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 This research focuses on production releasing and routing allocation problems in re-entrant mixed-
flow shops. Since re-entrant mixed flow shops are complex and dynamic, many studies evaluate 
release plans by developing discrete event simulation models and selecting the optimal solution 
according to the estimation results. However, a high-accurate discrete event simulation model 
requires a lot of computation time. In this research, we develop an effective multi-fidelity 
optimization method to address product release planning problems for re-entrant mixed-flow shops. 
The proposed method combines the advantages of rapid evaluation of analytical models and 
accurate evaluation of simulation models. It conducts iterative optimization using a low-fidelity 
mathematical estimation model to find good solutions and searches for the optimal solution via a 
high-fidelity simulation estimation model. Computational results of large-scale production 
releasing and routing allocation problems illustrate that the proposed approach is good at 
addressing large-scale problems in re-entrant mixed-flow shops. 
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1. Introduction 

The production release planning determines manufacturing efficiency and plays an essential role in re-entrant mixed-flow 
shops (Chen et al., (2015). Re-entrant mixed-flow shops have the characteristics of mass manufacturing, re-entrant flows, 
long processing routes, and simultaneous processing for multiple types of products. In some production lines, multiple 
processing routes may be available for one type of product. Thus, it is important to provide an effective releasing and routing 
allocation plan for production lines. Generally, the production releasing and routing allocation problem seeks the best solution 
by determining the release rate for each type of product and choosing a specific processing route for products with multiple 
processing routes. Due to the particularity of re-entrant mixed-flow shops, production planning and scheduling methods for 
traditional workshops and single-product manufacturing systems with re-entrant flows are difficult to apply to the studied 
systems. Some basic approaches, such as mathematical programming (Asmundsson et al., 2006; Kacar et al., 2016; Kacar et 
al., 2013; Leachman, 2001), simulation optimization (Zhang et al., 2020; Hong & Chien, 2020; Thuerer et al., 2019), and 
analytical modeling (Chung & Lai, 2006; Schneckenreither et al., 2021), have been proposed for production optimization 
problems. Simulation optimization methods search for the best solution by evaluating candidate solutions using simulation 
models and selecting the best one according to objective values (Chen & Lee, 2010; Lee et al., 2010; Xu et al., 2010). While 
these methods provide accurate estimates of solutions, they require high computational costs because of their high-precision 
modeling capability (Asmundsson et al., 2009; Fowler & Mönch, 2017). Therefore, many references only use simulation 
models to evaluate the solution obtained by mathematical models (Bang & Kim, 2010; Kopp et al., 2019; Rashmi & 
Mathirajan, 2018; Ziarnetzky, (2015). Some approaches (Missbauer, 2020;  Wolosewicz et al., 2015; Albey & Bilge, 2011; 
Puergstaller & Missbauer, 2011; Kim & Lee, 2016; Kim & Kim, 2001) use the iterative simulation and linear programming 
method to solve release planning problems. However, this method is hard to converge if the convergence process is not stable 
or the initial solution is ineffective. Therefore, we propose our research question: How to address production releasing and 
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routing allocation problems in re-entrant mixed-flow shops by simulation optimization? 
 
To address this question, we design a multi-fidelity simulation optimization framework for production releasing and routing 
allocation problems. We develop the proposed framework based on the multi-fidelity optimization with ordinal transformation 
and optimal sampling (MO2TOS) method (Xu et al., 2016). MO2TOS constructs a low-precision model (We can also call it 
the ‘low-fidelity model’, which means a model with less accuracy) and a high-precision model (the ‘high-fidelity model’). 
We develop the high-fidelity model using the discrete-event simulation technology based on practical production scenarios. 
Thus, it has high accuracy but results in a high computational burden. We develop the low-fidelity model as a mathematical 
expression, which is established based on the open queueing network. The low-fidelity model ignores unnecessary details of 
manufacturing scenarios to guarantee less computing time. In the proposed MO2TOS, we use a low-fidelity model with a 
multiple population genetic algorithm (MPGA) to evaluate available solutions and select plenty of good solutions from the 
whole solution space. Then, we select the top solutions from these good solutions, using the ordinal transformation and optimal 
sampling strategies, and develop a high-fidelity simulation model to evaluate these solutions and choose the best solution.  
 
The main contributions of our research are as follows: 1. We establish an effective simulation optimization framework to solve 
production releasing and routing allocation problems in re-entrant mixed-flow shops. Compared with MO2TOS (Xu et al., 
2016), the proposed method saves 90% of the computing time when solving large-scale problems. 2. Based on the open 
queueing network, we present a mathematical expression that can effectively estimate cycle times for release plans. 

