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 The increasing accumulation of solid waste worldwide has made it necessary to look for 
alternatives that improve the operation of recyclable waste collection systems to make waste 
treatment more profitable and eco-friendlier. This paper introduces a new variant of the multi-
compartment vehicle routing problem (MCVRP) that considers the rearrangement or relocation of 
collection points and packing the demand. This problem is called the location packing multi-
compartment vehicle routing problem (LPMCVRP) and is developed for a waste collection system 
using vehicles with flexible compartments. A mathematical formulation of the problem is proposed. 
A two-phase metaheuristic algorithm based on a tabu search without packing considerations and a 
variant that integrates a tabu search and a greedy randomized adaptive search procedure (GRASP) 
scheme with packing constraints have been proposed.  A set of instances adapted from the literature 
is generated to validate the proposed solution strategy. The results obtained show the efficiency of 
the proposed solution scheme for optimizing collection systems. 

© 2023 by the authors; licensee Growing Science, Canada 

Keywords: 
Location Routing  
Packing  
Multi-compartment Vehicle 
Routing Problem  
Recyclable Waste  
Tabu Search  
GRASP 

 

 

 

1. Introduction 

 
In recent decades, researcher interest in "green logistics," which can be defined as the execution of logistics activities in a 
more environmentally friendly manner, taking into account external factors such as waste, noise, energy, and carbon 
emissions, has been increasing (Dukkanci et al., 2019). Currently, there is worldwide concern about the exponential increase 
in waste accumulation. For this reason, between 1994 and 1995, the Organization for Economic Cooperation and Development 
(OECD) established the first stage of the basic principles of extended producer responsibility (EPR), with which 36 countries 
collaborate, necessitating the development of systems to recycle most of this waste. Countries like Sweden can reuse and 
recycle 99% of their recyclable waste (Wheeler, 2013). Similarly, Korea has a strict waste treatment policy where garbage 
collection points have additional posters with consumer information and segregating items into food waste, general trash, 
recyclables, and bulky items. Additionally, distribution costs make up a large part of the total logistics cost in a supply chain 
and are essential in optimizing garbage or recyclable waste collection system (Capelle et al., 2009). 
 
Henke et al. (2015) present a routing problem in a waste collection system where vehicles collect different waste types. These 
recyclable wastes cannot be mixed during transport, and therefore, the vehicle's capacity is divided into different 
compartments. This problem is called the multi-compartment vehicle routing problem (MCVRP), which can also be applied 
to liquid transport problems (Caramia & Guerriero, 2010). The MCVRP is considered NP-hard since it is a variant of the 
capacitated vehicle routing problem (CVRP) (Henke et al., 2015), seeking to determine the best waste management routes.      
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This paper introduces a new variant of the MCVRP that considers the rearrangement or relocation of collection points to 
improve the routes developed and packing decisions. This problem is called the location packing multi-compartment vehicle 
routing problem (LPMCVRP). Specifically, we consider that waste can be modeled as "bins," which allows packing in multi-
compartment vehicles in the location and routing problem. The decisions the LPMCVRP considers are a) to where should 
collection points be relocated? b) which routes will be used by the vehicles? c) which products will be collected at each 
collection point? d) into how many compartments should the capacity of each vehicle be divided? e) how should demand be 
packaged inside the container of the vehicle to optimize the space used?. The proposed solution to the LPMCVRP is a 
metaheuristic algorithm based on a tabu search without packing considerations that integrates the algorithm with a greedy 
randomized adaptive search procedure (GRASP) solution strategy for packing considerations. The packing strategy has a 
significant impact also in other industries like package delivery. 
 
The proposed scheme's efficiency has been validated in adapted instances of the three-dimensional vehicle packing and routing 
problem (3L-CVRP) and the well-known location and routing problem (LRP). The results obtained are compared with the 
formal solution of the mixed-integer programming (MIP) model for the LPMCVRP. 
 
The paper is divided as follows: Section 2 reviews the literature on the problems associated with the LPMCVRP, identifying 
the relevance of the research and the fundamentals for defining the problem introduced thus far. Section 3 provides a detailed 
formulation of the LPMCVRP through a mathematical model and the proposed methodology's detail. Section 4 discusses the 
tests carried out and the results of the proposed algorithm. Finally, Section 5 presents the conclusions of the research and 
possible future studies. 
 
2. Literature Review  
 
The well-known Vehicle Routing Problem (VRP) principles began with mathematician William Rowan Hamilton in the XIX 
century. His work considers a sequence of consecutive arcs of a graph that visits each vertex, once called the Hamiltonian 
circuit problem. As an extension of this, the Traveling Salesman Problem (TSP) emerged, which became the basis of all 
modern VRP research (Dantzig & Ramser, 1959). The authors consider the problem of dispatching gasoline trucks from one 
terminal to different service stations. The objective is to minimize the total distance travelled by the trucks, taking into account 
that the capacity of each is limited and that the demand for each service station must be fully satisfied (CVRP). The CVRP 
has been widely studied in the literature (Bernal et al., 2018; Linfati & Escobar, 2018). 
 
One of the well-known variants of the CVRP is the multi-depot vehicle routing problem (MDVRP), which has been 
extensively studied (Escobar et al., 2014a; Chávez et al., 2016; Bolanos et al., 2018; Linfati & Escobar, 2018). In the MDVRP, 
there are several possible starting points for the vehicles, and therefore, each customer is assigned a route from one of the 
available depots. The MDVRP has many applications in real-world supply chains such as food delivery, chemicals, and 
carbonated beverages. The first heuristics for the MDVRP were proposed by Wren & Holliday (1972), Gillett & Miller (1974), 
Golden et al. (1977), and Raft (1982).  
 
In parallel to all the methodologies previously presented for the VRP, integrations of this problem with other NP-hard 
problems have also been developed, such as the facility location problem (LP) and product packing (PP). The LP considers 
the geographical location of production or storage points in a supply chain, using fixed facility costs and transportation variable 
costs. The integration of MDVRP with the LP is called the location-routing problem (LRP) in the literature. It considers the 
depots that must be opened and the routes to be developed to meet the demand, seeking the minimization of the fixed facility 
costs of depots and the variable costs of the distance travelled (Escobar et al., 2013; Escobar et al., 2014b; Bernal-Moyano et 
al., 2017). 
 
