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 This paper proposes a matheuristic algorithm based on a column generation structure for the 
capacitated vehicle routing problem with three-dimensional loading constraints (3L–CVRP). In the 
column generation approach, the master problem is responsible for managing the selection of best-
set routes. In contrast, the slave problem is responsible for solving a shorter restricted route problem 
(CSP, Constrained Shortest Path) for generating columns (feasible routes). The CSP is not 
necessarily solved to optimality. In addition, a greedy randomized adaptive search procedure 
(GRASP) algorithm is used to verify the packing constraints. The master problem begins with a set 
of feasible routes obtained through a multi-start randomized constructive algorithm (MSRCA) 
heuristic for the multi-container loading problem (3D–BPP, three-dimensional bin packing 
problem). The MSRCA consists of finding valid routes considering the customers' best packing 
(packing first-route second). The efficiency of the proposed approach has been validated by a set 
of benchmark instances from the literature. The results show the efficiency of the proposed 
approach and conclude that the slave problem is too complex and computationally expensive to 
solve through a MIP. 
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1. Introduction 

 
The integrated vehicle routing and packing problem, considering three-dimensional loading constraints (3L–CVRP), is 
categorized as an NP-hard problem because it is a generalization of two well-known problems: the vehicle routing problem 
and the packing problem (Garey & Johnson, 1979). Commonly, routing and packing problems consider general two-
dimensional space constraints because they could be applied for several real-life cases. In this case, the pallet construction is 
set with a fixed maximum height, and there is no possibility of stacking products. However, the packing problem in many 
logistic contexts is usually a three-dimensional case. An influential research field is the decision-making process for routing 
decisions considering packing aspects for a set of customers. Both decisions are classic, complex, well-known combinatorial 
problems. The combined problem of routing and packaging has increased the attention of industry and practitioners of applied 
science. The main aim of this paper is to merge the container loading problem (CLP) with the conventional vehicle routing 
problem (VRP) by using three-dimensional (3D) constraints. The CLP seeks to identify the optimal place for shipping boxes 
to a set of customers. The CLP's key goal is to optimize the used space and inventory distribution without relocation aspects 
when a customer is visited by a vehicle on a given route. In addition, the VRP aims to minimize the distance traveled by the 
vehicles (Bernal et al., 2018; Linfati & Escobar, 2018). The capacitated vehicle routing problem with three-dimensional 
loading constraints (3L–CVRP) occurs when the VRP and CLP are combined. The 3L–CVRP considers the combination of 
two well-known NP-hard problems: the capacitated vehicle routing problem (CVRP) and the three-dimensional loading 
problem (3L). 
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Let 𝑚௜ be defined as the number of 3-dimensional items demanded by each customer 𝑖, and 𝑐௜ be the total weight of the 
demand ordered by each customer 𝑖 {𝑖 =  1,2, … ,𝑛}. Each item 𝐼௜௟ has a width 𝑤௜௟, height ℎ௜௟, and length 𝑙௜௟, where {𝑙 = 1,2, … ,𝑚} indicates the different items ordered by a customer 𝑖. The 3L–CVRP considers a homogeneous fleet of 𝑣 vehicles. 
Each vehicle's load surface has a width 𝑊, height 𝐻, length 𝐿, and limited capacity of weight 𝐶. Additionally, let 𝑆(𝑘) ⊆{𝑖 =  1,2, … ,𝑛} be the set of customers visited by vehicle 𝑘. The 3L–CVRP considers the well-known constraints of the 
CVRP with practical 3-dimensional constraints. The total load of each 𝑆(𝑘) customer must fit into a container with 𝑊 × 𝐻 × 𝐿 
dimensions. For the 3L–CVRP, the constraints associated with orientation, fragility, support area, and sequential loading must 
be satisfied. The orientation mentions that the item could be rotated without considering the vertical axis. The fragility 
constraints consider that each item 𝐼௜௟ has the given fragility flag 𝑓௜௟. In particular, we consider that fragile goods must not be 
placed by any other object. The support area considerations require that each item must have a minimum percentage of the 
bottom area that is being supported. Sequential loading constraints establish a visit sequence of the customers and a sequence 
of loading and unloading of products. Indeed, this work considers all the packing constraints by characterizing them. Most of 
the previously published works for 3L–CVRP have eliminated some of the packing constraints. Concerning the vehicle 
capacity constraints, the previously published works do not consider that the type of product density of the boxes is assumed 
as 1, being the weight of each box equal to its volume. 
 
We propose a novel heuristic approach for the 3L–CVRP based on Column Generation (CG). First, an approximation of the 
CVRP model is performed by CG with a master and slave problem. The slave problem is a Constrained Shortest Path (CSP) 
that yields feasible routes, with reduced costs of less than zero, to the master problem. On the other hand, the CG uses a 
GRASP approach to verify the feasibility of packing the routes generated by the CSP. The proposed algorithm gives positive 
or negative answers depending on whether the column rises to the master problem (positive) or if the approach generates a 
cut in the slave problem (negative). The problem is reoptimized until a feasible solution is obtained. A randomized multi-start 
constructive algorithm is employed to initialize the master problem to obtain feasible routes. 
 
