

* Corresponding author
E-mail: zouwenqiang@lcu.edu.cn (W.-Q. Zou); jiayangli@lcu-cs.com (Y.-L. Jia)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2023 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.7.002

International Journal of Industrial Engineering Computations 14 (2023) 767–784

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An improved genetic algorithm for multi-AGV dispatching problem with unloading setup
time in a matrix manufacturing workshop

Yuan-Zhuang Lia, Jia-Zhen Zoua, Yang-Li Jiaa*, Lei-Lei Menga and Wen-Qiang Zoua*

aSchool of Computer Science, Liaocheng University, Liaocheng 252000, P. R. China
C H R O N I C L E A B S T R A C T

Article history:
Received March 1 2023
Received in Revised Format
May 12 2023
Accepted July 5 2023
Available online
July, 7 2023

 This paper investigates a novel problem concerning material delivery in a matrix manufacturing
workshop, specifically the multi-automated guided vehicle (AGV) dispatching problem with
unloading setup time (MAGVDUST). The objective of the problem is to minimize transportation
costs, including travel costs, time penalty costs, AGV costs, and unloading setup time costs. To
solve the MAGVDUST, this paper builds a mixed-integer linear programming model and proposes
an improved genetic algorithm (IGA). In the IGA, an improved nearest-neighbor-based heuristic
is proposed to generate a high-quality initial solution. Several advanced technologies are developed
to balance local exploitation and global exploration of the algorithm, including an optimal solution
preservation strategy in the selection process, two well-designed crossovers in the crossover
process, and a mutation based on Partially Mapped Crossover strategy in the mutation process. In
conclusion, the proposed algorithm has been thoroughly evaluated on 110 instances from an actual
electronic factory and has demonstrated its superior performance compared to state-of-the-art
algorithms in the existing literature.

© 2023 by the authors; licensee Growing Science, Canada

Keywords:
Automated guided vehicle
Dispatching
Genetic algorithm
Setup time
Matrix manufacturing workshop

1. Introduction

The rise of the smart industry has brought an increasing interest in AGVs due to their flexible, automated, and intelligent
characteristics (Lu et al., 2017). However, AGV dispatching has brought many challenges and troubles to the academia and
industrial communities (Micieta et al., 2018). AGV dispatching refers to the process of allocating tasks to AGVs and
determining the order in which the tasks are to be executed by each AGV. Effective AGV dispatching can improve production
efficiency, reduce costs, and enhance enterprise competitiveness (Liu et al., 2022; Ng et al., 2009; Song, 2021; Wang et al.,
2015; Hao et al., 2020; Yao et al., 2020). Especially with the expansion of scale, the AGV dispatching problem has become
more complex and difficult. Therefore, the academic and industrial communities need more efficient strategies and dispatching
algorithms to solve this crucial and meaningful problem. Current research in AGV dispatching primarily focuses on various
scenarios or settings, including terminals, depots, manufacturing systems, underground parking lots and so on. As for
automated container terminals, Jin and Zhang (2016) designed a dynamic multi-AGV dispatching model based on the genetic
algorithm to minimize both the completion time and the standard deviation of handling time for quay cranes. Wang and Zeng
(2022) conducted a study on the dispatching and routing problem of AGVs with multiple bidirectional paths, aiming to
generate conflict-free routes. In the manufacturing system, Ren et al. (2012) designed a mathematical model that integrates
double-buffered AGVs based on the dispatching problem of a flexible manufacturing system. And they proposed an improved
genetic algorithm to rank the processing order of jobs and the movement of double-buffered AGVs. Niu et al. (2023) presented
a multi-tasks chain dispatching algorithm to improve the heavy load ratio and reduce the makespan. Meanwhile, Liao et al.
(2020) proposed a hybrid genetic algorithm-based AGV dispatching method and a time-space graph search algorithm-based

768

path optimization method to address the AGVDP in unmanned underground parking lots. The AGVDP is a challenging
combinatorial optimization problem, and finding accurate and efficient solutions using traditional exact methods becomes
difficult as the problem size increases (Xu et al., 2016). Scholars in existing research predominantly use heuristic or meta-
heuristic algorithms to address the AGVDP. Hu et al. (2020) integrated the A* algorithm with the principle of time window
to sequentially plan the path of each AGV in chronological order; Zou et al. (2021) presented an improves iterative greedy
algorithm to address the multi-compartment AGVDP; Wang &Wu (2023) utilized an enhanced ant colony optimization-
simulated annealing algorithm to tackle a multiload AGVs workshop dispatching problem with limited buffer capacity; Li et
al. (2023) solved the AGVDP considering time and capacity constraints by employing a discrete invasive weed optimization
algorithm.

A matrix manufacturing workshop is a production facility that utilizes a matrix structure to organize its equipment and
workstations. It has become increasingly popular due to its versatility and adaptability (Zou et al., 2021). The workshop is
divided into two primary segments: the production segment and the logistics segment. The logistics segment is responsible
for the transportation of materials and products between workstations, which can be a complex process (Wu et al., 2023).
Various considerations arise within the logistics link, including the coordination of multiple AGVs to prevent collisions and
conflicts (Wang &Wu, 2023; Chen et al., 2022; Yuan et al., 2020), the development of a sound charging strategy to ensure
uninterrupted AGV operation (Huang et al., 2018), timely resolution of abnormalities in AGV operations to maintain the
continuity and stability of the logistics process (Sun et al., 2022), and more. At present, Meng et al. (2023) designed a
population diversity checking method to solve the flexible job shop dispatching problem with a limited number of AGVs; Zou
et al. (2022) investigated the energy-saving dispatching of AGVs with optimized energy consumption; Li et al. (2022)
proposed a genetic algorithm to handle the dispatching problem of multiple AGV flexible manufacturing cells with charging
constraints; Zou et al. (2021) conducted a study on AGVDP with pickup and delivery; Singh et al. (2022) proposed an adaptive
large neighborhood search algorithm to address AGVDP with battery constraints; Eda et al. (2012) introduced a Petri net
decomposition method to address the bi-objective optimization problem, which formulates the dispatching and conflict-free
routing problem of AGVs as a Petri net bi-objective optimal firing sequence problem; Nishida et al. (2022) proposed a heuristic
solution procedure to tackle the conflict-free route planning problem for AGVs with on-time delivery; Zou et al. (2023)
conduct a study on the multi-AGV dispatching problem that incorporates charging and maintenance considerations. However,
there has been a lack of research on MAGVDUST to date.

In the real manufacturing workshop, the computer numerically controlled (CNC) machines and other equipment in the
workstations must undergo regular maintenance to ensure error-free production processes. For such workstations, safety
checks, such as parking accuracy, robotic arm gripping goods, and buffer zone alarm, must be carried out before unloading
materials. The time spent on safety checks is called unloading setup time. So, MAGVDUST is one of the specific MAGVDP,
which involves the consideration of unloading setup time.

Obtaining optimal solutions is of utmost importance for a dispatching problem, especially when dealing with a new problem.
Meta-heuristic algorithms are widely used in such cases to achieve optimal or near-optimal solutions (Meng et al., 2022).
Genetic algorithm (GA) is a popular algorithm that simulates biological evolution (Jahanzaib et al., 2013). It searches for an
optimal solution among many candidate solutions by using natural selection, crossover, and mutation. In this paper, IGA is
proposed to solve MAGVDUST. The main contributions can be summarized as follows:

(1) Formulate the MAGVDUST and establish a mixed-integer linear programming model.

(2) Propose an improved nearest-neighbor-based heuristic to generate a high-quality initial solution.

(3) Present an optimal solution preservation strategy, two well-designed crossovers, and a mutation based on Partially
Mapped Crossover (PMX) strategy to balance local exploitation and global exploration of the algorithm.

The remainder of this paper is organized as follows. In Section 2, the MAGVDUST and its challenges are introduced in detail.
Section 3 presents the proposed IGA and discusses its design and optimization strategies tailored for the MAGVDUST. Section
4 is dedicated to presenting the experimental results and comparing the computational outcomes with well-known algorithms
commonly employed for AGVDP. Lastly, in Section 5, a comprehensive summary of the paper is presented, highlighting the
key findings and contributions. Additionally, this section provides valuable insights into potential future research directions
in the field.

2. Problem description and formulation

2.1 Problem description

In a matrix layout of a general manufacturing workshop, workstations are arranged in a grid-like structure, as illustrated in
Fig. 1. Each workstation is equipped with a material buffer and multiple CNC machines. The material buffer functions as a
storage area for materials that are consistently consumed by the CNC machines. AGVs are responsible for transporting these
materials to the respective workstations where the final products are produced. When the material level in the buffer reaches
a pre-set minimum, the workstation will send an alarm signal for replenishment to the control system. Then the workstation
is converted to a call workstation. Upon receiving instructions from the control system, the AGV leaves the depot with a full
load of materials, follows the aisles to its assigned workstation to unload the materials and finally returns to the depot.
Specifically, there are certain workstations that have just been maintained and are referred to as special workstations. When

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 769

an AGV arrives at a special workstation, it will first undergo safety checks before unloading. It is important to note that this
delivery process will incur transportation costs.

Workstation Call WorkstationAGV Aisle CNC

D
ep

o
t

Special Workstation Buffer
Fig. 1. The layout diagram of the matrix manufacturing workshop

Regular maintenance is crucial to ensure error-free production processes as workstations age. After maintenance, AGVs must
undergo safety checks such as the AGV parking accuracy, the robotic arm gripping goods, or the buffer zone alarm system
checks when they return to a workstation. The time for safety checking is defined as the unloading setup time, which is the
amount of time required for the AGV to be ready to unload at the workstation. The unloading setup time of the AGV at a
workstation may vary depending on the age of the workstation. If a safety check is required prior to dispatch, this information
is known in advance.

