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 Companies are frequently confronted with the need to order different types of items from a single 
supplier or to manufacture the items in a production line. Indeed, coordinated ordering of multiple 
items may lead to important savings whenever a family of items can be ordered from a common 
supplier, produced in a common facility, or use a common mode of transportation. The Joint 
Replenishment Problem (JRP) tackles the coordinated replenishment of multiple items by 
minimizing the total cost, composed of ordering (or setup) costs and holding costs, while satisfying 
the demand. On the other hand, when items are subject to obsolescence, they may face an abrupt 
decline in demand as they are no longer needed. This decline can be caused by reasons such as 
rapid advancements in technology, going out of fashion, or ceasing to be economically viable. The 
present article develops an extension of the JRP where the items may suddenly become obsolete 
during an infinite planning horizon. The point at which an item becomes obsolete is uncertain. The 
lifetimes of the items are assumed to follow independent negative exponential distributions. A 
model is proposed by using the total expected discounted cost as the minimization criterion. The 
time value of money is considered through an appropriate discount rate. Extensive tests were 
performed to assess the impact of obsolescence rates and discount rates on the ordering policies. 
The progressive increase of the obsolescence rates determines smaller periods between successive 
replenishments as well as smaller lot sizes. The same impact occurs when we face a progressive 
increase of the discount rate.  
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1. Introduction 

 
Some of the first known inventory lot sizing models in the literature, such as the Economic Order Quantity (EOQ) model by 
Harris (1913) or the Economic Production Quantity (EPQ) model by Taft (1918, apud Holmbom & Segerstedt, 2014), were 
developed to find optimal ordering policies for a single item. In simple terms, these models rely on the minimization of the 
setup and holding costs by determining when and how much to order while satisfying the anticipated demand for the single 
item.  

However, the assumption of one single item may be restrictive when companies are, for example, confronted with the need 
to order different items from a single supplier. Indeed, coordinated ordering may lead to a reduction on fixed costs, for 
instance, by filling a truckload or by substantially lowering the setup costs if a group of products are manufactured together 
in a production line (Axsäter, 2015). In these circumstances, the Joint Replenishment Problem (JRP), tackling the coordinated 
replenishment of different types of items (or products) in the same order, arises as a natural option to cope with inventory lot 
sizing problems involving multiple items. This problem usually applies to items that are provided by the same supplier, or to 
the determination of lot sizes and schedule of multiple items in single-facility production/inventory systems (Lee & Yao, 
2003).  
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Another aspect that can impact the decisions with respect to inventory lot sizing problems is the possibility of the items 
becoming obsolete. An additional source of complexity is sometimes introduced in the system when the point at which an 
item will become obsolete cannot be predicted in advance. Items subject to obsolescence may experience an abrupt decline in 
demand because they are no longer needed due to, for example, an advance in technology, going out of fashion, or because 
the items cease to be economically viable.  

Several studies can be found in the literature where items are subject to obsolescence, such as Masters (1991), Joglekar & Lee 
(1993) and van Delft & Vial (1996), among others. Goyal & Giri (2001) refer that very few problems on obsolescence have 
been addressed by the researchers. Moreover, most of the studies assuming obsolescence of the items consider just one type 
of item, instead of the more complex setting of problems involving multiple items. As far as multi-item inventory problems 
are concerned, there are studies pointing out the lack of investigation tackling the JRP where the items may be subject to 
obsolescence (Khouja & Goyal, 2008). To address this lack of investigation, Afonso et al. (2022) developed an approximate 
model of the JRP where items may become obsolete at some random future time, meaning that the lifetimes of the different 
items are uncertain.  

The contribution of the present study is the development of a precise model of the JRP where items are prone to obsolescence. 
The model considers the following assumptions: constant demand, no quantity discounts, no shortages allowed, linear holding 
cost, zero lead time and instantaneous delivery. The lifetimes of the items or, in other words, the obsolescence time of the 
items, follow negative exponential distributions. The use of this distribution for modelling obsolescence is justified by Masters 
(1991) with the following argument: “although many distributions are plausible, the (negative) exponential (distribution) is 
appropriate for sudden obsolescence phenomenon since it models a constant obsolescence rate”, i.e., “the age of the item does 
not influence the probability of obsolescence during any subsequent interval”, which means that the obsolescence process has 
no memory and a time-invariant lot size is optimal. We also incorporate the time value of money in the proposed model by 
considering the discount rate.  

The article is structured as follows. Section 2 presents a literature review about inventory lot sizing problems where items 
may become obsolete and addresses this stream under the JRP framework. In Section 3 we develop the total expected 
discounted JRP obsolescence cost model through a model minimizing the setup, acquisition and holding costs along the 
infinite planning horizon. The optimization process is performed through a recursive procedure. Section 4 presents and 
discusses numerical examples. Finally, in Section 5 some conclusions are summarized.  
 
2. Obsolescence and JRP  
 

Many inventory lot sizing problems in the literature assume that stocked items have infinite shelf lives. This may not be 
adequate when we are confronted with real life situations where items may deteriorate (e.g. alcohol, medicines) or become 
obsolete (e.g. technology, fashion) over time. Deterioration refers to the damage, spoilage, dryness, vaporization, etc. of the 
products (Goyal & Giri, 2001; Bakker et al., 2012). Obsolescence differs from deterioration because items subject to 
obsolescence are likely to lose their value over time or to face the problem of finite shelf lives due to advancements in 
technology, change of consumer tastes, introduction of new products (for products such as electronics and apparel), among 
others. According to Pahl & Voβ (2014), obsolescence has to do with the products whose functionality does not degrade, but 
where demand deteriorates over time as customers’ perceived utility decreases. Such loss of utility may be relatively swift, 
with demand dropping suddenly to zero (Arcelus et al., 2002). Obsolescence can be classified in two types (Sandborn, 2013): 
procurement obsolescence and sudden obsolescence. The type addressed herein is the sudden obsolescence, which refers to 
the obsolescence of an inventory of items that remain after the demand for the item disappears (Brown et al., 1964 apud 
Bartels et al., 2012). This may happen when the product design or system specifications change and, as a result, existing 
inventories (of products or their parts) are no longer needed, for example because the product is replaced by a substitute one 
performing similar or identical functions, or the like (Arcelus et al., 2002). Hence, a partial or total loss of value of the 
inventory on hand can be anticipated as a result of obsolescence (van Delft & Vial, 1996).  
According to Nahmias (2011), obsolescence is typically characterized by uncertainty in the lifetime of a product as the point 
at which an item becomes obsolete cannot be predicted in advance. In this way, probability distributions are used to describe 
the lifetime of items subject to obsolescence. Indeed, different probability distributions can be found in the literature to model 
obsolescence (Dohi & Osaki, 1995; Covert & Philip, 1973; Wee,1997). The model proposed in this study assumes the negative 
exponential probability distribution to model the lifetime of items subject to obsolescence, similarly to Masters (1991), 
Joglekar & Lee (1993) and van Delft & Vial (1996). Masters (1991) argues that the negative exponential probability 
distribution is appropriate for modelling the lifetime of an item subject to sudden obsolescence. van Delft & Vial (1996) 
obtained the optimal ordering policy by discounting costs through the discount rate of the firm and by performing a 
probabilistic analysis based on whether obsolescence occurs during or after an inventory cycle. The analysis performed in 
Section 3 undertakes this kind of approach.  
Despite obsolescence having been considered in inventory lot sizing problems, there are authors still mentioning some lack 
of research in this area (Goyal & Giri, 2001; Khanlarzade et al., 2014). Khouja & Goyal (2008) refer to the usefulness of 
exploring extensions of the JRP tackling product obsolescence. More recently, in their literature review on the JRP, Bastos et 
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al. (2017) still do not refer to any study involving obsolescence. However, the impact of incorporating the risk of obsolescence 
in inventory decisions can determine significant savings for the companies (Song & Zipkin, 1996).  
To the best of our knowledge, most of the inventory lot sizing studies assuming obsolescence consider one single-item. Few 
studies are found involving multiple items subject to either deterioration or (sudden) obsolescence. Afonso et al. (2022) 
identify some studies with respect to the JRP where items are subject to deterioration, but none in the context of sudden 
obsolescence.  
The classical JRP can be interpreted as an extension of the classical EOQ involving multiple items where the ordering policy 
is determined through the optimal trade-off between ordering costs and holding costs (Afonso et al., 2022). The cost of placing 
an order to the supplier in the JRP context typically includes two components, one major ordering cost (or major setup cost) 
independent of the number of different items in the order, and several minor ordering costs (or minor setup costs) that depend 
on the number of different items included in the order (Khouja & Goyal, 2008).  
Under the JRP, it makes sense to consider the ሺ𝑇,𝑘ሻ policy constituted by a cycle of 𝑇 units of time and a set of integer 
multipliers 𝑘 where the time interval between successive replenishments of the item 𝑖 is given by 𝑇 = 𝑘𝑇. In other words, 
the cycle time of an item 𝑖 is an integer multiple 𝑘 of the cycle such that 𝑇 = 𝑘𝑇 and the corresponding order quantity is 
given by 𝑄 = 𝑇𝐷 = 𝑘𝑇𝐷.  
The classical JRP does not consider the acquisition costs (Khouja & Goyal, 2008). This component of costs is typically ignored 
since it can be understood as a sunk cost due to the assumption that all demand must be fully satisfied (Berk & Gurler, 2017). 
However, one must note that this should not be the case when the time value of money is considered because the moment at 
which the acquisition occurs may have a relevant impact on the present value of the total costs. The model developed in 
Section 3 takes into account the time value of money and, consequently, does not ignore the acquisition costs.  
 