Prins et al. (2007) propose a cooperative algorithm for the LRP that alternates between the location and routing phases by 
exchanging promising edges. In the first phase, routes and customers are aggregated into super-customers used to locate the 
depots through Lagrangian relaxation of the assignment constraints. In the second phase, the routes are improved using the 
granular tabu search (GTS) heuristic. At the end of each iteration, information on the most used movements is recorded for 
the next iteration. 
 
Vincent et al. (2010) developed a solution for the LRP based on the popular simulated annealing (SA) heuristic. This local 
search solution strategy avoids falling into local optima by accepting worse solutions with a certain probability. Kaya & 
Ozkok (2018) propose an algorithm based on SA for the LRP with inventory constraints. Escobar et al. (2013) propose a two-
phase hybrid heuristic to solve the LRP. In the first phase, called the construction phase, initial solutions are generated with a 
division and grouping procedure to reduce the cost of the distance traveled. In the second phase, called the improvement 
phase, a modified GTS algorithm considers various diversification and intensification elements to improve the solution's 
quality. An improved version of this algorithm for the LRP has been proposed by Escobar et al. (2014b), in which the GTS 
efficiency and variable neighborhood search (VNS) are integrated. Dai et al. (2019) proposed a two-phase heuristic for three-
echelon LRPs based on the savings algorithm.   
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Besides, the packing problem arises from the need to add a volumetric constraint on vehicles. With this, in addition to 
compliance with weight restrictions, the objective is to minimize the space used by the merchandise based on each product's 
dimensions, which creates a vital tool for improving operations, for example, in the container loading operation (Dereli & 
Daş, 2010). Applications of the packing problem can be found in Lodi et al. (2002), Wäscher et al. (2007), and Coffman et al. 
(2013). Escobar-Falcón et al. (2016) propose a hybrid two-phase algorithm for the packing and routing problem called 3L-
CVRP. In the first phase, an optimization procedure based on cuts is used for the CVRP. In the second phase, the solutions 
obtained in the first phase are validated with a GRASP algorithm that restricts the packing of each route and optimizes the 
placement of packages in the container to simplify unloading. The integration of the routing problem with the packing problem 
generates a multicompartment delivery problem (MCDP). This new variant considers a CVRP with vehicle capacity fractioned 
into compartments in which different types of products that cannot be mixed are packed. 
 
Coelho & Laporte (2015) present four MCDP categories that consider the possibility of dividing the product of one 
compartment among several customers and the constraint of satisfying customer demand in one or more deliveries. The 
variants of the problem have been solved using MIP models and branch-and-cut algorithms. The computational results for 
single- and multi-period cases yield exact solutions for 20 and 50 clients, respectively. 
 
Henke et al. (2015) present a mathematical formulation and an algorithm based on VNS to solve an MCDP variant in 
Germany's waste collection system. However, the conditions in which the vehicle compartments must be configured are 
different from those found in classic applications of the MCVRP. First, the size of each compartment varies and can be 
determined individually for each vehicle. Second, the size of the compartments can vary only discreetly. That means that the 
compartment walls can be moved only to predefined positions. Last, the number of compartments can be less than or equal to 
the number of products. Heuristic and metaheuristic algorithms for the MCVRP have been proposed by Reed et al. (2014), 
Mendoza et al. (2010), El Fallahi et al. (2008), Abdulkader et al. (2015), Silvestrin & Ritt (2017), Chen & Shi (2019), Hübner 
& Ostermeier (2019) and Adil & Lakhbab (2020). Finally, recent studies by Farrokhi-Asl et al. (2018) and Gruler et al. (2015) 
have proposed algorithms for solving truck routing problems with constrained capacity and network configuration decisions.      
 
However, despite the extensive literature on problems related to routing, location, and packing, similar studies that consider 
integrating the MCVRP and LRP in the collection of recyclable waste with packing considerations are not found in the 
literature. Similarly, none of the studies consider the relocation of the collection points with traditional packing constraints 
from the literature reviewed. Thus, this study greatly contributes to the operational improvement in the supply chain of 
emerging recycling and freight transport activities globally. 
 
3. Proposed Methodology 
 
3.1. Problem Definition and Formulation  
 
A recyclable waste collection system has different operational components: 
 

• The depots from which the vehicles depart and arrive optimize the coverage, the fixed costs of the fleet, and the 
adjusted storage capacity. 

• The waste collection points (residential or industrial) are located to satisfy the coverage demand in a certain period 
and minimize the routing costs. It should be noted that this practice is common in Colombia and that the relocation 
of the collection points does not generate complaints in the users since, in the residential type, the changes are only 
from street to street and, in the industrial case, these changes occur inside an industrial complex. 

• The number of vehicles and their capacity to minimize the resource idle or underutilization. 
• The routes that all the vehicles must follow to meet the demand always trying to avoid unnecessary subtours. 

 
The objective function is the minimization of the warehouse operating costs and vehicle travel costs. Additionally, current 
garbage collection vehicles (all waste in one large compartment) are unsuitable for a recyclable waste collection system. In 
this system, waste is separated as organics, recyclables, glass, and others, taking into account that waste is already arranged 
in garbage cans separated into these categories at the collection point. Therefore, the problem of recyclable waste collection 
requires vehicles with multiple compartments to avoid mixing the waste. These compartments divide the large garbage 
compartments with vertical walls and allow the ecological treatment of waste. In the LPMCVRP, collection point relocation 
is allowed; relocating to another place (potential relocation point) nearby allows the maintenance of coverage in the area and 
offers new possibilities for vehicle routing improvement. For example, if a collection point is moved to another street in the 
same block, unnecessary vehicle crossings due to lane direction can be avoided. With this consideration, the formulation of 
the problem becomes more attractive from a practical standpoint. The operator determines the number and the technical 
requirements of these potential relocation points. 
 