For the purposes of the following description, the workstation that sends the alarm signal is referred to as a task, the moment
the alarm signal is sent is recorded as the calling time, and the sequence of tasks that the AGVs is scheduled to serve is referred
to as the AGV route. Additionally, it should be noted that each task can only be assigned to and served by a single AGV. and
the control system requires timely delivery of the AGVs. Late deliveries will impact the production schedule, which is
unacceptable. Conversely, early deliveries will result in a penalty and incur a time cost that varies based on the magnitude of
the early delivery.

The aim of this study is to reduce the total transportation costs, including travel costs, time penalty costs, AGV costs, and
unloading setup time costs. The analysis will be based on the manufacturing workshop's current situation.

The matrix manufacturing workshop involves multiple tasks, which would require a significant number of AGVs if each task
had its own. However, it would result in congestion and inefficiencies (Yuan et al., 2021). To address this issue, a time-cycling
strategy is suggested which divides the workshop production time into successive production cycles. In Fig. 2, tasks are
created in each production cycle and assigned to AGVs for execution in the following cycle. The production cycle is comprised
of two distinct phases - the calculation phase and the transport phase. In the calculation phase, the control system assigns all
tasks to create a dispatching schedule. In the transport phase, AGVs are dispatched to transport materials to the assigned tasks
based on the generated schedule. By implementing a time-cycling strategy, a single AGV can efficiently handle multiple tasks
simultaneously, thus reducing the number of required AGVs and ultimately decreasing overall transportation costs.

The whole production cycle

0TTΔ

the production cyclethθ the (1) production cyclethθ +

computing stage transporting stage
Fig. 2. The production cycles

2.2 Problem formulation
With the aforementioned information, a mathematical model is proposed utilizing the concept of MAGVDUST. The model
includes various decision variables and parameters, which are described as follows.

Parameters and constants:

 :Unique identification of the task,i j

770

: Position of the task . i ip

 :Size of the x coordinate of ii px .

:Size of the y coordinate of ii py .

: Overall quantity of tasks n .

: Maximum number of tasks that an AGV can handle n′ .

: Current AGV)V or AG (routek .

 : Anticipated number of AGVsk ′ .

: Number of AGVs available for dispatch k ′′ .

 Velocit f : y o AGVv .

 : Capacity of AGVQ .

: Material requirementof task i iq .

: Travel distance between tasks and ij i jd .

Travel time between tasks and :ij i jt .
: Production cycleC .

: Call Time of tasks c
i iT .

: Delivery time of task l
i iT .

: Unloading setup time when AGV arrives at task u
i iT .

0 : Time when the AGV leaves the depotT .

: Computation time for the computing stage in a production cycleTΔ .

: Unloading time at each taskut .

: Processing time per unit of production materialmt .

: Total amount of material in the bufferS .

: Inventory level of the material buffer at the call timec
iS .

: Weight of each slice of production materialg .

: Unit cost of traveling along an AGV routetc .

: Cost of each AGVac .

: Penalty cost for earlinessec .

Decision Variables:

()if arc , is travelled by AGV and 0 otherwise.: 1 ijk ijkx x i j=
: Arrival time of task r

i iT .

Suppose { },G V E= is an undirected graph, where { }1,2,...,V n= denotes the set of vertices and (){ }, | , ,E i j i j V i j= ∈ ≠

denotes the set of edges connecting each pair of vertices. In this graph, vertex 1,2,...,i n= represents a task, while vertex 0

denotes the depot. { }1,2,...,K m= denotes the set of AGVs (or AGV routes). Each edge (),i j represents the travel route of

an AGV from tasks i (or the depot) to j . The travel distance and time along this route can be calculated using the following

formula:

| | | |ij i j i jd x x y y= − + − (1)

/ij ijt d v= (2)

Assuming an AGV departs from task i and arrives at task j , the time taken by the AGVs to reach task j is composed of the
time taken to reach task i , the transport time, the unloading time, and the unloading setup time. This duration can be
represented mathematically using formula (3):

{ } 0, , \ 0 ,r r u
j i i ij uT T T t t i V j V i j= + + + ∀ ∈ ∈ ≠ (3)

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 771

The total distance of the AGV can be expressed as:

1 0 0

m n n

ijk ijk ij
k j i

D x d
= = =

= (4)

The inventory in the material decreases as the CNC machine at the workstation consumes material for production. When task
j is reached, the AGV unloads the material into the buffer. The amount of material unloaded by the AGV, which is the

material requirement for task j , is calculated by formula (5):

() () { }/ , \ 0c r c
j j j j mq S S T T t g j V  = − + − ∀ ∈   (5)

Suppose that there are n tasks inside a production cycle, the minimum number of AGVs required is:

/ , 12k n n n′ ′ ′= =   (6)

Given the definitions mentioned above, the mixed-integer linear programming (MILP) formulation for MAGVDUST can be
modeled as:

() ()0
1 0 0 1 0 0 1 0 0 1 0 0

min , ,
m n n m n n m n n m n n

l r u
t ijk ij a jk e ijk j j ijk i

k j i k j i k j i k j i
F i j k c x d c x c x T T x T

= = = = = = = = = = = =

= + + − +    (7)

s.t:

{ }
1 0

1, \ 0
m n

ijk
k i

x j V
= =

= ∀ ∈ (8)

{ }
1 0

1, \ 0
m n

ijk
k j

x j V
= =

= ∀ ∈ (9)

{ }
0 0

0, , \ 0
n n

ijk jik
i i

x x k K j V
= =

− = ∀ ∈ ∈  (10)

0 0
1 1

1,
n n

i k ik
i j

x x k K
= =

= = ∀ ∈  (11)

() { }0, , \ 0 ,r r
ijk i u ij jx T t t T k K j V i V+ + − = ∀ ∈ ∈ ∈ (12)

1 0
,

n n

ijk j
i j

x q Q k K
= =

≤ ∀ ∈  (13)

{ }
1 0 1 0

, \ 0
m n m n

c r l
i ijk i i ijk

k j k j
T x T T x i V

= = = =

≤ ≤ ∀ ∈  (14)

, 6k m k k′ ′′ ′′≤ ≤ = (15)
{ }0,1 , , ,ijkx i j V k K∈ ∀ ∈ ∀ ∈ (16)
0, ,ijkx i j V and i j= ∈ = (17)
0 , 0r

iT T i= = (18)

The model proposed in this paper aims to minimize transportation costs (constraint 7), including travel costs, time penalty
costs, AGV costs, and unloading setup time costs. It is important to note that reducing one AGV route is always more
advantageous than reducing other costs, even for large constant values. Additionally, constraints (8-10) require that each task
be visited by an AGV at least once and must be left after the visit. In this subject paper, there are several constraints that have
been imposed to ensure efficient and effective AGV operations. Constraint (11) specifies that every AGV route must
commence and conclude at the depot. Constraint (12) defines a relationship between the arrival time of a task and its preceding
task. In order to prevent overloading, Constraint (13) guarantees that the AGV's load does not exceed its maximum capacity.
Constraint (15) maintains the total number of AGVs within an optimal range. Furthermore, Constraint (14) imposes a time
constraint, while Constraints (16-18) impose restrictions on the decision variables.

3. The proposed improved genetic algorithm

In this paper, the IGA that effectively reduces transport costs is proposed to better solve the presented problem. The IGA is
composed of five main parts: solution initialization, selection operation, crossover operation, mutation operation, and update
operation. In the following sections, each part will be described in detail.

3.1 Solution representation

To simplify the representation of the solution for the MAGVDUST, a straightforward approach has been adopted. Let there be

772

n tasks to be processed in the production workshop and m AGVs available to complete them. The solution vector has a

length of () 1m n+ − and consists of n different integers between 1 and n , representing the tasks. In the vector, the

presence of zeros indicates the start of each AGV's route, effectively separating the routes of different AGVs. And the zero at

the first position of the vector is usually omitted directly. For instance, if there are 3 AGVs and 9 tasks, and the first AGV is

assigned to tasks 2, 5, and 8, the second AGV to tasks 1, 4, 6, and 9, and the third AGV to tasks 3 and 7, the solution would

be represented as (2, 5, 8, 0, 1, 4, 6, 9, 0, 3, 7).

3.2 The improved nearest-neighbor-based heuristic
Zou et al., (2020) proposed a nearest-neighbor-heuristic (NNH) for task searching. The main idea behind NNH is to find the
task that is closest to the current task based on the Manhattan distance. This task is then selected as the next task to be serviced.
In this section, an improved NNH (INNH) is introduced, which utilizes the Chebyshev distance instead of the Manhattan
distance. By considering distances in all directions between two tasks, the Chebyshev distance provides a more accurate
measure in cases where the Manhattan distance may be over or underestimate distances. The calculation of the Chebyshev
distance is as shown below:

ij max(,)j i j iD x x y y= − − (19)

where ijD represents the Chebyshev distance between task i and task j , x and y represent the horizontal and vertical

coordinates of the task.

In this algorithm, the following notations are used: Let { }1, 2, ..., U n= denote the set of unassigned tasks, R represent the

current AGV route, π represent the generated solution, and j represent the current task. The algorithm assigns each task by

prioritizing those that satisfy the time and capacity constraints. If there are no tasks that meet the constraints, the current AGV

route is included in the solution, and a new AGV route is initiated for the subsequent task. This process repeats until all tasks

have been assigned, leading to the termination of the algorithm. The flowchart for the INNH algorithm is shown in Algorithm

1.
 1: INNH heuristicAlgorithm

: Solution Output π
1: Let the AGV route and task 0R j= Φ =
2: is not empty while doU
3: 1 to for i n=
4: Find the nearest task from in i j U
5: endfor
6: Test to append task to route i R
7: route meets the capacity and time constraints then if forR
8: Let task and delete from j i i U=
9: else
10: Append route to solution , and empty route R Rπ
11: Add 0 at the end of , and let 0jπ =
12: endif
13: endwhile
14: route is unempty if thenR
15: Append route to solution R π
16: endif
17: Solution return π

3.3 Initial population phase

To enhance the quality and diversity of the initial population, this study employs three heuristic methods, INNH, NNH, and
improved sweep-based heuristic (ISH) (Zou et al., 2021), to generate initial solutions. These methods are applied to produce
three initial solutions, and the one with the minimum fitness value is selected and retained. Fitness in this context refers to the
evaluation criterion for the quality of a solution. In this paper, a lower fitness value indicates a better solution quality. To
further diversify the population, the remaining solutions are randomly generated. This approach achieves a balance between

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 773

exploitation and exploration within the search space, thereby enhancing the quality and diversity of the initial population. Let
iP represent initialized populations, where PS represents the population size, [1,], PSσπ σ ∈ represents the thσ solution,
INNHπ , NNHπ , and ISHπ represent the initial solutions generated by INNH, NNH, and ISH respectively. The flowchart of the

initial population generation process is shown in Algorithm 2.

