Search (CSLC)

Card Sorting Fable:

Card Sorting is a procedure when you are playing poker games like Big two. In the beginning of Big two, the dealer shuffles
the cards and deals 13cards to 4 players. Before the players check the cards, everyone expects their luck to be fair (non-
dominated concept). However, after sorting the cards, some will realize that their cards are not better, but some lucky man
will get a full house, four of a kind bomb or even straight flush (dominating solutions).

732

Explanation:

This story explicitly illustrated the idea of CSLS. Imagining that the cards each player gets is a non-dominated solution. Some
cards will be found to be better after the card sorting procedure, but some do not. Like CSLS, it cannot assure any solution to
be better after updating but it can make sure the solution will not be worse. It is worth mentioning that, CSLS doesn’t require
anything but the solution itself (Every player can only play his/her own cards). The detailed procedures are presented in Table
4.

4.3.2 The CSLS Operation Explanation

CSLS can start from the final output of any multi-objective algorithm, non-dominated solution set. In the initialization state,
Lgen, the iteration time, is initialized based on the scale of the scenario. Cs, the card sorting percentage, is predetermined by
ANOVA test. CardSortingDistance is also associated with the size of problems. About the above-mentioned parameters, we
will discuss it in detail in the next section. In this section, we discuss the details of this approach and append the pseudo code
in Table 3.

For each solution in non-dominated solution set archive A, we determine a random number r1 with an interval [0, 1]. This
random number is to determine the operation of this solution. If r1 < Cs, then we do card sorting. If not, we force a random
task of this solution to be processed on the cloud.

If r1 < Cs, then we set Sorting times to be 0, and do card sorting. Note that for each solution, we need only one effective card
sorting operation. This is the reason we used while here because this card sorting may not success at the first pick of the cards.
For instance, if we get Ti and Ti+CardSortingDistance and they are both originally assigned to Pj, then a card sorting here will fail due
to the same processor. Therefore, we must check if the two cards (two tasks) share the same value (processors). If not, then
card sort. If yes, then record it by counter and move the index, Card1, to the next and continue the while loop until this card
sorting operation is successful.

Fig. 5. An example of two trial card sorting in 2nd
solution

Fig. 6. Updated Solutions

A card sorting example is shown in Fig. 5, 1st solution has successfully done a card sorting at once, while 2nd solution failed
in first trial, but moved to next variable and succeeded this time. The results are presented in Fig. 6.

If r1 > Cs, CardForcing operation is conducted, card forcing means forcing a random card to be a certain card that the magician
meant to. In fog computing task scheduling problem. The cloud processor is extraordinarily special for its astonishing high
processing rate but significantly high operation cost. As a result, we make Cf number of tasks to be processed on the cloud
and see if the solution could be better. The illustration of CardForcing technique is shown in Fig. 7.

Fig. 7. CardForcing operation

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 733

Table 3
Pseudo code of CSLS

Proposed technique: Card Sorting Local Search
Input: Non-dominated Solution set archive A= {𝐴ଵ,𝐴ଶ, …𝐴ே}
Parameter initialization: Lgen, Cs, CardSortDistance.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

for Ai in A do

 counter = 0
r1 =𝜌 ∈ ሾ0,1ሿ
Card1 =𝜌 ∈ ሾ0, ”𝑁𝑣𝑎𝑟”ሿ
if (r1< Cs) then

 Sorting times= 0
While (Sorting times <1) do

 Card1 = Card1 %Nvar
Card2 = (Card1 +CardSortingDistance) %Nvar
if (Card1≠Card2) then

 Swap Card1 with Card2
else

 counter+1
if (counter>3)

 break while
else

 Card1 +1
end if

end if
end while

else
 Pick Cf×Nvar random cards and force them to process on the cloud

24. end if

25. end for

4.3.3 Parameters

Before introducing the approach, the parameters description is listed in Table 4.

Table 4
CSLS parameters description

Parameter Description
Lgen Local search times

Cs Card sorting rate
Cf Percentage of card forcing variables

CardSortingDistance Swapping distance of one sorting operation
 𝐿𝑔𝑒𝑛 = Nvar2 (9)

In card sorting operation, the probability of any variable to be chosen was𝑃൫𝑋௝൯ = ଵ୒୴ୟ୰ (let 𝑋௝ be the event that𝑗௧௛ variable is
chosen to be swapped). However, if a variable has been chosen to be𝑋௝ , the variable 𝑋௝ା஼௔௥ௗௌ௢௥௧௜௡௚஽௜௦௧௔௡௖௘ can also be
considered the one to be chosen, for swapping is a bilateral operation. Therefore, we set the iteration number, Lgen to be half
of Nvar. Then we expect there are more than half of the variables to be swapped (E൫𝑋௝൯=𝑃 ൫𝑋௝൯ × 𝐿𝐺𝑒𝑛= ଵ୒୴ୟ୰ × ୒୴ୟ୰ଶ = ଵଶ).
 𝐶𝑎𝑟𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = Nvar𝑁𝑣𝑚 − 1 (10)

734

CardSortingDistance is determined by the average task number received by processors. The idea is to make sure the card
sorting operation is meaningful and effective. In this study, every task has been marked by its source of area and the solution
is composed in location order. If the CardSortingDistance is too short, the card sorting operation is meaningless. The difference
between an inappropriate CardSortingDistance an appropriate one is shown in Fig. 8 and Fig. 9.

In Fig. 9, a meaningless card sorting is operated. Task 1 and 2 originally been processed on the same processor and sent from
the same location but swapped again.

Fig. 8. Inappropriate CardSortingDistance Fig. 9. Appropriate CardSortingDistance

Fig. 10 shows an available sorting operation; T1 and T3 were sent from different locations. After sorting, an additional
transmission is saved. This example shows valid card sorting that brings the potential of searching for a better solution. As a
result, an appropriate CardSortingDistance setting is necessary. We calculate the average number of tasks from each fog device
of one scheduling request and divide it by the number of fog devices. The reason is to avoid swapping with the same local
processor which makes it meaningless.

4.3.4 An Insight of Card Sorting Local search

In this section, we go deep into the insight of CSLS, and see what it did to a solution. The followings are the benefits gained
from the novel mechanisms:

 The card sorting is between the processors.
Reason: We card sort until the chosen variables are unequal, then an effective operation is completed.
Advantage: Reduce redundant and meaningless operations.