2. Related works 

2.1 Multi-fidelity simulation optimization 

To perform efficient simulation optimization, some scholars present multi-fidelity simulation optimization when models with 
several fidelity levels are available (Xu et al., 2014a; Chen et al., 2015; Chiu & Lin, 2020). A standardized multi-fidelity 
simulation optimization method (Xu et al., (2016) first establishes a low-fidelity model and a high-fidelity simulation model 
based on real manufacturing scenarios. It screens all the candidate solutions through a low-fidelity model and selects a fixed 
number of high-quality solutions to build a solution set. This method evaluates this solution set by a high-fidelity model and 
selects the best decision. Recently, researchers have shown an increased interest in optimizing the efficiency of multi-fidelity 
simulation optimization. For example, Chiu et al. (2016) combine multi-fidelity models with genetic algorithms to develop 
an improved multi-fidelity optimization framework and use it to improve the efficiency of large-scale optimization problems. 
Chen et al. (2015) improve the accuracy of estimation by developing an effective learning algorithm. Xu et al. (2016) propose 
a multi-fidelity optimization method named MO2TOS. The promising performance of MO2TOS has been testified and 
confirmed recently (Zhang et al., 2020; Song et al., 2019; Zhang et al., 2020). MO2TOS shortens the computing time of 
finding the optimal solution since it combines the advantages of the low-fidelity models and the high-fidelity models (Zhang 
et al., 2020). Li et al. (2015) design a multi-objective MO2TOS method for deterministic optimization problems. Qiu et al. 
(2016) present the MO2TOS-based multi-fidelity simulation optimization approach to optimize patient flow in health care 
systems. The application of MO2TOS and other multi-fidelity optimization methods in discrete production systems is still in 
its infancy (Shao et al., 2019). Zhang et al. (2020) develop an improved multi-fidelity simulation optimization method to 
address production planning problems on shaft parts shop floors. Similarly, Zhang et al. (2020) present a multi-fidelity 
simulation optimization method in wafer manufacturing systems. Experiment results show that this method improves the 
computational efficiency of simulation-based production planning. 

2.2 Lead time estimates 

Generally, MO2TOS comprises a low-fidelity model and a high-fidelity model. High-fidelity models are usually designed by 
discrete-event simulation technology, while low-fidelity models are established by mathematical expression, simulation, 
analytical modeling, or other approaches. A low-fidelity model with less accuracy may produce a large estimation deviation 
in solution space searching, which affects the selection of high-quality solutions. Thus, it is essential to provide a proper 
modeling method for low-fidelity estimation. In re-entrant mixed-flow production systems, manufacturing cycle time 
estimation is directly related to the rationality of the release planning model. The average cycle time of the overall process is 
usually long and variable because of the difference in product processing routes and release plans. Moreover, the flow of 
material may face temporary queues or substantial blockages during manufacturing, which makes cycle time estimation more 
difficult. There has been an increasing interest in estimating cycle time correctly (see e.g., Mather & Plossl, 1978; Billington 
et al., 1983; Selcuk et al., 2006; Milne et al., 2015). Generally, we consider the estimated cycle time as the lead time for 
releasing (Kacar et al., 2016). We summarise some basic estimation methods. In most literature, several basic approaches, for 
instance, mathematical programming and simulation models, have been developed to obtain lead times. The most common 
approach is to provide a mathematical representation for lead times. In the last few decades, exogenous integer and exogenous 
non-integer lead times have been widely used (Yanıkoğlu et al., 2017). For instance, some production planning models (e.g., 
Material Requirements Planning) consider lead times as static parameters (Baker, 1993; Orlicky, 1975; Vollmann et al., 1988; 
Hackman & Leachman, 1989). This simplification of the problem may lead to underestimating or overestimating lead times. 
Non-integer lead time-based models also have been extensively studied and implemented by Leachman et al. (1994, 1996). 
Some articles describe the use of non-integer lead times in linear programming models (Leachman, 2001; Leachman, 1993; 
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Leachman, 1996). Kacar et al. (2016) find that the performance of the models with non-integer lead times is substantially 
better than those with integer lead times. 
 
On the other hand, an effective mathematical modeling approach for production planning named clearing functions is 
suggested (Yanıkoğlu et al., 2017). Clearing functions describe the relationship between the expected WIP and output 
(Asmundsson et al., 2006; Albey et al., 2014; Kacar et al., 2012; Kacar et al., 2013; Kacar et al., 2016). Kacar et al. (2013) 
evaluate the performance of the production planning model with clearing functions by simulation. Results indicate that the 
proposed model yields substantial improvements in profit over conventional linear programming models even in large-scale 
problems. Unfortunately, the practical use of clearing functions has been hampered by the lack of effective methods for 
estimating them (Yanıkoğlu et al., 2017). Currently, simulation estimation, least-squares regression, and percentile fit 
(Asmundsson et al., 2009) are usually employed to estimate lead times. Asmundsson et al. (2006) use a clearing function 
model to capture the nonlinear relationship between workload and throughput. They develop a simulation study of a 
production planning model to reflect the nonlinear relationship between resource utilization and lead time. Missbauer (2011) 
proposes an alternative transient clearing function and derives a procedure for its parameterization. Chen et al. (2015) reveal 
that multi-dimensional clearing functions can better predict system performance in the presence of mix-dependent capacity 
losses. Some approaches (Missbauer, 2020; Wolosewicz et al., 2015; Albey & Bilge, 2011; Puergstaller & Missbauer, 2011; 
Kim & Lee, 2016; Kim & Kim, 2001) use iterative simulation and linear programming to calculate lead times. Through this 
iterative procedure of simulation and optimization, some important variables (such as manufacturing lead times and the WIP 
level) can be updated for the synchronization of planning and scheduling decisions. Kim and Kim (2001) develop this iteration 
procedure and simultaneously update lead times and available capacities that are assumed in the mathematical model. 
Experiment results show that this iteration procedure has a great performance in terms of manufacturing lead time, demand 
satisfaction, and feasibility. However, these methods may be hard to converge if the convergence process is not stable or the 
initial solution is ineffective. With the development of machine learning, several papers present release planning models that 
use artificial neural networks (Philipoom et al., 1994; Philipoom et al., 1997; Hsu & Sha, 2004; Patil, 2008; Wang & Ting, 
2008; Schneckenreither et al., 2021). For instance, Patil (2008) uses a hybrid method that combines machine learning with 
genetic algorithms to predict cycle times to set due dates for job shops. Similarly, Chang et al. (2008) combine a neural 
network and fuzzy logic to forecast cycle times for semiconductor factories. Schneckenreither et al. (2021) propose a flow 
time estimation procedure to set lead times dynamically using an artificial neural network. Considering the requirements of 
computational speed for low-fidelity models, mathematical approximation models are more suitable for low-fidelity 
estimation. Thus, we develop a mathematical model and use the queueing network to estimate cycle times. We further verify 
the estimation accuracy of the mathematical model in different production releasing and routing allocation problems. 