3. The total discounted JRP obsolescence cost model  
 

The total loss single-item obsolescence model described by van Delft and Vial (1996) was extended by Afonso et al. (2022) 
to deliver an approximate model of the JRP to multiple items subject to obsolescence. In this study, we follow a similar 
strategy to propose a precise model of the JRP with items subject to obsolescence. The total loss occurs at sudden 
obsolescence, meaning that all items on hand instantaneously lose their value at once.  

3.1 Assumptions and notation  

The lifetimes of the multiple items are assumed to be independent and identically distributed and to follow negative 
exponential distributions. The time value of money is considered through an appropriate discount rate. We also assume, in 
our model: instantaneous delivery (i.e., replenishment rate is infinite), no quantity discounts, shortages are not allowed, 
constant demand rate, constant unit cost, linear holding cost and fixed ordering cost, which is described as the sum of two 
components: a major and a minor setup cost. Without loss of generality, the lead time is equal to zero.  

The model considers the (𝑇,𝑘) replenishment policy which consists of a common cycle of 𝑇 units of time and a set of integer 
multipliers, one multiplier 𝑘  for each item, corresponding to the number of cycles between replenishments of that item 
(Khouja & Goyal, 2008; Silver et al., 2017).  

The notation of the model is:  𝑁 – number of items;  𝑖 = 1, 2, … ,𝑁 – the item index;  𝑆 – the ordered set of 𝑁 items;  𝐴 – major ordering cost (major setup cost) associated with each replenishment;  𝑎 – minor ordering cost incurred if item 𝑖 is ordered in a replenishment;  𝑐 – cost per unit of item 𝑖;  ℎ – unit holding cost of item 𝑖 per unit of time;  𝐷 – demand of item 𝑖 per unit of time;  𝐻(𝑡) – expected discounted holding cost for item 𝑖 incurred during 𝑡 units of time, where the stock level at the 
beginning satisfies the demand during that period;  𝐵 – a nonempty ordered subset of 𝑆 (i.e., 𝐵 ⊆ 𝑆 𝑎𝑛𝑑 𝐵 ≠ ∅);  Γ(𝐵) – time between successive replenishments (or cycle length) expressed in units of time, involving only the items 
that do belong to 𝐵;  𝑇 – time between successive replenishments (or cycle length) expressed in units of time when 𝐵 = 𝑆, i.e., 𝑇 = Γ(𝑆);  



  

 

526 𝑄 – order quantity of item 𝑖 (quantity of items of type 𝑖 to order);  𝛿 – discount rate;  𝜃 – rate of obsolescence of item 𝑖;  𝐶(𝐵) – setup costs incurred during the cycle, involving only the items that do belong to 𝐵;  𝐶(𝐵) – acquisition costs incurred during the cycle, involving only the items that do belong to 𝐵;  𝐶(𝐵) – expected discounted holding costs incurred during the cycle, involving only the items that do belong to 𝐵;  Ζ(𝐵) – expected costs incurred during the cycle, involving only the items that do belong to 𝐵;  Ζ(𝐵) – expected costs incurred after the cycle where 𝑚 items that do belong to 𝐵 do not become obsolete during 
the cycle or, in other words, where 𝑚 items survive the cycle, with 1 ≤ 𝑚 ≤ 𝑐𝑎𝑟𝑑(𝐵) ≤ 𝑁;  𝑉(𝐵) – total expected discounted infinite horizon cost associated to the items that do belong to 𝐵.  

According to Afonso et al. (2022), 𝐻(𝑡) is given by Eq. (1).  𝐻(𝑡) = ℎ න 𝑒ିఋ௫(𝐷𝑡 − 𝐷𝑥)𝜃𝑒ିఏ௫𝑑𝑥௧
 = ℎ𝜃 ቆ 𝐷𝑡𝛿 + 𝜃 + 𝐷൫𝑒ି(ఋାఏ)௧ − 1൯(𝛿 + 𝜃)ଶ ቇ (1) 

Next, we present a model of the expected discounted cost in a JRP, when the items are prone to obsolescence. For the sake of 
clarity and convenience, the model is developed in two steps. 1) In the first step, the integer multipliers are simply ignored, 
which means that all the items are included in each and every order if they have not yet become obsolete. In other words, all 
the integer multipliers are implicitly assumed to be equal to one, i.e., 𝑘 = 1,∀. 2) In the second step, the model is extended 
in order to take on board the integer multipliers.  

In the Subsection 0, we formulate the general expression of 𝑉(𝐵) without the integer multipliers. Subsection 3.2 extends the 
model developed in Subsection 0 in order to incorporate the integer multipliers. Subsection 3.3 presents a procedure to 
determine the optimal strategy according to the model.  

3.1 Expression of the objective function without the integer multipliers  

The ultimate objective is to determine the optimal value of the decision variable 𝑇 by minimizing 𝑉(𝑆), i.e., when 𝐵 = 𝑆. For 
convenience, the formulation is first derived for any subset 𝐵 of 𝑆. The expression of 𝑉(𝑆) is obtained by simply replacing 𝐵 
with 𝑆. The derivation of 𝑉(𝑆) in this manner helps describing the procedure presented in Section 3.3.  

Some aspects of the structure of the optimal policy of our obsolescence model can be specified a priori. In fact, one must note 
that under instantaneous delivery, a given item 𝑖 is ordered only if its inventory level is zero. Assuming that the inventory 
level is zero at some time 𝑡, the corresponding optimal lot size is 𝑄 such that 𝑇 = ொ , 1 ≤ 𝑖 ≤ 𝑁 (recall that ignoring the 
integer multipliers, all items are ordered in each period of 𝑇 units of time). Then, if obsolescence does not occur during the 
period ቂ𝑡, 𝑡 + ொቃ, and considering the memoryless property of the negative exponential distribution, used to model the 
obsolescence lifetime of the items, the inventory system, with respect to any item 𝑖, is in the same status at time 𝑡 + 𝑇 as it 
was at time 𝑡, keeping 𝑄 as the optimal lot size.  

Hence, in a similar way as developed by van Delft & Vial (1996) and Afonso et al. (2022), the computation of the cost 
components of the model objective function follows an approach that considers two alternatives: costs incurred when 
obsolescence occurs during the first cycle or after it. Let us assume 𝐵 such that 𝑐𝑎𝑟𝑑(𝐵) = 𝑏 and 𝐵 = (𝑖ଵ, 𝑖ଶ, … , 𝑖).  

Costs incurred when obsolescence occurs during the first cycle  

Considering the subset 𝐵, if obsolescence of all the items occurs during the first cycle, there are no other costs than the 
expected ones incurred at the beginning of the cycle:  Ζ(𝐵) = 𝐶(𝐵) + 𝐶(𝐵) + 𝐶(𝐵) (2) 

Note that the setup and acquisition cost components 𝐶(𝐵) and 𝐶(𝐵) correspond to costs incurred at the beginning of the 
cycle, because, according to the assumptions, we need to have at this moment the necessary quantities of items to satisfy the 
demand, while 𝐶(𝐵)  corresponds to the discounted expected holding costs incurred during the cycle. Thus, such as 
considered by Afonso et al. (2022), 𝐶(𝐵), 𝐶(𝐵) and 𝐶(𝐵) are incurred regardless the occurrence of obsolescence during 
the cycle, i.e., these costs occur with probability one. Since we are disregarding the integer multipliers, these three cost 
components are fully incurred as all the items are ordered in each replenishment. Then, the detailed expressions of 𝐶(𝐵) and 𝐶(𝐵) , incurred at the beginning of the cycle, are given by 𝐴 + ∑ 𝑎∈  and ∑ 𝑐𝐷Γ(𝐵)∈ , respectively. The detailed 
expression of 𝐶(𝐵), incurred during the cycle of Γ(𝐵) units of time, but discounted at the beginning of this cycle, is given 
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by ∑ 𝐻(Γ(𝐵))∈ = ∑ ℎ𝜃 ቆ()ఋାఏ + ቀష൫ഃశഇ൯(ಳ)ିଵቁ(ఋାఏ)మ ቇ∈ . Note that when 𝐵 = 𝑆, the sums occur over the 𝑁 items and Γ(𝐵) = 𝑇.  
 