 2 : Initial populationAlgorithm

: the initial population Output P
1: Find the best solution f rom , ,bestIni INNH NNH ISHπ π π π
2: Add solution to the initial population bestIni Pπ
3: 2 to for PSizeσ =
4: Randomly generate a permutation of all the tasks
5: Let the AGV route R = Φ
6: 1 to for i n=
7: Test to append task to route i R
8: router meets the capacity and time constraints if thenR
9: Append task to route i R
10: else
11: Append route to solution and empty rou te R Rσπ
12: Add 0 at the end of σπ
13: endif
14: endfor
15: route is unempty if thenR
16: Append route to solution and empty route R Rσπ
17: endif
18: Add solution to the initial population Pσπ
19: endfor
20: the initial population return P

3.4 Selection operation

The selection operation is a crucial aspect of GA as it improves the performance of populations by selecting well-adapted
individuals. In traditional GA, the selection operation often directly selects individuals with better fitness from the initial
population using either roulette wheel selection (Chen et al., 2019) or tournament selection (Routray & Ray, 2020). These
selected individuals serve as the parents for the next generation.

In this paper, before the selection operation, an improved optimal preservation (IOP) strategy is applied. In each generation
of a population, there are individuals which are better suited to the objective function than others. These individuals are known
as 'elite individuals'. The IOP strategy is used to prevent the loss of elite individuals during iterations of the algorithm. Before
each selection, the elite individuals are chosen. And a random sequence is generated for comparison with the elite individual.
After that, the individual with the better fitness is selected as the new elite individual. This new elite individual is directly
passed to the update stage without undergoing any crossover or mutation. The other individual that is not chosen as the new
elite is replaced in the original position of the elite individual for subsequent operations. Let bestπ denote the best individual
of the current population, rπ denote the randomly generated individual, and bf and rf denote the fitness of bestπ and rπ ,
respectively. The optimal preservation strategy flow is depicted in Algorithm 3.

 3 : Optimal preservation strategyAlgorithm
1: Calculate the fitness , of , b r best rf f π π
2: b r f <f if then
3: Retain the solution bestπ
4: Let best rπ π=
5: else
6: Retain the solution rπ
7: endif
8: Optimum conserved population return P

For the populations updated by the IOP strategy, a roulette wheel approach is utilized to select individuals as the parental
generation. The probability of selecting an individual is determined based on a fitness ratio calculation. This ratio is calculated
by dividing the fitness value of the best individual in the population by the fitness value of the current individual. The resulting
value is then used as the selection probability for the current individual. The calculation of the probability is as shown below:

min
i

i

fP
f

= (20)

774

where minf represents the fitness of the best individual in the population, if indicates the fitness of the current individual.
The closer the value of iP is to 1, the more similar the current individual is to the best individual in the population. The
selection process is illustrated in Algorithm 4.

 4 : Select operationAlgorithm

1 2 3: Selected individuals of the parent generation , , Output seq seq seq
1: minLet selection probability /i iP f f=
2: do
3: 1 to 3for i =
4: select individuals from population by roulette iseq P
5: endfor
6: 1 2 3 while seq seq seq≠ ≠
7: enddo
8: 1 2 3 Selected individuals of the parent generation , , return seq seq seq

3.5 Crossover operation

In order to produce offspring chromosomes with improved fitness, the crossover operation combines advantageous traits from
parent chromosomes. This paper proposes two crossover operations: the three-insertion store-optimal crossover (3-ISOC)
operator and the three-parent random selection crossover (3-PRSC) operator, which are randomly selected using the variable
selectCross with a certain probability. These methods have a dual benefit of increasing the diversity of the population and
enhancing the convergence rate of offspring chromosomes. It ultimately leads to an overall improved performance of the IGA.
The 3-ISOC process involves the insertion operation of genetic material in three parental individuals, while also evaluating
the fitness of the resulting individuals. The individual with the superior fitness is then selected as the new offspring individual.
To clarify the process, one must traverse all elements in the initial values of the offspring and determine their position, pos ,
in iseq . Once pos is identified, all elements after pos in iseq are inserted at the top of the iseq . For example, supposing
the initial sequence of offspring is (3, 6, 1, 5, 2, 4) and the 1seq sequence is (1, 4, 2, 6, 3, 5). By comparison, it can be found
that the first element of offspring, 3, is the fifth element in 1seq . Therefore, all elements after 3 are inserted to the top of 1seq
to get the sequence (3, 5, 1, 4, 2, 6). The second element of offspring, 6, is then moved on to, giving us the sequence (6, 3, 5,
1, 4, 2), and so on until all the elements of the offspring have been traversed, resulting in the sequence (4, 2, 6, 3, 5, 1). The
same process is applied to 2seq and 3seq .The detailed process is shown in Fig. 3, while the 3-ISOC process is shown in
Algorithm 5.

The 3-PRSC operation involves randomly generating integers within the range of [0, 2]. The resulting number determines
which parent individual the current element of the offspring individual will be taken from. Specifically, a random number of
0, 1, and 2 corresponds to 1seq , 2seq and 3seq , respectively. Suppose the 1seq sequence is (3, 6, 1, 5, 2, 4), the 2seq
sequence is (1, 4, 2, 6, 3, 5), the 3seq sequence is (2, 5, 3, 4, 1, 6), and the generated sequence of random numbers is (1, 0, 2,
2, 0, 1). Then, the result generation process is shown in Fig. 4 and the 3-PRSC operation flow is shown in Algorithm 6. The
overall flow of the crossover operation is illustrated in Algorithm 7.

3 6 1 5 2 4offspring

1 4 2 6 3 5seq1

1 4 2 63 5

1 4 23 56

3 561 4 2

361 4 25

1 45362

153624

①

②

③

④

⑤

⑥
Fig.3. Example of 3-ISOC

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 775

 5 : Three-swap merit taking crossover operatorAlgorithm
: Offspring individual Output offspringseq

1: 1 2 3Randomly select a sequence from , , as seq seq seq seq
2: Let offspringseq seq=
3: 1 to for i n=
4: 1 to 3for j =
5: Crossover the and to obta in j joffspringseq seq cpyseq
6: Calculate the fitness of a s j jcpyseq f
7: endfor
8: { }1 2 3Select the minimum value of fit ness in , , as , 1,2,3kf f f f k ∈
9: Let koffspringseq cpyseq=
10: endfor
11: Offspring individual return offspringseq

offSpring
3 6 1 5 2 4Seq1

1 4 2 6 3 5Seq2

3 4 1 62 5Seq3

4 2 56 31

Fig.4. Example of 3-PRSC

 6 : Three-parent random selection crossover operatorAlgorithm

: Offspring individual Output offspringseq
1: 1 2 3Randomly select a sequence from , , as seq seq seq seq
2: Let offspringseq seq=
3: 0 to size of for i offspring=
4: []Generate random integers from 0,2 as j

5: Update the task in by t he task in th jthi offspringSeq i Seq
6: endfor
7: Offspring individual return offspringseq

 7 : Cross operationAlgorithm

: Offspring individual Output offspringseq
1: Let as the Algorithm selection probabilityselectCrossCal
2: Randomly generate a decimal between 0 and 1 as selectCross
3: if thenselectCross selectCrossCal<
4: 3-ISOC
5: else
6: 3-PRSC
7: endif
8: Offspring individual offspringseqreturn

3.6 Mutation operation

The mutation operation is a random process that alters one or more gene positions within an individual's gene sequence. It
results in the creation of a new individual. This paper proposes the use of PMX (Singh & Choudhary, 2009) to generate new
offspring individual by mutating parent individuals. The process involves selecting three random positions, denoted as

1 2,pos pos and 3pos , from the offspring individual. It is important to note that 1 2 3pos pos pos< < . The subsequence of
tasks between positions 1pos and 2pos is extracted as seqtemp and inserted it after position 3pos in the offspring individual.
Then a new offspring individual is obtained. This approach allows for the creation of new and diverse offspring individual
through the manipulation of parent individuals. The variation operation flow is illustrated in Algorithm 8.

776

 8 : Mutation operationAlgorithm
: Offspring individual Output offspringseq

1: 1 2 3 1 2 3 Sort , , in descending order so that pos pos pos pos pos pos< <
2: 1 2Let for the tasks between and seqtemp pos pos
3: 3Insert after posit ion of seqtemp pos offspringseq
4: Offspring individual return offspringseq

3.7 Update population operation

The update population operation involves inserting offspring individual obtained through crossover mutation into the
population. The offspring individual is used to replace the worst individual in the population, thereby updating it. This paper
focuses on using offspring individual to update the population through the following method. The method first compares the
offspring individual with the least fit individual in the population. The individual with better fitness values is then
preferentially retained to update the population. Next, the least fit individual in the updated population is compared with
individual preserved in the optimal preservation strategy. The individual with better fitness values is retained to further update
the population. Let worstπ be the individual with the worst fitness and worstf be its corresponding fitness value. Similarly,

offspringπ and offspringf represent the offspring individuals generated after crossover mutation. Then retainπ represents the optimal
solution preserved in the optimal preservation strategy, and retainf denotes its fitness. Finally, worstπ ′ and worstf ′ represent the
individual with the worst fitness after updating offspringπ to the population. The process for updating the population operation
is shown in Algorithm 9.