 Card sorting swaps tasks which are sent near each other.
Reason: It is due to the setting of CardSortingDistance.
Advantage: It lets the task has a chance to be processed on the processor near the source. Hence, the solution has a
chance to be better by striking a better load balance or reduction of transmission cost.

Fig. 10. Solution before card sorting

In Fig. 10, a solution X = ሼ1,1,1,0,2,3,0,3,1,2,3,3,4,2,0,4,2,3,0,0ሽ is conducting local search (bold numbers are the chosen
number to be swapped). A random Card1 12 is picked and Card2 16 which is CardSortingDistance 4 (୒୴ୟ୰୒୴୫ିଵ = 4) far from
Card1 is determined, too.

Before card sorting, the computation load was unbalanced and makespan was high. Besides, due to the unbalanced assignment,
idle time cost was also high.

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 735

Fig. 11. Makespan after CardSorting Fig. 12. Solution illustration before CardForcing

After card sorting, T12 and T16 are swapped. As you can see in Figure 11, Makespan is shortened and P1 became a new
bottleneck of this assignment. On the other hand, the benefit of CardForcing is illustrated in Fig.12. In Fig. 12, 9th task and
12th task was forced to process on the cloud. The updated solution after CardForcing is in Fig. 13.

Fig. 13. Solution illustration after CardForcing

As shown in Fig. 13, the makespan was shortened because the computation burden in bottle neck, P3, was released to the
cloud. As a result, a new solution is generated and the makespan has also been shorten again.

4.4. Proposed Strategy

4.4.1 The Overview of Task Scheduling in Fog Computing

In order to present every method that was previously introduced clearly, we visualized the main algorithms combining with
the tasks scheduling procedures in Fig. 14.

Fig. 14. Task scheduling procedures in this study

Those blocks with dotted line mean the new proposed methods in this study. The description of each step is shown in the
following:

736

Step 0: cloud center sends a signal to the data center broker to schedule an assignment to different processors. The broker
received the signal and started BSSO initialization.
Step 1: The broker starts the BSSO update and execute Card Sorting Local Search after the completion of BSSO.
Step 2: According to the results of algorithm, assign tasks to determined processors.

4.4.2 EliteSSO Strategy

In this subsection, we present the whole procedures in pseudo code as follows:

Table 5
EliteSSO strategy

Proposed strategy: EliteSSO strategy
1. BSSO Initialization:
1. X = InitializePopulation() //Randomly generation initial solutions
2. A = FastEliteSelecting(X) //Select solutions of X in front1.
Output: population X, non-dominated solution set archive A

2. BSSO Update
Input: population X, non-dominated solution set archive A
1. for gen =0 to Ngen do
2.
3.
4.
5.
6.
7.

gBest = selectGbest(A) //Randomly select one gBest from A
for sol =0 to Nsol do

 StepwiseUpdate(Xsol, gBest) //Elite selection SSO
end for
TempX = merge (X*, A) //merge two sets
A* = FastEliteSelecting (TempX)

8. end for
Output: non-dominated solution archive A

3.Card Sorting Local Search
Input: non-dominated solution set archive A
1. while LGen is not reached do
2. X = SetArchiveAsSolutions(A) //update archive as new X
3. X* = CardSorting(X)
4. TempX = merge (X*, A)
5. A* = FastEliteSelecting (TempX)
6. end while
Output: non-dominated solution archive A

 Experiments

In this chapter, we listed the experimental data and scenarios in section 5.1. In section 5.3, we introduce two performance
metrics, IGD and spread. An ANOVA test for Card Sorting Local Search parameter, Cs, is conducted in 5.3. Most importantly,
the experiment results are presented in 5.4.

5.1. Datasets

We set three different scales of problems, small, medium and large, to evaluate all the algorithms. In addition, for a general
and fair comparison, each of them has three different datasets. The contents of each dataset are presented in Table 6 to Table
8. Tasks length and tasks source are attached in Appendix A, processing rates and execution cost are attached in Appendix
B.

Table 6
Dataset 1

Scenarios Small Medium Large
Cloud # 1 1 1

Fog device # 4 7 9
Tasks # 30 50 100

Deadline 80 100 140
Po 50 100 200
Pt 3 5 10

TCU 1 1 1
Idle cost 5% execution cost 5% execution cost 5% execution cost

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 737

 Fixed Violation Cost = instant penalty when the makespan exceed the deadline
 TCU = transmission cost/unit distance
 Po: fixed violation cost when the makespan of an assignment violate the SLA regulation.
 Pt: variable violation cost

Table 7
Dataset 2

Scenarios Small Medium Large
Cloud # 1 1 1

Fog device # 4 7 9
Tasks # 30 50 100

Deadline 70 90 130
Po 80 130 230
Pt 4 6 15

TCU 2 2 2
Idle cost 3% execution cost 3% execution cost 3% execution cost

Table 8
Dataset 3

Scenarios Small Medium Large
Cloud # 1 1 1

Fog device # 4 7 9
Tasks # 30 50 100

Deadline 75 85 130
Po 20 120 225
Pt 2 6 13

TCU 0.5 0.5 0.5
Idle cost 2% execution cost 2% execution cost 2% execution cost

5.2. Performance Metrics

The result of the 50 independent experiments for each of the 8 combinations is shown in Table 11-14. The values in the table
are the fitness values obtained by the algorithm In this section, we introduce three performance metrics used in this study.
They are Inverted Generation Distance (IGD), Spacing (Spc) and Error Rate (ER).

Inverted Generation Distance

IGD is a widely used performance metric for measuring the proximity of convergence and diversity of the discovered Pareto
front (Czyzżak & Jaszkiewicz, 1998). The IGD formula is derived as follows formula 11:
 𝐼𝐺𝐷 = ඥ∑ 𝑑(𝑣,𝑃)ଶ௩∈௉∗|𝑃 ∗| (11)

For each solution 𝑣 in pareto front, we find a solution 𝑃 with minimum Euclidean distance𝑑(𝑣,𝑃) in the non-dominated
solution set found by the algorithm and sum them up then divide it by the size of simulated Pareto front P*.

Spacing

Spacing(Spc) is used to measure the extent of the non-dominated solutions are distributed along the discovered (Schott, 1995)
as shown in formula 12.