Total costs  

To determine the costs after the first cycle, i.e., after moment 𝑡 = Γ(𝐵) , it is necessary to consider all the possible 
combinations where at least one item survives the first cycle. Thus, since 𝑐𝑎𝑟𝑑(𝐵) = 𝑏, this means that we need to consider 
the cases where just one of the items survives and the other 𝑏 − 1 do not, the cases where just two any items survive and the 
other 𝑏 − 2 do not, and so on, until the last case where all the items of 𝐵 do survive the cycle of Γ(𝐵) units of time. To 
properly determine the costs of all these cases, each of them must consider the multiplication of two factors: 1) one factor 
involving the probabilities of survival of the items, and 2) another factor corresponding to the optimal expected discounted 
cost of the items that survived. Please note that for the items that survived the first cycle, the model recursively considers they 
will be included in another ‘first’ cycle, 𝑇 units of time ahead, with the cost adjusted by the discount rate.  

Since items’ lifetimes follow negative exponential distributions, the probability of an item, say 𝑖, surviving Γ(𝐵) units of time 
is 𝑒ିఏ(). To discount the sum of the several optimal expected cost components, i.e., the several 𝑉(𝐺), 𝐺 ⊂ B such that 𝐺 =൫𝑖ீభ , … , 𝑖ீ൯, we simply multiply them by 𝑒ିఋ(). Hence, the costs incurred after the cycle when 𝑚 (1 ≤ 𝑚 < 𝑏) items 
survive are given by Eq. (3) where 𝐵 ∖ 𝐺 corresponds to the complement of 𝐺 in 𝐵 and, for each 𝑚, Z(𝐵) is the sum of ൫൯ = !!(ି)! components.  

Z(𝐵) =  ቌ𝑉(𝐺)𝑒ିቀఏಸభା⋯ାఏಸቁ() ෑ ൫1 − 𝑒ିఏೕ()൯∈∖ீ ቍீ⊂ௗ(ீ)ୀ
 (3) 

 

when 𝐺 = 𝐵, which is related to the case where all the items of 𝐵 do survive the cycle of Γ(𝐵) units of time, the expression Z(𝐵) corresponds precisely to the multiplication of 𝑉(𝐵) by the probability of having all the items of 𝐵 surviving the cycle, 
i.e., Z(𝐵) is given by Eq. (4).  Z(𝐵) =  𝑉(𝐵)ෑ𝑒ିఏ()∈ = 𝑉(𝐵)𝑒ିቀఏభା⋯ାఏ್ቁ() (4) 

Then, the general expression of the total expected discounted cost, associated to the items 𝑖 that do belong to 𝐵, is given by:  

𝑉(𝐵) = Z(𝐵) + 𝑒ିఋ()  Z(𝐵)
ୀଵ ⟺  𝑉(𝐵) = Z(𝐵) + 𝑒ିఋ()  Z(𝐵)ିଵ

ୀଵ + 𝑒ିఋ()Z(𝐵) ⟺  𝑉(𝐵) − 𝑒ିఋ()Z(𝐵)
= Z(𝐵) + 𝑒ିఋ()  Z(𝐵)ିଵ

ୀଵ  

Now, by applying Eq. (4) we have:  

𝑉(𝐵) − 𝑒ିఋ() ቀ𝑉(𝐵)𝑒ିቀఏభା⋯ାఏ್ቁ()ቁ = Z(𝐵) + 𝑒ିఋ()  Z(𝐵)ିଵ
ୀଵ ⟺ 

𝑉(𝐵) = Z(𝐵) + 𝑒ିఋ() ∑ Z(𝐵)ିଵୀଵቀ1 − 𝑒ିቀఋାఏభା⋯ାఏ್ቁ()ቁ  (5) 

By considering Eq. (2), expression (5) can also be rewritten as:  𝑉(𝐵) = 𝐶(𝐵) + 𝐶(𝐵) + 𝐶(𝐵) + 𝑒ିఋ() ∑ Z(𝐵)ିଵୀଵቀ1 − 𝑒ିቀఋାఏభା⋯ାఏ್ቁ()ቁ  (6) 

When 𝐵 = 𝑆, where 𝑐𝑎𝑟𝑑(𝑆) = 𝑁, Eq. (6) can be expressed as Eq. (7).  𝑉(𝑆) = 𝐶(𝑆) + 𝐶(𝑆) + 𝐶(𝑆) + 𝑒ିఋ் ∑ Z(𝑆)ேିଵୀଵ(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்)  (7) 
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3.2 Expression of the objective function with the integer multipliers  

In Subsection 0 we obtained 𝑉(𝑆) in Eq. (7), involving all the 𝑁 types of items, from the expression derived for a subset 𝐵 of 𝑆. An analogous development could be done to derive the corresponding expression with the integer multipliers. However, 
for the sake of simpler formulas, and without loss of generality, we derive the new model by directly considering the set 𝑆 
instead of a subset 𝐵. Hence, for the sake of convenience, we assume, in this Subsection 3.2, 𝐵 ⊂ 𝑆  such that 𝑐𝑎𝑟𝑑(𝐵) =𝑚 = 𝑏 and 𝐵 = (𝑖ଵ, 𝑖ଶ, … , 𝑖).  

The expression (7) of the JRP obsolescence model without the integer multipliers was derived by considering that the setup, 
acquisition and holding costs, respectively 𝐶(𝑆), 𝐶(𝑆) and 𝐶(𝑆), are strictly incurred during the first cycle. Moreover, all 
the other components of Eq. (7), namely expressed in Eq. (3) and Eq. (4), have been also obtained by considering the 
correspondent cost components as strictly incurred after the first cycle. However, the model is recursive, meaning that for 
computing the cost after the first cycle, another ‘first’ cycle is considered but only for the items that survived.  

Extending our model by integrating the integer multipliers 𝑘 , such that 𝑇 = 𝑘𝑇 , 𝑖 = 1, … ,𝑁 , introduces a source of 
complexity in our model, particularly because the setup, acquisition and holding costs of the items, considered to be incurred 
during the first cycle, depend on the time interval between successive replenishments of each specific item. Indeed, when the 
integer multipliers are considered, the setup, acquisition and holding costs of an item 𝑖 must be incurred during cycles of 𝑇 =𝑘𝑇 units of time, instead of 𝑇 units of time. This means that some items are not necessarily ordered in all cycles of 𝑇 units of 
time. Thus, we need to define new expressions for the setup, acquisition and holding costs, where these costs are incurred 
during the first cycle of 𝑇 units of time, in the context of extending Eq. (7) into a new JRP obsolescence model with the integer 
multipliers. To this purpose, a new expression to the costs incurred when obsolescence occurs after the first cycle, such as the 
ones derived in Eq. (3) and Eq. (4), also needs to be established.  

Let us consider the additional notation for the extended model:  𝑘(𝐵) – set of integer multipliers such that if 𝐵 = (𝑖ଵ, 𝑖ଶ, … , 𝑖) then 𝑘(𝐵) = ൫𝑘భ , 𝑘మ , … ,𝑘್൯, with 𝑇ೝ = 𝑘ೝ𝑇 , 𝑟 =1, … , 𝑏;  𝑇 – time interval between successive replenishments of item 𝑖;  𝑘 − integer multiplier such that 𝑇 = 𝑘𝑇, 𝑖 = 1, … ,𝑁;  

One should note that optimizing the total expected discounted infinite horizon cost of 𝑆 implies not only the determination of 
the optimal value of optimal value of 𝑇, as happens with the optimization of 𝑉(𝑆), but also the optimal values of 𝑘(𝑆), i.e., 
the optimal values of 𝑘 such that 𝑇 = 𝑘𝑇, 𝑖 = 1, … ,𝑁.  