 9 : Update population operationAlgorithm
: the updated population Output P

1: if thenworst offspringf f>
2: substitutes for offspring worstπ π
3: endif
4: if thenworst retainf f′ >
5: substitutes for retain worstπ π ′
6: endif
7: the updated population return P

3.8 Procedure of the proposed IGA

The IGA proposed in this paper follows a series of main phases. Firstly, the initial population phase is executed (section 3.3).
Subsequently, the selection, crossover and mutation and update operations (sections 3.4, 3.5 and 3.6 respectively) are
performed in a sequential manner to generate offspring individual. Lastly, the offspring individual is inserted into the
population through an update operation (section 3.7). The overall flow of the IGA is illustrated in Fig. 5.

initialize Control
parameters：

PSize,TaskSize,selectCrossCal

Initialize the population:
the initial population P

Running time < 5000ms

Selection operation:
Select three individuals of the

parent generation seq1, seq2, seq3

Crossover operation:
 Offspring individual

offspringseq

Mutation operation:
 Offspring individual

offspringseq

Update population
operation:

the updated population P

Start

End

Y

N

Fig. 5. Overall flow of the IGA

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 777

4. Computational and statistical experimentation

The efficacy of the proposed strategy and algorithm is validated in this section through thorough statistical experiments and
calculations. The experimental test methods, data setup, and analysis methods are detailed. The optimal combination of all
parameters is subsequently determined through extensive calibration experiments. Ultimately, the effectiveness of the
proposed strategies and algorithms is demonstrated through a comparative analysis with other existing algorithms.

4.1 Experimental settings and test methods

In our experiments, instances are collected from Foxconn Technology Group, a Chinese electronic manufacturing company.
One hundred instances of varying sizes, ranging from 10 to 50, are used. And these instances are categorized into test and
calibration instances. Test instances are used for calculations and algorithm comparisons, while calibration instances are used
to calibrate existing algorithms. To ensure the absence of experimental bias in calibration, the instances are segregated into
two groups. The first group consists of 20 instances of the same size as the test instances, resulting in a total of 100 instances.
The second group is composed of 10 instances, with two duplicate instances for each instance of the same size. The test
instances are denoted as T and the calibration instances are denoted as C. In the test case, T3019 represents 30 tasks that need
to be scheduled for completion, with 19 being the index of the specific instance. Each instance has unique details including
identification, location, moment of invocation, material buffer inventory at the time of invocation, and the latest delivery time.
For instance, {43, 5, 3, 53.9, 310, 28, 910} consists of the task number (43), the task's x-axis position (5), the y-axis position
(3), the shortest distance to the depot point (53.9), the moment of call in the production cycle (310), the remaining stock in
the buffer at the moment of call (28), and the latest delivery time in the producer's cycle (910). Due to space limitations, the
data used in this paper is not presented, but interested readers can obtain it from the authors. The parameters involved in the
model are shown in Table 1.

Table 1
Parameter settings

Items Values Items Values 𝛥𝑇 5s 𝑛ᇱ 12 𝐶 360s 𝑡௠ 30s/slice 𝑇଴ 365s 𝑔 0.75kg/slice 𝑄 250kg 𝑆 48slice 𝑣 1m/s 𝐶௧ 1 𝑡௨ 15s 𝑐௘ 0.1 𝑛 100 𝑐௔ 200

The MAGVDUST is a novel problem for dispatching AGVs in matrix manufacturing workshops. To compare several
algorithms that are suitable for the problem and popular in AGV dispatching, we select the Discrete Artificial Bee Colony
algorithm (DABC) (Zou et al., 2020), the Discrete Invasive Weed Optimization algorithm (DIWO) (Li et al., 2023), the
Harmonic Search algorithm (HS) (Li et al., 2019), the Greedy Iterative algorithm (IG) (Zou et al., 2021), and the Improved
Greedy Iterative algorithm (IIG) (Zhang et al., 2022). Each algorithm uses the maximum running time, TΔ , as the termination
condition. And each algorithm is repeated independently for the calibration and test instances, 10 and 30 times, respectively.
The strengths and weaknesses of all algorithms are compared using the relative percentage deviation (RPD). The RPD is
expressed as follows:

() 100%best

best

F FRPD
F
−= × (21)

where F is the transport cost of an algorithm for a given case and bestF is the minimum transport cost of all the compared
algorithms for the same case. The smaller the RPD value, the better the algorithm's performance. All comparison algorithms
in this paper are implemented in C++ and compiled using Visual Studio 2019 with the x64 compiler. The experiments are
conducted on a Windows 10 operating system, utilizing an Intel Core i7-900K 3.60GHz PC with 32GB of RAM.

4.2 Calibration of the proposed and competing methods

Metaheuristics typically have optional parameters that require fine tuning to achieve optimal performance (Meng et al., 2020).
In the IGA, two parameters are proposed, one for population size (PSize) and the other for SelectCross , where SelectCross
is utilized to select two crossover operations during the crossover phase. Through previous experience and extensive
experimentation, a general range of values has been determined for the parameters PSize and SelectCross . PSize has 5
levels of calibration, which are 10, 50, 90, 130, and 170. Meanwhile, SelectCross has 5 levels of calibration, which are 0.1,
0.6, 0.7, 0.8, and 0.9. Consequently, there are 25 parameter combinations in the calibration process, and each combination is
run independently 10 times in each calibration instance. This results in a total of 2500 results for the 10 calibration instances.
To determine the optimal parameter combination for the algorithm, the experimental results were evaluated using analysis of
variance (ANOVA) and design of experiments (DOE) techniques. The results of the experiments are presented in Fig. 6.

778

4

Re
la

tiv
e P

er
ce

nt
ag

e D
ev

ia
tio

n
(R

PD
)

14

16

17

13

12

15

SelectCross
0.60.1 0.7 0.8 0.9 50

15

19

21

13

11

17

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n
(R

PD
)

10 90 130 170
PSize

Fig. 6. Means plots of all parameters of the IGA

Fig. 6 displays the means along with their corresponding 95% confidence intervals for the two parameters of the IGA. The
figure shows that the confidence intervals for the parameter SelectCross overlap at the levels of 0.6, 0.7, and 0.8, suggesting
that there is no significant distinction between these three levels. Similarly, for the parameter PSize , there is no significant
difference between the levels of 90, 130, and 170. However, after analyzing the results, it is discovered that =0.7SelectCross
and =90PSize product the smallest RPD values. As a result, these parameter values are selected for the IGA. The same
calibration process is applied to the other comparison algorithms, and the calibrated parameter values are presented in Table
2.

Table 2
Comparison of the algorithm's parameter calibration results

Algorithms Parameters
IGA 90 0.7PSize SelectCross= =，
HS 4, 0.2, 0.8HMS HMCRmin HMCRmax= = =

DABC 150, 800, 80, 20PSize l r τ= = = =
DIWO 0 50, 70, 15, 2PSize PSizemax Smax PLen= = = =

IG 0.8, 0.5, 5InitType T d= = =
IIG 5, 60d OperIter= =

4.3 Comparison of methods

To assess the effectiveness of the proposed IGA, a validation is conducted using 100 test instances with different sizes. Then
cases of different sizes are analyzed to demonstrate the scalability of the IGA. The experimental setups in this section are
identical to those in Section 4.1 and the evaluation metric used is RPD. And to obtain accurate experimental results, each
algorithm is repeated 30 times for each of the 100 instances. The results, consisting of the minimum (Min), maximum (Max),
and average (Ave) values of RPD, are presented in Tables 3-7. The best algorithm comparison results are highlighted in bold.

Table 3
Experimental results of 10 tasks.