3. Problem formulation based on structural modeling 

3.1 Problem introduction and simplification 

We consider the following scenario: Different types of products are produced in a re-entrant mixed-flow production line. 
Some products may have several alternative processing routes. Processing routes may have re-entrant flows and the demand 
for products is known. We need to calculate the optimal release rate and the routing allocation plan for each type of product 
to meet their demand requirements. Since the processing routes are complicated in this research, we consider some aggregation 
operations to simplify the non-critical operations of the processing routings. According to Li and Meerkov (2009), some 
production systems can be reduced to standard serial production lines. They believe this simplification is beneficial to the 
analysis of the production line and refer to this process as structural modeling. Although the studied mix-flow shop can hardly 
be transferred to a standard serial production line, the simplification method can also be used in our research. For instance, 
the parallel machines (as shown in Fig 1. (a)) or the consecutive dependent machines (as shown in Fig 1. (b)) can be considered 
as an aggregated machine. 

(a) (b)

m1

m2

mS

.

.

.

m1 m2 mS. . .

 
Fig. 1. Aggregating parallel machines and consecutive machines 

 
For parallel machines, we assume that the processing time of each machine m (i=1,2,…,S) is 𝜏(𝑖 = 1,2, … , 𝑆). Machines 
operate normally all the time. We can calculate τ  for m  according to the following equation: 
 τ = 1/(∑ ଵதௌୀଵ ). (1) 
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For consecutive machines, we can calculate τ  for m  according to the following equation: τ = max τ. (2) 

Inspired by their research, we aggregate parallel machines of the studied production line into one machine before modeling. 
We use this operation to simplify the modeling of the production line.  

3.2 Problem formulation 

In this problem, we want to calculate the optimal release rate and choose the optimal processing route for each type of product. 
We consider a scenario where demand exceeds supply. Under this scenario, we need to meet demands for different types of 
products while maintaining a stable mix of products to increase throughput. The objectives of the problem are to minimize 
the makespan and the maximum WIP of the production line while satisfying the demand requirements of customers. We 
develop a mathematical model for this problem. The relevant parameters are as follows: 

Indices: 𝑘: The product type index 𝑟: The processing route index 𝑙: The operation index 𝑚: The machine index 𝑝: The input period index, one period equals one-time unit 

Parameters: 𝐾:  Total number of production types 𝑅: Number of processing routes of product k 𝐿,: Number of operations for product k 

M: Number of machines 𝑑: Demand for product k 𝑀,,:  
Machine for the 𝑙-th operation of 𝐿, 

Variables: 
 𝑥, : The external release material quantity for product k of route r in period p 𝑦, : The output for product k of route r in period p 𝐹(𝑘, 𝑟,𝑝, 𝑙): The complete time for the 𝑙-th operation of product k of route r released in period p 𝑊𝐼𝑃(𝑘, 𝑟, 𝑝,𝑚): Cumulative WIP for product k of route r at machine m in period p. 𝑊𝐼𝑃(𝑘,𝑝,𝑚) =∑ 𝑊𝐼𝑃(𝑘, 𝑟, 𝑝,𝑚)ோೖୀଵ  

 
The objective function is as follows: 
 𝑚𝑖𝑛(𝑤1 ∙ 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝑤2 ∙ 𝑤𝑜𝑟𝑘_𝑖𝑛_𝑝𝑟𝑜𝑐𝑒𝑠𝑠). 

 
where 
 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 𝐹൫𝑘, 𝑟,𝑝, 𝐿,൯,∀𝑘, 𝑟,𝑝,𝑚, (3) 

and 

𝑤𝑜𝑟𝑘_𝑖𝑛_𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑚𝑎𝑥(∑ ∑ ∑ ௐூ(,,,)ೃೖೝసభೖ಼సభ⌈ಷ(ೖ,ೝ,,)⌉సభ ⌈ி(,,,)⌉ ),∀𝑚. (4) 

subject to  
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∑ ∑ 𝑦,ோೖୀଵ⌈ி(,,,)⌉ୀଵ ≥ 𝑑,∀𝑘,𝑚. (5) 

𝑥, ,𝑦, ,𝐹(𝑘, 𝑟,𝑝, 𝑙),𝑊𝐼𝑃(𝑘, 𝑟,𝑝,𝑚) ≥ 0,∀𝑘, 𝑟, 𝑝,𝑚. (6) 

In this mathematical model, the decision variable 𝑥,  means the release rate for product k of route r in period p. In the 
proposed mathematical model, 𝑦, , 𝐹(𝑘, 𝑟,𝑝, 𝑙), and 𝑊𝐼𝑃(𝑘,𝑝,𝑚) are linked with 𝑥, . Thus, we can obtain 𝑦, , 𝐹(𝑘, 𝑟,𝑝, 𝑙), 
and 𝑊𝐼𝑃(𝑘,𝑝,𝑚) once we obtain the relationship between 𝑥,  and other variables. 