𝑆𝑝𝑐 = ඩ 1𝑛 − 1෍ ௡
௜ିଵ ൫𝑑௜ − 𝑑̅൯ଶ (12)

where 𝑑௜ = min௝ ൫ห𝑓ଵ௜ − 𝑓ଵ௝ห + ห𝑓ଶ௜ − 𝑓ଶ௝ห൯, 𝑖, 𝑗 = 1,2, …𝑛. Where n is the number of discovered non-dominated solutions. If the
value of this metric is zero, it indicated that all members of the discovered Pareto front are equidistantly spaced.

Error Rate

Error Rate (ER) is to calculate the percentage of true Pareto solutions among discovered temporary non-dominated solutions𝑃
(Van Veldhuizen, 1999) is shown as formula 13 below:
 𝐸𝑅 = ∑ 𝑒௜௡௜ୀଵ𝑛 (13)

738

 𝑛 is the number of solutions in 𝑃.𝑒௜ is a binary variable. If the solution found in P is the same solution in P*, then the 𝑒௜ will
be 0. Otherwise, if the solution is not the solution in P*, 𝑒௜ will be 1. Hence, this metric is the lower the better.

5.3. CSLS Parameter Design

There are two customizable parameters in CSLS, Cs and Cf respectively. Cs represents the card sorting rate and Cf indicates the
percentage of card forcing variables. However, Cf is strongly interact with Cs. It is tough to determine an appropriate
combination for them. Hence, for a simple and convincing parameter design. We conduct a one-way ANOVA test to determine
Cs only and fix Cf =0.1 for our experiments.

For each size of problem, we set 3 different levels: Cs =0.75, Cs =0.85 and Cs =0.95. For each level, we execute 40 runs We
set three different level of the proposed algorithm with Cs=0.75, Cs=0.85 and Cs=0.95, and compare it with other multi-
objective optimization algorithms, i.e., MOPSO and NSGA-II. As we mentioned above, the collected data is better to meet
the normality test. We present the normality test in 5.3.1 and provide the ANOVA table in 5.3.2. Interval plots are presented
in 5.3.3 to distinguish the difference of each level. Finally, the discussion and conclusion are offered in 5.3.4

5.3.1. Normality Test

In this subsection, normality tests are conducted on each metric. The figures are shown below:

Fig. 15. Normality tests

To summarize, Spc and Nnds meets the normality assumption, but IGD and ER do not. That is, we mainly rely on the results
of Spc and Nnds to design the Cs but also refer to the results of IGD and ER.

5.3.2. ANOVA

For a common parameter for every size of problem, we execute 40 runs for each scale and combine for analysis. To combine
the results of a distinct scale of problems, all the metrics are normalized to [0,1] interval by min-max normalization. The
ANOVA model information and results are shown below:

1.00.50.0-0.5-1.0

99.9

99

95

90

80
70
60
50
40
30
20

10

5

1

0.1

Mean 2.316049E-16
StDev 0.2323
N 360
AD 7.861
P-Value <0.005

RESI1

Pe
rc

en
t

Probability Plot of RESI1
Response: IGD

0.20.10.0-0.1-0.2-0.3-0.4

99.9

99

95

90

80
70
60
50
40
30
20

10

5

1

0.1

Mean 0.004912
StDev 0.04876
N 206
AD 16.738
P-Value <0.005

RESI1

Pe
rc

en
t

Probability Plot of RESI1
Response: ER

1.00.50.0-0.5-1.0

99.9

99

95

90

80
70
60
50
40
30
20

10

5

1

0.1

Mean -0.0008104
StDev 0.2460
N 358
AD 0.664
P-Value 0.082

RESI1

Pe
rc

en
t

Probability Plot of RESI1
Response: Nnds

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 739

Table 9
ANOVA table

Metric Source DF SS MS F-value P-value
IGD

Factor
Error
Total

2
357
359

0.4521
19.3811
19.8333

0.22607
0.005429

4.16 0.016

 S=0.0263 R-sq=2.68% R-sq(adj)=1.73%
Spc Factor

Error
Total

2
357
359

0.9357
20.26510
21.1867

0.46786
0.5673

8.25

0.000

 S=0.238171 R-sq=4.42% R-sq(adj)=3.88%
ER IGD

Error
Total

2
357
359

0.01826
1.10520

0.009132
0.003096

2.95 0.054

 S=0.0556400 R-sq=1.63% R-sq(adj)=1.07%
Nnds IGD

Error
Total

2
357
359

0.0737
21.6918

0.03684 0.61 0.546

 S=0.24698 R-sq=0.34% R-sq(adj)=0%

We can infer from Table 9 that different levels on IGD and Spc are significantly unequal. However, for ER and Nnds, we have
no strong evidence to prove the difference between each level. In the following, we distinguish the difference between each
level by interval plots.

From the ANOVA table, interval plots in Fig. 16, we can infer the following.
:
1. Statistically, the Spc data acquired by Cs=0.85 is significantly better than the other levels.
2. IGD and ER data do not pass the assumption of normality. However, they all point to the same level, Cs=0.85.
3. Nnds passes the normality assumption, but there exists no significant difference between each level. Nevertheless, it

still shows that the level, Cs=0.85, is a little bit better than the other.

In summary, all the results of metrics point to the level, Cs=0.85. That means, we should leave 15% probability for the Card
forcing operation which can help the CSLS search non-dominated solutions more effectively.

Fig. 16. interval plots

740

5.4 Experimental Results

In this section, we present the experiment results. We generated 3 datasets for each size of problem. Hence, 9 different
experiments are conducted. For each experiment, we execute 40 runs for each algorithm. The parameter of each algorithm
and CSLS is shown in Table 10

Table 10
Algorithm parameters

BSSO
Cg 0.7
Cw 0.9

EliteSSO
Cg 0.7
Cw 0.9

MOPSO
w 0.871111
C1 1.496180
C2 1.496180

NSGA-II
Crossover percentage 0.7
Mutation percentage 0.3

Mutation rate 0.05
CSLS

Cs 0.85
Cf 0.1

For each size of problems, we set different size of particle number and generation numbers. The related information is
organized in Table 11.