Instanc
e

DABC IG IIG HS DIWO IGA
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave

T10I1 72.5
4

72.5
7

72.5
5

72.5
4

72.5
4

72.5
4

72.5
4

72.5
4

72.5
4

72.5
7

75.1
0

73.5
6

31.5
7

31.9
0

31.7
2

0.0
0

10.0
8

4.8
2

T10I2 30.5
1

30.6
5

30.5
6

30.4
6

30.4
7

30.4
6

30.4
6

30.5
5

30.4
9

30.5
1

76.5
7

63.6
7

22.9
8

23.3
3

23.2
1

0.0
0 6.76

3.5
9

T10I3 36.0
1

40.2
9

36.6
0

36.0
1

36.0
2

36.0
1

36.0
3

36.1
8

36.1
2

36.0
2

91.4
1

78.3
8

25.2
3

25.4
1

25.2
5

0.0
0 6.72

3.4
9

T10I4 28.8
9

29.3
4

29.1
6

28.6
9

28.7
0

28.6
9

28.7
2

29.1
9

28.9
9

28.7
6

33.0
5

29.3
8

23.9
9

24.3
6

24.1
1

0.0
0

11.7
8

3.8
2

T10I5 69.2
4

69.4
2

69.2
9

69.2
4

69.2
4

69.2
4

69.2
4

69.2
9

69.2
6

69.2
6

73.1
7

70.4
7

27.3
3

28.1
3

27.7
8

0.0
0 6.12

3.4
5

T10I6 61.6
3

61.6
4

61.6
3

61.6
3

61.6
3

61.6
3

61.6
3

61.6
3

61.6
3

61.6
5

62.5
9

62.0
7

18.7
2

19.0
4

19.0
1

0.0
0 7.78

3.6
9

T10I7 81.5
1

81.6
2

81.5
5

81.5
0

81.5
1

81.5
0

81.5
2

81.8
2

81.6
5

81.5
4

83.3
0

82.2
0

31.3
9

31.3
9

31.3
9

0.0
0

12.3
7

7.5
6

T10I8 75.4
3

76.9
8

75.9
5

75.3
3

75.3
4

75.3
3

75.3
4

75.4
9

75.4
0

75.3
4

79.7
6

76.7
5

24.6
7

24.8
4

24.7
8

0.0
0

12.2
9

7.6
5

T10I9 16.5
5

16.6
8

16.5
9

16.5
3

16.5
3

16.5
3

16.5
3

16.5
4

16.5
3

16.7
1

63.1
5

49.6
3

23.1
8

23.3
4

23.2
2

0.0
0 6.36

3.3
4

T10I10 18.4
4

59.2
0

24.2
9

18.2
5

20.9
2

19.1
0

18.3
5

21.2
1

19.4
2

20.9
5

61.7
2

53.4
8

19.9
7

19.9
7

19.9
7

0.0
0 4.93

2.4
6

T10I11 34.1
9

34.9
4

34.5
1

34.1
3

34.1
4

34.1
3

34.1
5

34.5
1

34.2
6

34.5
0

72.1
0

61.6
8

27.5
1

29.1
0

27.6
1

0.0
0

11.5
1

5.4
0

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 779

T10I12 13.9
9

14.1
6

14.0
8

13.9
9

13.9
9

13.9
9

13.9
9

14.0
1

14.0
0

14.2
6

70.5
5

26.3
1

20.5
4

20.5
4

20.5
4

0.0
0 9.00

5.0
9

T10I13 35.2
1

35.3
5

35.2
8

35.2
0

35.2
1

35.2
0

35.2
0

35.2
3

35.2
1

35.2
4

77.9
3

58.2
8

36.9
9

37.1
7

37.0
2

0.0
0 9.04

3.8
0

T10I14 29.7
3

30.0
1

29.8
4

29.7
2

29.7
2

29.7
2

29.7
2

29.7
7

29.7
5

29.7
4

74.9
6

53.1
5

28.9
8

29.3
3

29.1
6

0.0
0 6.83

3.0
4

T10I15 28.8
3

30.8
8

29.5
0

28.7
4

28.7
8

28.7
5

28.7
8

29.1
9

28.9
7

28.7
9

79.4
7

55.3
5

32.7
1

32.8
8

32.7
5

0.0
0

12.6
5

6.9
7

T10I16 31.3
2

67.7
2

45.9
9

31.1
3

31.3
0

31.1
8

31.3
2

31.8
5

31.7
4

31.2
3

75.7
2

63.4
8

26.0
9

26.0
9

26.0
9

0.0
0

10.5
6

6.3
8

T10I17 32.4
9

32.6
0

32.5
4

32.4
7

32.5
1

32.4
9

32.5
0

32.6
7

32.5
7

32.5
0

75.7
4

37.7
6

34.6
9

34.8
8

34.8
6

0.0
0

13.3
6

8.2
4

T10I18 34.9
7

35.4
1

35.1
4

34.9
1

34.9
2

34.9
2

34.9
2

34.9
8

34.9
4

35.8
5

91.1
2

81.1
6

24.7
6

24.9
4

24.8
4

0.0
0 8.69

4.2
0

T10I19 16.4
2

17.4
6

16.9
9

16.3
9

16.4
6

16.4
1

16.5
3

17.3
9

17.0
9

17.3
7

66.6
8

35.8
2

18.9
6

19.1
2

18.9
7

0.0
0 5.85

2.6
4

T10I20 72.3
8

72.6
8

72.5
1

72.3
7

72.3
8

72.3
8

72.3
8

72.8
1

72.5
7

72.5
0

73.5
1

72.9
0

25.4
8

25.4
8

25.4
8

0.0
0 7.48

3.9
4

Averag
e

41.0
1

45.4
8

42.2
3

40.9
6

41.1
2

41.0
1

40.9
9

41.3
4

41.1
6

41.2
7

72.8
8

59.2
7

26.2
9

26.5
6

26.3
9

0.0
0 9.01

4.6
8

Table 3 presents the average Ave values of RPD for 10 tasks, which are 42.23%, 41.01%, 41.16%, 59.27%, 26.39%, and 4.68%
for DABC, IG, IIG, HS, DIWO, and IGA, respectively. The IGA outperforms the other algorithms with the highest overall
average RPD, followed by DIWO, DABC, IG, and IIG, while HS performs the worst. It is noteworthy that the IGA achieved
the minimum value in Ave for all 20 arithmetic instances with 10 tasks.

Table 4
Experimental results of 20 tasks

Instanc
e

DABC IG IIG HS DIWO IGA
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave

T20I1 20.3
3

23.0
0

21.8
8

19.9
6

21.8
7

20.7
1

20.6
6

22.2
3

21.6
1

21.2
5

62.0
3

48.0
3

21.5
9

26.6
0

24.1
9

0.0
0

10.2
9

4.9
5

T20I2 21.9
1

23.9
3

23.0
5

20.3
3

22.2
3

21.7
7

21.9
3

24.4
8

23.4
6

23.4
1

60.2
8

46.0
4

21.0
8

28.0
8

24.8
4

0.0
0 6.45

2.9
9

T20I3 17.4
3

20.0
9

18.6
2

17.2
2

17.4
0

17.3
1

18.3
4

21.8
9

20.2
4

17.5
4

54.3
9

43.4
7

12.5
8

21.0
1

17.1
9

0.0
0 9.82

5.4
7

T20I4 16.1
8

18.7
6

16.9
5

15.9
0

17.0
6

16.4
5

17.2
1

17.5
6

17.4
1

16.9
1

54.8
5

36.2
9

13.4
0

21.7
3

17.8
5

0.0
0 6.46

3.5
1

T20I5 18.0
9

42.2
4

19.9
8

17.4
1

19.1
9

17.7
2

18.3
8

21.1
5

19.7
4

42.1
6

58.0
2

49.0
1

20.3
3

32.5
2

27.4
7

0.0
0

14.3
4

7.5
2

T20I6 12.7
1

15.8
2

14.1
6

12.6
7

13.5
1

13.0
5

13.2
9

13.6
5

13.4
5

14.4
9

49.9
0

37.2
4

14.1
4

21.8
9

18.4
6

0.0
0 8.98

4.9
4

T20I7 22.2
6

27.1
7

23.9
9

21.5
6

42.5
8

24.0
7

23.2
4

23.7
5

23.5
7

42.7
1

61.9
5

51.0
2

25.1
0

32.3
1

28.5
5

0.0
0

10.4
6

4.5
3

T20I8 16.1
9

18.4
4

16.7
7

16.0
4

16.1
0

16.0
6

16.2
7

18.0
9

17.2
4

17.4
0

62.0
1

46.4
6

20.8
1

28.9
9

24.8
1

0.0
0 4.36

2.4
9

T20I9 17.6
2

22.1
4

19.7
0

17.5
7

19.9
1

18.6
3

18.1
3

18.6
7

18.4
4

40.5
4

58.2
8

46.4
0

17.9
8

26.3
2

21.6
0

0.0
0 5.34

2.9
9

T20I10 14.2
3

15.7
8

15.0
6

13.8
0

15.3
4

14.6
4

14.8
5

16.0
7

15.6
3

17.0
1

49.9
9

38.9
8 7.90

16.4
7

11.9
3

0.0
0 3.79

1.9
1

T20I11 20.7
4

24.4
2

22.2
7

20.5
4

23.2
7

21.6
5

22.1
4

23.7
7

22.9
1

41.5
8

60.7
9

50.5
1

19.7
5

26.5
6

22.9
9

0.0
0 5.26

2.8
8

T20I12 13.2
7

14.4
7

14.0
2

12.7
0

13.0
8

12.8
5

13.6
6

15.1
6

14.5
3

13.9
1

52.8
4

38.0
9

13.8
1

19.6
2

16.5
9

0.0
0 4.31

2.4
1

T20I13 26.2
7

27.5
3

26.9
9

25.1
6

26.4
1

25.7
4

26.9
2

28.5
8

27.7
1

26.7
8

62.5
1

53.0
3

25.0
8

30.6
0

27.5
9

0.0
0 9.24

5.0
3

T20I14 27.1
2

30.3
8

28.7
1

27.3
4

28.1
4

27.5
0

28.3
7

30.3
1

29.3
7

29.9
5

70.6
2

56.4
0

23.7
8

30.6
2

27.1
6

0.0
0

13.7
4

5.7
4

T20I15 21.5
5

24.8
0

23.3
4

19.8
2

42.3
0

22.8
9

21.6
3

23.9
8

22.9
0

44.4
9

57.3
1

47.8
1

17.5
1

25.7
1

21.2
9

0.0
0 6.37

4.3
0

T20I16 17.4
9

43.6
8

23.1
7

17.1
5

18.3
9

17.6
5

17.9
8

20.8
7

19.2
7

18.0
9

57.2
6

47.2
0

21.1
6

30.3
9

25.4
5

0.0
0 9.40

6.4
1

T20I17 21.0
4

22.9
9

21.8
5

20.9
8

21.3
9

21.1
2

21.6
1

23.5
8

22.6
3

22.7
1

65.2
9

46.9
9

23.7
2

31.6
7

28.4
0

0.0
0

11.2
8

5.4
1

T20I18 17.9
5

20.0
2

18.4
5

16.9
0

17.9
7

17.7
2

18.3
1

18.7
5

18.4
9

18.4
2

63.5
5

40.1
2

18.5
0

26.3
0

22.2
9

0.0
0 7.23

3.7
0

T20I19 13.0
5

15.3
6

13.6
4

11.9
7

13.0
1

12.7
0

13.4
1

14.4
0

13.8
2

14.8
9

48.9
6

36.4
7

16.5
3

22.6
4

20.3
5

0.0
0

10.4
2

3.3
0

T20I20 15.2
9

18.0
3

16.3
3

15.2
3

16.3
4

15.4
9

17.1
6

18.9
5

18.0
8

17.1
8

55.4
9

43.4
4

13.6
5

17.3
8

15.3
0

0.0
0 3.98

2.5
7

Averag
e

18.5
4

23.4
5

19.9
5

18.0
1

21.2
7

18.7
9

19.1
8

20.7
9

20.0
2

25.0
7

58.3
2

45.1
5

18.4
2

25.8
7

22.2
2

0.0
0 8.08

4.1
5

According to the data presented in Table 4, there was a noticeable change in the performance of the algorithms in relation to
the average Ave values of RPD as the number of tasks increased from 10. In this case, IGA remains the most efficient algorithm

780

with the lowest average Ave value for all cases, IG outperforms DIWO, followed closely by IIG and DABC. DIWO performed
only slightly better than HS, which is the worst performer. It indicates that IGA is highly effective in solving MAGVDUST for
instance with 20 tasks, outperforming other comparative algorithms.