The LPMCVRP can be modeled as a variant of the classic routing problem (CVRP), where the serviced customers' location 
can be changed to improve the route, and a single vehicle must meet the customer demand, including all the waste types. In 
addition to this, each customer generates different types of waste for collection, and each route starts and ends at a single 
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depot where it can download all the waste types. When the waste is collected, each type of waste should be kept separate, and 
consequently, each truck capacity can be divided into different compartments before the route begins. Each truck must collect 
the entire customer demand; namely, the demand cannot be split. Specifically, two variants of the problem are proposed: with 
and without packing considerations. In considering the packing elements, the intent is to optimize the container's space and 
its loading and unloading according to the route established. This variant is developed to cover other problems in other 
industries like package delivery, creating more impact in the scientific community and making this research more applicable. 
Besides, this variant works as a reference since it combines location, routing, and traditional packing. 
 
The LPMCVRP can be formally presented through the following mathematical model: 
 
3.1.1. Sets 
 𝑉           = {0, . . . ,𝑑, . . . ,𝑑 +  𝑠} is a set of nodes of an undirected graph. 𝐷           = {1, . . . ,𝑑} represents the number of depots.    𝑆            = {1, . . . , 𝑐, . . . , 𝑠} is the set of customers (collection points) with their respective potential relocation points. In this 

problem, a potential relocation point is a street or space with all the requirements to set the waste relocation point.  𝐶 ⊂  𝑆 = {1, . . . , 𝑐} represents the initial locations of the collection points.  𝐾           = {1, . . . , 𝑘} is the set of vehicles. 𝑀௞         = {1, . . . ,𝑚௞} is a set indexed by 𝑘 that represents the compartments of each vehicle. 𝑃           = {1, . . . , 𝑝} is the set of types of recyclable waste. 
 
3.1.2. Parameters  
 𝑐௜௝         = Cost of traveling from node 𝑖 to node 𝑗. 𝑂          = Cost of relocating a collection point (equivalent to distance). 𝐹௞          = Fixed cost of developing a route for vehicle 𝑘. 𝑅௜௝         = Matrix which represents the potential relocation points (j) for each node i. Equals 1 if the change is possible, 0 

otherwise. Example of 𝑅௜௝: if we have two customers and we have two potential relocation points for each 
customer, the matrix will be 2x6 (2 for the current customer and the other 4 for the potential relocation points). In 
each row, the matrix must have three ones, or possible relocation points, one for the same position of i (that means 
that the customer is not relocated) and two for the relocation points. As shown below, the row for customer 1 has 
ones in the same customer position one and P1,1 and P1,2, while the second row has its ones in position two and 
P2,1 and P2,2. 

 𝑅௜௝ 1 2 P1,1 P1,2 P2,1 P2,2 

1 1 0 1 1 0 0 

2 0 1 0 0 1 1 

 𝑄௞          = Capacity of vehicle 𝑘. 𝑑௝௣         = Demand for waste 𝑝 of customer 𝑗. 𝑞௠௞       = Relative size of compartment 𝑚 in vehicle 𝑘. 
 
3.1.3. Variables 
 
The following decision variables are considered in the construction of the model: 
 𝑥௜௝௞    = binary variable, equals 1 if the vehicle 𝑘 goes from node 𝑖 to node 𝑗, 0 otherwise. 𝑦௜௝     = binary variable, equals 1 if node 𝑖 is relocated to node 𝑗, 0 otherwise. 𝑢௣௞௠ = binary variable, equals 1 if size  𝑞௠ is assigned to vehicle 𝑘 for waste type 𝑝, 0 otherwise. 𝑠௞௝    = binary variable, equals 1 if the demand of point 𝑗 is serviced with vehicle 𝑘, 0 otherwise. 𝑓௜௝     = binary variable, equals 1 if node 𝑗 starts its route at depot 𝑖, 0 otherwise. 
 
3.1.4. Objective function  
 𝑚𝑖𝑛 𝑍 = ෍ ෍ 𝑂𝑦௜௝௝ ∈ ௌ\ ௜ஷ௝௜ ∈ ஼ + ෍ ෍ ෍ 𝑐௜௝𝑥௜௝௞௞ ∈ ௄௝ ∈ ௏௜ ∈ ௏ + ෍ ෍ ෍ 𝐹௞𝑥௜௝௞௞ ∈ ௄௝ ∈ ௌ௜ ∈ ஽   (1) 

 
3.1.5. Constraints 
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The constraints applied are as follows: 
 𝑦௜௝ ≤ 𝑅௜௝       ∀ 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆  (2) ෍ 𝑦௜௝௝ ∈ ௌ = 1       ∀ 𝑖 ∈ 𝐶  (3) ෍𝑦௜௝௜ ∈ ௌ = 1       ∀ 𝑗 ∈ 𝑆 (4) ෍ ෍ 𝑥௜௝௞௞ ∈ ௄  ௜ ∈ ௏ = ෍ 𝑦௜௝௜ ∈ ௏         ∀ 𝑗 ∈ 𝑆 (5) ෍ ෍ 𝑥௜௝௞௝ ∈ ௌ  ௜ ∈ ஽ ≤ 1       ∀ 𝑘 ∈ 𝐾 (6) ෍ ෍ 𝑥௝௜௞௝ ∈ ௌ  ௜ ∈ ஽ ≤ 1       ∀ 𝑘 ∈ 𝐾 (7) ෍ 𝑥௜௨௞௨ ∈ ௌ + ෍ 𝑥௨௝௞௨ ∈ ௏\{௜} ≤ 1 + 𝑓௜௝       ∀ 𝑖 ∈ 𝐷, 𝑗 ∈ 𝑆,𝑘 ∈ 𝐾 (8) ෍ ෍ 𝑥௜௝௞௝ ∈ ஺  ௜ ∈ ஺ ≤ |𝐴| − 1       ∀ 𝐴 ∈ 𝑆, 𝑘 ∈ 𝐾 (9) ෍ 𝑥௜௝௞௝ ∈ ௏ −  ෍ 𝑥௝௜௞௝ ∈ ௏ = 0       ∀ 𝑖 ∈ 𝑉,𝑘 ∈ 𝐾  (10) ෍ ෍ 𝑢௣௞௠௠∈ ெೖ  ௣ ∈ ௉ ≤ 𝑚௞        ∀ 𝑘 ∈ 𝐾  (11) ෍ ෍ 𝑑௝௣𝑠௞௝௣ ∈ ௉  ௝ ∈ ௌ ≤ 𝑄௞ ෍ ෍ 𝑞௠௞𝑢௣௞௠௣ ∈ ௉  ௠∈ ெೖ        ∀ 𝑘 ∈ 𝐾 (12) ෍ 𝑥௜௝௞௜ ∈ ௏ = 𝑠௞௝       ∀ 𝑗 ∈ 𝑆,𝑘 ∈ 𝐾  (13) ෍ 𝑢௣௞௠௠∈ ெೖ ≤ 1      ∀ 𝑝 ∈ 𝑃,𝑘 ∈ 𝐾 (14) 𝑥௜௝௞, 𝑦௜௝, 𝑢௣௞௠, 𝑠௞௝, 𝑓௜௝  ∈  {0,1}     (15) 
 