Before deriving the formulas of the ordering, acquisition, and holding costs during the cycle as well as the costs incurred when 
obsolescence occurs after the cycle, note that (7) is the sum of each of these four cost components divided by the denominator ൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯. Each of these divisions can be interpreted as a discounted cost contribution to the value of 𝑉(𝑆), 
where the discount rate is equal to the sum of the discount rate (𝛿) with the sum of the obsolescence rates of the 𝑁 items. For 
instance, the discounted ordering costs contribution to 𝑉(𝑆) in (7) is given by (ௌ)ቀଵିష൫ഃశഇభశ⋯శഇಿ൯ቁ. The reason is due to the fact 

that (proof in Appendix A):  𝐶(𝑆)(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) = 𝐶(𝑆)𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ  (8) 

In other words, by Eq. (8), we can say that (ௌ)ቀଵିష൫ഃశഇభశ⋯శഇಿ൯ቁ is the present value of a perpetuity with a cash flow of 𝐶(𝑆) 

occurring at every 𝑇 units of time and a continuous discount rate of (𝛿 + 𝜃ଵ + ⋯+ 𝜃ே). This is also the case for the other 
cost components enumerated supra. However, as referred above, an issue is raised when, by introducing the integer multipliers, 
formulations for these cost components must be obtained when successive replenishments of an item 𝑖 occur only once in 
every 𝑇 = 𝑘𝑇  units of time. Below we derive the formulas of the four cost components above in order to have the 
corresponding costs considered during 𝑇 units of time instead of 𝑇 units of time.  

Setup costs  

The value of the setup costs incurred during the cycle, considering that some items are not ordered in all cycles, say 𝐶ሚ(𝑆), 
contains two components, namely one with respect to the major setup cost 𝐴, which is incurred in every period between 
successive replenishments, and another one with respect to the minor setup costs of the items ordered in a replenishment such 
that if an item 𝑖 is ordered, the minor setup cost 𝑎 is incurred only once in every 𝑇 = 𝑘𝑇 units of time, and not once in every 
period of 𝑇 units of time.  

This means that the cost contribution of the major setup cost during the cycle to 𝐶ሚ(𝑆) is 𝐴, but the minor cost contribution 
of an item 𝑖 needs an adjustment in order to be incurred during 𝑇 units of time instead of 𝑇 units of time.  
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Property for adjusting the minor setup cost  

A minor setup cost 𝑎 incurred every 𝑘𝑇 units of time is equivalent to a minor setup cost 𝑎 incurred every 𝑇 units of time, 
with:  𝑎 = 𝑎 ൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) (9) 

Proof:  

The infinite sum of discounted values of the minor setup cost, 𝑎, at the rate (𝛿 + 𝜃ଵ + ⋯+ 𝜃ே), considering 𝑇 units of time 
is:  

𝑎𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ  

By applying Eq. (8) we get:  

𝑎𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝑎(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) (10) 

Thus, dividing the minor setup cost 𝑎  by ൫1 − 𝑒ି(ఋାఏభା…ାఏಿ)்൯ is the same as considering an infinite sum where 𝑎  is 
discounted at the beginning of each cycle. 

If instead we discount a minor setup cost 𝑎 at the beginning of each 𝑘 cycles, that is, at periods of 𝑇 = 𝑘𝑇, we would get 
the following present value of the minor setup costs:  

𝑎𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ  

Following the same reasoning used in (10), we would get:  

𝑎𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝑎(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) (11) 

It can be seen that the infinite summations in Eq. (10) and Eq. (11) are identical if:  𝑎(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) = 𝑎(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) 

Thus,  𝑎 = 𝑎 ൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) 

as we wanted to prove.  

 

So, the formulation of 𝐶ሚ(𝑆) when the 𝑁 items are considered is given by (12):  

𝐶ሚ(𝑆) = 𝐴 + 𝑎ே
ୀଵ

൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) (12) 

 

Acquisition costs  

The acquisition costs incurred during the cycle, considering that some items are not ordered in all cycles, say 𝐶ሚ(𝑆), have the 
same issue as the minor setup costs discussed above. If an item 𝑖 is ordered, the acquisition costs are determined by considering 
the unit cost 𝑐 and the number of items needed to satisfy the demand for 𝑇 = 𝑘𝑇 units of time. The quantity of items needed 
to satisfy the demand for 𝑘 multiples of the cycle is 𝐷𝑇 = 𝐷𝑘𝑇, meaning that the acquisition costs of a replenishment that 
includes the item 𝑖 is given by 𝑐𝐷𝑇 = 𝑐𝐷𝑘𝑇. In this context, an adjustment is required to have the acquisition costs 
incurred during 𝑇, instead of 𝑇 units of time.  
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Property for adjusting the acquisition costs  

The acquisition costs 𝑐𝐷𝑘𝑇 incurred every 𝑘𝑇 units of time are equivalent to the acquisition costs �̃� incurred every 𝑇 units 
of time, with:  �̃� = 𝑐𝐷𝑘𝑇 ൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) (13) 

Proof: 

The proof is analogous to the one considered for the minor setup cost adjustment. Thus, replacing 𝑎 by �̃�, 𝑎 by 𝑐𝐷𝑘𝑇 and 
following the same steps of the proof used above to obtain 𝑎, Eq. (13) holds and the formulation of 𝐶ሚ(𝑆) when the 𝑁 items 
are considered is given by Eq. (14).  

𝐶ሚ(𝑆)  = 𝑐𝐷𝑘𝑇ே
ୀଵ

൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) (14) 

 

Holding costs  

The formulation of 𝐶ሚ(𝑆) is obtained by following the same reasoning used to prove the formulation of 𝐶ሚ.  

 

Property for adjusting the holding costs  

Considering by (1) that 𝐻(𝑇) expresses the expected holding costs of an item 𝑖 during 𝑇 units of time, the expected holding 
costs of the item 𝑖 during the cycle of 𝑇 units of time, say 𝐻෩(𝑇), is given by:  𝐻෩(𝑇) = 𝐻(𝑘𝑇) ൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) (15) 

Proof:  

Replacing 𝑎 by 𝐻෩(𝑇), 𝑎 by 𝐻(𝑘𝑇) and following the same steps of the proof used above to obtain 𝑎, (15) holds and the 
formulation of 𝐶ሚ(𝑆) is given by Eq. (16).  

𝐶ሚ(𝑆) = 𝐻(𝑘𝑇)ே
ୀଵ

൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) (16) 

After demonstrating the formulations of the setup costs Eq. (12), acquisition costs Eq. (14) and holding costs Eq. (16),the 
costs incurred when obsolescence occurs during the cycle of 𝑇 units of time, say 𝑍෨(𝑆) = 𝐶ሚ(𝑆) + 𝐶ሚ(𝑆) + 𝐶ሚ(𝑆), is given 
by Eq. (17), which is simplified in Eq. (18).  

 𝑍෨(𝑆) = 𝐶ሚ(𝑆) + 𝐶ሚ(𝑆) + 𝐶ሚ(𝑆)= 𝐴 + 𝑎ே
ୀଵ

൫1 − 𝑒ି(ఋାఏభା…ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) + 𝑐𝐷𝑘𝑇ே
ୀଵ

൫1 − 𝑒ି(ఋାఏభା…ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்)+ 𝐻(𝑘𝑇)ே
ୀଵ

൫1 − 𝑒ି(ఋାఏభା…ାఏಿ)்൯(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) 

(17) 

 

𝑍෨(𝑆) = 𝐴 + ൫1 − 𝑒ି(ఋାఏభା…ାఏಿ)்൯𝑎 + 𝑐𝐷𝑘𝑇 + 𝐻(𝑘𝑇)(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்)ே
ୀଵ  (18) 

Total costs  

In Subsection 0, these costs were derived in Eq. (3) and Eq. (4) by considering the multiplication of probabilities of survival 
and the values of 𝑉(𝐵) over all possible combinations where at least one item belonging to the subset 𝐵 of 𝑆 survived. By 
analyzing the factors in Eq. (3) and Eq. (4), the probabilities of survival do not need an adjustment through the introduction 
of the integer multipliers because they are already calculated during the cycle of 𝑇 units of time. The same can be said not 
only for the case where 𝐵 = 𝑆, but also for any subset 𝐵 as, in this case, the probabilities must be simply calculated during Γ(𝐵) units of time. However, an adjustment needs to be made to the values of the total expected discounted costs associated 
to the items set under analysis. This is because these values are calculated in Eq. (6) and Eq. (7) by considering the setup, the 
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acquisition and the holding costs without the impact of the integer multipliers. However, to integrate the impact of the integer 
multipliers we have to replace these costs in 𝑉(𝐵) by the formulas (12), (14) and (16), originating in this manner a modified 𝑉(𝐵), say 𝑉෨(𝐵). Thus, the expression of the costs incurred when obsolescence of at least one item occurs after the cycle, 𝑍෨(𝑆), can be expressed by Eq. (19).  

𝑍෨(𝑆) =  ቌ𝑉෨(𝐵)𝑒ି൫ఏభା⋯ାఏ൯ ෑ ൫1 − 𝑒ିఏೕ൯∈ௌ∖ ቍ⊂ୗௗ()ୀ
 (19) 

The expression of the case where all the 𝑁 items survive the cycle of 𝑇 units of time, 𝑍෨ே(𝑆), is given by (20). The value of 𝑉෨(𝑆) corresponds to the value of 𝑉(𝑆) where the costs in Eq. (2) and Eq. (3) are replaced by the costs in Eq. (18) and Eq.  
(19).  