Table 5
Experimental results of 30 tasks

Instance DABC IG IIG HS DIWO IGA
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave

T30I1 29.94 39.83 34.22 31.97 46.07 43.15 31.20 32.95 32.21 49.77 60.27 54.71 42.70 51.82 47.62 0.00 14.39 9.72
T30I2 30.78 36.83 33.81 30.38 47.11 43.76 33.58 34.75 34.40 51.43 63.51 57.84 40.24 50.22 46.80 0.00 16.95 10.88
T30I3 21.55 39.60 25.46 19.02 37.88 23.14 21.82 24.07 23.04 37.44 50.86 45.62 25.99 34.43 30.05 0.00 10.29 4.97
T30I4 18.76 25.88 20.92 17.37 24.28 18.71 20.99 23.18 21.72 36.27 48.82 43.27 26.44 35.17 32.45 0.00 4.81 2.95
T30I5 16.23 33.23 29.26 15.02 30.94 27.90 18.48 20.22 19.23 29.92 42.06 38.28 30.55 40.40 34.72 0.00 6.63 4.13
T30I6 22.84 39.16 26.40 21.64 38.26 35.59 24.49 26.32 25.57 39.50 51.32 46.56 39.03 45.10 41.30 0.00 12.72 6.52
T30I7 19.59 34.00 27.22 31.79 34.74 33.74 21.52 25.50 24.75 36.49 46.84 41.30 31.76 39.70 34.82 0.00 7.22 4.80
T30I8 22.37 39.65 36.01 37.21 40.03 38.34 31.00 33.76 32.36 41.47 50.42 46.74 30.05 40.15 35.79 0.00 12.81 8.93
T30I9 26.29 35.34 31.86 26.34 40.24 38.40 29.10 32.00 30.53 41.34 54.41 47.83 33.11 40.21 35.97 0.00 13.82 8.21

T30I10 30.97 39.22 33.52 43.85 46.09 44.74 31.67 35.00 33.17 45.55 59.36 53.96 39.30 47.50 44.17 0.00 15.47 8.67
T30I11 27.29 33.65 30.45 28.49 41.58 37.79 29.80 32.75 31.72 40.13 59.79 52.14 35.92 46.10 41.05 0.00 16.28 9.73
T30I12 12.73 29.30 15.06 11.59 28.01 17.41 12.91 14.18 13.39 30.27 41.92 36.07 24.74 32.44 29.00 0.00 9.32 3.87
T30I13 32.94 38.00 35.96 32.05 48.81 39.70 34.72 36.16 35.51 53.82 68.76 60.45 42.11 53.11 48.64 0.00 17.42 10.56
T30I14 25.90 40.95 29.89 37.53 40.17 39.19 29.39 33.18 32.03 42.77 56.79 48.59 36.30 45.88 40.70 0.00 10.49 6.02
T30I15 22.00 37.66 27.00 21.58 36.46 35.08 23.96 26.32 25.25 36.83 47.85 43.03 28.08 36.46 34.07 0.00 9.16 5.12
T30I16 33.19 35.91 34.62 32.67 34.10 33.47 22.46 36.94 34.39 35.76 44.77 40.21 33.89 40.33 37.14 0.00 11.04 6.86
T30I17 35.44 49.86 40.86 33.44 48.98 43.11 37.20 39.69 38.69 52.25 66.25 59.06 45.16 52.48 48.71 0.00 17.85 12.32
T30I18 23.90 29.59 27.22 22.08 41.61 30.70 25.67 27.67 26.69 44.99 57.92 50.71 36.70 46.04 41.76 0.00 15.05 9.53
T30I19 16.83 22.17 19.71 19.07 33.50 29.38 19.06 22.01 20.37 21.28 47.94 39.83 32.20 38.90 35.79 0.00 10.02 6.72
T30I20 25.89 31.99 28.82 24.46 42.65 38.14 25.30 27.47 26.73 44.60 58.12 50.43 31.12 40.98 37.59 0.00 13.48 8.76
Average 24.77 35.59 29.41 26.88 39.08 34.57 26.22 29.21 28.09 40.59 53.90 47.83 34.27 42.87 38.91 0.00 12.26 7.46

Based on the data provided in Table 5, it is clear that the IGA algorithm outperforms all other algorithms in terms of the
minimum (Min) value, maximum (Max) value, and average (Ave) value. The IIG algorithm is the second-best performer, with
HS and DIWO performing the worst. DABC and IG algorithms are placed in the middle level. This is a strong demonstration
of the effectiveness of the IGA in solving MAGVDUST for instance with 30 tasks.

Table 6
Experimental results of 40 tasks

Instance DABC IG IIG HS DIWO IGA
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave

T40I1 24.14 28.44 27.14 24.19 35.29 33.27 24.81 27.02 26.18 37.51 45.87 42.12 37.86 47.39 43.17 0.00 10.44 5.13
T40I2 34.72 46.11 39.06 42.78 45.11 44.11 36.81 40.24 39.13 49.10 58.70 54.34 43.69 59.38 52.82 0.00 18.93 9.91
T40I3 27.21 31.53 29.54 24.50 40.81 31.75 29.59 31.67 30.82 44.50 54.88 49.46 36.88 46.58 42.34 0.00 11.40 6.44
T40I4 30.38 44.97 36.26 30.24 43.44 40.98 32.32 32.77 32.51 44.70 54.61 50.66 43.41 51.79 47.67 0.00 11.42 5.12
T40I5 20.47 32.23 26.35 28.27 30.58 29.60 21.42 23.43 22.44 34.52 41.24 37.88 36.08 43.77 40.08 0.00 13.87 7.28
T40I6 27.61 39.39 35.28 36.81 38.23 37.60 27.20 30.73 29.62 43.03 48.67 45.42 45.25 54.21 50.41 0.00 10.97 5.23
T40I7 27.29 29.62 28.26 35.63 38.98 37.77 26.98 27.53 27.23 42.54 50.36 46.04 39.31 52.33 47.27 0.00 17.50 9.46
T40I8 28.54 42.59 36.57 27.15 40.14 38.95 33.79 42.11 37.54 42.00 52.12 47.19 43.72 51.04 47.15 0.00 17.04 12.39
T40I9 26.13 38.33 30.91 35.63 37.37 36.54 27.91 29.45 28.63 39.85 49.90 45.06 37.68 48.33 45.66 0.00 18.32 10.12

T40I10 21.47 32.76 24.94 29.96 31.96 31.12 23.40 24.70 24.18 34.90 43.35 39.85 33.82 43.81 40.01 0.00 7.98 4.71
T40I11 25.85 37.79 29.13 27.05 36.48 35.47 28.27 29.41 28.87 41.40 48.26 44.37 38.45 47.78 44.42 0.00 12.16 5.82
T40I12 17.30 29.92 22.74 15.94 28.81 26.14 20.37 23.80 22.28 32.10 39.78 35.78 31.50 40.13 36.24 0.00 10.42 4.21
T40I13 31.76 44.54 35.90 29.58 41.38 38.14 31.83 33.35 32.69 44.89 58.02 50.11 44.01 56.18 51.55 0.00 8.33 3.70
T40I14 31.41 38.86 35.09 32.00 42.97 40.69 33.97 36.81 35.95 46.11 55.42 51.76 46.33 57.18 52.01 0.00 14.87 8.78
T40I15 21.59 33.97 26.45 31.04 32.76 31.99 22.33 24.21 23.41 35.24 42.44 39.45 32.84 42.17 38.67 0.00 13.20 5.01
T40I16 19.70 24.39 21.77 27.90 30.38 29.39 20.55 22.46 21.42 30.91 39.40 36.18 38.36 45.19 40.84 0.00 7.88 4.47
T40I17 39.77 51.68 49.20 47.88 50.88 49.42 39.92 44.10 41.93 51.57 62.28 58.34 52.23 61.94 57.62 0.00 17.30 9.81
T40I18 31.00 36.13 32.67 29.12 43.00 40.01 30.54 32.36 31.62 45.62 55.43 49.88 47.97 56.46 52.68 0.00 12.03 8.20
T40I19 19.94 31.78 22.47 19.49 31.66 30.34 20.27 21.50 20.90 30.50 42.53 38.57 37.99 45.05 41.65 0.00 14.31 6.77
T40I20 22.72 25.32 24.13 22.07 34.10 32.32 23.67 24.88 24.25 35.79 45.72 41.49 34.48 43.42 39.05 0.00 10.24 5.10
Average 26.45 36.02 30.69 29.86 37.72 35.78 27.80 30.13 29.08 40.34 49.45 45.20 40.09 49.71 45.56 0.00 12.93 6.88

Based on Table 6, it is evident that the IGA algorithm outperforms the other five algorithms. The performance of IIG, IG, and
DABC is still relatively similar, while DIWO does not perform as well as HS and is the worst performing algorithm.

Table 7
Experimental results of 50 tasks.