Eq. (1) is the objective function considering minimizing the node relocation costs, costs of the travelled distance, and fixed 
costs associated with the maintenance of the vehicle and the cost of the driver service. In addition, the constraints of this 
model are implicitly divided into three groups: relocation constraints, routing constraints, and packing and demand fulfilment 
constraints. 

• Relocation constraints: Eq. (2) guarantees that the relocation of the collection points occurs only at allowed points. 
Eq. (3) and Eq. (4) restrict relocations to one per point and each relocation point to being assigned only once. Eq. (5) 
allows movements only to points that have been relocated (including the initial node). This fact means that, for the 
model, a point will always be relocated, but this is not considered in the objective function when it is relocated to its 
current location. 

• Routing constraints: Eq. (6) and Eq. (7) force each vehicle to start and finish its route at a depot, and Eq. (8) 
guarantees the connection of a route to a depot. Eq. (9) ensures flow continuity, and Eq. (10) ensures the elimination 
of subtours. 

• Packing and demand fulfillment constraints: Eq. (11) prevents the number of compartments from being greater than 
that allowed, Eq. (12) prevents the capacity of the vehicle from being exceeded, Eq. (13) requires that the demand 
of each point is collected by a single vehicle, and Eq. (14) forces the configuration of one compartment per type of 
recyclable waste. Note that the parameter 𝑄௞ for the model variant without packing considerations is specified as a 
parameter without any relation to the type of load. This aspect implies that 𝑑௝௣ assumes that all bins have the same 
density of material with different demands, namely, that each customer has different types of bins with different 
densities but that all the bins have the same density.  

 
For the model with packing constraints, we consider that the sets of recyclable waste generate the total weight of the demand 
of the customer 𝑗 ∈ 𝑠. Each set of recyclable waste has a length 𝑤௝௣, height ℎ௝௣ and width 𝑙௝௣. The load of each vehicle has a 
length 𝑊௞, height 𝐻௞ and width 𝐿௞. Thus, the new value of the demand parameter is 𝑑௝௣ = ∑ 𝑤௝௣௣ ∈௉ ℎ௝௣𝑙௝௣    ∀𝑗 ∈ 𝐶, and the 
new capacity of each vehicle is 𝑄௞ =  𝑊௞𝐻௞𝐿௞.   
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3.2. Metaheuristic algorithm   
 
The proposed algorithm (Pseudocode 1) is divided into two phases: construction and improvement phases. A giant tour is 
generated in the construction phase with the Lin-Kernighan-Helsgaun (LKH) algorithm (Helsgaun, 2000), including all the 
current collection points (potential relocation points not included). Subsequently, some candidate clusters can be generated 
with the application of the well-known savings algorithm. In this manner, the set-partitioning problem is solved using a mixed-
integer linear programming model (lines 1, 2, and 3). With the chosen clusters (or routes), this initial solution is then improved 
upon through a local search with four different operators, two inter-route and two intra-route, as shown in Figures 1-5. With 
this, the construction phase (lines 4, 5, and 6) ends. 
  
A tabu search is applied with these four operators (Figs. 1-4). The two-opt operator works in a classical way where two nodes 
are selected, where the route crosses over itself, and reorder it to reduce the traveled distance. The relocation operator selects 
one of the potential relocation points and moves the customer there, so the distance between the previous node and the next 
node is reduced. The swap operator exchanges two customers of different routes, and the insertion operator adds a customer 
to an existing route (without exchange). 
 
These operators allow the exploration of infeasible solutions based on excess capacity and make decisions about the relocation. 
Such infeasible solutions are penalized with a dynamic factor, which is adjusted during the search. Low values allow the 
algorithm to examine feasible solutions, while high values allow exploring infeasible solutions. In each iteration, the type of 
operator is chosen first with a probability of 50% for inter-route and 50% for intra-route. Once the type of operator is chosen, 
each operator's improvement is estimated concerning the value of the objective function of the current solution (lines 13 to 
22). This estimation is done considering the distance cost improvement and the penalization for excessing capacity. The first 
part is the difference between the added and subtracted edges, and the second part is the excessed demand multiplied by a 
demand/distance factor (presented in Section 4). 
 
