International Journal of Industrial Engineering Computations 14 (2023) 767-784

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An improved genetic algorithm for multi-AGV dispatching problem with unloading setup
time in a matrix manufacturing workshop

Yuan-Zhuang Li?, Jia-Zhen Zou?, Yang-Li Jia*", Lei-Lei Meng? and Wen-Qiang Zou*"

4School of Computer Science, Liaocheng University, Liaocheng 252000, P. R. China

CHRONICLE

ABSTRACT

Article history:

Received March 1 2023
Received in Revised Format
May 12 2023

Accepted July 52023
Available online

July, 7 2023

Keywords:

Automated guided vehicle
Dispatching

Genetic algorithm

Setup time

This paper investigates a novel problem concerning material delivery in a matrix manufacturing
workshop, specifically the multi-automated guided vehicle (AGV) dispatching problem with
unloading setup time (MAGVDUST). The objective of the problem is to minimize transportation
costs, including travel costs, time penalty costs, AGV costs, and unloading setup time costs. To
solve the MAGVDUST, this paper builds a mixed-integer linear programming model and proposes
an improved genetic algorithm (IGA). In the IGA, an improved nearest-neighbor-based heuristic
is proposed to generate a high-quality initial solution. Several advanced technologies are developed
to balance local exploitation and global exploration of the algorithm, including an optimal solution
preservation strategy in the selection process, two well-designed crossovers in the crossover
process, and a mutation based on Partially Mapped Crossover strategy in the mutation process. In
conclusion, the proposed algorithm has been thoroughly evaluated on 110 instances from an actual

Matrix manufacturing workshop electronic factory and has demonstrated its superior performance compared to state-of-the-art

algorithms in the existing literature.

© 2023 by the authors; licensee Growing Science, Canada

1. Introduction

The rise of the smart industry has brought an increasing interest in AGVs due to their flexible, automated, and intelligent
characteristics (Lu et al., 2017). However, AGV dispatching has brought many challenges and troubles to the academia and
industrial communities (Micieta et al., 2018). AGV dispatching refers to the process of allocating tasks to AGVs and
determining the order in which the tasks are to be executed by each AGV. Effective AGV dispatching can improve production
efficiency, reduce costs, and enhance enterprise competitiveness (Liu et al., 2022; Ng et al., 2009; Song, 2021; Wang et al.,
2015; Hao et al., 2020; Yao et al., 2020). Especially with the expansion of scale, the AGV dispatching problem has become
more complex and difficult. Therefore, the academic and industrial communities need more efficient strategies and dispatching
algorithms to solve this crucial and meaningful problem. Current research in AGV dispatching primarily focuses on various
scenarios or settings, including terminals, depots, manufacturing systems, underground parking lots and so on. As for
automated container terminals, Jin and Zhang (2016) designed a dynamic multi-AGV dispatching model based on the genetic
algorithm to minimize both the completion time and the standard deviation of handling time for quay cranes. Wang and Zeng
(2022) conducted a study on the dispatching and routing problem of AGVs with multiple bidirectional paths, aiming to
generate conflict-free routes. In the manufacturing system, Ren et al. (2012) designed a mathematical model that integrates
double-buffered AGVs based on the dispatching problem of a flexible manufacturing system. And they proposed an improved
genetic algorithm to rank the processing order of jobs and the movement of double-buffered AGVs. Niu et al. (2023) presented
a multi-tasks chain dispatching algorithm to improve the heavy load ratio and reduce the makespan. Meanwhile, Liao et al.
(2020) proposed a hybrid genetic algorithm-based AGV dispatching method and a time-space graph search algorithm-based

* Corresponding author

E-mail: zouwengiang@Icu.edu.cn (W.-Q. Zou); jiayangli@lcu-cs.com (Y.-L. Jia)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)

2023 Growing Science Ltd.

doi: 10.5267/j.ijiec.2023.7.002

768

path optimization method to address the AGVDP in unmanned underground parking lots. The AGVDP is a challenging
combinatorial optimization problem, and finding accurate and efficient solutions using traditional exact methods becomes
difficult as the problem size increases (Xu et al., 2016). Scholars in existing research predominantly use heuristic or meta-
heuristic algorithms to address the AGVDP. Hu et al. (2020) integrated the A* algorithm with the principle of time window
to sequentially plan the path of each AGV in chronological order; Zou et al. (2021) presented an improves iterative greedy
algorithm to address the multi-compartment AGVDP; Wang &Wu (2023) utilized an enhanced ant colony optimization-
simulated annealing algorithm to tackle a multiload AGVs workshop dispatching problem with limited buffer capacity; Li et
al. (2023) solved the AGVDP considering time and capacity constraints by employing a discrete invasive weed optimization
algorithm.

A matrix manufacturing workshop is a production facility that utilizes a matrix structure to organize its equipment and
workstations. It has become increasingly popular due to its versatility and adaptability (Zou et al., 2021). The workshop is
divided into two primary segments: the production segment and the logistics segment. The logistics segment is responsible
for the transportation of materials and products between workstations, which can be a complex process (Wu et al., 2023).
Various considerations arise within the logistics link, including the coordination of multiple AGVs to prevent collisions and
conflicts (Wang &Wu, 2023; Chen et al., 2022; Yuan et al., 2020), the development of a sound charging strategy to ensure
uninterrupted AGV operation (Huang et al., 2018), timely resolution of abnormalities in AGV operations to maintain the
continuity and stability of the logistics process (Sun et al., 2022), and more. At present, Meng et al. (2023) designed a
population diversity checking method to solve the flexible job shop dispatching problem with a limited number of AGVs; Zou
et al. (2022) investigated the energy-saving dispatching of AGVs with optimized energy consumption; Li et al. (2022)
proposed a genetic algorithm to handle the dispatching problem of multiple AGV flexible manufacturing cells with charging
constraints; Zou et al. (2021) conducted a study on AGVDP with pickup and delivery; Singh et al. (2022) proposed an adaptive
large neighborhood search algorithm to address AGVDP with battery constraints; Eda et al. (2012) introduced a Petri net
decomposition method to address the bi-objective optimization problem, which formulates the dispatching and conflict-free
routing problem of AGVs as a Petri net bi-objective optimal firing sequence problem; Nishida et al. (2022) proposed a heuristic
solution procedure to tackle the conflict-free route planning problem for AGVs with on-time delivery; Zou et al. (2023)
conduct a study on the multi-AGV dispatching problem that incorporates charging and maintenance considerations. However,
there has been a lack of research on MAGVDuysr to date.

In the real manufacturing workshop, the computer numerically controlled (CNC) machines and other equipment in the
workstations must undergo regular maintenance to ensure error-free production processes. For such workstations, safety
checks, such as parking accuracy, robotic arm gripping goods, and buffer zone alarm, must be carried out before unloading
materials. The time spent on safety checks is called unloading setup time. So, MAGVDuysr is one of the specific MAGVDP,
which involves the consideration of unloading setup time.

Obtaining optimal solutions is of utmost importance for a dispatching problem, especially when dealing with a new problem.
Meta-heuristic algorithms are widely used in such cases to achieve optimal or near-optimal solutions (Meng et al., 2022).
Genetic algorithm (GA) is a popular algorithm that simulates biological evolution (Jahanzaib et al., 2013). It searches for an
optimal solution among many candidate solutions by using natural selection, crossover, and mutation. In this paper, IGA is
proposed to solve MAGVDysr. The main contributions can be summarized as follows:

(1) Formulate the MAGVDysr and establish a mixed-integer linear programming model.
(2) Propose an improved nearest-neighbor-based heuristic to generate a high-quality initial solution.

(3) Present an optimal solution preservation strategy, two well-designed crossovers, and a mutation based on Partially
Mapped Crossover (PMX) strategy to balance local exploitation and global exploration of the algorithm.

The remainder of this paper is organized as follows. In Section 2, the MAGVDysr and its challenges are introduced in detail.
Section 3 presents the proposed IGA and discusses its design and optimization strategies tailored for the MAGVDuysr. Section
4 is dedicated to presenting the experimental results and comparing the computational outcomes with well-known algorithms
commonly employed for AGVDP. Lastly, in Section 5, a comprehensive summary of the paper is presented, highlighting the
key findings and contributions. Additionally, this section provides valuable insights into potential future research directions
in the field.

2. Problem description and formulation
2.1 Problem description

In a matrix layout of a general manufacturing workshop, workstations are arranged in a grid-like structure, as illustrated in
Fig. 1. Each workstation is equipped with a material buffer and multiple CNC machines. The material buffer functions as a
storage area for materials that are consistently consumed by the CNC machines. AGVs are responsible for transporting these
materials to the respective workstations where the final products are produced. When the material level in the buffer reaches
a pre-set minimum, the workstation will send an alarm signal for replenishment to the control system. Then the workstation
is converted to a call workstation. Upon receiving instructions from the control system, the AGV leaves the depot with a full
load of materials, follows the aisles to its assigned workstation to unload the materials and finally returns to the depot.
Specifically, there are certain workstations that have just been maintained and are referred to as special workstations. When

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 769

an AGV arrives at a special workstation, it will first undergo safety checks before unloading. It is important to note that this
delivery process will incur transportation costs.

~~~~~~~~~ . . .
fffffffff SR S
~~~~~~~~~ 000000 9—bt

""""" GG O OO0 |

fffffffff 600G Gpgc— SR [

OO Gy o/ | LD
] 1 1] 1]]] 3 | g

$ AGVOWorkstation OCall Workstation®Special Workstation— —Aislel] CNC [[Buffer
Fig. 1. The layout diagram of the matrix manufacturing workshop

Depot |

=%

Regular maintenance is crucial to ensure error-free production processes as workstations age. After maintenance, AGV's must
undergo safety checks such as the AGV parking accuracy, the robotic arm gripping goods, or the buffer zone alarm system
checks when they return to a workstation. The time for safety checking is defined as the unloading setup time, which is the
amount of time required for the AGV to be ready to unload at the workstation. The unloading setup time of the AGV at a
workstation may vary depending on the age of the workstation. If a safety check is required prior to dispatch, this information
is known in advance.