4. The low-fidelity model based on queueing theory 

In this section, we present a low-fidelity approximate method based on queueing theory, to obtain the relationship between 𝑥,  and other variables. Once we know 𝑥, , we can estimate the distribution of the product arrival. According to queueing 
theory, we can further calculate the waiting time and the queue length. 𝐹(𝑘, 𝑟,𝑝, 𝑙), 𝑊𝐼𝑃(𝑘, 𝑝,𝑚), and cycle time could be 
calculated accordingly. Moreover, we can obtain 𝑦,  according to 𝑥,  and cycle time. Here is a list of the notations: 
 
 𝜏: The unit processing time for m 𝜌 : The utilization of machine m 𝑃,,: The processing time of the 𝑙-th operation for product k of route r 𝑊(𝑘, 𝑟,𝑝, 𝑙): The waiting time for the 𝑙-th operation for product k of route r released in period p 𝜆 : The expected arrival rate for all products at machine m in period p 𝜆 (𝑘, 𝑟): The expected arrival rate for product k at machine m in period p 𝜆, (𝑘, 𝑟): The external arrival rate for product k at machine m in period p 𝜆, (𝑘, 𝑟): The arrival rate for product k from machine n to machine m in period p 
 
 λ (𝑘, 𝑟) comprises the external arrival flows and the re-entrant flows. Thus, λ (𝑘, 𝑟) can be calculated as: 

 λ, (𝑘, 𝑟) = 𝑥, ∙ ൣ𝑀,,ଵ = 𝑚൧, (7) 

and λ, (𝑘, 𝑟) = (  (𝑥,
ೖ,ೝିଵ
ୀଵ ∙ ൣ𝑀,, = 𝑛,𝑀,,ାଵ = 𝑚൧ெ

ୀଵ )),𝑛 ≠ 𝑚. (8) 

Therefore, λ (𝑘, 𝑟) is 
 λ (𝑘, 𝑟) =  λ, (𝑘, 𝑟) + λ, (𝑘, 𝑟),∀𝑚, 𝑘, 𝑟,𝑝. (9) λ  is then given by λ = λ (𝑘, 𝑟)ோೖ

ୀଵ

ୀଵ ,∀𝑚,𝑝. (10) 

Therefore, the utilization of machine m is: 
 𝜌 = 𝜏 ∙ λ ,∀𝑚,𝑝. (11) 

We refer to the approximation method (Shown in Eq. (12) and Eq. (13) ) of the GI/G/1 server (Whitt, (1983) to calculate the 
expected waiting time for each product in a machine. 𝐸𝑊 = 𝜏𝜌(𝐶ଶ + 𝐶௦ଶ)𝑔2(1 − 𝜌) , (12) 

where 𝑔 is defined as: 𝑔(𝜌,𝐶ଶ,𝐶௦ଶ) = ቐexp ቈ− 2(1 − 𝜌)3𝜌 (1 − 𝐶ଶ)ଶ𝐶ଶ + 𝐶௦ଶ  ,𝐶ଶ < 1  1,                     𝐶ଶ ≥ 1 . (13) 
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In Eq. (12) and Eq. (13), 𝜏 is the service time and 𝜌 is the utilization of this server. 𝐶ଶ and 𝐶௦ଶ represent the squared coefficient 
of variation of the arrival interval distribution and the service-time distribution. Therefore, we 𝑊(𝑘, 𝑟,𝑝, 𝑙) can be represented 
by the expected waiting time EW. Accordingly, 𝐹(𝑘, 𝑟,𝑝, 𝑙) is 
 𝐹(𝑘, 𝑟,𝑝, 𝑙) = 𝑃,, + 𝑊(𝑘, 𝑟, 𝑝, 𝑙). (14) 

According to Little’s law, 
 𝑊𝐼𝑃(𝑘,𝑝, 𝑗) =  𝑊(𝑘, 𝑟,𝑝, 𝑙) ∙ λ , (15) 

where 𝐹൫𝑘, 𝑟,𝑝, 𝐿,൯ represents the makespan of product k released in period p. 𝑦,  can be estimated as  𝑦, = 𝛼,௭ 𝜂,௭
௭ୀଵ , (16) 

where 𝛼,௭ = ൜𝑥,௭ , 𝑧 + 𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ − 1 < 𝑝 ≤ 𝑧 + 𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ + 10  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   , (17) 

and 𝜂,௭ = ቊ ඃ𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ඇ − 𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯, ඃ𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ − 1ඇ = 𝑝    𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ − උ𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ඏ, ඃ𝐹൫𝑘, 𝑟, 𝑧, 𝐿,൯ − 1ඇ = 𝑝 − 1, (18) 