𝑍෨ே(𝑆) =  𝑉෨(𝑆)ෑ𝑒ିఏ்ே
ୀଵ = 𝑉෨(𝑆)𝑒ି(ఏభା⋯ାఏಿ)் (20) 

 

Please note that despite these formulas having been derived in this Subsection 3.2 with the focus on the case where 𝐵 = 𝑆, 
they can be easily established for any nonempty subset 𝐵 of 𝑆.  

Now that we have developed the expressions of the cost components with the integer multipliers of our model, the total 
expected discounted infinite horizon cost associated to the 𝑁 items that do belong to 𝑆, 𝑉෨(𝑆), is given by Eq. (21).  𝑉෨(𝑆)  = 𝑍෨(𝑆)  + 𝑒ିఋ் ∑ 𝑍෨(𝑆)ேିଵୀଵ(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்)  (21) 

By considering Eq. (18) in Eq. (21), we finally obtain Eq. (22).  

𝑉෨(𝑆) = 𝐴 + 𝑒ିఋ் ∑ 𝑍෨(𝑆)ேିଵୀଵ(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) + 𝑎 + 𝑐𝐷𝑘𝑇 + 𝐻(𝑘𝑖𝑇)(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்)ே
ୀଵ  (22) 

In summary, the model with the integer multipliers expressed in (22) determines the total expected discounted infinite horizon 
cost associated to 𝑁 items that are subject to obsolescence. Subsection 3.3 describes a recursive procedure that intends to find 
the optimal parameters of the (𝑇,𝑘) ordering policy that minimizes (22).  

3.3 A procedure to optimize the objective function  

In the same way as proposed by Afonso et al. (2022) for the approximate model, to compute the minimum of Eq. (22), it is 
necessary to consider a recursive procedure to determine the several 𝑍෨(𝑆)  (𝑚 = 1,2, … ,𝑁 − 1) that appear in Eq. (19). 
During the first iteration, we determine 𝑍෨ଵ(𝑆)  by obtaining the values corresponding to the cases where just one of the items 
survive the cycle Γ൫(𝑖)൯ (𝑖 = 1, 2, … ,𝑁). The calculation of the 𝑁 values of 𝑉෨൫(𝑖)൯ needed to calculate 𝑍෨ଵ(𝑆) are obtained by 
optimizing the single-item model developed by van Delft & Vial (1996) and described by Afonso et al. (2022), under the JRP 
context. In the second iteration, the optimal single-item values 𝑉෨൫(𝑖)൯, determined in the first iteration to calculate 𝑍෨ଵ(𝑆), are 
processed as an input to calculate the 𝑍෨ଶ(𝑆), which must consider all the cases where two of the items survive the cycle Γ൫(𝑖ଵ, 𝑖ଶ)൯. That is to say that the optimal values of 𝑉෨൫(𝑖ଵ)൯ and 𝑉෨൫(𝑖ଶ)൯ calculated in the first iteration are used as constants 
to compute the optimal values 𝑉෨൫(𝑖ଵ, 𝑖ଶ)൯ in the second iteration. Note that in this second iteration, we must compute optimal 
values for all subsets 𝐵 of 𝑆 involving two of the 𝑁 items. The number of subsets 𝐵 in this iteration is ൫ேଶ൯ = ே!ଶ!(ேିଶ)!. All these 
expected discounted costs involving any two items are then used to calculate 𝑍෨ଶ(𝑆). Hence, the procedure continues in this 
way until the last iteration (i.e., by computing successively 𝑍෨ଷ(𝑆), 𝑍෨ସ(𝑆), …, 𝑍෨ேିଵ(𝑆)), in which the optimal value of 𝑉෨(𝑆) 
is finally computed.  
 
4. Numerical results and discussion  
 

The discounted JRP obsolescence precise model proposed in Subsection 3.2 was implemented and tested with the case bases 
depicted in Table 1.These test cases were used to perform sensitivity analyses on underlying parameters, in order to highlight 
the impact of the core features of the model, such as the obsolescence, time value of money and JRP setup costs, on the 
ordering policies. The base cases I and II of Table 1 are also used in Afonso et al. (2022).  

A group of tests is constituted by six or seven test cases. The number of test cases in each group depends on the parameters 
where sensitivity analyses are performed. The definition of a group of tests considers: 1) the base case used to perform the 
test cases, 2) the selected parameters used to perform the sensitivity analyses, 3) specific values of other parameters where 
sensitivity analysis is not being performed but whose values are different from the parameters of the used base case. For 
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instance, if we select the parameters depicted in base case I of Table 1 to perform sensitivity analysis on the discount rate, 
using the (additional) values 0.1 and 0.2, and a change on the major setup cost, which is set to 1000, this means that we 
consider three test cases where all the parameters are equal to the base case I, except the values of the discount rate which are 
progressively changed from 0.05 (depicted in Table 1) for test case 1, 0.1 for test case 2 and 0.2 for test case 3, and the value 
of the major setup cost is set to 1000 for all the three test cases (instead of 100, which is the value of the major setup cost of 
the base case I). 

Table 1 
Figures of the base cases  

Parameter Base case I Base case II Base case III Base case IV 𝛿 0.05 0.1 0.05 0.05 𝜃ଵ, 𝜃ଶ 𝜃ଷ 0.2 0.3 0.1 0.1 
A ($) 100 1000 1000 1000 𝑎ଵ ($) 10 50 950 950 𝑎ଶ ($) 15 70 1000 940 𝑎ଷ ($) 10 70 1200 2000 𝐷ଵ (units) 80 150 150 150 𝐷ଶ (units) 200 400 900 140 𝐷ଷ (units) 60 400 2000 1500 𝑐ଵ ($) 2 4 4 4 𝑐ଶ ($) 3 8 15 5 𝑐ଷ ($) 1 10 5 25 ℎଵ ($/unit/time) 0.2 0.6 0.6 0.6 ℎଶ ($/unit/time) 0.3 1.2 1 0.5 ℎଷ ($/unit/time) 0.1 1.5 1.5 3 

 

Afonso et al. (2022) performed five groups of tests, that we now repeat, each of them containing six test cases, except the fifth 
group which contains seven test cases:  

1. The first group includes six test cases based on base case I of Table 1. The test cases 1, 2 and 3 perform sensitivity analysis 
on the obsolescence rates with the values 0.2, 0.3 and 0.5. The same is done for the last three test cases. The discount rate is 
0.1 for all the test cases. The major setup cost is 1000 in test cases 1, 2 and 3, and is equal to zero in test cases 4, 5 and 6.  

2. The second group uses the base case I and includes six test cases as well. The sensitivity analysis is performed on the major 
setup cost with the values 100, 1000 and 10000. The obsolescence rates of the items are all set to 0.5 in the test cases 1, 2 and 
3. The test cases 4, 5 and 6 are equal to test cases 1, 2 and 3, respectively, except for the obsolescence rates which are equal 
to 0.2, 0.3 and 0.5 for items 1, 2 and 3, respectively.  

3. The test cases of the third group are equal to the test cases of the second group, except for differences on the setup costs. 
The major setup cost is the same for all test cases (equal to 1000). The test cases 1, 2 and 3 perform sensitivity analysis on the 
minor setup cost of item 1 with the values 10, 50 and 3000, while the test cases 4, 5 and 6 perform sensitivity analysis on the 
minor setup cost of item 3 with the values 10, 70 and 500, respectively.  

4. The fourth group of tests is based on the base case II of Table 1. The test cases 1, 2 and 3 are equal, except for the progressive 
increase of the discount rate, which takes the values 0.05, 0.1 and 0.2. The obsolescence rates have different values from item 
to item (0.2, 0.3 and 0.5, respectively). The test cases 4, 5 and 6 are equal to the first three test cases, but the items are not 
subject to obsolescence, i.e., the obsolescence rates are zero.  

5. The fifth group includes seven test cases, it is based on the base case II and takes the test case 1 as a basis for the sensitivity 
analyses on the following parameters: holding cost, demand and unit cost. Therefore, test cases 1, 2 and 3 are equal, except 
for the progressive increase of the holding cost parameter (0.2, 0.6 and 1.5 for item 1; 0.3, 1.2 and 3 for item 2; 0.1, 1.5 and 
7.5 for item 3), while the unit cost and demand parameters consider the figures of the base case I; test cases 1, 4 and 5 are 
equal, except for the progressive increase of the demand parameter (80, 150 and 300 for item 1; 200, 400 and 600 for item 2; 
60, 400 and 1200 for item 3), while the holding cost and unit cost parameters consider the figures of the base case I; and test 
cases 1, 6 and 7 are equal, except for the progressive increase of the item unit cost parameter (2, 4 and 6 for item 1; 3, 8 and 
12 for item 2; 1, 10 and 30 for item 3), while the holding cost and demand parameters consider the figures of the base case I.  