For the purposes of the following description, the workstation that sends the alarm signal is referred to as a task, the moment
the alarm signal is sent is recorded as the calling time, and the sequence of tasks that the AGVs is scheduled to serve is referred
to as the AGV route. Additionally, it should be noted that each task can only be assigned to and served by a single AGV. and
the control system requires timely delivery of the AGVs. Late deliveries will impact the production schedule, which is
unacceptable. Conversely, early deliveries will result in a penalty and incur a time cost that varies based on the magnitude of
the early delivery.

The aim of this study is to reduce the total transportation costs, including travel costs, time penalty costs, AGV costs, and
unloading setup time costs. The analysis will be based on the manufacturing workshop's current situation.

The matrix manufacturing workshop involves multiple tasks, which would require a significant number of AGVs if each task
had its own. However, it would result in congestion and inefficiencies (Yuan et al., 2021). To address this issue, a time-cycling
strategy is suggested which divides the workshop production time into successive production cycles. In Fig. 2, tasks are
created in each production cycle and assigned to AGVs for execution in the following cycle. The production cycle is comprised
of two distinct phases - the calculation phase and the transport phase. In the calculation phase, the control system assigns all
tasks to create a dispatching schedule. In the transport phase, AGVs are dispatched to transport materials to the assigned tasks
based on the generated schedule. By implementing a time-cycling strategy, a single AGV can efficiently handle multiple tasks
simultaneously, thus reducing the number of required AGVs and ultimately decreasing overall transportation costs.

AT|T,

The whole production cycle

|:| computing stage |:| transporting stage

Fig. 2. The production cycles
2.2 Problem formulation

With the aforementioned information, a mathematical model is proposed utilizing the concept of MAGVDysr. The model
includes various decision variables and parameters, which are described as follows.

Parameters and constants:

i, j :Unique identification of the task

p: : Position of the task i.

x; :Size of the x coordinate of p; .

y; :Size of the y coordinate of p; .

n : Overall quantity of tasks .

n’ : Maximum number of tasks that an AGV can handle.
k :Current AGV (or AGV route) .

k’ : Anticipated number of AGVs.

k" : Number of AGVs available for dispatch .

v : Velocity of AGV .

0 : Capacity of AGV .

q; : Material requirementof task 7 .

d; : Travel distance between tasks i and j .

; ‘Travel time between tasks i and j .

C': Production cycle .

T : Call Time of tasks i .

T! : Delivery time of task i .

T* : Unloading setup time when AGV arrives at task i .

e

: Time when the AGV leaves the depot .

AT : Computation time for the computing stage in a production cycle .
t, - Unloading time at each task .

t, . Processing time per unit of production material .

S': Total amount of material in the buffer .

S¢ ¢ Inventory level of the material buffer at the call time .
g : Weight of each slice of production material .

¢, : Unit cost of traveling along an AGV route .

¢, . Cost of each AGV .

¢, - Penalty cost for earliness .

Decision Variables:

Xy - X =1 if arc(i, j)is travelled by AGV and 0 otherwise.

T . Arrival time of task 7 .

Suppose G ={V,E} is an undirected graph, where V ={l,2,...,n} denotes the set of vertices and E = {(i,j) |i,jeV,i# j}
denotes the set of edges connecting each pair of vertices. In this graph, vertex i =1,2,...,n represents a task, while vertex 0
denotes the depot. K ={1,2,...,m} denotes the set of AGVs (or AGV routes). Each edge (i, j) represents the travel route of

an AGV from tasks i (or the depot) to j . The travel distance and time along this route can be calculated using the following

formula:
dfj :lx[_xj‘+|y1'_yj| (1
ty=dy /v 2

Assuming an AGV departs from task i and arrives at task j, the time taken by the AGVs to reach task j is composed of the

time taken to reach task i, the transport time, the unloading time, and the unloading setup time. This duration can be
represented mathematically using formula (3):

T) =T +T" +t; +1,,Vie V, je V\{0},i # j, 3)

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 771

The total distance of the AGV can be expressed as:

Dy, = z z Z Xiudy 4)

k=1 j=0 i=0

The inventory in the material decreases as the CNC machine at the workstation consumes material for production. When task
j is reached, the AGV unloads the material into the buffer. The amount of material unloaded by the AGV, which is the

material requirement for task j, is calculated by formula (5):

4, =[(S—S;)+[(T;—T;ﬂ/tm].g,vj'e v\ {0} (5)
Suppose that there are n tasks inside a production cycle, the minimum number of AGV's required is:
k'zl_n/n'_l,n'ZIZ (6)

Given the definitions mentioned above, the mixed-integer linear programming (MILP) formulation for MAGVDuysr can be
modeled as:

min F (i) = 323" 3 sy #0373 3 s +e. 35S (1T)+ 3575 Ty o)

k=1 j=0i=0 k=1 j=0 i=0 k=1 j=0 i=0 g
S.t:
Z Xijk :1,Vj€ V\{O} (8)
k=1 i=
Xijk = 1,Vj€ V\{O} (9)
=1 j=0
Xp— D X =0,Vke K, je V\{0} o)
i=0 i=0
Xiok =zx0f’f ZI,VkE K (11)
i=1 j=1
X (T7 +1, +1, -T7) =0,Vke K, je V\{0} ,ie V 12
szffk-qj <O,Vke K o)
i=1 j=0
T3S ST <SS . Vie 7\ [0) .
k=1 j=0 k=1 j=0
k’SmSk”,k”=6 (15)
xx €{0,1},Vi,je V,Vke K o)
Xy =0,i,jeVandi=j)
o (18)

The model proposed in this paper aims to minimize transportation costs (constraint 7), including travel costs, time penalty
costs, AGV costs, and unloading setup time costs. It is important to note that reducing one AGV route is always more
advantageous than reducing other costs, even for large constant values. Additionally, constraints (8-10) require that each task
be visited by an AGV at least once and must be left after the visit. In this subject paper, there are several constraints that have
been imposed to ensure efficient and effective AGV operations. Constraint (11) specifies that every AGV route must
commence and conclude at the depot. Constraint (12) defines a relationship between the arrival time of a task and its preceding
task. In order to prevent overloading, Constraint (13) guarantees that the AGV's load does not exceed its maximum capacity.
Constraint (15) maintains the total number of AGVs within an optimal range. Furthermore, Constraint (14) imposes a time
constraint, while Constraints (16-18) impose restrictions on the decision variables.

3. The proposed improved genetic algorithm

In this paper, the IGA that effectively reduces transport costs is proposed to better solve the presented problem. The IGA is
composed of five main parts: solution initialization, selection operation, crossover operation, mutation operation, and update
operation. In the following sections, each part will be described in detail.

3.1 Solution representation

To simplify the representation of the solution for the MAGVDuysr, a straightforward approach has been adopted. Let there be

772

n tasks to be processed in the production workshop and m AGVs available to complete them. The solution vector has a
length of (m + n — 1) and consists of n different integers between 1 and 1, representing the tasks. In the vector, the
presence of zeros indicates the start of each AGV's route, effectively separating the routes of different AGVs. And the zero at
the first position of the vector is usually omitted directly. For instance, if there are 3 AGVs and 9 tasks, and the first AGV is
assigned to tasks 2, 5, and 8, the second AGV to tasks 1, 4, 6, and 9, and the third AGV to tasks 3 and 7, the solution would
be represented as (2, 5, 8,0, 1,4,6,9,0,3,7).

3.2 The improved nearest-neighbor-based heuristic

Zou et al., (2020) proposed a nearest-neighbor-heuristic (NNH) for task searching. The main idea behind NNH is to find the
task that is closest to the current task based on the Manhattan distance. This task is then selected as the next task to be serviced.
In this section, an improved NNH (INNH) is introduced, which utilizes the Chebyshev distance instead of the Manhattan
distance. By considering distances in all directions between two tasks, the Chebyshev distance provides a more accurate
measure in cases where the Manhattan distance may be over or underestimate distances. The calculation of the Chebyshev
distance is as shown below:

Dy = max(|x; —x|,|y; = i) (19)

where D; represents the Chebyshev distance between task i and task j , x and y represent the horizontal and vertical

coordinates of the task.