Table 11
Particle, generation number and archive size

Small BSSO MOPSO NSGA-II EliteSSO
Nsol 50 50 50 50
Ngen 1000 1000 1000 1000

Archive 50 50 50 50
Medium BSSO MOPSO NSGA-II EliteSSO

Nsol 100 100 100 100
Ngen 1000 1000 1000 1000

Archive 100 100 100 100
Large BSSO MOPSO NSGA-II EliteSSO
Nsol 150 150 150 150
Ngen 1000 1000 1000 1000

Archive 150 150 150 150

The results of small, medium, and large are presented in Table 12, Table 13 and Table 14. The final non-dominated solutions
of each result are shown after each table. Also, a brief discussion of the results is attached to the end of the figures. All
algorithms are coded in Eclipse Java on a 64-bit Windows 10 PC, implemented on an Intel Core i7-7500U CPU @ 2.70 GHz
notebook with 12 GB of memory. In addition, we conducted 10 runs on four different threads for every algorithm (i.e., each
algorithm was conducted 40 runs.).

Fig. 17. Small size dataset pareto front

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 741

Table 12
Experimental results of small size problem

S1

Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்
BSSO

MOPSO
NSGA-II
EliteSSO

0.6249
0.3710
0.5892
0.5124

0.2693
0.0238
0.1797
0.2445

17.0903
18.5076
23.3736
15.9746

6.9479
9.3089
10.3677
9.5279

0.8805
0.9869
0.9893
0.8720

0.2644
0.0193
0.0494
0.1840

8.9500
10.0250
2.3250
20.5000

6.2247
3.5531
1.8893
9.9800

7.8046
5.8975
10.5644
6.4351

0.9779
0.3651
0.3488
0.7545

S2

Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்
BSSO

MOPSO
NSGA-II
EliteSSO

0.6899
0.3703
0.5152
0.5909

0.2373
0.0327
0.1511
0.2534

17.7102
20.4190
17.8956
16.9341

5.9968
11.459
8.2646
9.3648

0.9371
0.9861
0.9942
0.8928

0.1655
0.0259
0.0360
0.1647

11.9750
10.7250
2.9000
21.6500

8.2749
3.2786
1.9723
10.0288

7.6923
5.2376
9.6751
5.7790

0.9497
0.3226
0.2996
0.4812

S3

Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்

BSSO
MOPSO
NSGA-II
EliteSSO

0.6610
0.2988
0.4077
0.4830

0.2529
0.0236
0.0834
0.2400

16.5421
19.1278
25.7452
13.6351

4.7461
10.4615
9.1027
3.4612

0.9191
0.9743
0.9945
0.8674

0.2163
0.0313
0.0200
0.1316

11.4000
18.2500
2.6750
24.9000

6.7483
4.6301
1.5064
11.2978

8.3106
7.2008
11.0483
6.2987

0.8701
0.7665
0.5097
0.4981

In small scale problems, MOPSO has a strong competitiveness in IGD with EliteSSO. However, EliteSSO has a better ability
in searching for the final non-dominated solutions. In addition, EliteSSO has a better diversity for its Spc dominated all the
other algorithms. Note the interesting part in the third front in Fig. 17, the gap was caused by the deadline. The deadline set
in dataset 2 is 70, that is, the assignments on the right-hand side are still worthy even they exceeded the deadline and get
penalized. It is because the assignments assign many tasks to fog devices to save the cost instead of executing on the cloud.

Table 13
Experimental results of medium size problem

M1
Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்
BSSO

MOPSO
NSGA-II
EliteSSO

0.2951
0.6627
0.5848
0.2714

0.0270
0.0761
0.0542
0.0340

14.5437
26.4642
36.132
10.2454

4.2349
7.64556
10.7435
4.1356

0.9983
1.0000
1.0000
0.9241

0.0058
0.0000
0.0000
0.0601

11.150
0.1750
0.1250
50.800

5.6460
0.3800
0.3307
5.9841

21.898
18.840
50.649
18.546

2.3124
1.0688
1.4013
1.2998

M2
Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்

BSSO
MOPSO
NSGA-II
EliteSSO

0.3841
0.6656
0.6127
0.3347

0.0591
0.0810
0.0834
0.0374

16.2154
27.5213
34.5256
14.1525

4.4420
6.5413
11.2414
4.5796

0.9982
1.0000
1.0000
0.9407

0.0065
0.0000
0.0000
0.0721

9.1250
0.1000
0.0750
49.900

4.5232
0.3000
0.2634
6.6250

21.318
18.900
49.079
16.470

1.3276
1.5734
1.6549
0.7728

M3
Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்

BSSO
MOPSO
NSGA-II
EliteSSO

0.291
0.542
0.522
0.260

0.037
0.050
0.058
0.027

15.6693
28.0490
31.9854
13.6744

4.0185
8.7335
12.0512
5.9447

0.9944
1.0000
1.0000
0.9277

0.0118
0.0000
0.0000
0.0409

11.000
0.2500
0.0750
58.550

4.1292
0.6982
0.2634
9.5130

23.578
19.888
51.842
18.357

1.7260
1.2219
3.0614
0.8437

Fig. 18. Medium size dataset pareto front

From the above figures, we can see that nearly all the final non-dominated solutions are found by EliteSSO. Also, EliteSSO
has dominated all the other algorithms in IGD, ER, Spc, Nnds and Time. BSSO has also demonstrated its power in medium-

742

sized problems. However, due to the Fast Elite selecting technique, EliteSSO is faster than BSSO, even it has applied local
search technique, CSLS.