Table 2 compares the numerical results obtained from executing these five groups of test cases with the approximate model 
and the precise model. We use the expression “Approximate model” to identify the approach proposed by Afonso et al. (2022) 
and “Precise model” to identify the approach proposed in this paper, since this approach avoids the approximations used by 
Afonso et al. (2022) regarding the inclusion of the 𝑘s. For each of the five group of tests, it is identified the corresponding 
base case, the parameters with different values from the ones of this base case and, finally, optimal values obtained for the 
cycle length (𝑇) and the integer multipliers (𝑘), and the corresponding order quantities (𝑄 = 𝐷𝑘𝑇). The columns correspond 
to the several test cases. As explained above, column 7 only has figures on the fifth group because this group is the only one 
with seven test cases. All the other groups of tests have six test cases.  
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Table 2 
Numerical results of the approximate and the precise models 

Approximate model  Precise model 
Test case 1 2 3 4 5 6 7  Test case 1 2 3 4 5 6 7 

Base case  
I 
 

Group of tests 1 

Changes on parameters of the base case  

Base case  
I 
 

Group of tests 1 

Changes on parameters of the base case 𝜽𝟏 0.2 0.3 0.5 0.2 0.3 0.5   𝜽𝟏 0.2 0.3 0.5 0.2 0.3 0.5  𝜽𝟐 0.2 0.3 0.5 0.2 0.3 0.5   𝜽𝟐 0.2 0.3 0.5 0.2 0.3 0.5  𝜽𝟑 0.2 0.3 0.5 0.2 0.3 0.5   𝜽𝟑 0.2 0.3 0.5 0.2 0.3 0.5  
A 1000 1000 1000 0 0 0   A 1000 1000 1000 0 0 0  

Variables  Variables 
T 2.73 2.38 1.83 0.50 0.43 0.35 -  T 2.73 2.39 1.98 0.50 0.43 0.35 - 
k1 1 1 1 1 1 1 -  k1 1 1 1 1 1 1 - 
k2 1 1 1 1 1 1 -  k2 1 1 1 1 1 1 - 
k3 1 1 2 1 1 1 -  k3 1 1 1 1 1 1 - 
Q1 218.24 190.28 146.28 40.21 34.54 27.89 -  Q1 218.60 191.11 158.18 40.16 34.50 27.86 - 
Q2 545.60 475.70 365.69 100.53 86.36 69.73 -  Q2 546.49 477.79 395.45 100.41 86.25 69.65 - 
Q3 163.68 142.71 219.41 30.16 25.91 20.92 -  Q3 163.95 143.34 118.64 30.12 25.87 20.90 - 

Base case  
I 
 

Group of tests 2 

Changes on parameters of the base case  

Base case  
I 
 

Group of tests 2 

Changes on parameters of the base case 
A 100 1000 10000 100 1000 10000 -  A 100 1000 10000 100 1000 10000 - 𝜽𝟏 0.5 0.5 0.5 0.2 0.2 0.2 -  𝜽𝟏 0.5 0.5 0.5 0.2 0.2 0.2 - 𝜽𝟐 0.5 0.5 0.5 0.3 0.3 0.3 -  𝜽𝟐 0.5 0.5 0.5 0.3 0.3 0.3 - 𝜽𝟑 0.5 0.5 0.5 0.5 0.5 0.5 -  𝜽𝟑 0.5 0.5 0.5 0.5 0.5 0.5 - 

Variables  Variables 
T 0.67 1.93 4.86 0.92 2.24 6.15 -  T 0.73 2.09 5.46 0.92 2.61 7.39 - 
k1 1 1 1 1 2 2 -  k1 1 1 1 1 1 1 - 
k2 1 1 1 1 1 1 -  k2 1 1 1 1 1 1 - 
k3 2 2 2 1 1 1 -  k3 1 1 1 1 1 1 - 
Q1 53.46 154.05 389.16 73.86 358.67 984.27 -  Q1 58.44 167.31 436.61 73.86 208.63 591.37 - 
Q2 133.65 385.13 972.91 184.65 448.34 1230.34 -  Q2 146.10 418.28 1091.52 184.65 521.58 1478.43 - 
Q3 80.19 231.08 583.75 55.39 134.50 369.10 -  Q3 43.83 125.48 327.46 55.39 156.47 443.53 - 

Base case  
I 
 

Group of tests 3 

Changes on parameters of the base case  

Base case  
I 
 

Group of tests 3 

Changes on parameters of the base case 
a1 10 50 3000 10 10 10 -  a1 10 50 3000 10 10 10 - 
a3 10 10 10 10 70 500 -  a3 10 10 10 10 70 500 - 
A 1000 1000 1000 1000 1000 1000 -  A 1000 1000 1000 1000 1000 1000 - 𝜽𝟏 0.5 0.5 0.5 0.2 0.2 0.2 -  𝜽𝟏 0.5 0.5 0.5 0.2 0.2 0.2 - 𝜽𝟐 0.5 0.5 0.5 0.3 0.3 0.3 -  𝜽𝟐 0.5 0.5 0.5 0.3 0.3 0.3 - 𝜽𝟑 0.5 0.5 0.5 0.5 0.5 0.5 -  𝜽𝟑 0.5 0.5 0.5 0.5 0.5 0.5 - 

Variables  Variables 
T 1.93 1.63 1.77 2.24 2.07 2.20 -  T 2.09 2.12 3.16 2.61 2.65 2.89 - 
k1 1 2 3 2 2 2 -  k1 1 1 1 1 1 1 - 
k2 1 1 1 1 1 1 -  k2 1 1 1 1 1 1 - 
k3 2 2 2 1 2 2 -  k3 1 1 1 1 1 1 - 
Q1 154.05 260.25 424.36 358.67 331.81 351.95 -  Q1 167.31 169.26 252.81 208.63 211.75 231.04 - 
Q2 385.13 325.31 353.64 448.34 414.76 439.94 -  Q2 418.28 423.15 632.02 521.58 529.37 577.60 - 
Q3 231.08 195.19 212.18 134.50 248.86 263.96 -  Q3 125.48 126.95 189.61 156.47 158.81 173.28 - 

Base case  
II 
 

Group of tests 4 

Changes on parameters of the base case  

Base case  
II 
 

Group of tests 4 

Changes on parameters of the base case 𝜹 0.05 0.1 0.2 0.05 0.1 0.2 -  𝜹 0.05 0.1 0.2 0.05 0.1 0.2 - 𝜽𝟏 0.2 0.2 0.2 0 0 0 -  𝜽𝟏 0.2 0.2 0.2 0 0 0 - 𝜽𝟐 0.3 0.3 0.3 0 0 0 -  𝜽𝟐 0.3 0.3 0.3 0 0 0 - 𝜽𝟑 0.5 0.5 0.5 0 0 0 -  𝜽𝟑 0.5 0.5 0.5 0 0 0 - 
Variables  Variables 

T 0.74 0.74 0.67 2.42 1.70 1.19 -  T 0.78 0.74 0.67 2.42 1.70 1.19 - 
k1 2 1 1 1 1 1 -  k1 1 1 1 1 1 1 - 
k2 1 1 1 1 1 1 -  k2 1 1 1 1 1 1 - 
k3 1 1 1 1 1 1 -  k3 1 1 1 1 1 1 - 
Q1 220.87 110.37 100.59 363.08 254.61 177.95 -  Q1 116.35 110.37 100.59 363.08 254.61 177.95 - 
Q2 294.50 294.32 268.24 968.21 678.95 474.54 -  Q2 310.26 294.32 268.24 968.21 678.95 474.54 - 
Q3 294.50 294.32 268.24 968.21 678.95 474.54 -  Q3 310.26 294.32 268.24 968.21 678.95 474.54 - 