5. The multi-fidelity optimization approach 

5.1 The framework of the basic MO2TOS 

We can use the approximation method proposed in Section 4 as a low-fidelity model to estimate the objective value for each 
solution and select good solutions in the solution space. However, this approximation model is hard to find the real optimal 
solution because it is a low-precision model. Therefore, we consider combining a high-fidelity model to find the optimal 
solution to the problem. Discrete-event simulation is usually used to establish high-fidelity simulation models for 
combinatorial optimization problems. Recently, researchers have studied the combination of models with different precision 
levels, which is called multi-fidelity modeling (Xu et al., 2014; Lester et al., 2014; Sébastien & Mathieu, 2011). Multi-fidelity 
optimization methods combine the advantages of low- and high-fidelity models, which can reduce computing costs and 
shorten the computing time of finding the optimal solution.  This research refers to a multi-fidelity simulation optimization 
framework named  MO2TOS, to solve production releasing and routing allocation problems. MO2TOS has been applied to 
some planning problems and proved to be effective (Zhang et al., 2020; Zhang et al., 2021). Fig. 2 depicts the basic 
optimization framework of MO2TOS. The optimization framework of MO2TOS has a low-fidelity mathematical model and 
a high-fidelity simulation model. In this optimization framework, we first evaluate all feasible solutions by the low-fidelity 
model and obtain the objective values for solutions. Then, we use the ordinal transformation strategy (Xu et al., (2016) of 
MO2TOS to transform the original solution space into an ordinal space according to the estimation results. We further use the 
optimal sampling strategy (Xu et al., 2016) of MO2TOS to sample the transformed space and select good solutions to form a 
solution set. Finally, we estimate the selected solution set through the high-fidelity model and choose the optimal solution. 

Low-fidelity 
model

High-fidelity 
model

Ordinal 
transformation 

Optimal 
sampling

Fast solution 
Less accurate

Slow solution
Higher precision

Evaluating all 
solutions

Evaluating good 
solutions

Low-fidelity model High-fidelity model

Multi-Fidelity Optimization Method

Multi-Fidelity Models

 Overall trend of 
the solution space

Trend consistency

Open queueing theory Discrete event simulation

 
Fig. 2. The basic optimization framework of MO2TOS 
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5.2 The framework of MO2TOS with MPGA 

The solution space for large-scale release planning problems in realistic re-entrant mixed-flow production lines may be more 
than several million. The computational costs and runtime are not negligible even if we use low-fidelity models to evaluate 
the entire solution space. Therefore, we combine MO2TOS with multiple population evolutionary algorithms (MPGA) to 
accelerate the evaluation efficiency. The steps of MO2TOS with MPGA are exhibited in Fig. 3. The framework of MO2TOS 
with MPGA conducts three phases (Solution space searching using multiple population genetic algorithms, Ordinal 
transformation, and Optimal sampling) sequentially. We list the definition of parameters that we used in the mathematical 
model. 

Set the population number, individual 
number, and computing budget of the 

low-fidelity model

Sort all the solutions evaluated by 
the low-fidelity model

Group solution spaces according 
to the sorted results

Assign sample budget of each group 
according to sampling rules

Use the high-fidelity model to 
solve sample solutions 

Whether the
 remaining high-fidelity budget 

is expended

Output optimal solution

Y

Ordinal transformation

Optimal sampling

Update the data for each group

N

Y

Populations generation

Sub-population evaluation using the low-
fidelity  model

Selection, crossover, and mutation

Offspring evaluation using the low-
fidelity  model

Population consolidation & 
Local search

Set all the searched solutions 
to form a solution space

Whether the
 remaining low-fidelity budget

 is expended

Solution space searching using MPGA

Equally divide the solution space 
to K groups

 
Fig. 3. MO2TOS with MPGA 𝐿௫: Low-fidelity evaluation budget 𝐻௫: High-fidelity evaluation budget 𝑃: Population number in MPGA, 𝑝 = 1,2, … ,𝑃 Y: The individual quantity of a population, 𝑦 = 1,2, … ,𝑌 𝑝: Probability of the crossover operation 𝑝: Probability of the mutation operation 

L: The local search times for each individual r: Index of iteration 𝑥௬ : The y-th solution in population p in r-th iteration process 𝑙൫𝑥௬ ൯: The result of the low-fidelity model evaluated at solution 𝑥௬  𝐼: Number of solutions in the solution set, i = 1,2, … , 𝐼 𝑥: The i-th solution in the solution space 𝑥ை்: The i-th solution after ordinal transformation K: Number of groups,  𝑘 = 1,2, … ,𝐾 𝑁: The new allocated budget to the group k in r-th iteration process 𝑁: Sample budget for initial allocation, 𝐾𝑁 << 𝑁௫ 𝜇: Sample mean of group 𝑘 



  

 

106𝜎ଶ: Sample variance of group 𝑘 𝑁: The allocated budget to the 𝑘-th group 
 

 Solution space searching using MPGA 
 
We design MPGA to accelerate the searching efficiency of the solution space for large-scale optimization problems. 
Generally, the solution space of a production releasing problem is multi-peaks. Therefore, we develop the framework of 
the MPGA for global searching. Based on this framework, we present some improved operations for the problem. We use 
Matlab R2017a to code the algorithms based on the standard toolbox gatbx of MATLAB. The evolution operations and the 
population consolidation operation adopt the standard operation algorithm in gatbx. The steps to search solution space 
using the MPGA are as follows: 
 