In this algorithm, the following notations are used: Let U = {1, 2, .., n} denote the set of unassigned tasks, R represent the
current AGV route, 77 represent the generated solution, and j represent the current task. The algorithm assigns each task by
prioritizing those that satisfy the time and capacity constraints. If there are no tasks that meet the constraints, the current AGV
route is included in the solution, and a new AGV route is initiated for the subsequent task. This process repeats until all tasks
have been assigned, leading to the termination of the algorithm. The flowchart for the INNH algorithm is shown in Algorithm

1.
Algorithm 1: INNH heuristic

Output : Solution 7
Let the AGV route R = ® and task j =0

1

2: while U is not empty do

3 fori= 1ton

4: ‘ Find the nearest task i fromj in U

S: endfor

6 Test to append task i to route R

7 if route R meets the capacity and time constraints then for
8 ‘ Let task j =i and delete i from U

9

: else
10: Append route R to solution 7, and empty route R
11: Add 0 at the end of 7, and letj =0
12: endif

13: endwhile

14: if route R is unempty then

15: ‘ Append route R to solution 7z
16: endif

17: return Solution 7

3.3 Initial population phase

To enhance the quality and diversity of the initial population, this study employs three heuristic methods, INNH, NNH, and
improved sweep-based heuristic (ISH) (Zou et al., 2021), to generate initial solutions. These methods are applied to produce
three initial solutions, and the one with the minimum fitness value is selected and retained. Fitness in this context refers to the
evaluation criterion for the quality of a solution. In this paper, a lower fitness value indicates a better solution quality. To
further diversify the population, the remaining solutions are randomly generated. This approach achieves a balance between

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 773

exploitation and exploration within the search space, thereby enhancing the quality and diversity of the initial population. Let
P, represent initialized populations, where PS represents the population size, 7,0 € [1, PS] represents the oth solution,

i

T » ane > and 7 represent the initial solutions generated by INNH, NNH, and ISH respectively. The flowchart of the
initial population generation process is shown in Algorithm 2.

Algorithm 2 : Initial population
Output : the initial population P

1 Find the best solution 7,,...; from 7w e » Trew

2 Add solution 7..,; to the initial population P

3 for o =2 to PSize

4: Randomly generate a permutation of all the tasks

5: Let the AGV route R = ®

6: fori=1ton

7 Test to append task i to route R

8 if router R meets the capacity and time constraints then
9: ‘ Append task i to route R

10: else

11: Append route R to solution 7, and empty route R
12: Add 0 at the end of 7,

13: endif

14: endfor

15: if route R is unempty then

16: ’ Append route R to solution 7, and empty route R

17: endif

18: Add solution 7,,to the initial population P

19: endfor

20: return the initial population P

3.4 Selection operation

The selection operation is a crucial aspect of GA as it improves the performance of populations by selecting well-adapted
individuals. In traditional GA, the selection operation often directly selects individuals with better fitness from the initial
population using either roulette wheel selection (Chen et al., 2019) or tournament selection (Routray & Ray, 2020). These
selected individuals serve as the parents for the next generation.

In this paper, before the selection operation, an improved optimal preservation (IOP) strategy is applied. In each generation
of a population, there are individuals which are better suited to the objective function than others. These individuals are known
as 'elite individuals'. The IOP strategy is used to prevent the loss of elite individuals during iterations of the algorithm. Before
each selection, the elite individuals are chosen. And a random sequence is generated for comparison with the elite individual.
After that, the individual with the better fitness is selected as the new elite individual. This new elite individual is directly
passed to the update stage without undergoing any crossover or mutation. The other individual that is not chosen as the new
elite is replaced in the original position of the elite individual for subsequent operations. Let 7., denote the best individual

of the current population, 7z, denote the randomly generated individual, and f, and f, denote the fitness of 7., and 7, ,

respectively. The optimal preservation strategy flow is depicted in Algorithm 3.

Algorithm 3 : Optimal preservation strategy

Calculate the fitness f,. . of 7,.... 7.
if f, <f, then

Retain the solution 7.,

Let @, = 7.
else

| Retain the solution 7,

endif
return Optimum conserved population P

PEEAR A AT

For the populations updated by the IOP strategy, a roulette wheel approach is utilized to select individuals as the parental
generation. The probability of selecting an individual is determined based on a fitness ratio calculation. This ratio is calculated
by dividing the fitness value of the best individual in the population by the fitness value of the current individual. The resulting
value is then used as the selection probability for the current individual. The calculation of the probability is as shown below:

P — .fmin

=7 (20)

774

where f,,, represents the fitness of the best individual in the population, f; indicates the fitness of the current individual.
The closer the value of P, is to 1, the more similar the current individual is to the best individual in the population. The
selection process is illustrated in Algorithm 4.

Algorithm 4 : Select operation
Output : Selected individuals of the parent generation seq,, seq,, seq;

1: Let selection probability P. = f. / f;

2: do

3 fori=1to3

4: ’ select individuals seq; from population P by roulette
5 endfor

6: while seq, # seq, # seq;

7: enddo

8: return Selected individuals of the parent generation seq,, seq,, seq;

3.5 Crossover operation

In order to produce offspring chromosomes with improved fitness, the crossover operation combines advantageous traits from
parent chromosomes. This paper proposes two crossover operations: the three-insertion store-optimal crossover (3-ISOC)
operator and the three-parent random selection crossover (3-PRSC) operator, which are randomly selected using the variable
selectCross with a certain probability. These methods have a dual benefit of increasing the diversity of the population and
enhancing the convergence rate of offspring chromosomes. It ultimately leads to an overall improved performance of the IGA.
The 3-ISOC process involves the insertion operation of genetic material in three parental individuals, while also evaluating
the fitness of the resulting individuals. The individual with the superior fitness is then selected as the new offspring individual.
To clarify the process, one must traverse all elements in the initial values of the offspring and determine their position, pos ,

in seq; . Once pos is identified, all elements after pos in seq; are inserted at the top of the seq;. For example, supposing
the initial sequence of offspring is (3, 6, 1, 5, 2, 4) and the seq, sequence is (1, 4, 2, 6, 3, 5). By comparison, it can be found
that the first element of offspring, 3, is the fifth element in seq, . Therefore, all elements after 3 are inserted to the top of segq;

to get the sequence (3, 5, 1, 4, 2, 6). The second element of offspring, 6, is then moved on to, giving us the sequence (6, 3, 5,
1, 4, 2), and so on until all the elements of the offspring have been traversed, resulting in the sequence (4, 2, 6, 3, 5, 1). The
same process is applied to seq, and seq; .The detailed process is shown in Fig. 3, while the 3-ISOC process is shown in

Algorithm 5.

The 3-PRSC operation involves randomly generating integers within the range of [0, 2]. The resulting number determines
which parent individual the current element of the offspring individual will be taken from. Specifically, a random number of
0, 1, and 2 corresponds to seq, , seq, and seq; , respectively. Suppose the seq, sequence is (3, 6, 1, 5, 2, 4), the seq,

sequence is (1, 4, 2, 6, 3, 5), the seq; sequence is (2, 5, 3, 4, 1, 6), and the generated sequence of random numbers is (1, 0, 2,

2,0, 1). Then, the result generation process is shown in Fig. 4 and the 3-PRSC operation flow is shown in Algorithm 6. The
overall flow of the crossover operation is illustrated in Algorithm 7.

offspring [3 SN 1 [5 ENE
seql El
@ [5 [1]
[s[5 [1]
[5 |

N
[3]5 [1]

Fig.3. Example of 3-ISOC

SRR R
—_ w| |
w | | =
($)] —
— w w
& B B

@ @ ® © ©

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 775

Algorithm 5 : Three-swap merit taking crossover operator
Output : Offspring individual offspringseq

1 Randomly select a sequence from seq,, seq,, seq; as seq

2 Let offspringseq = seq

3 fori=1ton

4: for j=1to3

5: Crossover the offspringseq and seq; to obtain cpyseq;

6: Calculate the fitness of cpyseq; as f;

7 endfor

8 Select the minimum value of fitness in f;, /2, f; as f;,k € {1,2,3}
9 Let offspringseq = cpyseq,

10: endfor
11: return Offspring individual offspringseq

Seq2| 1 3 B

Fig.4. Example of 3-PRSC

offSpring

Algorithm 6 : Three-parent random selection crossover operator
Output : Offspring individual offspringseq

Randomly select a sequence from seq,, seq,, seq; as seq
Let offspringseq = seq

for i = 0 to size of offspring

Generate random integers from [0,2] as j

Update the i, task in offspringSeq by the i,task in Seq;
endfor
return Offspring individual offspringseq

A A T e

Algorithm 7 : Cross operation
Output : Offspring individual offspringseq
Let selectCrossCal as the Algorithm selection probability

1

2 Randomly generate a decimal between 0 and 1 as selectCross
3 if selectCross < selectCrossCal then

4: | 3180C

5: else

6: | 3-PRSC

7 endif

8 return Offspring individual offspringseq

3.6 Mutation operation

The mutation operation is a random process that alters one or more gene positions within an individual's gene sequence. It
results in the creation of a new individual. This paper proposes the use of PMX (Singh & Choudhary, 2009) to generate new
offspring individual by mutating parent individuals. The process involves selecting three random positions, denoted as
pos,, pos, and poss , from the offspring individual. It is important to note that pos, < pos, < pos; . The subsequence of

tasks between positions pos, and pos, is extracted as seqtemp and inserted it after position pos; in the offspring individual.

Then a new offspring individual is obtained. This approach allows for the creation of new and diverse offspring individual
through the manipulation of parent individuals. The variation operation flow is illustrated in Algorithm 8.