Base case  
II 
 

Group of tests 5 

Changes on parameters of the base case  

Base case  
II 
 

Group of tests 5 

Changes on parameters of the base case 
h1 0.2 0.6 1.5 0.2 0.2 0.2 0.2  h1 0.2 0.6 1.5 0.2 0.2 0.2 0.2 
h2 0.3 1.2 3 0.3 0.3 0.3 0.3  h2 0.3 1.2 3 0.3 0.3 0.3 0.3 
h3 0.1 1.5 7.5 0.1 0.1 0.1 0.1  h3 0.1 1.5 7.5 0.1 0.1 0.1 0.1 
D1 80 80 80 150 300 80 80  D1 80 80 80 150 300 80 80 
D2 200 200 200 400 600 200 200  D2 200 200 200 400 600 200 200 
D3 60 60 60 400 1200 60 60  D3 60 60 60 400 1200 60 60 
c1 2 2 2 2 2 4 6  c1 2 2 2 2 2 4 6 
c2 3 3 3 3 3 8 12  c2 3 3 3 3 3 8 12 
c3 1 1 1 1 1 10 30  c3 1 1 1 1 1 10 30 

Variables  Variables 
T 2.50 2.25 1.84 1.67 1.23 1.49 1.11  T 2.51 2.26 1.84 1.67 1.23 1.49 1.11 
k1 1 1 1 1 1 1 1  k1 1 1 1 1 1 1 1 
k2 1 1 1 1 1 1 1  k2 1 1 1 1 1 1 1 
k3 1 1 1 1 1 1 1  k3 1 1 1 1 1 1 1 
Q1 200.04 180.28 146.83 251.15 367.65 119.27 88.57  Q1 200.95 180.48 146.83 251.15 367.65 119.27 88.57 
Q2 500.09 450.70 367.07 669.73 735.30 298.19 221.42  Q2 502.38 451.20 367.07 669.73 735.30 298.19 221.42 
Q3 150.03 135.21 110.12 669.73 1470.61 89.46 66.43  Q3 150.71 135.36 110.12 669.73 1470.61 89.46 66.43 

 

Roughly speaking, the results obtained with the precise model are aligned with the ones discussed by Afonso et al. (2022). 
The only exception occurs, to a certain extent, when we look at the results of the third group of tests in Table 2. When the 
approximate model is applied to this group of tests, a progressive increase of the minor setup costs (item 1 in the first three 
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test cases and item 3 in the last three) leads to an increase of the respective integer multiplier. With the precise model we 
notice a different pattern, with the progressive increase in the minor setup cost causing an increase in the cycle length.  
In addition to the abovementioned, when comparing the results obtained with the integer multipliers between the approximate 
and the precise models in Table 2, we can observe that the precise model is more “conservative” with respect to the integer 
multipliers. As can be seen, in all the five groups of tests, the optimal integer multipliers are equal to one.  
Another aspect to highlight are the slight differences observed in the optimal cycle lengths and, consequently, ordered 
quantities of the groups of tests 1 and 5. In the first group of tests, despite the optimal integer multipliers being equal to one 
for both models (except for test case 3 where 𝑘ଷ = 2 for the approximate model), the cycle lengths of the test cases are not 
exactly equal, as one would expect for situations where the optimal integer multiplier are all equal to one through execution 
of both models. The reason for having different cycle lengths is due to the fact that the integer multipliers of the intermediate 
iterations are not all equal to one. For example, during calculations we can verify that 𝑘ଷ = 2 in the intermediate iteration 2 
of the approximate model, involving the items 2 and 3 of the test case 2. On the fifth group of tests, comparing the results 
obtained with the precise and approximate models in test cases 3, 4, 5, 6 and 7, we can verify that both the optimal cycle 
lengths and ordered quantities are all equal. The reason has to do with the fact that the optimal integer multipliers are all equal 
to one, not only in the last (third) iteration, but also in the second iteration (one should note that in the first iteration the integer 
multipliers do not apply because we are dealing with single-item subproblems).  
In the light of characteristics of the precise model, we executed additional five groups of tests, based on the base cases III and 
IV of Table 1, in order to perform sensitivity analyses on the parameters, and to promote the occurrence of integer multipliers 
greater than one. All these groups of tests contain six test cases, except the eighth group which has seven test cases. In this 
scope, the following groups of tests (from group of tests 6 to group of tests 10) were performed, where the first three are based 
on base case III and the last two are based on the case base IV:  
6. As far as the sixth group of tests is concerned, the test cases 8, 9 and 10 increase progressively the obsolescence rates of 
the three items to 0.02, 0.1 and 0.3. In the test cases 11, 12 and 13 the obsolescence rates of the items are set to 0.1 (according 
to the base case III) and the discount rate increases to 0.03, 0.05 and 0.1, respectively.  
7. Considering the seventh group of tests, the differences among the test cases occur on the setup costs: test cases 8, 9 and 10 
differ on the progressive increase of the major setup cost to 100, 1000, 10000, respectively; while in test cases 11, 12 and 13 
the differences occur in the minor setup cost of item 1, which is successively increased to 90, 950 and 9000.  
8. The eighth group of tests performs sensitivity analyses on three parameters: holding cost, demand and unit cost. The test 
case 8 is used as the first test case to conduct the sensitivity analyses across the three parameters. Thereby, test cases 8, 9 and 
10 are used to perform the analysis on the holding cost (by increasing, respectively, the values of the item 1 to 0.2, 0.6 and 
0.7; the values of the item 2 to 0.3, 1 and 3; and the values of the item 3 to 0.1, 1.5 and 7.5); test cases 8, 11 and 12 are used 
to perform the analysis on demand (by increasing respectively the values of the item 1 to 80, 150 and 300; the values of the 
item 2 to 500, 900 and 3000; and the values of the item 3 to 900, 2000 and 4000); and, finally, test cases 8, 13 and 14 are used 
to the analysis on the unit cost (by increasing respectively the values of the item 1 to 2, 4 and 6; the values of the item 2 to 10, 
15 and 20; and the values of the item 3 to 2, 5 and 8). Thus, the progressive increase of the values of the three parameters is 
done simultaneously over the three items.  
9. The ninth group of tests performs sensitivity analyses on the same parameters of the sixth group of tests and with the same 
figures. The only difference here relies on the use of the base case IV.  
10. The sensitivity analyses of the tenth group of tests are performed on the setup costs with the same figures of the seventh 
group of tests above, but based on the base case IV.  
The results obtained by executing these groups of tests are presented in Table 3, which depicts the input parameters changes 
on correspondent base case figures, for performing the sensitivity analyses, and exhibits the obtained optimal values, as well. 

The results illustrated by the group of tests 6 of Table 3 allow us to conclude that the progressive increase of the obsolescence 
and financial risks, through the obsolescence rates and discount rate, respectively, implies a progressive decrease of the period 
between successive replenishments and, consequently, a decrease of the ordered quantities. These results are aligned with the 
results obtained by van Delft & Vial (1996) with the single-item model and by Afonso et al. (2022) with the approximate 
model as well.  

Based on the group of tests 7, we conclude that the progressive increase of the setup costs causes a progressive increase of 
the period between successive replenishments and, as one would expect, the ordered quantities. The exception in the ordered 
quantities is justified by the integer multipliers. The ordered quantities from test cases 9 to 10 decrease from 383.92 to 375.69 
but the optimal 𝑘ଵ decreases from 2 to 1, implying that item 1 is ordered at every cycle in test case 10. The increase of the 
minor setup cost of item 1 in test cases 11, 12 and 13 implies a progressive increase of the multiplier 𝑘ଵ to 1, 2 and 4, 
respectively, which justifies a relevant increase of the ordered quantities of item 1 from 187.73 to 842.17 units over test cases 
11, 12 and 13.  
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Table 3 
Numerical results of the test cases based on case bases III and IV  

Test case 8 9 10 11 12 13 14 

Base case III 

 

Group of tests 6 

Changes on parameters of the base case 𝜽𝟏 0.02 0.1 0.3 0.1 0.1 0.1 - 𝜽𝟐 0.02 0.1 0.3 0.1 0.1 0.1 - 𝜽𝟑 0.02 0.1 0.3 0.1 0.1 0.1 - 𝜹 0.05 0.05 0.05 0.03 0.05 0.1 - 
Variables 

T 1.87 1.28 0.81 1.37 1.28 1.12 - 
k1 3 2 2 2 2 2 - 
k2 1 1 1 1 1 1 - 
k3 1 1 1 1 1 1 - 
Q1 843.18 383.92 244.33 409.68 383.92 335.64 - 
Q2 1686.36 1151.77 733.00 1229.05 1151.77 1006.93 - 
Q3 3747.46 2559.48 1628.89 2731.23 2559.48 2237.62 - 

Costs 𝑽෩(𝑺) ($) 401125.48 202952.48 98406.27 231176.63 202952.48 156682.87 - 

Base case III 

 

Group of tests 7 

Changes on parameters of the base case 
A 100 1000 10000 1000 1000 1000 - 
a1 950 950 950 90 950 9000 - 