Pseudocode 1. Algorithm LR 

Input: V, demand, costs, maxIt, operators, prob 
Output: routes  
1 GiantTour = LKH(C ∈ 𝑉) 
2 Clusters = SweepAlgorithm(GiantTour, demand) 
3  S∗ = Set Partitioning Problem (Clusters, costs) 
4 foreach op ∈ operators do 
5 foreach r ∈ S∗ do 
6 S∗ = r.apply(op) 
7 BestS = S∗ 
8 InitialS = S∗ 
9 checkIt = maxIt/10; 
10 it = 0 
11 for it  ≤  maxIt do 
12 n = random(0, 1) 
13 if n ≤ 0,5 then 
14 foreach op1 ∈ InterOperators do 
15 estimate(S∗, op1) 
16 S∗ = S∗.apply(bestOp1) 
17 else 
18 foreach op2 ∈ IntraOperators do 
19 estimate(S∗, op2) 
20 S∗ = S∗.apply(bestOp2) 
21 if S∗≤ BestS then 
22 BestS = S∗ 
23 if it == checkIt then 
24 if S∗ > InitialS then 
25 S∗ = InitialS 
26 checkIt+ = (maxIt/10) 
27 n2 = random(0, 1) 
28 if n2 ≤ prob then 
29 S∗ = S∗.apply(NewRoute) 
30 update(prob) 
31 it = it + 1  
32 return BestS 
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Fig. 1. Two-opt operator Fig. 2. Relocation operator 

  
Fig. 3. Swap operator Fig. 4. Insertion operator 

Source: Owner 
 

Two strategies were implemented to make the tabu search more flexible and avoid continually falling into local optima or 
cycles. The first is to verify the current solution of the tabu regarding the initial solution in every tenth of the maximum 
iterations. If this solution has a greater objective function, the tabu's current solution is reset to the initial solution without 
deleting the tabu list so that what was saved in the last steps is not lost (lines 23 to 26). The second strategy uses a fifth 
operator (shown in Figure 5) that creates a new route with a randomly selected customer based on an initial probability, which 
increases each time this operator improves the solution during the search (lines 27 to 30). 

 

 
Fig. 5. New-route operator 

Source: Owner 
 
The variant of the problem includes packing considerations, using a GRASP algorithm based on a version adapted from the 
idea proposed by Escobar-Falcón et al. (2016) and Martínez et al. (2015) for the 3L-CVRP is proposed. The GRASP algorithm 
is based on the representation of maximum free spaces, allowing viable solutions to be obtained by controlling the generation 
and improvement of these spaces in the construction phase. This algorithm satisfies item orientation constraints, load-bearing 
strength, weight limits, load stability, and multi-drop constraints (loads with multiple destinations). The GRASP algorithm is 
an iterative procedure that combines a construction phase and an improvement phase. In the construction phase, a solution is 
built step by step, adding elements. The improvement phase seeks to apply a local search scheme through transitions on the 
built solutions. The proposed constructive strategy allows random selection of the residual (free) space and items in each 
iteration. The improvement phase partially deconstructs the built solution and refills it with a criterion focus on minimizing 
the residual spaces. 
 
The procedure that validates the packing feasibility of a route is presented in Algorithm 2. Only one algorithm is defined to 
describe constructive and local search procedures; both procedures are repeated in an iterative scheme defined by the 
maximum number of iterations stipulated (line 1). In the construction, the packing pattern is generated from zero (line 2). The 
list of maximal spaces S is initialized with a free space equal to the original container space (line 3). In each iteration, we try 
to pack the boxes of each node, following the order given in the route to validate, thus nextNode is initialized in zero so that 
it references the first position of the route (line 4). In this way, the current node boxes are extracted from list B of boxes to be 
packed (line 5). The construction will only be completed until all free spaces are used or all nodes in the route are already 
packed (line 6). For this, the algorithm will repeat the container filling process as long as there are remaining boxes in 
the Boxes list (line 7). The filling process consists of first select an available space from the list S, choosing the free space 
furthest from the container base (line 8); ties are broken by selecting the space with the highest volume. Then, all the box 
layers that fit within the selected space are generated (line 9). The layers are built with boxes with several copies; a layer 
consists of a rectangular array of boxes positioned in rows or columns, six different layers (XY, XZ, YX, YZ, ZX, and ZY) can 
be obtained by combining the three axes. For all possible rotations of the box, its different layers must be built. Items with 
only one copy are also considered as layers. Having the layer list (Cs), the selection of the best ones (highest volume) must 
be made (lines 10 and 11). In this work, a dynamic selection process was established to adjust the number of candidate layers 
according to their historical performance. This way, a balance can be made between small RCL sizes, resulting in excessively 
greedy behavior, and large RCL sizes, which can rapidly compromise efficiency. The winning layer's selection is made by 
randomly choosing one layer from the RCL (line 11). This layer must be placed within the space to build the packing pattern 
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so that the list of remaining boxes and the available maximal spaces can be updated (lines 12-14). The maximal spaces can 
be too small to pack any item, so it will be necessary to eliminate from the Boxes list all elements that cannot be fit into any 
space from S (line 14). When the Boxes list is exhausted, the S list must be updated to eliminate all the free spaces that will 
be unreachable for the cargo of the next node (line 15). The next node-set must be assigned, and the loading process will be 
repeated (lines 16 and 17). The solution built is checked to know if all the demanded cargo has been placed inside the container 
(line 18); if this occurs, the algorithm ends up returning that the route is feasible by packing (line 19); otherwise, the solution 
is tried to be improved, for this purpose a filtering strategy is implemented. (line 20). 
 
Pseudocode 2. GRASP algorithm to validate the packing feasibility of a route 

Parameters: totalIterations 
Input: R: Route; O: Original container space; B: List of boxes of each node 
Output: Feasible or Unfeasible Packing  
1 for i=1 to totalIterations do 
2       P= {} 
3       S = O 
4       nextNode  = 0 
5 Boxes =  BR[nextNode] 
 6 while S ≠ {} and nextNode < R.size() do 
 7 while Boxes ≠ {} do 
 8 FreeSpace = SelectSpace(S) 
 9 List Cs = GenerateLayersList(FreeSpace, Boxes) 
10 List RCL = BuildRCL(Cs) 
11 Layer L = SelectLayerRandomly(RCL) 
12 Packing Pattern P = LocateLayer-Space(L, FreeSpace,P) 
13                  List S = UpdateListofMaximalSpaces(L, S) 
14                  Boxes = UpdateListofRemainingBoxes(L, Boxes) 
15           List S = UpdateListofSpacesByNodeChanging(S) 
16           nextNode = nextNode + 1 
17           Boxes = BR[nextNode] 
18      if all Bc are packed in P 
19           return Feasible 
20      if f(P)>threshold then 
21           Packing Pattern P = ImprovePattern(P,k) 
22           threshold = f(P) 
23 else 
24 threshold = threshold∙(3 ∗ 𝑖 - 5 ∗ 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 - 2)/(10 - 10 ∗ 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 
25      if all Bc are packed in P 
26           return Feasible 
27 return  Infeasible 