776

Algorithm 8 : Mutation operation

Output : Offspring individual offspringseq

1: Sort pos,, pos,, possin descending order so that pos, < pos, < pos;
2: Let seqtemp for the tasks between pos, and pos,

3: Insert seqtemp after position pos; of offspringseq

4: return Offspring individual offspringseq

3.7 Update population operation

The update population operation involves inserting offspring individual obtained through crossover mutation into the
population. The offspring individual is used to replace the worst individual in the population, thereby updating it. This paper
focuses on using offspring individual to update the population through the following method. The method first compares the
offspring individual with the least fit individual in the population. The individual with better fitness values is then
preferentially retained to update the population. Next, the least fit individual in the updated population is compared with
individual preserved in the optimal preservation strategy. The individual with better fitness values is retained to further update
the population. Let z,,,, be the individual with the worst fitness and f,,,, be its corresponding fitness value. Similarly,
Topipring ANA fop,e TEprEsent the offspring individuals generated after crossover mutation. Then 7, represents the optimal
solution preserved in the optimal preservation strategy, and f,..;, denotes its fitness. Finally, 7/, and f,,., represent the
individual with the worst fitness after updating 7., to the population. The process for updating the population operation

is shown in Algorithm 9.

Algorithm 9 : Update population operation
Output : the updated population P

if 4fwm‘sf > ﬁi{[qm'ng then

1

2 Teopspring SUDStItUteES for 7z,
3: endif

4: if £y > frewn then
5: Treain SUbSstitutes for 7.,

6: endif

7: return the updated population P

3.8 Procedure of the proposed IGA

The IGA proposed in this paper follows a series of main phases. Firstly, the initial population phase is executed (section 3.3).
Subsequently, the selection, crossover and mutation and update operations (sections 3.4, 3.5 and 3.6 respectively) are
performed in a sequential manner to generate offspring individual. Lastly, the offspring individual is inserted into the
population through an update operation (section 3.7). The overall flow of the IGA is illustrated in Fig. 5.

initialize Control
parameters:
PSize,TaskSizeselectCrossCal

Initialize the population:
the initial population P

Selection operation:
Select three individuals of the
parent generation seq;. seqs. se

Crossover operation:
Offspring individual
offspringseq

Mutation operation:
Offspring individual
offspringseq

Update population
operation:
the updated population P

v

End
Fig. 5. Overall flow of the IGA

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 771

4. Computational and statistical experimentation

The efficacy of the proposed strategy and algorithm is validated in this section through thorough statistical experiments and
calculations. The experimental test methods, data setup, and analysis methods are detailed. The optimal combination of all
parameters is subsequently determined through extensive calibration experiments. Ultimately, the effectiveness of the
proposed strategies and algorithms is demonstrated through a comparative analysis with other existing algorithms.

4.1 Experimental settings and test methods

In our experiments, instances are collected from Foxconn Technology Group, a Chinese electronic manufacturing company.
One hundred instances of varying sizes, ranging from 10 to 50, are used. And these instances are categorized into test and
calibration instances. Test instances are used for calculations and algorithm comparisons, while calibration instances are used
to calibrate existing algorithms. To ensure the absence of experimental bias in calibration, the instances are segregated into
two groups. The first group consists of 20 instances of the same size as the test instances, resulting in a total of 100 instances.
The second group is composed of 10 instances, with two duplicate instances for each instance of the same size. The test
instances are denoted as T and the calibration instances are denoted as C. In the test case, T3019 represents 30 tasks that need
to be scheduled for completion, with 19 being the index of the specific instance. Each instance has unique details including
identification, location, moment of invocation, material buffer inventory at the time of invocation, and the latest delivery time.
For instance, {43, 5, 3, 53.9, 310, 28, 910} consists of the task number (43), the task's x-axis position (5), the y-axis position
(3), the shortest distance to the depot point (53.9), the moment of call in the production cycle (310), the remaining stock in
the buffer at the moment of call (28), and the latest delivery time in the producer's cycle (910). Due to space limitations, the
data used in this paper is not presented, but interested readers can obtain it from the authors. The parameters involved in the
model are shown in Table 1.

Table 1
Parameter settings
Items Values Items Values
AT 5s n' 12
C 360s tm 30s/slice
T, 365s g 0.75kg/slice
Q 250kg S 48slice
v Lm/s C; 1
ty 15s Ce 0.1
n 100 Ca 200

The MAGVDysr is a novel problem for dispatching AGVs in matrix manufacturing workshops. To compare several
algorithms that are suitable for the problem and popular in AGV dispatching, we select the Discrete Artificial Bee Colony
algorithm (DABC) (Zou et al., 2020), the Discrete Invasive Weed Optimization algorithm (DIWO) (Li et al., 2023), the
Harmonic Search algorithm (HS) (Li et al., 2019), the Greedy Iterative algorithm (IG) (Zou et al., 2021), and the Improved
Greedy Iterative algorithm (IIG) (Zhang et al., 2022). Each algorithm uses the maximum running time, AT , as the termination
condition. And each algorithm is repeated independently for the calibration and test instances, 10 and 30 times, respectively.
The strengths and weaknesses of all algorithms are compared using the relative percentage deviation (RPD). The RPD is
expressed as follows:

rpp = F=Foe) 10004 1)

best

where F is the transport cost of an algorithm for a given case and Fj.,, is the minimum transport cost of all the compared
algorithms for the same case. The smaller the RPD value, the better the algorithm's performance. All comparison algorithms
in this paper are implemented in C++ and compiled using Visual Studio 2019 with the x64 compiler. The experiments are
conducted on a Windows 10 operating system, utilizing an Intel Core i7-900K 3.60GHz PC with 32GB of RAM.

4.2 Calibration of the proposed and competing methods

Metaheuristics typically have optional parameters that require fine tuning to achieve optimal performance (Meng et al., 2020).
In the IGA, two parameters are proposed, one for population size (PSize) and the other for SelectCross , where SelectCross
is utilized to select two crossover operations during the crossover phase. Through previous experience and extensive
experimentation, a general range of values has been determined for the parameters PSize and SelectCross . PSize has 5
levels of calibration, which are 10, 50, 90, 130, and 170. Meanwhile, SelectCross has 5 levels of calibration, which are 0.1,
0.6, 0.7, 0.8, and 0.9. Consequently, there are 25 parameter combinations in the calibration process, and each combination is
run independently 10 times in each calibration instance. This results in a total of 2500 results for the 10 calibration instances.
To determine the optimal parameter combination for the algorithm, the experimental results were evaluated using analysis of
variance (ANOVA) and design of experiments (DOE) techniques. The results of the experiments are presented in Fig. 6.

778

o 1 - 21F 1
E A 21
S &
5 16f 1 g 19 §> 1
k| g
= L 1 =
R 15 A 171 1
o &
g L 1 £
3 14 % } % § 15+ 1
[} jo)
= =%}
2 13t % 1 213t]
= > 13
k= kE t 3 i ¥
Qqﬁ) [3)

12¢ 1 %l 1

0.1 0.6 0.7 0.8 0.9 10 50 90 130 170
SelectCross PSize

Fig. 6. Means plots of all parameters of the IGA

Fig. 6 displays the means along with their corresponding 95% confidence intervals for the two parameters of the IGA. The
figure shows that the confidence intervals for the parameter SelectCross overlap at the levels of 0.6, 0.7, and 0.8, suggesting
that there is no significant distinction between these three levels. Similarly, for the parameter PSize , there is no significant
difference between the levels of 90, 130, and 170. However, after analyzing the results, it is discovered that SelectCross=0.7
and PSize=90 product the smallest RPD values. As a result, these parameter values are selected for the IGA. The same

calibration process is applied to the other comparison algorithms, and the calibrated parameter values are presented in Table
2.

Table 2
Comparison of the algorithm's parameter calibration results
Algorithms Parameters
IGA PSize =90, SelectCross =0.7
HS HMS =4, HMCRmin =0.2, HMCRmax = 0.8
DABC PSize =150, [=800, r =80, 7 =20
DIWO PSize0 = 50, PSizemax =70, Smax =15, PLen =2
1G InitType=0.8,T=0.5,d =5
1IG d =35, Operlter = 60

4.3 Comparison of methods

To assess the effectiveness of the proposed IGA, a validation is conducted using 100 test instances with different sizes. Then
cases of different sizes are analyzed to demonstrate the scalability of the IGA. The experimental setups in this section are
identical to those in Section 4.1 and the evaluation metric used is RPD. And to obtain accurate experimental results, each
algorithm is repeated 30 times for each of the 100 instances. The results, consisting of the minimum (Min), maximum (Max),
and average (Ave) values of RPD, are presented in Tables 3-7. The best algorithm comparison results are highlighted in bold.