1) Inputting population number 𝑃, the individual quantity of population 𝑌, and the low-fidelity evaluation budget 𝐿௫. 
2) Let index of iteration 𝑟 = 0. Generating initial populations ൛𝑥ଵ , … , 𝑥௬ , … , 𝑥 ൟ randomly.  
3) Calculating the low-fidelity estimates {𝑙൫𝑥ଵ ൯, … , 𝑙൫𝑥௬ ൯, … , 𝑙൫𝑥 ൯ } for populations using the proposed queueing 

theory-based low-fidelity model. 
4) Adopting selection, crossover (probability of crossover 𝑝), and mutation (probability of crossover 𝑝) operations in the 

toolbox gatbx according to the low-fidelity estimates { 𝑙൫𝑥ଵ ൯, … , 𝑙൫𝑥௬ ൯, … , 𝑙൫𝑥 ൯ }. generating subpopulations ൛𝑥ଵ ᇱ, … , 𝑥௬ ᇱ, … , 𝑥 ᇱൟ. 
5) Calculating the low-fidelity estimates {𝑙൫𝑥ଵ ᇱ൯, … , 𝑙൫𝑥௬ ᇱ൯, … , 𝑙൫𝑥 ᇱ൯} for subpopulations using the proposed queueing 

theory-based low-fidelity model. 
6) For each population, merging the original population ൛𝑥ଵ , … , 𝑥௬ , … , 𝑥 ൟ  with the subpopulation ൛𝑥ଵ ᇱ, … , 𝑥௬ ᇱ, … , 𝑥 ᇱൟ to form a new population ൛𝑥ଵାଵ, … , 𝑥௬ାଵ, … , 𝑥ାଵൟ using the population consolidation operation 

of the toolbox gatbx. The population number 𝑃 and the individual quantity of population 𝑌 are fixed. Let 𝑟 = 𝑟 + 1. 
7) Each individual in the new population performs a local search for L times. 
8) Recording and adding the searched individuals above in the solution space. These individuals form the solution space of 

feasible solutions. 
9) One individual represents a low-fidelity evaluation budget. If the solution space budget is used up, outputting the solution 

space ሼ𝑥ଵ, … , 𝑥 , … , 𝑥ூሽ; otherwise, back to step 4). 

 Ordinal transformation strategy 

Sorting all the solutions in solution space ሼ𝑥ଵ, … , 𝑥 , … , 𝑥ூሽ from the best to the worst according to their estimation results. 
The sorted solution space is recorded as ሼ𝑥ை்ଵ, … , 𝑥ை் , … , 𝑥ை்ூሽ. Dividing the sorted solution space into K equal groups, 
that is, the scheme number of each group is the same. 

 Optimal sampling strategy 

We employ an optimal sampling strategy based on optimal computational budget allocation (OCBA) (Xu et al., (2014; Qiu 
et al., (2016). We provide the steps for optimal sampling strategy: 
 
1) Inputting the high-fidelity simulation budget 𝐻௫. 
2) Let the index of iteration 𝑟 = 0. Allocating 𝑁 = 𝑁0 samples for group k. 
3) Let 𝑟 = 𝑟 + 1. Defining a total incremental sample size ∆, and calculating the budget value N  for group k according to 

Lemma 4.2. 
4) If the high-fidelity simulation budget is used up (∑ ∑ 𝑁ୀଵୀ ≥ 𝐻௫), outputting the current allocation values and 

continue step 5); otherwise, back to step 3). 
5) Sorting the solutions in each group and selecting top solutions based on the high-fidelity budget N allocated to group k. 

Lemma 4.2 (Xu et al., 2014) (page 7): If 𝑁ାଵ is the allocated high-fidelity evaluation budget for group 𝑘, 𝑘 = 1, . . . ,𝐾. 𝛿, 
is the average difference (for example, the group distance) between group b and group k. Then, we have 
 ேೝశభேೖೝశభ = ൬ఋ್,ೖ ఙೖ⁄ఋ್, ఙ⁄ ൰ଶ, when k ≠ l ≠ b, (17) 

and 

𝑁ାଵ = 𝜎ඩ  𝑁ଶ𝜎ଶ
ୀଵ,ஷ . (18) 
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From formula (17), the value of high-fidelity evaluation budgets for group k decreases if the average distance between group 
k and the best group b increases. In addition, more high-fidelity budgets are allocated for group k if 𝜎ଶ is larger. 

6. Case study and analysis 

We develop some typical re-entrant mixed-flow production lines to evaluate MO2TOS with MPGA. First, we randomly 
generate two small-scale production releasing and routing allocation cases. We evaluate all the available solutions for the 
cases using the low-fidelity model and the high-fidelity model, respectively. We compare the estimates obtained by the 
low-fidelity model with those obtained by the high-fidelity model. We find the output trends of the two fidelity models are 
of obvious consistency. Therefore, we conclude that the proposed low-fidelity model is feasible. Then, we generate a large-
scale case and use MO2TOS with MPGA to solve the large-scale optimization problem. Computational results show that 
MO2TOS with MPGA provides the optimal solution for large-scale problems and saves about 90% of computing time than 
MO2TOS. 

6.1 Low-fidelity model formulation and efficiency analysis 

We develop two small-scale cases (each case has about 7000 alternative solutions) to examine the efficiency of the proposed 
low-fidelity estimation model. Case 1 and Case 2 have short processing flows and long processing flows, respectively. We 
first present Case 1 to evaluate the efficiency of the proposed low-fidelity estimation model. There are 10 machines on the 
production line, and we ignore the transfer time between machines. Fig. 4 describes the processing flows for products in Case 
1. Table 1 gives the distributional parameters of processing times for all machines. All processing times follow a lognormal 
distribution. The demands for Product 1, Product 2, and Product 3 in Case 1 are 800, 1600, and 1400, respectively. We set a 
lower bound and an upper bound for the release rate for each type of product. In this scenario, we set the lower and upper 
bound as 4 lots/hour and 10 lots/hour, respectively. 
 