Table 14
Experimental results of large size problem

L1

Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்

BSSO
MOPSO
NSGA-II
EliteSSO

0.6229
1.0922
0.9409
0.4300

0.0759
0.1135
0.0798
0.0410

15.4398
76.1219
28.8946
11.8291

4.5254
13.1457
11.8243
4.8247

1.0000
1.0000
1.0000
0.9305

0.0000
0.0000
0.0000
0.0579

2.8000
0.1000
0.0250
64.4000

2.5120
0.3000
0.1561
8.4876

64.1200
71.4048

174.0804
51.6086

3.5634
3.4427
10.2135
1.8958

L2
Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்

BSSO
MOPSO
NSGA-II
EliteSSO

0.4238
1.0104
0.7518
0.3251

0.0424
0.0713
0.0850
0.0314

12.64613
86.1468
28.5113
9.4253

5.3751
15.1584
11.7432
5.2142

1.0000
1.0000
1.0000
0.9439

0.0000
0.0000
0.0000
0.0654

3.7500
0.0250
0.1000
77.4750

4.1638
0.1561
0.3742
9.7082

60.0497
81.3329

178.4684
51.6956

2.4371
4.3876
8.0741
2.3856

L3

Algo. 𝐼𝐺𝐷തതതതത σூீ஽ 𝑆𝑝𝑐തതതതത σௌ௣௖ 𝐸𝑅തതതത σாோ 𝑁௡തതതത σே௡ 𝑇ത σ்

BSSO
MOPSO
NSGA-II
EliteSSO

0.3852
0.6533
0.6561
0.3107

0.0307
0.0624
0.0706
0.0347

14.88989
40.69087
31.90342
10.8291

5.2499
12.9534
12.9282
5.1606

1.0000
1.0000
1.0000
0.9536

0.0000
0.0000
0.0000
0.0604

1.7500
0.1750
0.1500
82.6250

2.0218
0.4409
0.4770
11.2109

82.3662
95.3730

194.3408
71.2579

4.4507
6.8829
8.6384
5.0152

Fig. 19. Large size dataset pareto front

In large scale problems, the difference of each algorithm has been enlarged. EliteSSO acquired more high-quality solutions in
shorter simulation time. In summary, the power of EliteSSO is strengthened along with the increase of problem size. In time
efficiency, solution quality and solutions diversity, EliteSSO overwhelmed other algorithms in medium and large problems.

5.4. Statistical Verification

To verify the significant difference over the whole multiple comparison, we conducted Friedman’s test on the compared
algorithms. We set the significance level α = 0.05 as a threshold to determine whether to reject hypothesis. IGD, Spc and ER.
The statistical results based on three performance metrics, IGD, Spc and ER, are presented in Table 15 to Table 17:

Table 15
The results of Friedman’s test on IGD

Friedman’s test
Algo. Rankതതതതതതത Statistic p-value
BSSO

MOPSO
NSGA-II
EliteSSO

2.6667
2.8889
2.8889
1.5556

6.6

0.086

Table 16
The results of Friedman’s test on Spc

Friedman’s test
Algo. Rankതതതതതതത Statistic p-value
BSSO

MOPSO
NSGA-II
EliteSSO

2
1

3.4444
3.5556

24.33 0.000

Table 17
The results of Friedman’s test on ER

Friedman’s test
 Algo. Rankതതതതതതത Statistic p-value

BSSO
MOPSO
NSGA-II
EliteSSO

2.3333
3.1667

3.5
1

24.12

0.000

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 743

According to the above results of Friedman’s tests, there exist significance difference among all algorithms on Spc and ER.
Since the significant difference, we applied Holm’s method to further distinguish the differences pairwise between the
proposed EliteSSO and other algorithms on Spc and ER. The results are shown in Table 18 and Table 19.

Table 18
Holm’s test on Spc

Holm’s test
Algo. Statistic p-value

BSSO
MOPSO
NSGA-II
EliteSSO

1.732
4.330
4.330

0.083
0.000
0.000

Table 19
Holm’s test on ER

Holm’s test
 Algo. Statistic p-value

BSSO
MOPSO
NSGA-II
EliteSSO

2.191
3.560
4.108

0.028
0.000
0.000

According to the Holm’s test on Spc, EliteSSO has no significant difference with BSSO. Since EliteSSO searched for the
potential non-nominated solutions around the final non-dominated solutions of BSSO. Nevertheless, EliteSSO has significant
differences with MOPSO and NSGA-II. For another metric, ER, EliteSSO is superior to all the other algorithms.

 Conclusion

In conclusion, this study has made significant strides towards improving and streamlining BSSO through the introduction of
the Fast Elite Selecting (FES) one-front non-dominated sorting technique. This novel method successfully reduced the time
complexity of sorting techniques from 𝑂(𝑀𝑁ଶ) to 𝑂(𝑀𝑁𝑛𝑑𝑠ଶ) , marking a significant advance in computational efficiency.
Furthermore, our research has expanded the potential of non-dominated solution exploration by proposing a local search
approach named "Card Sorting". This method, specifically designed for task scheduling, has shown promising results in
enhancing the exploration ability of non-dominated solutions. Addressing the critical issue of simulation delay in fog
computing task scheduling, we have approached it from three distinct aspects: algorithm time complexity, solutions
exploration, and parallel computing. In doing so, we have provided a new perspective on this problem and established a
pathway for future research in addressing simulation delay issues. Lastly, we have also paved the way for further studies in
utilizing multi-objective optimization algorithms for fog computing task scheduling problems. This signifies a new direction
for this field, highlighting the potential of multi-objective optimization algorithms in solving such complex problems. Our
study, therefore, serves not just as a demonstration of these novel approaches but also as a stepping stone for future research
in these fields. We believe that the methods and perspectives introduced in this paper will significantly contribute to the
ongoing efforts to optimize fog computing task scheduling and similar complex multi-objective optimization problems.

Acknowledgment

The authors wish to thank the anonymous editor and the referees for their constructive comments and recommendations,
which significantly improved this article. This research was supported in part by the Ministry of Science and Technology,
R.O.C. under grant MOST 110-2221-E-007-107-MY3.

References

Binh, H. T. T., Anh, T. T., Son, D. B., Duc, P. A., & Nguyen, B. M. (2018, December). An evolutionary algorithm for solving

task scheduling problem in cloud-fog computing environment. In Proceedings of the 9th International Symposium on
Information and Communication Technology (pp. 397-404).

Bitam, S., Zeadally, S., & Mellouk, A. (2018). Fog computing job scheduling optimization based on bees swarm. Enterprise
Information Systems, 12(4), 373-397.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing and its role in the internet of things. In
Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16).

Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of things journal, 3(6),
854-864.

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization.
IEEE Transactions on evolutionary computation, 8(3), 256-279.

Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective
combinatorial optimization. Journal of multi‐criteria decision analysis, 7(1), 34-47.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE transactions on evolutionary computation, 6(2), 182-197.

Deng, R., Lu, R., Lai, C., Luan, T. H., & Liang, H. (2016). Optimal workload allocation in fog-cloud computing toward
balanced delay and power consumption. IEEE internet of things journal, 3(6), 1171-1181.