Instance DABC IG IIG HS DIWO IGA
Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave Min Max Ave

T50I1 28.67 36.74 30.38 33.29 36.09 34.94 27.70 29.71 29.10 38.06 45.37 41.71 43.54 55.59 49.91 0.00 9.37 5.11
T50I2 45.42 47.85 46.91 43.42 45.52 44.65 37.32 49.14 43.55 49.78 69.66 53.07 52.31 64.71 59.10 0.00 23.22 8.99

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 781

T50I3 38.71 49.26 44.22 43.58 46.26 44.86 39.36 41.55 40.60 46.72 56.54 51.61 50.16 62.82 57.82 0.00 20.48 11.09
T50I4 40.06 49.01 45.56 45.79 47.42 46.65 39.30 41.71 40.55 51.57 59.96 53.99 57.73 69.48 65.10 0.00 22.87 8.61
T50I5 28.05 30.88 29.60 27.03 28.43 27.67 21.54 24.96 23.45 30.95 48.57 34.35 36.38 48.98 44.31 0.00 11.61 5.23
T50I6 37.04 44.77 43.05 40.24 42.11 41.50 40.30 48.65 46.81 44.89 51.32 48.70 52.29 67.51 61.91 0.00 22.22 10.52
T50I7 24.94 34.57 28.47 30.13 32.83 31.75 25.18 27.84 26.95 35.35 42.10 38.58 36.20 55.30 50.74 0.00 11.12 5.50
T50I8 25.83 31.94 30.38 26.79 29.39 28.49 23.89 30.79 27.32 31.31 38.20 34.80 33.77 49.56 43.61 0.00 7.92 4.46
T50I9 24.40 33.95 31.85 28.46 30.98 29.88 24.05 27.11 25.99 33.94 54.05 37.48 36.70 51.90 47.01 0.00 9.79 4.95
T50I10 35.72 42.24 41.02 37.06 39.32 38.72 34.11 37.12 35.62 42.68 66.16 46.75 48.94 58.43 54.14 0.00 14.15 7.96
T50I11 29.91 39.39 36.23 34.65 37.10 36.18 30.79 33.80 32.47 38.38 48.18 42.72 43.37 56.70 50.39 0.00 13.31 6.46
T50I12 24.14 33.16 31.77 28.88 32.17 31.14 25.04 27.01 26.32 33.82 39.99 37.19 36.24 53.33 46.87 0.00 10.82 5.54
T50I13 47.86 55.32 53.47 50.10 52.53 51.42 46.97 56.14 50.27 57.04 63.38 59.87 58.77 78.13 70.30 0.00 19.42 10.25
T50I14 45.38 48.05 46.70 42.92 45.03 44.35 40.90 50.20 42.95 49.48 55.56 52.25 42.27 69.09 63.26 0.00 17.28 8.29
T50I15 36.58 38.92 38.10 35.46 37.28 36.31 29.77 32.61 31.01 39.58 59.02 43.14 45.76 55.85 52.01 0.00 12.03 6.52
T50I16 22.32 33.35 30.39 29.24 31.05 30.14 22.44 23.60 23.01 33.57 40.86 36.37 42.78 56.18 50.26 0.00 8.72 3.96
T50I17 53.24 56.05 54.88 52.17 54.48 53.46 47.13 51.22 48.73 56.24 65.34 60.80 61.41 77.39 70.21 0.00 21.74 11.04
T50I18 29.28 32.32 31.07 35.76 38.16 36.88 30.57 32.68 31.66 40.74 47.21 43.08 39.28 58.92 52.54 0.00 11.03 3.29
T50I19 31.27 34.10 32.63 30.50 32.41 31.33 24.81 32.33 29.65 33.04 41.45 37.22 42.85 55.39 50.42 0.00 12.59 6.47
T50I20 29.86 42.48 38.83 37.08 39.85 38.48 30.16 33.47 31.97 43.73 50.86 46.61 44.75 59.08 54.91 0.00 12.67 7.95
Average 33.93 40.72 38.28 36.63 38.92 37.94 32.07 36.58 34.40 41.54 52.19 45.01 45.27 60.22 54.74 0.00 14.62 7.11

Table 7 presents the results obtained by all algorithms when solving instances with task numbers of 50. Table 7 shows that the
average Ave values of RPD for DABC, IG, IIG, HS, DIWO, and IGA are 38.28%, 37.94%, 34.4%, 45.01%, 54.74%, and
7.11%, respectively. In terms of overall average Ave values, the best performing algorithm is still IGA, followed by IIG, IG,
DABC, HS, with DIWO being the worst. IGA achieves the minimum Ave value for all 20 instances, with considerably smaller
values than the Ave values of the other algorithms. The fact that IGA consistently outperforms other algorithms across all 20
instances indicates that it is capable of finding the best solution.

According to Tables 3-7, it can be concluded that IGA outperforms the other five algorithms for task sizes ranging from 10 to
50. Therefore, it can be inferred that IGA is highly effective in solving the MAGVDUST. To enhance the analysis of the
proposed algorithm and provide a more comprehensive understanding, a statistical approach utilizing multi-factor ANOVA
analysis is employed in this section. The RPD data obtained from solving all algorithms is considered, with the influencing
factors being the comparison algorithm and task size. In Fig. 7, mean plots with 95% Tukey HSD confidence intervals for the
six comparison algorithms are presented. It can be clearly observed that the performance of IGA is significantly superior to
the other five algorithms. Fig. 8 shows the interaction diagram between the six comparison algorithms and task scales. The
horizontal coordinate n represents the task size, and the vertical coordinate represents the RPD value. The figure clearly
indicates that IGA outperforms the other comparison algorithms for task sizes 10, 20, 30, 40, and 50n = .

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

(R
PD

)

20

40

50

10

0

30

DABC HS IG IIGIGADIWO

60

20

40

50

10

0

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n
(R

PD
)

10 30 40 n50

30

20

DIWO
DABC

HS
IG

IIG
IGA

Algorithm

Fig.7. Means plots with 95% Tukey’s HSD confidence

intervals for all the comparison algorithms
Fig. 8. Means plots of interaction between the six

competitive methods and tasks size

782

2200

2000

1800

1600

1400

0 1000 2000 3000 4000 5000

Th
e

be
st

tra
ns

po
rta

tio
n

co
st

4000

3500

3000

2500

2000

0 1000 2000 3000 4000 5000
The computing time The computing time

(a)T20I5 (b)T30I5

2500

5000

4500

4000

3500

3000

2000
0 3000 4000 5000

Th
e

be
st

tra
ns

po
rta

tio
n

co
st

6000

4000

3000

0 1000 2000 3000 4000 5000
The computing time The computing time

(c)T40I5 (d)T50I5

1000 2000

Fig.9. Convergence curves of algorithms.

To assess the convergence performance of the proposed algorithm, evolutionary graphs are presented to illustrate the variation
of AGV transport costs for the problem at different time points in a cycle. Experiments are conducted on four different problem
sizes - T20I5, T30I5, T40I5, and T50I5 - selected from the test set, and record the minimum total cost obtained for the six
compared algorithms. Fig. 9(a) to Fig. 9(d) illustrate the evolution curves for the six algorithms in the four instances. The
horizontal axis represents different time points within the same production cycle, while the vertical axis represents the
minimum transport costs achieved. As seen in the figures, the IGA demonstrates the best initial results for each instance. The
results indicate that the proposed heuristic algorithm and strategy exhibit superior performance for the problem at hand and
prove to be more effective in solving the proposed problem.

The analysis presented above demonstrates that the proposed IGA is more effective than the other five algorithms in solving
the given problem. It is evidenced by the results obtained for various task sizes, including average, minimum, and maximum
values, as well as means plots, interaction plots, and evolutionary curves.

5. Conclusions and future research

This paper has studied the MAGVDUST, a new problem with the objective of minimizing transportation costs. In our
perception, it has not been addressed in the current research. In this paper, we establish a mixed-integer linear programming
model at first, and then propose an effective IGA. To illustrate the effectiveness of IGA, we have selected five popular
algorithms in existing literature for comparison. All of the algorithms have been thoroughly evaluated on 110 instances from
an actual electronic manufacturing factory. The experimental analysis shows that the proposed IGA is more effective than the
other five algorithms in solving the MAGVDUST. The main contributions of IGA are as followed: Firstly, an INNH algorithm
is utilized to enhance the quality of solutions generated in the initial population. Secondly, a meritocratic initial algorithm is
used to further improve the initial population. Next, a selection operation employs the optimal solution preservation strategy
to ensure the best solutions are retained. To increase population diversity, two crossover operations are designed and a control
parameter is set to probabilistically choose between them. Besides, a mutation operation based on PMX is also used to further
enhance the diversity of the population. Finally, two meritocratic choices are used to update the population. Overall, our
proposed IGA offers a comprehensive solution to the problem.
This study focuses on the regular use of workshops, however, there exhibits variability and unpredictability in the production
process such as AGV energy replenishment and conflicts. Therefore, the next step involves exploring problem-oriented

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 783

strategies or leveraging problem-specific knowledge to enhance the performance of the IGA in effectively addressing and
managing these uncertainties. Deep reinforcement learning (DRL) is an empirical approach to learning that can automatically
determine optimal policies without explicit specification (Ha et al., 2021; Li et al., 2023; Wei et al., 2022). Therefore, it would
be intriguing to explore the potential of combining DRL with AGV dispatching. This paper is expected to provide a fresh and
thought-provoking perspective on AGVDP.
Acknowledgment
This research is partially supported by the National Natural Science Foundation of China under Grant (No. 52205529),
partially supported by the Natural Science Foundation of Shandong Province (ZR2021QE195) and Research fund project of
Liaocheng university under Grant (No. 318012110 and No. 318052150).
References

Cao, X., & Zhu, M. (2021). Research on global optimization method for multiple AGV collision avoidance in hybrid path.
Optimal Control Applications and Methods, 42(4), 1064-1080.

Chen, C., Tiong, L. K., & Chen, I.-M. (2019). Using a genetic algorithm to schedule the space-constrained AGV-based
prefabricated bathroom units manufacturing system. International Journal of Production Research, 57(10), 3003–3019.

Chen, X., Wu, W., & Hu, R. (2022). A Novel Multi-AGV Coordination Strategy Based on the Combination of Nodes and
Grids. IEEE Robotics and Automation Letters, 7(3), 6218-6225.