Product1

1 2 5 73 106Product2

1 2 5 8 94 4 10

1 2 73 106 6Product3

1 3 75 106 6

Ordinary machines Re-entrant machines

1 42 8 9 10R1

R1

R2

R1

R2

 
Fig. 4. Processing flow for Case 1 

 
Table 1 
The distributional parameters of processing times for Case 1. 

Machine Mean Std.Dev Machine Mean Std.Dev 
1 90 7 6 100 2 
2 115 16 7 140 8 
3 155 4 8 165 4 
4 130 4 9 170 5 
5 130 2 10 85 2 

 
We establish a low-fidelity estimation model for these cases according to the low-fidelity approximation method in Section 
4. 𝐶௦ଶ is known because the mean and variance of processing time are given in advance. Since release rates of products are 
stable in all cases, the mean and variance for the renewal interval are fixed for the first machine. However, because of the 
randomness of processing times and the re-entrant characteristic, the actual mean value for the renewal interval may change 
and the actual variance may not be equal to 0 in the following machines. Thus, 𝐶ଶ is not a fixed value for each machine. To 
calculate 𝐶ଶ, we conduct a large number of sample experiments and intend to estimate 𝐶ଶ௦ using massive simulation 
experiment results. We randomly generate 70 groups of experiments and run these sample experiments using the high-fidelity 
simulation model. We calculate the mean and variance of the renewal interval in each machine under each plan and take the 
average values as the final sample results to calculate 𝐶ଶ௦. 
 
We evaluate all the feasible solutions by the high-fidelity simulation model, the low-fidelity model with 𝐶ଶ = 0, and the low-
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fidelity model with 𝐶ଶ = 𝐶ଶ௦, respectively, to estimate the efficiency of the proposed low-fidelity model and select 
better values of 𝐶ଶ. Fig. 5 plots the solution space of the three models for Case 1. For a clear display, we add 100 to all the 
results of the low-fidelity model with 𝐶ଶ = 0 and add 200 to all the results of the low-fidelity model with 𝐶ଶ = 𝐶ଶ௦. Fig. 
6 shows the output of the solution space after ordinal transformation. As illustrated in Fig. 6, we find the consistency of the 
output evaluated by the three models is obvious, which means the proposed low-fidelity mathematical method is feasible. 
Overall, the output of the solution space approximated by the low-fidelity model with 𝐶ଶ equals 0 has better consistency than 
that of the high-fidelity simulation model. Thus, we approximate 𝐶ଶ equals 0, that is, we approximate the mean value of the 
renewal interval equals the release rate and the variance value of the renewal interval equals 0. 
 

 
Fig. 5. The output of the solution space for Case 1 

 
Fig. 6. The output of the solution space for Case 1 after ordinal transformation 

 
From Case 1, the consistency of the trends in Fig. 6 proves that the low-fidelity model is feasible. To confirm that the model 
is also effective in more complex problems, we extend the processing routes and increase the number of re-entrant machines 
based on Case 1 and present Case 2. There are 28 machines on the production line. Fig. 7 describes the processing flows for 
products in Case 2. Table 2 gives the distributional parameters of processing times for all the machines. All processing times 
follow a lognormal distribution. The demands for Product 1, Product 2, and Product 3 are 800, 1600, and 1400, respectively. 
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Fig. 7. Processing flow for Case 2 
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Table 2  
The distributional parameters of processing times for Case 2. 

Machine Mean Std.Dev Machine Mean Std.Dev 
1 85 7 15 175 25 
2 100 16 16 105 8 
3 175 14 17 175 18 
4 105 10 18 165 22 
5 130 10 19 165 18 
6 160 10 20 170 10 
7 160 12 21 125 8 
8 175 14 22 175 15 
9 175 15 23 100 8 

10 85 4 24 72 2 
11 180 20 25 85 8 
12 115 18 26 175 22 
13 155 10 27 135 18 
14 170 10 28 85 15 

 
We use the low-fidelity approximation model and the high-fidelity simulation model to solve this problem, respectively, to 
obtain the results of the solution space. Fig. 8 plots the output of the solution space for different models and Fig. 9 shows the 
output of the solution space after ordinal transformation. For better display, we add 100 to all the results of the low-fidelity 
model. From Fig. 8 and Fig. 9, the trends of the output solved by the two fidelity models are similar before (Fig. 8) and after 
(Fig. 9) ordinal transformation. 
 

 
Fig. 8. The output of the solution space for Case 2 

 
Fig. 9. The output of the solution space for Case 2 after ordinal transformation 

6.2 Multi-fidelity optimization with the evolutionary algorithm for large-scale problems 

We demonstrate the effectiveness of the proposed low-fidelity model in the previous section. This section compares the 
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proposed MO2TOS with MPGA with MO2TOS and the basic simulation evaluation (BSE) method. The effectiveness of 
MO2TOS in combinatorial optimization problems has been fully proved in some typical studies (Zhang et al., 2020; Zhang 
et al., 2021). 
We generate a large-scale release planning and routing allocation case (Case 3) and employ the proposed method to solve 
Case 3. Fig. 10 describes the processing flows for products in Case 3. Table 3 gives the distributional parameters of processing 
times for all the machines. All processing times follow a lognormal distribution. The demands for Product 1, Product 2, and 
Product 3 are 800, 1600, and 1400, respectively.  
 