Doğan, A., & Özgüner, F. (2005). Biobjective scheduling algorithms for execution time–reliability trade-off in heterogeneous
computing systems. The Computer Journal, 48(3), 300-314.

744

Fard, H. M., Prodan, R., Barrionuevo, J. J. D., & Fahringer, T. (2012). A multi-objective approach for workflow scheduling
in heterogeneous environments. Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on,

Fieldsend, J. E., & Singh, S. (2002). A multi-objective algorithm based upon particle swarm optimisation, an efficient data
structure and turbulence.

Han, K. K., Xie, Z. P., & Lv, X. (2018). Fog computing task scheduling strategy based on improved genetic algorithm.
Computer Science, 4, 22.

He, J., Cheng, P., Shi, L., Chen, J., & Sun, Y. (2013). Time synchronization in WSNs: A maximum-value-based consensus
approach. IEEE Transactions on Automatic Control, 59(3), 660-675.

Huang, C. L., & Yeh, W. C. (2019). A new SSO-based algorithm for the bi-objective time-constrained task scheduling problem
in cloud computing services. arXiv preprint arXiv:1905.04855.

Jena, R. K. (2015). Multi objective task scheduling in cloud environment using nested PSO framework. Procedia Computer
Science, 57, 1219-1227.

Jiang, Y., Liu, Z., Chen, J.-H., Yeh, W.-C., & Huang, C.-L. (2023). A novel binary-addition simplified swarm optimization for
generalized reliability redundancy allocation problem. Journal of Computational Design and Engineering, 10(2), 758-772.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1‐2), 83-97.
Li, D., & Sun, X. (2006). Nonlinear integer programming (Vol. 84). Springer Science & Business Media.
Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. Genetic and Evolutionary

Computation Conference.
Liu, J., Luo, X. G., Zhang, X. M., Zhang, F., & Li, B. N. (2013). Job scheduling model for cloud computing based on multi-

objective genetic algorithm. International Journal of Computer Science Issues (IJCSI), 10(1), 134.
Matt, C. J. B., & Engineering, I. S. (2018). Fog Computing. 1-5.
Perera, C., Qin, Y., Estrella, J. C., Reiff-Marganiec, S., & Vasilakos, A. V. (2017). Fog computing for sustainable smart cities:

A survey. ACM Computing Surveys (CSUR), 50(3), 1-43.
Sarkar, S., & Misra, S. (2016). Theoretical modelling of fog computing: a green computing paradigm to support IoT

applications. Iet Networks, 5(2), 23-29.
Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization.
Su, P.-C., Tan, S.-Y., Liu, Z., & Yeh, W.-C. (2022). A Mixed-Heuristic Quantum-Inspired Simplified Swarm Optimization

Algorithm for scheduling of real-time tasks in the multiprocessor system. Applied Soft Computing, 131, 109807.
Tasiopoulos, A., Ascigil, O., Psaras, I., Toumpis, S., & Pavlou, G. J. I. T. o. S. C. (2019). FogSpot: Spot Pricing for Application

Provisioning in Edge/Fog Computing.
Van Veldhuizen, D. A. (1999). Multiobjective evolutionary algorithms: classifications, analyses, and new innovations.
Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog

computing. ACM SIGCOMM computer communication Review, 44(5), 27-32.
Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., & Nemirovsky, M. (2014). Key ingredients in an IoT recipe: Fog

Computing, Cloud computing, and more Fog Computing. 2014 IEEE 19th International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD).

Yeh, W.-C. (2019). A novel boundary swarm optimization method for reliability redundancy allocation problems. Reliability
Engineering & System Safety, 192, 106060.

Yeh, W.-C. (2021). One-batch Preempt Deterioration-effect Multi-state Multi-rework Network Reliability Problem and
Algorithms. arXiv preprint arXiv:2103.04325.

Yeh, W.-C., Lin, Y.-P., Liang, Y.-C., Lai, C.-M., & Huang, C.-L. (2023). Simplified swarm optimization for hyperparameters
of convolutional neural networks. Computers & Industrial Engineering, 177, 109076.

Yeh, W.-C., Liu, Z., Yang, Y.-C., & Tan, S.-Y. (2022). Solving dual-channel supply chain pricing strategy problem with multi-
level programming based on improved simplified swarm optimization. Technologies, 10(3), 73.

Yeh, W.-C., Su, Y.-Z., Gao, X.-Z., Hu, C.-F., Wang, J., & Huang, C.-L. (2021). Simplified swarm optimization for bi-objection
active reliability redundancy allocation problems. Applied Soft Computing, 106, 107321.

Yeh, W.-C., & Tan, S.-Y. (2021). Simplified swarm optimization for the heterogeneous fleet vehicle routing problem with
time-varying continuous speed function. Electronics, 10(15), 1775.

Yeh, W.-C., Zhu, W., Yin, Y., & Huang, C.-L. (2023). Cloud Computing Considering Both Energy and Time Solved by Two-
Objective Simplified Swarm Optimization. Applied Sciences, 13(4), 2077.

Yeh, W.-C. J. E. S. w. A. (2009). A two-stage discrete particle swarm optimization for the problem of multiple multi-level
redundancy allocation in series systems. 36(5), 9192-9200.

Yeh, W. C. (2012). Novel swarm optimization for mining classification rules on thyroid gland data. Information Sciences, 197,
65-76.

Yeh, W. C. (2017). A new exact solution algorithm for a novel generalized redundancy allocation problem. Information

Sciences, 408, 182-197.
Yeh, W. C. (2011). Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm

optimization. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 42(1), 250-261.
Yeh, W. C. (2014). Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a

mix of components. Knowledge-Based Systems, 64, 1-12.

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 745

Yin, Y. (2018). Multi-objective Task Scheduling in Cloud Environment Using Multi-objective Simplified Swarm Optimization.
National Tsin Hua University. https://hdl.handle.net/11296/54qc4f

Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and evolutionary computation, 1(1), 32-49.

Appendix A

 Tasks length and Task source
A. 1. Length and source of each task in S1.