 
The filtering strategy (line 20) consists of applying the improvement phase only if the constructive phase's solution is 
promising. Filtering is crucial for computational efficiency as it avoids local search operations on solutions below a certain 
performance threshold. The threshold starts with the first solution's value and is updated at any iteration in which a new 
solution outperforms the threshold (lines 21 and 22). If a solution's objective does not reach the threshold, the local search 
procedure is not applied, and the threshold is decreased. As good solutions appear, the threshold becomes bigger (in a 
maximization context), leading to the rejection of many solutions and compromising diversity in the search. Therefore, the 
threshold is decreased following a scheme that depends on the current iteration (i) and the parameter totalIterations, allowing 
large reductions at the beginning of the search process and making small reductions as the iterations are exhausted. (line 24). 
 
The function ImprovePattern modifies the packing pattern from the built solution removing 30% of boxes in the local search. 
Removal consists of eliminating item by item from the container door backward. In this way, the “half-empty” container, 
together with the removed and no packed items, must enter again on the packing process described in the construction phase, 
but now from the layer list (Cs) are selected the layers with best-fit to the free spaces (minimizing the residual spaces that will 
be generated after placing the layer). Later, the improved solution is checked to know if all the demanded cargo has been 
placed inside the container (line 25); if this occurs, the algorithm ends up returning that the route is feasible by packing (line 
26); otherwise, another iteration of the GRASP algorithm will be executed. The constructive and improvement phases are 
executed a totalIterations number of times (line 1). The algorithm returns Unfeasible if none of the iterations has managed to 
pack all the cargo demanded in the route (line 27). 
 
In particular, the proposed algorithm is different from concerning the traditional tabu search in only two ways: 1) routes that 
do not fit in the container of the vehicle (validated with the GRASP algorithm) are eliminated before entering the set-
partitioning problem, and 2) the local search and the tabu search do not consider solutions that do not comply with the packing. 
Specifically, line 6 of Pseudocode 1 is modified by applying the operators before entering the improvement phase to validate 
the best estimate with the GRASP Algorithm (apply(op, GRASP ())); additionally, in line 29, the new route (estimate(S∗, op, 
GRASP ())) operator is applied. The proposed approach's main strength is that the computational effort is focused mainly on 
solving the LRP with the tabu metaheuristic. In contrast, a high-performance GRASP approach solves the loading problem. 
The GRASP approach is calibrated according to the characteristics of the items delivered, namely, the accumulated demand 
of customers covered by each route. Mainly, if the solution is feasible, the procedure must verify the packing of the demand 
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for each route using the GRASP algorithm, which determines if it is possible to pack the bins in the vehicles with a loading 
pattern without reordering. Figure 6 shows an illustrative example of a GRASP solution for a route where the bottom bins 
should be those of the last customer to maintain chronological loading and unloading and facilitate the vehicle's operation. 

 
Fig. 6. Example of a packing solution using the GRASP algorithm 

Source: Owner 
4. Tests and result analysis  
 
To validate the algorithm, 27 instances of the well-known 3L-CVRP, available in the library published 
in  http://or.dei.unibo.it/instances/three-dimensional-capacitated-vehicle-routing-problem-3l-cvrp, are modified. The test 
instances include a range of 15 customers to 100 customers with volume information for the first variant of the proposed 
algorithm and bin dimensions for the second variant (including packing). Three random relocation nodes are added to each 
instance in a radius around each node; this parameter varies between 2 and 4 depending on the nodes' proximity to prevent 
the relocation points from exceeding the current nodes, thus preserving the coverage criteria for the areas served. Pseudocode 
3 shows the procedure for generating the relocation points. 
 
Pseudocode 3. Procedure for generating N random points around a collection point     

Input: numPoints, radius, x, y 
Output: Random points  
1 result = vector() 
2 i = 0 
3 for i < numPoints do 
4 point = vector() 
5 x1 = 0 
6 y1 = 0 
7 angle = rand() %361; 
8 if angle ≥ 0 and angle ≤ 90 then 
9 x1 = radius ∗ cos(angle ∗ PI/180,0) 
10 point.add(int(x + x1)) 
11 y1 = radius ∗ sin(angle ∗ PI/180,0) 
12 point.add(int(y + y1)) 
13 else 
14 if angle > 90 and angle < 180 then 
15 angle = 180 − angle 
16 x1 = radius cos(angle ∗ PI/180,0) 
17 point.add(int(x − x1)) 
18 y1 = radius ∗ sin(angle ∗ PI/180,0) 
19 point.add(int(y + y1)) 
20 else 
21 if angle ≥ 180 and angle ≤ 270 then 
22 angle = 270 − angle 
23 x1 = radius ∗ sin(angle ∗ PI/180,0) 
24 point.add(int(x − x1)) 
25 y1 = radius ∗ cos(angle ∗ PI/180,0) 
26 point.add(int(y − y1)) 
27 else 
28 angle = 360 − angle 
29 x1 = radius ∗ cos(angle ∗ PI/180,0) 
30 point.add(int(x + x1)) 
31 y1 = radius ∗ sin(angle ∗ PI/180,0) 
32 point.add(int(y − y1)) 
33 result.add(point) 
34 return result 

 
The modified instances and results obtained are available in Herrera (2020a). The code for the first and second variants are 
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found in Herrera (2020b) and Herrera (2020c), respectively. The proposed algorithm is coded in C ++ with the “CodeBlocks” 
development environment, in Linux, and using the VRPH libraries (Groër et al., 2010) and Lin-Kernighan Heuristic – LKH 
(Helsgaun, 2000). The tests are run on an Acer Spin 5 computer with 8 GB RAM and an Intel(R) Core (TM) i5 7200 CPU @ 
2.50 GHz. The mathematical model described in Section 3.1 is used as a reference point in validating results using solver 
CPLEX 12.4. Python is used in the Spyder development environment, available in the Anaconda package, to generate the 
graphs. 
  