Table 3
Experimental results of 10 tasks.
Instanc DABC 1G 11IG HS DIWO IGA
[Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave
Ti001 725 725 725 725 725 725 725 725 725 725 751 735 31.5 319 31.7 00 100 4.8
4 7 5 4 4 4 4 4 4 7 0 6 7 0 2 0 8 2
T1012 30.5 30.6 305 304 304 304 304 305 304 305 765 63.6 229 233 232 00 35
1 5 6 6 7 6 6 5 9 1 7 7 8 3 1 0 6.76 9
Ti013 36.0 402 366 36.0 360 360 360 36.1 36.1 360 914 783 252 254 252 00 34
1 9 0 1 2 1 3 8 2 2 1 8 3 1 5 0 672 9
Ti014 28.8 293 29.1 28.6 287 28,6 287 29.1 289 287 33.0 293 239 243 241 00 11.7 3.8
9 4 6 9 0 9 2 9 9 6 5 8 9 6 1 0 8 2
T1015 69.2 694 692 692 692 692 692 692 692 692 73.1 704 273 281 277 0.0 34
4 2 9 4 4 4 4 9 6 6 7 7 3 3 8 0 612 5
T1016 61.6 61.6 61.6 61.6 61.6 61.6 61.6 61.6 61.6 61.6 625 62.0 187 19.0 19.0 0.0 3.6
3 4 3 3 3 3 3 3 3 5 9 7 2 4 1 0 778 9
Ti017 81.5 816 815 81.5 815 815 815 81.8 81.6 815 833 822 313 313 313 00 123 75
1 2 5 0 1 0 2 2 5 4 0 0 9 9 9 0 7 6
T10I8 754 769 759 753 753 753 753 754 754 753 797 767 246 248 247 00 122 7.6
3 8 5 3 4 3 4 9 0 4 6 5 7 4 8 0 9 5
T1019 16.5 16.6 16.5 165 165 16.5 165 16.5 16.5 16.7 63.1 49.6 231 233 232 00 33
5 8 9 3 3 3 3 4 3 1 5 3 8 4 2 0 636 4
T10110 184 592 242 182 209 19.1 183 212 194 209 61.7 534 199 199 199 0.0 2.4
4 0 9 5 2 0 5 1 2 5 2 8 7 7 7 0 493 6

T10111 341 349 345 341 341 341 341 345 342 345 721 616 275 291 276 00 115 54
9 4 1 3 4 3 5 1 6 0 0 8 1 0 1 0 1 0

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 779

T10112 139 141 140 139 139 139 139 140 140 142 705 263 205 205 205 0.0 5.0
9 6 8 9 9 9 9 1 0 6 5 1 4 4 4 0 9.00 9

T10113 352 353 352 352 352 352 352 352 352 352 779 582 369 37.1 370 0.0 3.8
1 5 8 0 1 0 0 3 1 4 3 8 9 7 2 0 9.04 0

T10114 29.7 300 29.8 297 297 297 297 297 297 297 749 531 289 293 291 0.0 3.0
3 1 4 2 2 2 2 7 5 4 6 5 8 3 6 0 683 4

T10115 28.8 30.8 295 28.7 287 287 287 291 289 287 794 553 327 328 327 00 126 6.9
3 8 0 4 8 5 8 9 7 9 7 5 1 8 5 0 5 7

T10116 313 67.7 459 31,1 313 311 31.3 318 317 312 757 634 260 260 260 00 105 6.3
2 2 9 3 0 8 2 5 4 3 2 8 9 9 9 0 6 8

T10117 324 326 325 324 325 324 325 326 325 325 757 377 346 348 348 00 133 8.2
9 0 4 7 1 9 0 7 7 0 4 6 9 8 6 0 6 4

T10118 349 354 351 349 349 349 349 349 349 358 911 8l 247 249 248 0.0 4.2
7 1 4 1 2 2 2 8 4 5 2 6 6 4 4 0 8.69 0

T10119 164 174 169 163 164 164 165 173 17.0 173 66.6 35.8 189 19.1 189 0.0 2.6
2 6 9 9 6 1 3 9 9 7 8 2 6 2 7 0 585 4

T10120 723 72,6 725 723 723 723 723 728 725 725 735 729 254 254 254 00 39
8 8 1 7 8 8 8 1 7 0 1 0 8 8 8 0 748 4

Averag 41.0 454 422 409 41.1 41.0 409 413 411 412 728 592 262 265 263 0.0 4.6
e 1 8 3 6 2 1 9 4 6 7 8 7 9 6 9 0 9.01 8

Table 3 presents the average Ave values of RPD for 10 tasks, which are 42.23%, 41.01%, 41.16%, 59.27%, 26.39%, and 4.68%
for DABC, IG, IIG, HS, DIWO, and IGA, respectively. The IGA outperforms the other algorithms with the highest overall
average RPD, followed by DIWO, DABC, IG, and IIG, while HS performs the worst. It is noteworthy that the IGA achieved
the minimum value in Ave for all 20 arithmetic instances with 10 tasks.

Table 4
Experimental results of 20 tasks
Instanc DABC 1G 11G HS DIWO IGA
S Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave
2011 203 230 21.8 19.9 21.8 20.7 20.6 222 216 212 620 48.0 215 266 241 00 102 49
3 0 8 6 7 1 6 3 1 5 3 3 9 0 9 0 9 5
T2012 219 239 23.0 203 222 217 219 244 234 234 602 46.0 21.0 28.0 248 0.0 2.9
1 3 5 3 3 7 3 8 6 1 8 4 8 8 4 0 645 9
T2013 17.4 20.0 18.6 172 174 173 183 21.8 202 17.5 543 434 125 21.0 17.1 0.0 5.4
3 9 2 2 0 1 4 9 4 4 9 7 8 1 9 0 982 7
T2014 16.1 187 169 159 170 164 172 175 174 169 548 36.2 134 217 178 0.0 3.5
8 6 5 0 6 5 1 6 1 1 5 9 0 3 5 0 646 1
T2015 18.0 422 199 174 191 17.7 183 21.1 197 421 58.0 49.0 203 325 274 00 143 175
9 4 8 1 9 2 8 5 4 6 2 1 3 2 7 0 4 2
T2016 127 158 141 126 13,5 13.0 132 13,6 134 144 499 372 141 21.8 184 0.0 4.9
1 2 6 7 1 5 9 5 5 9 0 4 4 9 6 0 898 4
T2017 222 27.1 239 21.5 425 240 232 237 235 427 619 51.0 251 323 285 0.0 104 45
6 7 9 6 8 7 4 5 7 1 5 2 0 1 5 0 6 3
T2018 16.1 184 16.7 16.0 16.1 16.0 162 18.0 172 174 62.0 464 20.8 289 248 0.0 2.4
9 4 7 4 0 6 7 9 4 0 1 6 1 9 1 0 436 9
T2019 17.6 221 19.7 175 199 18.6 18.1 186 184 405 582 464 179 263 21.6 0.0 2.9
2 4 0 7 1 3 3 7 4 4 8 0 8 2 0 0 534 9
T20110 142 157 15.0 13.8 153 146 148 16.0 15.6 170 499 389 164 119 0.0 1.9
3 8 6 0 4 4 5 7 3 1 9 8 790 7 3 0 379 1
T20111 20.7 244 222 20.5 232 216 22.1 237 229 415 60.7 505 19.7 265 229 0.0 2.8
4 2 7 4 7 5 4 7 1 8 9 1 5 6 9 0 526 8
T20112 132 144 140 127 13.0 128 136 151 145 139 528 38.0 138 19.6 165 0.0 2.4
7 7 2 0 8 5 6 6 3 1 4 9 1 2 9 0 431 1
T20113 262 275 269 25.1 264 257 269 285 277 26.7 625 53.0 25.0 306 275 0.0 5.0
7 3 9 6 1 4 2 8 1 8 1 3 8 0 9 0 924 3
T20114 27.1 303 287 273 281 275 283 303 293 299 70.6 564 237 306 27.1 00 137 5.7
2 8 1 4 4 0 7 1 7 5 2 0 8 2 6 0 4 4
T20115 21.5 248 233 19.8 423 228 216 239 229 444 573 478 175 257 212 0.0 4.3
5 0 4 2 0 9 3 8 0 9 1 1 1 1 9 0 637 0
T20116 174 43.6 23.1 17.1 183 17.6 179 208 192 18.0 572 472 21.1 303 254 0.0 6.4
9 8 7 5 9 5 8 7 7 9 6 0 6 9 5 0 940 1
T20117 21.0 229 218 209 213 21.1 21.6 235 226 22.7 652 469 237 316 284 00 112 54
4 9 5 8 9 2 1 8 3 1 9 9 2 7 0 0 8 1
T20118 179 200 184 169 179 177 183 18.7 184 184 63.5 40.1 185 263 222 0.0 3.7
5 2 5 0 7 2 1 5 9 2 5 2 0 0 9 0 723 0
T20119 13.0 153 136 11.9 13.0 127 134 144 138 148 489 364 16.5 226 203 00 104 33
5 6 4 7 1 0 1 0 2 9 6 7 3 4 5 0 2 0
T20120 152 18.0 163 152 163 154 17.1 189 18.0 17.1 554 434 136 173 153 0.0 2.5
9 3 3 3 4 9 6 5 8 8 9 4 5 8 0 0 398 7
Averag 185 234 199 180 212 187 19.1 20.7 20.0 25.0 583 451 184 258 222 0.0 4.1
e 4 5 5 1 7 9 8 9 2 7 2 5 2 7 2 0 8.08 5

According to the data presented in Table 4, there was a noticeable change in the performance of the algorithms in relation to
the average Ave values of RPD as the number of tasks increased from 10. In this case, IGA remains the most efficient algorithm

780

with the lowest average Ave value for all cases, IG outperforms DIWO, followed closely by IIG and DABC. DIWO performed
only slightly better than HS, which is the worst performer. It indicates that IGA is highly effective in solving MAGVDysr for

instance with 20 tasks, outperforming other comparative algorithms.