Variables 
T 1.11 1.28 2.50 1.25 1.28 1.40 - 
k1 2 2 1 1 2 4 - 
k2 1 1 1 1 1 1 - 
k3 1 1 1 1 1 1 - 
Q1 332.56 383.92 375.69 187.73 383.92 842.17 - 
Q2 997.67 1151.77 2254.16 1126.40 1151.77 1263.25 - 
Q3 2217.05 2559.48 5009.25 2503.11 2559.48 2807.22 - 

Costs 𝑽෩(𝑺) ($) 195261.86 202952.48 250429.26 199741.18 202952.48 220798.28 - 

Base case III 

 

Group of tests 8 

Changes on parameters of the base case 
h1 0.2 0.6 0.7 0.2 0.2 0.2 0.2 
h2 0.3 1 3 0.3 0.3 0.3 0.3 
h3 0.1 1.5 7.5 0.1 0.1 0.1 0.1 
D1 80 80 80 150 300 80 80 
D2 500 500 500 900 3000 500 500 
D3 900 900 900 2000 4000 900 900 
c1 2 2 2 2 2 4 6 
c2 10 10 10 10 10 15 20 
c3 2 2 2 2 2 5 8 

Variables 
T 2.41 2.26 1.87 1.77 1.07 1.84 1.55 
k1 2 2 2 2 2 2 2 
k2 1 1 1 1 1 1 1 
k3 1 1 1 1 1 1 1 
Q1 386.04 361.79 299.11 531.81 639.29 294.97 248.10 
Q2 1206.37 1130.60 934.72 1595.44 3196.45 921.78 775.31 
Q3 2171.46 2035.07 1682.49 3545.42 4261.93 1659.21 1395.56 

Costs 𝑽෩(𝑺) ($) 69621.91 71179.59 76074.15 119573.45 306598.31 112067.14 153095.68 

Base case IV 

 

Group of tests 9 

Changes on parameters of the base case 𝜽𝟏 0.02 0.1 0.3 0.1 0.1 0.1 - 𝜽𝟐 0.02 0.1 0.3 0.1 0.1 0.1 - 𝜽𝟑 0.02 0.1 0.3 0.1 0.1 0.1 - 𝜹 0.05 0.05 0.05 0.03 0.05 0.1 - 
Variables 

T 1.49 1.00 0.66 1.12 1.00 0.85 - 
k1 3 3 2 2 3 3 - 
k2 3 2 2 2 2 3 - 
k3 1 1 1 1 1 1 - 
Q1 671.93 451.92 198.77 334.66 451.92 380.68 - 
Q2 627.13 281.20 185.52 312.35 281.20 355.30 - 
Q3 2239.76 1506.41 993.87 1673.31 1506.41 1268.94 - 

Costs 𝑽෩(𝑺) ($) 625981.47 311072.96 147201.71 354903.44 311072.96 239195.16  

Base case IV 

 

Group of tests 
10 

Changes on parameters of the base case 
A 100 1000 10000 1000 1000 1000 - 
a1 950 950 950 90 950 9000 - 

Variables 
T 0.84 1.00 2.02 1.02 1.00 1.04 - 
k1 3 3 1 1 3 6 - 
k2 3 2 1 2 2 2 - 
k3 1 1 1 1 1 1 - 
Q1 376.52 451.92 303.00 152.30 451.92 933.54 - 
Q2 351.42 281.20 282.80 284.30 281.20 290.43 - 
Q3 1255.08 1506.41 3030.00 1523.02 1506.41 1555.90 - 

Costs 𝑽෩(𝑺) ($) 302947.68 311072.96 363386.48 307964.70 311072.96 328507.95 - 

 

According to the results illustrated by the group of tests 8, the period between successive replenishments decreases 
progressively with the progressive increase of the holding cost, demand, and unit cost. A difference can be pointed out with 



  

 

536

the ordered quantities, which also decrease with the increase of the holding costs and the unit costs but increase with the 
increase of the demand.  

The results of the groups of tests 9 and 10 of Table 3 allow us to conclude coherently that the results are aligned with the 
results of the groups of tests 6 and 7, respectively. The differences observed in the progressive behavior of the cycle length 
and the order quantities are motivated by the impact of the integer multipliers. For instance, one can observe that the order 
quantities of test cases 11, 12 and 13 of group of tests 9 do not decrease systematically, from test case to test case, due to the 
impact of the integer multipliers. Actually, the groups of tests 9 and 10, based on base case IV, were purposely performed 
here in order to “stimulate” the occurrence of optimal integer multipliers greater than one.  

Therefore, two sets of tests were performed with the precise model. The first set of tests (based on base cases I and II of Table 
1) was used to analyze the performance of our model against the results obtained by Afonso et al. (2022) with the approximate 
model. The results obtained allowed us to conclude that both models are aligned. The second set of tests (based on base cases 
III and IV of Table 1) was used to provide some more results exploring the behavior of the model with the optimal integer 
multipliers not necessarily being equal to one. The sensitivity analyses performed produced similar and expectable results.  

In summary, the tests executed with the precise model let us conclude that the increase of the obsolescence risk decreases the 
period between successive replenishments, meaning that we have to order smaller quantities to prevent against high inventory 
levels of items subject to obsolescence. The same behavior occurs with the progressive increase of the discount rate. Also, the 
increase of the major setup cost increases the period between successive replenishments and, consequently, the order 
quantities. The same occurs with the increase of the minor setup cost because if the ratio ∑௦௧௨ ௦௧௦∑ௗ ௦௧௦ increases substantially, 
then the replenishments will probably occur less frequently (Silver et al., 2017). As far as a progressive increase of the holding 
costs and the unit costs are concerned, the model leads to a progressive decrease of the period between successive 
replenishments and the ordering quantities as well. Progressively increasing the demand implies a decreasing of the period 
between successive replenishments and higher order quantities.  
 
5. Conclusions  
 

This article developed a precise model of the JRP assuming items subject to obsolescence along an infinite planning horizon. 
The developed model extended a single-item obsolescence model by assuming a more complex context of multiple items 
subject to obsolescence which optimizes the total expected discounted cost criterion under the JRP context. Some assumptions 
are inherited from the classical JRP, such as constant demand, no shortage allowed, no quantity discounts, linear holding cost, 
and instantaneous delivery. Costs are discounted through an appropriate discount rate and the risk of obsolescence is 
incorporated by assuming uncertain lifetimes of the multiple items, which follow negative exponential distributions. The 
model needs a recursive procedure to be evaluated. 

Sensitivity analysis has been performed on the model parameters in order to analyze their impact on the ordering policies. In 
this way, the model was implemented and tested against the results previously obtained with an approximate model. The 
results of the precise and the approximate models are aligned, meaning that an increase of the risk of obsolescence, through 
the increase of the obsolescence rates of the items, causes a decrease of the period time between successive replenishments as 
well as the ordering quantities. The same impact occurs when we face a progressive increase of the discount rate.  

The precise model has several cost terms which increase with the number of items. Thus, the optimization process may have 
a high computational burden and, consequently, may be time consuming. Strategies to overcome these potential shortcomings 
can be investigated, for instance, by decreasing the number of terms through the removal of terms of the objective function 
that are expected to have values very close to zero, or by developing heuristics which provide approximations to the optimal 
solution.  
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Appendix A  

Discounted cost contribution to the value of 𝑉(𝑆)  

Suppose 𝐶  is the numerator corresponding to a cost component over the denominator ൫1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்൯ , i.e., ቀଵିష൫ഃశഇభశ⋯శഇಿ൯ቁ. Then,  

𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝐶(1 − 𝑒ି(ఋାఏభା⋯ାఏಿ)்) 

Proof:  

𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝑒ି(ఋାఏభା⋯ାఏಿ)்𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)(௨ିଵ)்ஶ

௨ୀ ⟺ 

𝑒(ఋାఏభା⋯ାఏಿ)்𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)(௨ିଵ)்ஶ

௨ୀ ⟺ 

𝑒(ఋାఏభା⋯ାఏಿ)்𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ −𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ

௨ୀ = 𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)(௨ିଵ)்ஶ
௨ୀ −𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ

௨ୀ ⟺ 

൫𝑒(ఋାఏభା⋯ାఏಿ)் − 1൯𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝐶 ൭ 𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ

௨ୀିଵ −𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ ൱  ⟺ 

൫𝑒(ఋାఏభା⋯ାఏಿ)் − 1൯𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝐶𝑒(ఋାఏభା⋯ାఏಿ)் ⟺ 

𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝐶𝑒(ఋାఏభା⋯ାఏಿ)்(𝑒(ఋାఏభା⋯ାఏಿ)் − 1) ⟺ 

𝐶𝑒ି(ఋାఏభା⋯ାఏಿ)௨்ஶ
௨ୀ = 𝐶(1 − 𝑒ି(ఋାఏభା…ାఏಿ)்) 

as we wanted to prove.  
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