No. Length Source No. Length Source No. Length Source
1 9719 1 11 4879 2 21 12960 2
2 10564 1 12 11602 2 22 13593 3
3 13090 1 13 9629 2 23 11834 3
4 16253 1 14 9278 2 24 7548 3
5 8640 1 15 9434 2 25 11856 4
6 12990 1 16 12224 2 26 12102 4
7 6723 1 17 9575 2 27 7594 4
8 7883 1 18 7207 2 28 6695 4
9 14306 1 19 10140 2 29 13738 4
10 8104 2 20 11194 2 30 10050 4

A. 2. Length and source of each task in S2.

No. Length Source No. Length Source No. Length Source
1 17744 1 11 9823 2 21 8687 3
2 10680 1 12 12383 2 22 13439 3
3 8018 1 13 10480 2 23 7539 3
4 13058 1 14 8921 2 24 11151 3
5 9873 1 15 9721 2 25 11292 4
6 12849 1 16 11835 2 26 6373 4
7 6251 1 17 11923 2 27 12387 4
8 9825 1 18 8374 3 28 7647 4
9 8461 2 19 4443 3 29 7128 4
10 7300 2 20 13042 3 30 7258 4

A. 3. Length and source of each task in S3.
No. Length Source No. Length Source No. Length Source
1 10402 1 11 9282 3 21 9356 4
2 13166 1 12 12975 3 22 11778 4
3 7334 2 13 7071 3 23 7364 4
4 13631 2 14 10078 3 24 9556 4
5 11098 2 15 9513 3 25 9168 4
6 8750 2 16 14252 3 26 9943 4
7 11961 2 17 10596 3 27 15449 4
8 11115 2 18 12046 3 28 8245 4
9 10054 2 19 14209 3 29 9969 4
10 10800 2 20 16246 3 30 9445 4

A. 4. Length and source of each task in M1.

No. Length Source No. Length Source No. Length Source
1 12306 1 18 13099 2 35 10967 5
2 10344 1 19 6014 2 36 5362 5
3 13154 1 20 6812 3 37 7695 5
4 11789 1 21 11654 3 38 13803 5
5 13537 1 22 6985 3 39 10868 5
6 8117 1 23 13273 3 40 9315 6
7 10504 1 24 5833 3 41 9178 6
8 15241 1 25 11476 3 42 9577 6
9 9430 1 26 8333 3 43 4187 6
10 12567 1 27 8863 4 44 9904 6
11 11410 2 28 10473 4 45 10506 7
12 9453 2 29 12786 4 46 9301 7
13 17191 2 30 9748 4 47 14309 7
14 16110 2 31 12044 4 48 12148 7
15 10733 2 32 6285 4 49 6821 7
16 10120 2 33 8407 5 50 11950 7
17 14119 2 34 15797 5

746

A. 5. Length and source of each task in M2.
No. Length Source No. Length Source No. Length Source
1 7675 1 18 5324 3 35 10371 6
2 7953 1 19 11958 3 36 12640 6
3 16999 1 20 14635 3 37 5726 6
4 8678 1 21 11964 4 38 10074 6
5 9567 1 22 16906 4 39 10809 6
6 6386 1 23 5407 4 40 10848 6
7 13254 1 24 6950 4 41 6355 6
8 11634 1 25 10660 4 42 11337 6
9 7893 1 26 6396 4 43 9041 6
10 9425 2 27 9385 4 44 13308 7
11 13313 2 28 16265 4 45 10473 7
12 12032 2 29 9633 4 46 12786 7
13 6254 2 30 8987 4 47 9648 7
14 8307 2 31 14892 5 48 12043 7
15 16402 3 32 12926 5 49 6385 7
16 12152 3 33 10899 5 50 8413 7
17 6964 3 34 6034 5

A. 6. Length and source of each task in M3.

No. Length Source No. Length Source No. Length Source
1 10282 1 18 7868 3 35 10046 6
2 10936 1 19 13993 3 36 11144 6
3 11959 1 20 13553 3 37 4128 6
4 11314 1 21 9610 3 38 15240 6
5 8511 1 22 13610 4 39 5661 6
6 11369 1 23 8992 4 40 3140 6
7 14368 1 24 9928 4 41 12874 6
8 8512 2 25 9362 4 42 7984 7
9 8741 2 26 9811 4 43 11216 7
10 15925 2 27 11686 4 44 6674 7
11 8413 2 28 4694 4 45 5360 7
12 7283 2 29 11383 5 46 8652 7
13 7068 2 30 7417 5 47 11450 7
14 13185 2 31 11179 5 48 6103 7
15 10188 3 32 12307 5 49 14942 7
16 6766 2 33 11824 5 50 8758 6
17 9646 3 34 4959 5

A. 7. Length and source of each task in L1.

No. Length Source No. Length Source No. Length Source
1 5745 1 35 7649 4 69 9389 7
2 11441 1 36 9609 4 70 11283 7
3 6921 1 37 4709 4 71 4649 7
4 5759 1 38 7669 4 72 8974 7
5 11204 1 39 10040 4 73 9310 7
6 7005 1 40 12120 4 74 13240 7
7 7470 2 41 9587 4 75 11625 7
8 10155 2 42 4908 4 76 9567 7
9 11157 2 43 11258 4 77 9832 7
10 12669 2 44 8920 4 78 11054 7
11 10961 2 45 8670 4 79 13825 8
12 11123 2 46 1960 5 80 10040 8
13 10792 2 47 13552 5 81 8597 8
14 14891 2 48 8095 5 82 9239 8
15 8519 2 49 10969 5 83 11748 8
16 7995 2 50 14628 5 84 8207 8
17 6485 2 51 12043 5 85 10906 8
18 10578 2 52 13533 5 86 9497 8
19 8450 2 53 11221 5 87 7264 8
20 10150 2 54 13525 5 88 12620 9
21 7136 3 55 9689 5 89 10739 9
22 8902 3 56 8739 5 90 7874 9
23 11303 3 57 11041 6 91 7013 9
24 10551 3 58 7294 6 92 9437 9
25 10744 3 59 11642 6 93 11609 9
26 10803 3 60 14157 6 94 9322 9
27 6413 3 61 7541 6 95 8618 9
28 10042 3 62 12381 6 96 13325 9
29 11425 3 63 12124 6 97 7102 9
30 10306 3 64 13927 6 98 15348 9
31 9437 3 65 11463 6 99 11774 9
32 13268 4 66 10753 6 100 9038 9
33 12902 4 67 16585 6
34 7123 4 68 11550 6

W.-C. Yeh et al. / International Journal of Industrial Engineering Computations 14 (2023) 747