Table 1 summarizes the instances' information and specifies the instance name, number of collection points, and relocation 
costs. For all instances, a "demand/distance" conversion factor has to be calculated to translate the excess capacity values into 
distance values. For example, with a value of 0.5, an excess volume of ten units represents five distance units in the tabu. 
This value is given by Equation (16). Additionally, two different relocation cost values are taken to determine the impact on 
the number of relocated points. These values are defined after running tests with the algorithm. 
 𝐹𝐷𝐷 =  100 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑  (16) 

 
Table 1 
Information of Instances generated for LPMCVRP 

Instance File Name of Instance Nodes Relocation Cost Demand / 
1 testInput E016-03m.dat 15 2 0.424933 
2 testInput2 E016-05m.dat 15 5 0.557267 
3 testInput3 E021-04m.dat 20 2 0.619176 
4 testInput4 E021-06m.dat 20 5 0.622930 
5 testInput5 E022-04g.dat 21 2 0.561785 
6 testInput6 E022-06m.dat 21 5 0.747585 
7 testInput7 E023-03g.dat 22 2 0.989185 
8 testInput8 E023-05s.dat 22 5 0.999746 
9 testInput9 E026-08m.dat 25 2 0.530341 

10 testInput10 E030-03g.dat 29 2 0.873708 
11 testInput11 E030-04s.dat 29 5 0.906092 
12 testInput12 E031-09h.dat 30 2 0.506725 
13 testInput13 E033-03n.dat 32 5 0.319762 
14 testInput14 E033-04g.dat 32 2 0.588160 
15 testInput15 E033-05s.dat 32 5 0.618347 
16 testInput16 E036-11h.dat 35 2 0.628680 
17 testInput17 E041-14h.dat 40 5 0.573641 
18 testInput18 E045-04f.dat 44 2 0.887064 
19 testInput19 E051-05e.dat 50 5 0.597996 
20 testInput20 E072-04f.dat 71 2 0.286026 
21 testInput21 E076-07s.dat 75 5 0.608014 
22 testInput22 E076-08s.dat 75 2 0.561503 
23 testInput23 E076-10e.dat 75 5 0.587890 
24 testInput24 E076-14s.dat 75 2 0.633750 
25 testInput25 E101-08e.dat 100 5 0.632894 
26 testInput26 E101-10c.dat 100 2 0.652071 
27 testInput27 E101-14s.dat 100 5 0.571864 

Source: Owner 
 
Table 2 shows the results obtained with Algorithm 1 after five repetitions. The best solution is reported for each instance, 
taking into account a route start cost of zero. Table 2 shows the values of the objective function of the construction and 
improvement (tabu search) phases for the algorithm without packing considerations. The average solution time is 54.13 
seconds having a maximum of 146.5 seconds with 100 customers. The application of the algorithm in two computers of a 
problem solved in 10 regions (each one with one depot) have 100 customers, that means 1000 customers, the total solution 
time would be approx.—forty-eight hours (two days), which seems rational for operations planning context. 
 
The number of iterations is parameterized by Equation (17): 
 𝐼𝑡 =  1,000,000(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠)ଶ (17) 
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Table 2  
Performance of algorithm without packing constraints  

Instance Phase I - 
Constructive 

Phase II - 
Improvement CPU Time [s] Relocated Nodes 

1 269.32 235.84 15.20 7 
2 242.32 242.32 14.80 0 
3 335.46 310.65 20.80 10 
4 331.89 245.80 22.20 4 
5 396.48 349.40 23.80 11 
6 335.71 333.81 22.10 0 
7 627.17 590.05 23.60 11 
8 629.00 600.89 22.90 2 
9 449.49 433.02 28.70 8 

10 635.03 600.81 34.90 11 
11 635.88 590.45 31.80 4 
12 443.29 336.49 35.00 17 
13 2254.70 2135.30 34.90 16 
14 1092.42 1009.95 37.40 13 
15 1028.52 991.56 36.80 3 
16 452.73 413.23 37.50 13 
17 540.64 498.25 47.40 5 
18 1011.55 946.51 48.80 10 
19 644.17 616.96 55.60 2 
20 462.42 446.75 94.80 4 
21 889.23 854.95 90.20 2 
22 960.50 737.46 102.50 28 
23 938.05 882.03 95.00 5 
24 909.90 837.82 91.60 33 
25 1185.42 1130.30 127.10 7 
26 1210.75 1138.06 146.50 16 
27 1219.63 1178.51 119.80 5 

Source: Owner 
 
Table 3  
Performance of MIP and the gap respect to the proposed approach without packing 

Instance Objective Function MIP Solution Approach CPU MIP [s] Delta [%] 
1 247.27 235.84 3000 4.83 
2 238.67* 242.32 624 -1.51 
3 312.26 310.65 1800 0.52 
4 304.28 245.80 3600 23.79 
5 338.83 349.40 2400 -3.02 
6 338.17 333.81 3600 1.31 
7 609.23 590.05 1800 3.25 
8 600.89 600.89 3600 0.00 
9 425.05 433.02 2400 -1.84 
10 685.26 600.81 1800 12.37 
11 587.03 590.45 3000 -0.58 
12 430.73 336.49 3600 28.01 
13 2154.14 2135.30 3000 0.88 
14 1038.68 1009.95 3000 2.84 
15 1039.99 991.56 3600 4.88 
16 477.55 413.23 3600 15.56 
17 617.46 498.25 3600 23.93 
18 1119.44 946.51 3600 18.27 
19 791.62 616.96 3600 28.31 
20 - - - - 
21 - - - - 
22 - - - - 
23 - - - - 
24 - - - - 
25 - - - - 
26 - - - - 
27 - - - - 