Table 5
Experimental results of 30 tasks
Inst DABC 1G 11IG HS DIWO IGA
ISENCCTTNGN Max_ Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave
T30I1 29.94 39.83 3422 3197 46.07 43.15 3120 3295 3221 49.77 6027 5471 4270 51.82 47.62 0.00 1439 9.72
T3012 30.78 36.83 3381 30.38 47.11 4376 33.58 34.75 3440 5143 63.51 57.84 4024 5022 46.80 0.00 1695 10.88
T3013 21.55 39.60 2546 19.02 37.88 23.14 21.82 24.07 23.04 3744 5086 45.62 2599 3443 30.05 0.00 1029 4.97
T3014 18.76 25.88 20.92 17.37 2428 18.71 2099 23.18 21.72 36.27 4882 4327 2644 3517 3245 0.00 4.81 2.95
T30I5 16.23 33.23 2926 15.02 3094 27.90 18.48 20.22 19.23 29.92 42.06 3828 30.55 4040 3472 0.00 6.63 4.13
T3016 2284 39.16 2640 21.64 3826 3559 2449 2632 2557 3950 5132 46.56 39.03 45.10 4130 0.00 12.72 6.52
T3017 19.59 34.00 2722 31.79 3474 3374 21.52 2550 2475 3649 46.84 4130 31.76 39.70 34.82 0.00 7.22 4.80
T3018 22.37 39.65 36.01 37.21 40.03 3834 31.00 33.76 3236 4147 5042 46.74 30.05 40.15 3579 0.00 12.81 8.93
T3019 2629 3534 31.86 2634 4024 3840 29.10 32.00 30.53 4134 5441 47.83 33.11 4021 3597 0.00 13.82 8.21
T30I10 30.97 39.22 33.52 4385 46.09 4474 31.67 35.00 33.17 4555 5936 5396 3930 47.50 44.17 0.00 1547 8.67
T30I11 2729 33.65 3045 2849 41.58 37.79 2980 32.75 31.72 40.13 59.79 52.14 3592 46.10 41.05 0.00 16.28 9.73
T30112 12.73 29.30 15.06 11.59 28.01 17.41 1291 14.18 1339 30.27 4192 36.07 2474 3244 29.00 0.00 932 3.87
T30I13 3294 38.00 3596 32.05 48.81 39.70 34.72 36.16 35.51 53.82 68.76 60.45 42.11 53.11 48.64 0.00 17.42 10.56
T30I14 2590 4095 29.89 37.53 40.17 39.19 2939 33.18 32.03 4277 56.79 48.59 36.30 4588 40.70 0.00 10.49 6.02
T30I15 22.00 37.66 27.00 21.58 36.46 35.08 2396 2632 2525 36.83 47.85 43.03 28.08 3646 3407 000 9.16 5.12
T30I16 33.19 3591 34.62 32.67 34.10 3347 2246 3694 3439 3576 4477 40.21 33.89 4033 37.14 0.00 11.04 6.86
T30I17 3544 4986 40.86 33.44 4898 43.11 3720 39.69 38.69 5225 6625 59.06 45.16 5248 4871 0.00 17.85 12.32
T30I18 2390 29.59 2722 2208 41.61 30.70 25.67 27.67 26.69 4499 5792 50.71 36.70 46.04 41.76 0.00 15.05 9.53
T30I19 16.83 22.17 19.71 19.07 33.50 29.38 19.06 22.01 2037 2128 4794 39.83 3220 3890 3579 0.00 10.02 6.72
T30120 2589 31.99 28.82 2446 42.65 38.14 2530 2747 2673 44.60 58.12 5043 31.12 4098 37.59 0.00 1348 8.76
Average 24.77 3559 2941 26.88 39.08 34.57 2622 29.21 28.09 40.59 5390 47.83 3427 4287 3891 0.00 1226 17.46

Based on the data provided in Table 5, it is clear that the IGA algorithm outperforms all other algorithms in terms of the
minimum (Min) value, maximum (Max) value, and average (Ave) value. The IIG algorithm is the second-best performer, with
HS and DIWO performing the worst. DABC and IG algorithms are placed in the middle level. This is a strong demonstration

of the effectiveness of the IGA in solving MAGVDuysr for instance with 30 tasks.

Table 6
Experimental results of 40 tasks
Inst DABC 1G 1IG HS DIWO IGA
NSANCCTNIN Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave
T40I1 24.14 2844 27.14 2419 3529 3327 2481 27.02 2618 3751 4587 42.12 37.86 47.39 43.17 0.00 1044 5.13
T4012 3472 46.11 39.06 4278 45.11 44.11 36.81 4024 39.13 49.10 58.70 5434 4369 5938 52.82 0.00 1893 9.91
T4013 27.21 31.53 29.54 2450 40.81 31.75 29.59 31.67 30.82 4450 54.88 4946 36.88 46.58 4234 0.00 1140 6.44
T4014 30.38 4497 36.26 30.24 43.44 4098 3232 32.77 3251 4470 54.61 50.66 4341 51.79 47.67 0.00 1142 5.12
T4015 20.47 3223 2635 2827 30.58 29.60 2142 2343 2244 3452 4124 3788 36.08 43.77 40.08 0.00 13.87 7.28
T4016 27.61 3939 3528 36.81 3823 37.60 27.20 30.73 29.62 43.03 48.67 4542 4525 5421 5041 0.00 1097 5.23
T4017 27.29 29.62 2826 35.63 3898 37.77 2698 2753 2723 4254 5036 46.04 3931 5233 4727 0.00 17.50 9.46
T4018 28.54 42.59 36.57 27.15 40.14 3895 33.79 42.11 37.54 42.00 52.12 47.19 43.72 51.04 47.15 0.00 17.04 12.39
T4019 26.13 3833 3091 35.63 37.37 36.54 2791 29.45 28.63 39.85 4990 4506 37.68 48.33 4566 0.00 1832 10.12
T40110 2147 32.76 2494 2996 3196 31.12 2340 2470 24.18 3490 4335 3985 33.82 43.81 40.01 000 798 4.71
T40111 25.85 37.79 29.13 27.05 3648 3547 2827 2941 28.87 4140 4826 4437 3845 47.78 4442 0.00 12.16 5.82
T40112 1730 29.92 2274 1594 2881 26.14 2037 2380 2228 32.10 39.78 35.78 31.50 40.13 36.24 0.00 1042 4.21
T40113 31.76 44.54 3590 29.58 41.38 38.14 31.83 3335 32.69 4489 58.02 50.11 4401 56.18 51.55 0.00 8.33 3.70
T40114 31.41 38.86 35.09 32.00 4297 40.69 3397 36.81 3595 46.11 5542 51.76 4633 57.18 52.01 0.00 14.87 8.78
T40115 21.59 3397 2645 31.04 3276 31.99 2233 2421 2341 3524 4244 3945 3284 42.17 38.67 0.00 1320 5.01
T40116 19.70 2439 21.77 2790 3038 29.39 20.55 2246 2142 3091 3940 36.18 3836 45.19 40.84 0.00 7.88 4.47
T40117 39.77 51.68 4920 47.88 50.88 49.42 39.92 44.10 4193 51.57 6228 5834 5223 6194 57.62 0.00 1730 9.81
T40118 31.00 36.13 32.67 29.12 43.00 40.01 30.54 3236 31.62 45.62 5543 4988 4797 5646 52.68 0.00 12.03 8.20
T40119 1994 31.78 2247 1949 31.66 30.34 20.27 21.50 2090 30.50 42.53 38.57 3799 45.05 41.65 0.00 1431 6.77
T40120 22.72 2532 24.13 22.07 34.10 3232 23.67 2488 2425 3579 4572 4149 3448 4342 39.05 0.00 1024 5.10
Average 2645 36.02 30.69 29.86 37.72 35.78 27.80 30.13 29.08 40.34 49.45 4520 40.09 49.71 45.56 0.00 1293 6.88

Based on Table 6, it is evident that the IGA algorithm outperforms the other five algorithms. The performance of IIG, IG, and
DABGC is still relatively similar, while DIWO does not perform as well as HS and is the worst performing algorithm.

Table 7
Experimental results of 50 tasks.
Instance ' DABC ' 1G ' 1IG ' HS ' DIWO ' IGA
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave
T50I1 28.67 36.74 30.38 33.29 36.09 3494 27.70 29.71 29.10 38.06 4537 41.71 43.54 5559 4991 0.00 937 S.11
T5012 45.42 47.85 4691 4342 4552 44.65 37.32 49.14 4355 49.78 69.66 53.07 5231 64.71 59.10 0.00 23.22 8.99

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 781

T50I3 38.71 49.26 4422 43.58 46.26 44.86 3936 41.55 40.60 46.72 56.54 51.61 50.16 62.82 57.82 0.00 20.48 11.09
T5014 40.06 49.01 45.56 45.79 4742 46.65 3930 41.71 40.55 51.57 59.96 5399 57.73 69.48 65.10 0.00 22.87 8.61
T50I5 28.05 30.88 29.60 27.03 28.43 27.67 21.54 2496 2345 3095 4857 3435 3638 4898 4431 0.00 11.61 5.23
T5016 37.04 44.77 43.05 4024 42.11 41.50 4030 48.65 46.81 4489 5132 48.70 5229 67.51 6191 0.00 2222 10.52
T5017 24.94 3457 2847 30.13 32.83 31.75 25.18 27.84 2695 3535 42.10 38.58 36.20 5530 50.74 0.00 11.12 5.50
T50I8 25.83 31.94 30.38 26.79 2939 2849 2389 30.79 2732 3131 3820 34.80 33.77 49.56 43.61 0.00 792 4.46
T50I9 24.40 33.95 31.85 2846 3098 29.88 24.05 27.11 2599 33.94 5405 3748 36.70 51.90 47.01 0.00 9.79 4.95
T50110 35.72 42.24 41.02 37.06 39.32 38.72 34.11 37.12 35.62 42.68 66.16 46.75 4894 5843 54.14 0.00 14.15 7.96
T50I11 2991 39.39 36.23 34.65 37.10 36.18 30.79 33.80 32.47 3838 48.18 4272 4337 56.70 50.39 0.00 13.31 6.46
T50112 24.14 33.16 31.77 28.88 32.17 31.14 25.04 27.01 2632 33.82 3999 37.19 36.24 5333 46.87 0.00 10.82 5.54
T50113 47.86 55.32 53.47 50.10 52.53 5142 4697 56.14 50.27 57.04 63.38 59.87 58.77 78.13 7030 0.00 19.42 10.25
T50114 45.38 48.05 46.70 4292 45.03 4435 4090 5020 4295 4948 5556 5225 4227 69.09 63.26 0.00 17.28 8.29
T50115 36.58 38.92 38.10 3546 37.28 36.31 29.77 32.61 31.01 39.58 59.02 43.14 4576 55.85 52.01 0.00 12.03 6.52
T50116 22.32 33.35 3039 29.24 31.05 30.14 2244 23.60 23.01 33.57 40.86 3637 42.78 56.18 5026 0.00 8.72 3.96
T50117 53.24 56.05 54.88 52.17 5448 5346 47.13 5122 48.73 56.24 6534 60.80 6141 77.39 7021 0.00 21.74 11.04
T50118 29.28 32.32 31.07 3576 38.16 36.88 30.57 32.68 31.66 40.74 4721 43.08 3928 5892 5254 0.00 11.03 3.29
T50I19 31.27 34.10 32.63 30.50 32.41 3133 24.81 3233 29.65 33.04 4145 3722 4285 5539 5042 0.00 12.59 6.47
T50120 29.86 42.48 38.83 37.08 39.85 3848 30.16 33.47 31.97 43.73 50.86 46.61 4475 59.08 5491 0.00 12.67 17.95
Average 33.93 40.72 3828 36.63 38.92 37.94 32.07 36.58 3440 41.54 52.19 4501 4527 60.22 54.74 0.00 14.62 7.11