A. 8. Length and source of each task in L2.
No. Length Source No. Length Source No. Length Source
1 7654 1 35 6132 3 69 9689 7
2 10694 1 36 9652 3 70 12826 7
3 13849 1 37 12838 3 71 11020 7
4 9013 1 38 10567 4 72 6148 7
5 8908 1 39 12317 4 73 12784 7
6 10148 1 40 7460 4 74 14702 7
7 11450 1 41 13996 4 75 12805 8
8 9974 1 42 16511 4 76 4320 8
9 11330 1 43 7891 4 77 10910 8
10 14690 1 44 10741 4 78 11280 8
11 10852 1 45 9768 4 79 9136 8
12 6544 1 46 12900 5 80 7615 8
13 12485 1 47 13888 5 81 14738 8
14 7568 1 48 14978 5 82 11173 8
15 4784 1 49 10313 5 83 5098 8
16 15674 1 50 5634 5 84 10492 8
17 6957 1 51 12188 5 85 13538 8
18 10079 2 52 9781 5 86 3990 8
19 12646 2 53 9445 5 87 11833 8
20 13094 2 54 14499 5 88 11235 8
21 11002 2 55 9847 5 89 18888 9
22 9013 2 56 10130 5 90 9826 9
23 11342 2 57 8242 5 91 7776 9
24 11497 2 58 10816 6 92 7760 9
25 14888 2 59 11621 6 93 11814 9
26 11057 3 60 11907 6 94 10125 9
27 9967 3 61 11853 6 95 9138 9
28 9411 3 62 10661 6 96 8109 9
29 10451 3 63 14438 6 97 8495 9
30 8244 3 64 7254 6 98 11319 9
31 8608 3 65 9408 6 99 9045 9
32 8985 3 66 15378 6 100 13113 9
33 9484 3 67 5012 7
34 7036 3 68 7280 7

A. 8. Length and source of each task in L3.
No. Length Source No. Length Source No. Length Source
1 14789 1 35 16189 4 69 10558 7
2 3773 1 36 12561 4 70 8220 7
3 10890 1 37 11396 4 71 10206 7
4 15952 1 38 10480 4 72 9157 7
5 10010 1 39 10583 4 73 7251 7
6 13250 1 40 15582 4 74 10828 7
7 4914 1 41 5526 4 75 8535 7
8 9148 1 42 11805 4 76 5459 7
9 9776 2 43 6109 4 77 11681 7
10 9839 2 44 9204 5 78 5854 7
11 7585 2 45 8136 5 79 6553 8
12 8432 2 46 2970 5 80 4791 8
13 12658 2 47 11552 5 81 9526 8
14 18774 2 48 11100 5 82 14406 8
15 13680 2 49 12190 5 83 8653 8
16 17091 2 50 12032 5 84 9064 8
17 6650 2 51 6617 5 85 7461 8
18 10036 2 52 10895 5 86 11424 8
19 11882 3 53 13733 5 87 6924 8
20 11069 3 54 4726 5 88 8420 9
21 8625 3 55 4892 6 89 13682 9
22 6348 3 56 7116 6 90 8031 9
23 8201 3 57 13532 6 91 8529 9
24 14034 3 58 9137 6 92 12104 9
25 9647 3 59 8903 6 93 6729 9
26 12868 3 60 11369 6 94 14374 9
27 12218 3 61 13020 6 95 6898 9
28 12515 3 62 12655 6 96 11411 9
29 10179 3 63 14565 6 97 9678 9
30 7529 4 64 5871 6 98 14625 9
31 11270 4 65 13150 6 99 10929 9
32 10802 4 66 8269 6 100 19363 9
33 6106 4 67 10179 6
34 12858 4 68 9412 7

748

Appendix B

Processing Rates and Cost

Table B-1
Processing Rates and Cost of SD1

Problem Scale: Small Data set: 1
 Cloud Fog1 Fog2 Fog3 Fog4

Processing
Rate 4000 2000 1500 1000 500

Cost 55 15 12 8 3

Table B-2
Processing Rates and Cost of SD2

Problem Scale: Small Data set: 2
 Cloud Fog1 Fog2 Fog3 Fog4

Processing
Rate 4000 1500 1000 800 500

Cost 55 12 8 5 3

Table B-3
Processing Rates and Cost of SD3

Problem Scale: Small Data set: 3
 Cloud Fog1 Fog2 Fog3 Fog4

Processing
Rate 4000 2000 1500 1000 500

Cost 55 15 12 8 3

Table B-4
Processing Rates and Cost of MD1

Problem Scale: Medium Data set: 1
Cloud Fog1 Fog2 Fog3 Fog4
4000 2500 2000 1500 1000

55 32 27 15 8
Fog5 Fog6 Fog7
1000 500 500

8 3 3

Table B-5
Processing Rates and Cost of MD2

Problem Scale: Medium Data set: 2
Cloud Fog1 Fog2 Fog3 Fog4
4000 2000 1000 1000 1000

55 27 8 8 8
Fog5 Fog6 Fog7
800 800 500
5 5 3

Table B-6
Processing Rates and Cost of MD3

Problem Scale: Medium Data set: 3
Cloud Fog1 Fog2 Fog3 Fog4
4000 2000 1000 1000 1000

55 27 8 8 8
Fog5 Fog6 Fog7
800 800 500

5 5 3

Table B-7
Processing Rates and Cost of LD1

Problem Scale: Large Data set: 1
Cloud Fog1 Fog2 Fog3 Fog4
5000 2000 2000 1500 1500

65 27 27 15 15
Fog5 Fog6 Fog7 Fog8 Fog9
1000 1000 800 800 500

8 8 5 5 3

Table B-8
Processing Rates and Cost of LD2

Problem Scale: Large Data set: 2
Cloud Fog1 Fog2 Fog3 Fog4
5000 2500 2500 2000 2000

65 32 32 27 27
Fog5 Fog6 Fog7 Fog8 Fog9
1000 1000 800 800 500

8 8 5 5 3

Table B-9
Processing Rates and Cost of LD3

Problem Scale: Large Data set: 3
Cloud Fog1 Fog2 Fog3 Fog4
5000 2500 2000 2000 2000

65 32 27 27 27
Fog5 Fog6 Fog7 Fog8 Fog9
1000 1000 800 500 500

8 8 5 3 3

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