Source: Owner 
*Optimal Solution (Gap = 0.00%) 
 
Table 3 shows the objective function value (Objective) and computing time of the MIP (CPU MIP). The only solution optimal 
value (Objective) is, for instance, 2. For the other values of the Objective, the MIP cannot obtain the optimal solution (Gap 
MIP = 0.00%). Also, the delta between the MIP solution (Objective) and the value of phase II of the algorithm (Solution) is 
calculated. The overall average delta is 8.52%, and, in instances with more than 50 customers, the MIP cannot find the feasible 
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solution, while the algorithm found solutions within 108 seconds on average in these instances. These results suggest the 
better overall performance of the algorithm regarding time and objective function. It is essential to stand out that in these 
kinds of problems where the size of the instance is large, the solution time is such important as the objective function. Finally, 
Table 4 shows the results of the problem considering the packing constraints using the GRASP algorithm. In this case, the 
number of iterations is parameterized by Equation (18): 
 𝐼𝑡2 =  10,000𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 × 2 (18) 

 
In this case, there are execution times longer than 200 seconds. There are no feasible solutions in eight instances since the 
packing of the demand of one of the points exceeds the vehicle's capacity. 
 
Table 4  
Performance of algorithm with packing constraints  

Instance Phase I - Constructive Phase II - Improvement Tabu + GRASP CPU Time [s] 
1 344.77 288.91 200.03 
2 446.87 346.31 637.85 
3 405.66 336.11 1180.12 
4 459.14 423.1 1894.81 
5 602.53 515.41 669.84 
6 528.75 499.4 1131.22 
7 1048.16 834.8 1009.33 
8 - - - 
9 727.28 555.56 1147.23 

10 - - - 
11 1266.51 1028.13 1541.85 
12 658.29 503.86 616.82 
13 3394.21 2555.73 774.64 
14 2027.47 1869.38 2548.88 
15 2665.46 1839.39 1040.1 
16 828.43 661.06 3161.92 
17 1006.12 739.03 1352.98 
18 1611.44 1448.73 2182.34 
19 - - - 
20 - - - 
21 - - - 
22 - - - 
23 1834.43 1533.57 646.05 
24 1325.99 1112.83 2341.73 
25 2049.26 1741.34 4179.71 
26 - - - 
27 - - - 

Source: Owner 
 
This variant implies higher solution times, and it could not work in actual sizes problems like the first shown in this 
section where a city has 1000 customers and ten regions. The combination with the GRASP increases the time within 
the proposed approach since it is applied during the whole LPMCVRP. 
 

 

 

Fig. 7. Behavior of the objective function for the 
algorithm without packing considerations (Instance 4) 

Fig. 8. Final solution of the algorithm without packing 
considerations (Instance 4) 

 
Source: Owner 
Figs. 7-10 show examples of the solutions' behavior in the improvement phase and the final solutions of instance 4 for 
the algorithms without and with packing constraints. Fig. 7 and Fig. 9 show the behavior of the proposed algorithm's 
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objective function with and without packing constraints. Every certain number of iterations, the effect of the strategy of 
the flexibilization of the tabu list resetting is visible. Fig. 9, which corresponds to the case with packing constraints, 
shows random behavior for the first half of the iterations, and subsequently, a clear pattern of what could be a local 
optimum is observed. This behavior is recurrent in smaller instances (less than or equal to 25 nodes). 
 
Fig. 8 and Fig. 10 present the graph of final solutions with two variants where the solid lines are the output from the 
LKH and then pointed lines are the final ones. The improvement generated by the operators are shown on the graphs 
where new clusters are built, and relocations are done to fix route crosses and reduce total traveled distance. On the 
other hand, the packing changes completely the final solution, causing different clusters and relocations in the same 
instance 4, confirming that this problem increases the complexity very much and that the first variant is more applicable 
in the real size problems. 
 

 
 

Fig. 9. Behavior of the objective function for the 
algorithm with packing considerations (Instance 4) 

Fig. 10. Final solution of the algorithm with packing 
considerations (Instance 4) 

 
Source: Owner 
 
5. Conclusions and future work 
 
This work introduces a new variant of the MCVRP that considers the rearrangement or relocation of collection points and the 
demand's packing. The problem is called the LPMCVRP and is applied in a recyclable waste collection system in vehicles 
with flexible compartments. A two-phase metaheuristic algorithm is proposed based on a tabu search without packing 
considerations and a variant that integrates the tabu search and the GRASP solution strategy considering packing restrictions 
to solve the LPMCVRP. 
  
A large tour is generated in the construction phase using the LKH heuristic with all the collection points. Subsequently, the 
scanning algorithm can define candidate clusters, which are assigned by solving a set-partitioning problem. Finally, the 
solution is improved with a local search with two inter-route and two intra-route operators. In the improvement phase, a 
modified tabu search is executed with the operators mentioned above and two flexibilization strategies that, to a great extent, 
prevent the exploration of solutions that, for many iterations, lead to worse solutions and deviate from local optima. A GRASP 
algorithm that validates the packing of the bin demand with volumetric considerations is introduced. 
  
Due to all the above, the problem presented in this study makes a significant contribution to the literature since formal 
definitions of a problem where relocation, routing, and packing are considered have not been proposed for recyclable waste 
collection systems and cargo transportation. In addition to this, a set of instances is generated for future investigations of the 
problem.  
  
As future work, the implementation of better strategies for exploring new edges in the tabu search is proposed to make the 
metaheuristics more efficient and the generation of instances with several more collection points to approximate the behavior 
of real cases. Another future direction is the reduction of the computational time through the use of granularity strategies such 
as those proposed in Escobar et al. (2013), Escobar et al. (2014a), Escobar et al. (2014b), Escobar & Linfati (2012), and 
Linfati et al. (2014). Besides, the development of an automated decision-making system (decision support system) that 
visualizes the progress of the algorithm, as well as the routes, relocations, and packing; that allows the input parameters of 
the model, such as the current location of the collection points and the relocation costs, to be changed; and that allows the 
generation of new relocation points is proposed. 
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