Table 7 presents the results obtained by all algorithms when solving instances with task numbers of 50. Table 7 shows that the
average Ave values of RPD for DABC, IG, IIG, HS, DIWO, and IGA are 38.28%, 37.94%, 34.4%, 45.01%, 54.74%, and
7.11%, respectively. In terms of overall average Ave values, the best performing algorithm is still IGA, followed by IIG, IG,
DABC, HS, with DIWO being the worst. IGA achieves the minimum Ave value for all 20 instances, with considerably smaller
values than the Ave values of the other algorithms. The fact that IGA consistently outperforms other algorithms across all 20
instances indicates that it is capable of finding the best solution.

According to Tables 3-7, it can be concluded that IGA outperforms the other five algorithms for task sizes ranging from 10 to
50. Therefore, it can be inferred that IGA is highly effective in solving the MAGVDusr. To enhance the analysis of the
proposed algorithm and provide a more comprehensive understanding, a statistical approach utilizing multi-factor ANOVA
analysis is employed in this section. The RPD data obtained from solving all algorithms is considered, with the influencing
factors being the comparison algorithm and task size. In Fig. 7, mean plots with 95% Tukey HSD confidence intervals for the
six comparison algorithms are presented. It can be clearly observed that the performance of IGA is significantly superior to
the other five algorithms. Fig. 8 shows the interaction diagram between the six comparison algorithms and task scales. The
horizontal coordinate n represents the task size, and the vertical coordinate represents the RPD value. The figure clearly

indicates that IGA outperforms the other comparison algorithms for task sizes n = 10, 20, 30, 40, and 50.

Rl - T
A L ~ 60~ 4 Algorithm
S5 i a] -=DABC
< 4or] 2 1 ~»DIWO
= T =] € so- 3
g g 1 —Hs
= ® * h g 1 G
& or =] % 40 7 —+IGA
& L A 1 G
g I g 30- 3
g 20] £]
& 2 200 3
2 F a]
£ 10F . P i
! - I
[c]
(U 5 =]
DABC DIWO HS 1G IGA IG 10 20 30 40 50 n
Fig.7. Means plots with 95% Tukey’s HSD confidence Fig. 8. Means plots of interaction between the six

intervals for all the comparison algorithms competitive methods and tasks size

782

2200 4000
E—Te —o—1IG
_ A DABC —a—DABC
- o A —— DIWO
§ 2000 7:7 ;gvu 3500 »HS
5 r G IG
-2 3 A —*—IGA
g 18004 | =1 3000
5 S
& »
2 3
g %l N
gz 16009 T 2500 I T .
2 P > > — %
e N
= T R ¢
1400 &2 S = = s 2000 %
\:.‘.- I N *x— —x *
T T T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
The computing time The computing time
()T2015 (b)T3015
1e o iiG 6000 * f—TTe
4500 ‘\‘ —a— DABC 4 ‘ —4a—DABC
§ i —&— DIWO 1 —e— DIWO
4 —»>—HS IR > HS
§ 4000 F G \ IG
5 1 ——IGA 5000 1 —*— IGA
5 > 1
5 3500 T {1 ™™
Pt 1w
g T e N N »
PR
i IR — ® 1 40001 < e —
5 30004 T - —~ . Iy —— P =~ N S— {
o Yi —
< | g
= *
25001 |]
\ 3000 *——
— o« * 1 — D *
2000 T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
The computing time The computing time
(c)T4015 (d)TS0I5

Fig.9. Convergence curves of algorithms.

To assess the convergence performance of the proposed algorithm, evolutionary graphs are presented to illustrate the variation
of AGV transport costs for the problem at different time points in a cycle. Experiments are conducted on four different problem
sizes - T20I5, T30I5, T401I5, and T501I5 - selected from the test set, and record the minimum total cost obtained for the six
compared algorithms. Fig. 9(a) to Fig. 9(d) illustrate the evolution curves for the six algorithms in the four instances. The
horizontal axis represents different time points within the same production cycle, while the vertical axis represents the
minimum transport costs achieved. As seen in the figures, the IGA demonstrates the best initial results for each instance. The
results indicate that the proposed heuristic algorithm and strategy exhibit superior performance for the problem at hand and
prove to be more effective in solving the proposed problem.

The analysis presented above demonstrates that the proposed IGA is more effective than the other five algorithms in solving
the given problem. It is evidenced by the results obtained for various task sizes, including average, minimum, and maximum
values, as well as means plots, interaction plots, and evolutionary curves.

5. Conclusions and future research

This paper has studied the MAGVDyst, a new problem with the objective of minimizing transportation costs. In our
perception, it has not been addressed in the current research. In this paper, we establish a mixed-integer linear programming
model at first, and then propose an effective IGA. To illustrate the effectiveness of IGA, we have selected five popular
algorithms in existing literature for comparison. All of the algorithms have been thoroughly evaluated on 110 instances from
an actual electronic manufacturing factory. The experimental analysis shows that the proposed IGA is more effective than the
other five algorithms in solving the MAGVDysr. The main contributions of IGA are as followed: Firstly, an INNH algorithm
is utilized to enhance the quality of solutions generated in the initial population. Secondly, a meritocratic initial algorithm is
used to further improve the initial population. Next, a selection operation employs the optimal solution preservation strategy
to ensure the best solutions are retained. To increase population diversity, two crossover operations are designed and a control
parameter is set to probabilistically choose between them. Besides, a mutation operation based on PMX is also used to further
enhance the diversity of the population. Finally, two meritocratic choices are used to update the population. Overall, our
proposed IGA offers a comprehensive solution to the problem.

This study focuses on the regular use of workshops, however, there exhibits variability and unpredictability in the production
process such as AGV energy replenishment and conflicts. Therefore, the next step involves exploring problem-oriented

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 783

strategies or leveraging problem-specific knowledge to enhance the performance of the IGA in effectively addressing and
managing these uncertainties. Deep reinforcement learning (DRL) is an empirical approach to learning that can automatically
determine optimal policies without explicit specification (Ha et al., 2021; Li et al., 2023; Wei et al., 2022). Therefore, it would
be intriguing to explore the potential of combining DRL with AGV dispatching. This paper is expected to provide a fresh and
thought-provoking perspective on AGVDP.

Acknowledgment

This research is partially supported by the National Natural Science Foundation of China under Grant (No. 52205529),
partially supported by the Natural Science Foundation of Shandong Province (ZR2021QE195) and Research fund project of
Liaocheng university under Grant (No. 318012110 and No. 318052150).

References

Cao, X., & Zhu, M. (2021). Research on global optimization method for multiple AGV collision avoidance in hybrid path.
Optimal Control Applications and Methods, 42(4), 1064-1080.

Chen, C., Tiong, L. K., & Chen, I.-M. (2019). Using a genetic algorithm to schedule the space-constrained AGV-based
prefabricated bathroom units manufacturing system. International Journal of Production Research, 57(10), 3003-3019.

Chen, X., Wu, W.,, & Hu, R. (2022). A Novel Multi-AGV Coordination Strategy Based on the Combination of Nodes and
Grids. IEEE Robotics and Automation Letters, 7(3), 6218-6225.

Eda, S., Nishi, T., Mariyama, T., Kataoka, S., Shoda, K., & Matsumura, K. (2012). Petri net decomposition approach for bi-
objective routing for AGV systems minimizing total traveling time and equalizing delivery time. Journal of Advanced
Mechanical Design Systems and Manufacturing, 6(5), 672—686.

Ha, W. Y., Cui, L., & Jiang, Z.-P. (2021). A warchouse scheduling using genetic algorithm and collision index. 2021 20th
International Conference on Advanced Robotics (ICAR), 318-323. https://doi.org /10.1109/ICAR53236.2021.9659439

Hao, J., Wang, C., Yang, M., & Wang, B. (2020). Hybrid genetic algorithm based dispatch and conflict-free routing method
of agv systems in unmanned underground parking lots. In 2020 [EEE international conference on real-time computing
and robotics (RCAR), 475-480 https://doi.org/10.1109/RCAR49640.2020.9303275.