The paper is structured as follows: The literature associated with the 3L–CVRP is presented in Section 2. Section 3 presents 
a detailed description of the framework utilized by the proposed algorithm. A computational comparative study on a subset 
of benchmark instances from the literature is provided in Section 4. Section 5 contains concluding remarks and future research.  

2. Literature review  

Several researchers have investigated the 3L–CVRP because this problem has many practical applications. Exact algorithms 
for vehicle routing problems with loading constraints have been proposed by Junqueira et al. (2013), Hokama et al. (2016), 
Mahvash et al. (2017), Mak-Hau et al. (2018). Junqueira et al. (2013) propose an integer linear programming model for the 
3L–CVRP. The proposed model considers constraints related to the cargo's vertical stability, multidrop situations, and load-
bearing strength of the boxes (including fragility). Hokama et al. (2016) describe a branch-and-cut algorithm for the vehicle 
routing problem with unloading constraints. The authors consider the versions of the problem with two and tri-dimensional 
parallelepiped items. The proposed approach uses several techniques to prune the branch-and-cut enumeration tree. The 
presented algorithm uses several packing routines with different algorithmic approaches, such as branch-and-bound, constraint 
programming, and metaheuristics. Mahvash et al. (2017) present a CG technique-based heuristic to solve this problem. First, 
an elementary shortest path problem is solved to find routes with a negative reduced cost to generate new columns in the CG 
technique. Mak-Hau et al. (2018) present an exact integer linear programming model that serves two purposes: 1) providing 
exact solutions for problems of modest size as a basis for comparing the quality of heuristic solution methodologies and 2) 
for further exploration of various relaxations, stack generation, and decomposition strategies that are based on the ILP model. 
 
Population-based methods for combined routing and packing problems have been introduced by Miao et al. (2012), Ruan et 
al. (2013), Lacomme et al. (2013), and Zhang et al. (2015), and recently by Vega-Mejía et al. (2020). Miao et al. (2012) solve 
the 3L–CVRP by a hybrid approach, which combines a genetic algorithm (GA) and Tabu Search (TS). Genetic Algorithm 
(GA) is developed for vehicle routing, and TS is developed for three-dimensional loading; these two algorithms are integrated 
for the combinatorial problem. Ruan et al. (2013) present a hybrid approach that combines honey bee matching optimization 
(HBMO) and six loading heuristics to solve the integrated problem. A new way to solve the packing subproblem of the 3L–
CVRP was proposed by Lacomme et al. (2013). The proposed packing approach is included in a GRASP×ELS hybrid 
algorithm dedicated to the computation of VRP routes. A Local Search is defined on each search space. Zhang et al. (2015) 
introduce a new practical variant of the combined routing and loading problem, referred to as the capacitated vehicle routing 
problem, by minimizing fuel consumption under three-dimensional loading constraints (3L–FCVRP). A local evolutionary 
search (ELS) framework incorporating a recombination method is employed to explore the solution space. A new heuristic 
based on open space is applied to examine the feasibility of the solutions. Vega-Mejía et al. (2020) propose a hybrid heuristic 
method based on the GRASP metaheuristic and the Clarke and Wright Savings algorithm to solve a vehicle routing problem 
with several loading and new routing constraints. A TS strategy applied to combined packaging-routing problems was 
proposed by Tarantilis et al. (2009). A methodology that combines TS and guided local search (GLS) strategies is proposed. 
The loading characteristics are approached by employing a collection of packing heuristics. The authors also expand the work 
proposed for the two-dimensional load capacitated vehicle routing problem (2L-CVRP) in Fuellerer et al. (2010) to the 3L–
CVRP. Bortfeldt et al. (2012) introduce an efficient hybrid algorithm including a TS algorithm for routing and a tree search 
algorithm for loading constraints. A local search (LS) algorithm for solving the three loading heterogeneous vehicle routing 
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problem with time windows (3L–HFCVRPTW) was explored by Pace et al. (2015). This paper introduces the problem and 
develops a specialized procedure for loading goods. The authors apply simple local search procedures to the routing problem. 
Simulated annealing outperforms iterated local search, suggesting that the routing problem is multimodal and that operators 
shift deliveries between routes. 
 