Eda, S., Nishi, T., Mariyama, T., Kataoka, S., Shoda, K., & Matsumura, K. (2012). Petri net decomposition approach for bi-
objective routing for AGV systems minimizing total traveling time and equalizing delivery time. Journal of Advanced
Mechanical Design Systems and Manufacturing, 6(5), 672–686.

Ha, W. Y., Cui, L., & Jiang, Z.-P. (2021). A warehouse scheduling using genetic algorithm and collision index. 2021 20th
International Conference on Advanced Robotics (ICAR), 318–323. https://doi.org /10.1109/ICAR53236.2021.9659439

Hao, J., Wang, C., Yang, M., & Wang, B. (2020). Hybrid genetic algorithm based dispatch and conflict-free routing method
of agv systems in unmanned underground parking lots. In 2020 IEEE international conference on real-time computing
and robotics (RCAR), 475-480 https://doi.org/10.1109/RCAR49640.2020.9303275.

Hu, Y. J., Dong, L. C., & Xu, L. (2020). Multi-AGV dispatching and routing problem based on a three-stage decomposition
method. Mathematical Biosciences and Engineering, 17(5), 5150–5172.

Huang, S. J., Lee, T. S., Li, W. H., & Chen, R. Y. (2018). Modular on-road AGV wireless charging systems via interoperable
power adjustment. IEEE Transactions on Industrial Electronics, 66(8), 5918-5928.

Jahanzaib, M., Masood, S. A., Nadeem, S., Akhtar, K., & Shahbaz, M. (2013). Application of genetic algorithm (ga) approach
in the formation of manufacturing cells for group technology. Life Science Journal, 9(4), 799-809.

Jin, J., & Zhang, X. H. (2016). Multi AGV scheduling problem in automated container terminal. Journal of Marine Science
and Technology-Taiwan, 24(1), 32–38.

Li, G., Li, X., Gao, L., & Zeng, B. (2019). Tasks assigning and sequencing of multiple AGVs based on an improved harmony
search algorithm. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4533–4546.

Li, H., Gao, K., Duan, P. Y., Li, J. Q., & Zhang, L. (2022). An Improved Artificial Bee Colony Algorithm With Q-Learning
for Solving Permutation Flow-Shop Scheduling Problems. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
https://doi.org/10.1109/TSMC.2022.3219380

Li, J., Cheng, W., Lai, K. K., & Ram, B. (2022). Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging.
Mathematics, 10(19), 3417.

Li, Z. K., Sang, H. Y., Li, J. Q., Han, Y. Y., Gao, K. Z., Zheng, Z. X., & Liu, L. L. (2023). Invasive Weed Optimization for
multi-AGVs dispatching problem in a matrix manufacturing workshop. Swarm and Evolutionary Computation, 101227.

Lu, S., Xu, C., Zhong, R. Y., & Wang, L. (2017). A RFID-enabled positioning system in automated guided vehicle for smart
factories. Journal of Manufacturing Systems, 44, 179-190.

Liu, L., Qu, T., Thurer, M., Ma, L., Zhang, Z., & Yuan, M. (2022). A new knowledge-guided multi-objective optimisation for
the multi-AGV dispatching problem in dynamic production environments. International Journal of Production Research.
https://doi.org/10.1080/00207543.2022.2122619

Meng, L., Gao, K., Ren, Y., Zhang, B., Sang, H., & Chaoyong, Z. (2022). Novel MILP and CP models for distributed hybrid
flowshop scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation, 71, 101058.

Meng, L., Cheng, W., Zhang, B., Zou, W., Fang, W., & Duan, P. (2023). An Improved Genetic Algorithm for Solving the
Multi-AGV Flexible Job Shop Scheduling Problem. Sensors, 23(8), 3815.

Meng, L., Zhang, C., Ren, Y., Zhang, B., & Lv, C. (2020). Mixed-integer linear programming and constraint programming
formulations for solving distributed flexible job shop scheduling problem. Computers & Industrial Engineering, 142,
106347.

Micieta, B., Edl, M., Krajcovic, M., Dulina, L., Bubenik, P., Durica, L., & Binasova, V. (2018). Delegate MASs for
coordination and control of one-directional AGV systems: a proof-of-concept. The International Journal of Advanced
Manufacturing Technology, 94, 415-431.

Ng, P. P. W., Yucel, G., & Duffy, V. G. (2009). Modelling the effect of AGV operating conditions on operator perception of
acceptability and hazard. International Journal of Computer Integrated Manufacturing, 22(12), 1154–1162.

Nishida, K., & Nishi, T. (2022). Dynamic Optimization of Conflict-Free Routing of Automated Guided Vehicles for Just-in-
Time Delivery. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2022.3194082

784

Niu, H. Y., Wu, W. M., Xing, Z. C., Wang, X. K., & Zhang, T. (2023). A novel multi-tasks chain scheduling algorithm based
on capacity prediction to solve AGV dispatching problem in an intelligent manufacturing system. Journal of
Manufacturing Systems, 68, 130–144.

Ren, N., Zhao, Y., & Zhang, J. (2012). Scheduling research of AGV with double buffers based genetic algorithm in flexible
manufacturing system. Applied Mechanics and Materials, 121, 1630-1635.

Routray, M., & Ray, N. K. (2020). Remote homology detection using GA and NSGA-II on physicochemical properties.
International Journal of Computer Applications in Technology, 64(4), 393-402.

Singh, N., Dang, Q. V, Akcay, A., Adan, I., & Martagan, T. (2022). A matheuristic for AGV scheduling with battery constraints.
European Journal of Operational Research, 298(3), 855–873.

Singh, V., & Choudhary, S. (2009). Genetic algorithm for traveling salesman problem: using modified partially-mapped
crossover operator. 2009 International Conference on Multimedia, Signal Processing and Communication Technologies,
20–23. https://doi.org/10.1109/MSPCT.2009.5164164

Song, J. (2021). Automatic guided vehicle global path planning considering multi-objective optimization and speed control.
Sensors and Materials, 33(6), 1999–2011.

Sun, P. Z., You, J., Qiu, S., Wu, E. Q., Xiong, P., Song, A., Zhang, H., & Lu, T. (2022). AGV-Based Vehicle Transportation in
Automated Container Terminals: A Survey. IEEE Transactions on Intelligent Transportation Systems. https://
doi.org/10.1109/TITS.2022.3215776.

Wang, C., Wang, L., Qin, J., Wu, Z., Duan, L., Li, Z., Cao, M., Ou, X., Su, X., Li, W., Lu, Z., Li, M., Wang, Y., Long, J.,
Huang, M., Li, Y., & Wang, Q. (2015). Path planning of automated guided vehicles based on improved a-star algorithm.
2015 IEEE International Conference on Information and Automation, 2071–2076. https://
doi.org/10.1109/ICInfA.2015.7279630.

Wang, Z., & Wu, Y. (2023). An Ant Colony Optimization-Simulated Annealing Algorithm for Solving a Multiload AGVs
Workshop Scheduling Problem with Limited Buffer Capacity. Processes, 11(3), 861.

Wang, Z., & Zeng, Q. (2022). A branch-and-bound approach for AGV dispatching and routing problems in automated
container terminals. Computers & Industrial Engineering, 166, 107968.

Wei, Q., Yan, Y., Zhang, J., Xiao, J., & Wang, C. (2022). A self-attention-based deep reinforcement learning approach for
AGV dispatching systems. IEEE Transactions on Neural Networks and Learning Systems. https://
doi.org/10.1109/TNNLS.2022.3222206.

Wu, S., Xiang, W., Li, W., Chen, L., & Wu, C. (2023). Dynamic Scheduling and Optimization of AGV in Factory Logistics
Systems Based on Digital Twin. Applied Sciences, 13(3), 1762.

Xu, L., Wang, Y., Liu, L., & Wang, J. (2016). Exact and Heuristic Algorithms for Routing AGV on Path with Precedence
Constraints. Mathematical Problems in Engineering, 8, 1-8.

Yao, F., Alkan, B., Ahmad, B., & Harrison, R. (2020). Improving just-in-time delivery performance of IoT-enabled flexible
manufacturing systems with AGV based material transportation. Sensors, 20(21), 6333.

Yuan, M. H., Li, Y. D., Pei, F. Q., & Gu, W. B. (2021). Dual-resource integrated scheduling method of AGV and machine in
intelligent manufacturing job shop. Journal of Central South University, 28(8), 2423-2435.

Yuan, Z., Yang, Z., Lv, L., & Shi, Y. (2020). A bi-level path planning algorithm for multi-AGV routing problem. Electronics,
9(9), 1351.

Zhang, X. J., Sang, H. Y., Li, J. Q., Han, Y. Y., & Duan, P. (2022). An effective multi-AGVs dispatching method applied to
matrix manufacturing workshop. Computers & Industrial Engineering, 163, 107791.

Zou, W. Q., Pan, Q. K., Meng, T., Gao, L., & Wang, Y. L. (2020). An effective discrete artificial bee colony algorithm for
multi-AGVs dispatching problem in a matrix manufacturing workshop. Expert Systems with Applications, 161, 113675.

Zou, W. Q., Pan, Q. K., & Wang, L. (2021). An effective multi-objective evolutionary algorithm for solving the AGV
scheduling problem with pickup and delivery. Knowledge-Based Systems, 218, 106881.

Zou, W. Q., Pan, Q. K., & Tasgetiren, M. F. (2021). An effective iterated greedy algorithm for solving a multi-compartment
AGV scheduling problem in a matrix manufacturing workshop. Applied Soft Computing, 99, 106945.

Zou, W. Q., Pan, Q. K., Wang, L., Miao, Z. H., & Peng, C. (2022). Efficient multiobjective optimization for an AGV energy-
efficient scheduling problem with release time. Knowledge-Based Systems, 242, 108334.

Zou, W. Q., Pan, Q. K., Meng, L. L., Sang, H. Y., Han, Y. Y., & Li, J. Q. (2023). An effective self-adaptive iterated greedy
algorithm for a multi-AGVs scheduling problem with charging and maintenance. Expert Systems with Applications,
119512.

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