Hu, Y. J., Dong, L. C., & Xu, L. (2020). Multi-AGV dispatching and routing problem based on a three-stage decomposition
method. Mathematical Biosciences and Engineering, 17(5), 5150-5172.

Huang, S.J., Lee, T. S., Li, W. H., & Chen, R. Y. (2018). Modular on-road AGV wireless charging systems via interoperable
power adjustment. /[EEE Transactions on Industrial Electronics, 66(8), 5918-5928.

Jahanzaib, M., Masood, S. A., Nadeem, S., Akhtar, K., & Shahbaz, M. (2013). Application of genetic algorithm (ga) approach
in the formation of manufacturing cells for group technology. Life Science Journal, 9(4), 799-809.

Jin, J., & Zhang, X. H. (2016). Multi AGV scheduling problem in automated container terminal. Journal of Marine Science
and Technology-Taiwan, 24(1), 32-38.

Li, G., Li, X., Gao, L., & Zeng, B. (2019). Tasks assigning and sequencing of multiple AGVs based on an improved harmony
search algorithm. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4533-4546.

Li, H., Gao, K., Duan, P. Y., Li, J. Q., & Zhang, L. (2022). An Improved Artificial Bee Colony Algorithm With Q-Learning
for Solving Permutation Flow-Shop Scheduling Problems. I[EEE Transactions on Systems, Man, and Cybernetics: Systems.
https://doi.org/10.1109/TSMC.2022.3219380

Li, J., Cheng, W., Lai, K. K., & Ram, B. (2022). Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging.
Mathematics, 10(19), 3417.

Li, Z. K., Sang, H. Y., Li, J. Q., Han, Y. Y., Gao, K. Z., Zheng, Z. X., & Liu, L. L. (2023). Invasive Weed Optimization for
multi-AGVs dispatching problem in a matrix manufacturing workshop. Swarm and Evolutionary Computation, 101227.

Lu, S., Xu, C., Zhong, R. Y., & Wang, L. (2017). A RFID-enabled positioning system in automated guided vehicle for smart
factories. Journal of Manufacturing Systems, 44, 179-190.

Liu, L., Qu, T, Thurer, M., Ma, L., Zhang, Z., & Yuan, M. (2022). A new knowledge-guided multi-objective optimisation for
the multi-AGV dispatching problem in dynamic production environments. International Journal of Production Research.
https://doi.org/10.1080/00207543.2022.2122619

Meng, L., Gao, K., Ren, Y., Zhang, B., Sang, H., & Chaoyong, Z. (2022). Novel MILP and CP models for distributed hybrid
flowshop scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation, 71, 101058.

Meng, L., Cheng, W., Zhang, B., Zou, W., Fang, W., & Duan, P. (2023). An Improved Genetic Algorithm for Solving the
Multi-AGV Flexible Job Shop Scheduling Problem. Sensors, 23(8), 3815.

Meng, L., Zhang, C., Ren, Y., Zhang, B., & Lv, C. (2020). Mixed-integer linear programming and constraint programming
formulations for solving distributed flexible job shop scheduling problem. Computers & Industrial Engineering, 142,
106347.

Micieta, B., Edl, M., Krajcovic, M., Dulina, L., Bubenik, P., Durica, L., & Binasova, V. (2018). Delegate MASs for
coordination and control of one-directional AGV systems: a proof-of-concept. The International Journal of Advanced
Manufacturing Technology, 94, 415-431.

Ng, P. P. W., Yucel, G., & Dufty, V. G. (2009). Modelling the effect of AGV operating conditions on operator perception of
acceptability and hazard. International Journal of Computer Integrated Manufacturing, 22(12), 1154-1162.

Nishida, K., & Nishi, T. (2022). Dynamic Optimization of Conflict-Free Routing of Automated Guided Vehicles for Just-in-
Time Delivery. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2022.3194082

784

Niu, H. Y., Wu, W. M., Xing, Z. C., Wang, X. K., & Zhang, T. (2023). A novel multi-tasks chain scheduling algorithm based
on capacity prediction to solve AGV dispatching problem in an intelligent manufacturing system. Journal of
Manufacturing Systems, 68, 130—144.

Ren, N., Zhao, Y., & Zhang, J. (2012). Scheduling research of AGV with double buffers based genetic algorithm in flexible
manufacturing system. Applied Mechanics and Materials, 121, 1630-1635.

Routray, M., & Ray, N. K. (2020). Remote homology detection using GA and NSGA-II on physicochemical properties.
International Journal of Computer Applications in Technology, 64(4), 393-402.

Singh, N., Dang, Q. V, Akcay, A., Adan, 1., & Martagan, T. (2022). A matheuristic for AGV scheduling with battery constraints.
European Journal of Operational Research, 298(3), 855-873.

Singh, V., & Choudhary, S. (2009). Genetic algorithm for traveling salesman problem: using modified partially-mapped
crossover operator. 2009 International Conference on Multimedia, Signal Processing and Communication Technologies,
20-23. https://doi.org/10.1109/MSPCT.2009.5164164

Song, J. (2021). Automatic guided vehicle global path planning considering multi-objective optimization and speed control.
Sensors and Materials, 33(6), 1999-2011.

Sun, P. Z., You, J., Qiu, S., Wu, E. Q., Xiong, P., Song, A., Zhang, H., & Lu, T. (2022). AGV-Based Vehicle Transportation in
Automated Container Terminals: A Survey. [EEE Transactions on Intelligent Transportation Systems. https:/
doi.org/10.1109/TITS.2022.3215776.

Wang, C., Wang, L., Qin, J., Wu, Z., Duan, L., Li, Z., Cao, M., Ou, X., Su, X., Li, W, Lu, Z., Li, M., Wang, Y., Long, J.,
Huang, M., Li, Y., & Wang, Q. (2015). Path planning of automated guided vehicles based on improved a-star algorithm.
2015 IEEE International Conference on Information and Automation, 2071-2076. https://
doi.org/10.1109/ICInfA.2015.7279630.

Wang, Z., & Wu, Y. (2023). An Ant Colony Optimization-Simulated Annealing Algorithm for Solving a Multiload AGVs
Workshop Scheduling Problem with Limited Buffer Capacity. Processes, 11(3), 861.

Wang, Z., & Zeng, Q. (2022). A branch-and-bound approach for AGV dispatching and routing problems in automated
container terminals. Computers & Industrial Engineering, 166, 107968.

Wei, Q., Yan, Y., Zhang, J., Xiao, J., & Wang, C. (2022). A self-attention-based deep reinforcement learning approach for
AGV dispatching systems. [EEE Transactions on Neural Networks and Learning Systems. https:/
doi.org/10.1109/TNNLS.2022.3222206.

Wu, S., Xiang, W., Li, W., Chen, L., & Wu, C. (2023). Dynamic Scheduling and Optimization of AGV in Factory Logistics
Systems Based on Digital Twin. Applied Sciences, 13(3), 1762.

Xu, L., Wang, Y., Liu, L., & Wang, J. (2016). Exact and Heuristic Algorithms for Routing AGV on Path with Precedence
Constraints. Mathematical Problems in Engineering, 8, 1-8.

Yao, F., Alkan, B., Ahmad, B., & Harrison, R. (2020). Improving just-in-time delivery performance of IoT-enabled flexible
manufacturing systems with AGV based material transportation. Sensors, 20(21), 6333.

Yuan, M. H,, Li, Y. D, Pei, F. Q., & Gu, W. B. (2021). Dual-resource integrated scheduling method of AGV and machine in
intelligent manufacturing job shop. Journal of Central South University, 28(8), 2423-2435.

Yuan, Z., Yang, Z., Lv, L., & Shi, Y. (2020). A bi-level path planning algorithm for multi-AGV routing problem. Electronics,
9(9), 1351.

Zhang, X. J., Sang, H. Y., Li, J. Q., Han, Y. Y., & Duan, P. (2022). An effective multi-AGVs dispatching method applied to
matrix manufacturing workshop. Computers & Industrial Engineering, 163, 107791.

Zou, W. Q., Pan, Q. K., Meng, T., Gao, L., & Wang, Y. L. (2020). An effective discrete artificial bee colony algorithm for
multi-AGVs dispatching problem in a matrix manufacturing workshop. Expert Systems with Applications, 161, 113675.

Zou, W. Q., Pan, Q. K., & Wang, L. (2021). An effective multi-objective evolutionary algorithm for solving the AGV
scheduling problem with pickup and delivery. Knowledge-Based Systems, 218, 106881.

Zou, W. Q., Pan, Q. K., & Tasgetiren, M. F. (2021). An effective iterated greedy algorithm for solving a multi-compartment
AGYV scheduling problem in a matrix manufacturing workshop. Applied Soft Computing, 99, 106945.

Zou, W. Q., Pan, Q. K., Wang, L., Miao, Z. H., & Peng, C. (2022). Efficient multiobjective optimization for an AGV energy-
efficient scheduling problem with release time. Knowledge-Based Systems, 242, 108334.

Zou, W. Q., Pan, Q. K., Meng, L. L., Sang, H. Y., Han, Y. Y., & Li, J. Q. (2023). An effective self-adaptive iterated greedy
algorithm for a multi-AGVs scheduling problem with charging and maintenance. Expert Systems with Applications,
119512.

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article
@ distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