1 4 10Product1 12 14 18 21 23 2516 24 24 27 282 16

1 2 5 9 10Product2 12 18 19 23 25 27 2816 16 242184

1 5 84 4 9 10 14 19 21 25 2724 24 28122

1 73 106 6Product3 1513 20 22 25 26 282 23

1 3 75 106 11 13 17 13 20 23 25 26 2824

1 75 11Product4 1513 22 25 262 1317 24

1 75 6 11 17 22 23 26243 6 15

1 5 8Product5 23 25 27184 4 14 16 16 2819
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R1
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Fig. 10. Processing flow for Case 3 

 
Table 3  
The distributional parameters of processing times for Case 3 

Machine Mean Std.Dev Machine Mean Std.Dev 
1 55 7 15 130 18 
2 90 8 16 70 8 
3 130 15 17 110 12 
4 75 6 18 130 15 
5 80 8 19 130 13 
6 82 8 20 150 20 
7 100 12 21 125 12 
8 135 15 22 130 15 
9 150 18 23 68 6 

10 78 4 24 60 4 
11 128 14 25 57 8 
12 132 18 26 100 10 
13 82 6 27 100 18 
14 140 12 28 68 15 

 
We first examine the optimization performance of MPGA. Fig. 11 shows the convergence curve of the objective value of the 
optimal solution for Case 3 when the same low-fidelity budget (10000) is allocated. As shown in Fig. 11, the proposed 
algorithm has stable optimization capability. The proposed MO2TOS with MPGA method is compared with the basic 
simulation evaluation (BSE) method and MO2TOS (Zhang et al., 2020). BSE randomly selects solutions within the limit of 
the maximum high-fidelity simulation budget and uses a discrete event simulation model to evaluate selected solutions. Then, 
it chooses the best solution based on the evaluated results. MO2TOS evaluates all the feasible solutions by a low-fidelity 
model, selects good solutions by ordinal transformation and optimal sampling strategies, and evaluates them by the high-
fidelity model to find the best solution. MO2TOS with MPGA differs from MO2TOS in the first phase, which uses MPGA 
combined with a low-fidelity model to accelerate the search for the solution space. 
 
Table 4 shows the objective values of the best solution obtained by different methods for different cases. A longer computing 
time is required when more fidelity budgets are allocated. BSE performs the worst compared to other methods. For small-
scale problems (Case 1 and Case 2), both MO2TOS and MO2TOS with MPGA can accurately obtain the global optimal 
solution, and MO2TOS runs faster. In the large-scale problem (Case3), MO2TOS with MPGA finds the optimal solution 
when the number of the high-fidelity budget is more than 200 and saves about 90% of the computing time. We conclude 
that if the release planning problem is small-scale (The number of feasible solutions is less than 100,000), we suggest choosing 
the MO2TOS. Otherwise, the MO2TOS with MPGA is recommended. 
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Fig. 11. The convergence curve of the objective values for Case 3 
 
Table 4  
The optimal results for different cases. 

a) Case 1 
High-fidelity budget The optimal result Runtime (s) 

BSE MO2TOS MO2TOS with MPGA BSE MO2TOS MO2TOS with MPGA 
200 123.647 114.445 114.445 275 187 201 
400 124.098 114.445 114.445 818 669 684 
600 122.671 114.445 114.445 1918 1425 1490 
800 120.084 114.445 114.445 3565 2499 2654 
1000 117.575 114.445 114.445 5149 4365 4693 
1200 118.295 114.445 114.445 7906 6475 6807 

b) Case 2 
High-fidelity budget The optimal result Runtime (s) 

BSE MO2TOS MO2TOS with MPGA BSE MO2TOS MO2TOS with MPGA 
200 127.637 116.647 116.647 385 265 287 
400 124.951 116.647 116.647 1233 777 803 
600 123.797 116.647 116.647 2420 1568 1632 
800 120.927 116.647 116.647 3120 2794 3004 
1000 121.552 116.647 116.647 5409 4504 4733 
1200 124.458 116.647 116.647 8460 6610 6998 

c) Case 3 
High-fidelity budget The optimal result Runtime (s) 

BSE MO2TOS MO2TOS with MPGA BSE MO2TOS MO2TOS with MPGA 
200 128.048 113.475 113.292 425 2221 358 
400 120.651 113.447 113.292 1351 2874 824 
600 121.166 113.292 113.292 3028 3944 1672 
800 124.113 113.292 113.292 4908 5503 2785 
1000 120.061 113.292 113.292 7948 7569 4906 
1200 117.943 113.292 113.292 10244 10348 7149 
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7. Concluding remarks 

In this research, we present an effective multi-fidelity simulation optimization method named MO2TOS with MPGA, to 
address release planning and routing allocation problems in re-entrant mixed-flow shops. The method combines the 
advantages of rapid evaluation of analytical models and accurate evaluation of simulation models. In our research, low-fidelity 
models are mathematical expressions and high-fidelity models are developed by discrete-event simulation. We examine the 
feasibility of the mathematical expression and the multi-fidelity optimization method through small-scale release planning 
problems and conclude that MO2TOS with MPGA can quickly obtain the global optimal solution for small- and medium-
scale problems. We then use a large-scale case to test the method by comparing it with MO2TOS (Zhang et al., (2020) and 
BSE. Results show that the proposed method can obtain the same optimal solution as Zhang et al. (2020), and save about 90% 
of the computing time in this problem. Therefore, we conclude that the proposed method can achieve good effects in solving 
large-scale problems. 
 
In the current research, we ignore some realistic features such as setups, dynamic events, and transport time. We plan to 
consider the typical features in the future and abstract release planning models with actual production scenarios. 
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