Bortfeldt et al. (2015) extend the vehicle routing problem with clustered backhauls (VRPCB) to an integrated routing and 
three-dimensional loading problem named VRPCB with 3D loading constraints (3L–VRPCB). The authors propose two 
hybrid algorithms for solving the 3L–VRPCB, consisting of routing and packing procedures. The routing procedures follow 
different metaheuristic strategies (large variable neighborhood search), and in both algorithms, a tree search heuristic is 
responsible for packing boxes. Männel & Bortfeldt (2016) consider the classical pickup and delivery problem (PDP) to be an 
integrated routing and three-dimensional loading problem, which is referred to as PDP with three-dimensional loading 
constraints (3L–PDP). The routing procedures modify a well-known large neighborhood search for the 1D-PDP. A tree search 
heuristic is responsible for packing boxes. Wei et al. (2018) study the well-known 2L–CVRP. A simulated annealing algorithm 
with a mechanism of repeated cooling and heating is proposed to solve the four versions of this problem, with or without the 
LIFO constraint and rotation of goods. 
 
Tao & Wang (2010) propose a minor packing heuristic-based approach for solving the loading subproblem, which is 
iteratively invoked by a simple TS algorithm for the routing problem. Bortfeldt & Homberger (2013) consider the 3L–CVRP. 
A two-stage heuristic is presented following a "packing first, routing second" approach, i.e., packing goods and routing of 
vehicles is performed in two strictly separated stages. Indeed, an optimal solution for the packing is proposed, and then the 
routing problem is solved. Junqueira & Morabito (2015) present heuristic algorithms for 3L–CVRP for a real case situation. 
The objective is to identify minimum-cost delivery routes for a set of identical vehicles that, after departing from a depot, visit 
all customers only once and return to the depot. The proposed approaches are based on classical heuristics from both vehicle 
routing and container loading literature and two metaheuristic strategies and their use in more elaborate procedures. Escobar-
Falcón et al. (2016) propose a hybrid algorithm based on the classic formulation of the vehicle routing problem and the load-
packing algorithm in three-dimensional space (3D-SLOPP, three-dimensional single large object packing problem). Several 
cuts are performed in the routes by the constraints of sub tours, capacity, and packing. Escobar L.M. et al. (2015) introduce a 
hybrid metaheuristic approach for the 3L-CVRP. The proposed approach uses an initial solution obtained by a modified Clark 
& Wright algorithm considering a GRASP scheme's approach. A Granular Tabu Search (GTS) algorithm is then employed to 
improve the initial solution. The GRASP approach validates the packing constraints during the search process. These two 
works are developed from different approaches, but both contain the heuristic aspect of their development, which generates 
the approximate solution. Pinto et al. (2015) propose an approximation by generating columns for the routing and packing 
goods in two dimensions, using cuts when a vehicle's capacity is exceeded. Mahvash et al. (2017) propose a solution based 
on a column generation heuristic technique, where the slave problem solves a CSP through a heuristic algorithm. In addition, 
vehicle loading restrictions are verified by a set of packaging heuristics. 
 
3. Description of the proposed approach 

Since solution methods based on column generation for VRP problems are efficient, we propose a heuristic algorithm that 
combines exact methods and a GRASP procedure to solve the 3L–CVRP. In particular, we solve the CVRP problem using 
column generation while the packing constraints are satisfied by a GRASP algorithm. 

3.1 Mathematical Formulation for the Capacitated Vehicle Routing Problem (CVRP) 

For the formulation of the capacitated routing problem (CVRP), first, we define a set of homogeneous vehicles (𝑉) and one 
of the customers (𝐶), where the depot is node 0. The sequence in which a group of customers is visited for each vehicle is 
decided. Here, 𝑥௜௝௥ is defined as a binary variable that takes the value of 1 if vehicle 𝑟 𝜖 𝑉 uses the arc linking customer 𝑖 𝜖 𝐶 
with customer 𝑗 𝜖 𝐶 (Eq. (11)). Additionally, the truck has given dimensions (𝑉𝑜𝑙𝐶) that cannot be exceeded by the route's 
volume, as seen in Constraint (7), where each customer has an associated volume 𝑣௜. Similar to the volume, we have the load 
weight of each customer 𝑝௜. Therefore, we cannot exceed the weight (𝑊𝑒𝑖𝐶) of vehicle (see Eq. (8)). On the other hand, each 
customer must be visited strictly once (Eq. (2) and Eq. (3)). Constraints (4) to (6) represent the balance equations. Each route 
starts and ends at depots (Eq. (4) and Eq. (5)), and everything that enters a node must exit (see Eq. (6)). The sub tour constraints 
are avoided by Eq. (9), where iterative cuts are added to restrict the number of customers of the sub tour and prohibit their 
creation. Due to the limited number of available trucks, the number of routes cannot exceed the N number of vehicles (see Eq. 
10).  The problem's objective is to minimize the total distance of all routes (Eq. (1)).  𝑚𝑖𝑛෍෍෍𝑥௜௝௥௥∈ோ௝∈஼ 𝑑௜௝௜∈஼  

s.t: 

(1) 

෍෍𝑥௜௝௥௥∈ோ௝∈஼ = 1                                                                                                                                     ∀𝑖 ∈ 𝐶 (2) 



  

 

424෍෍𝑥௜௝௥௥∈ோ௜∈஼ = 1                                                                                                                                     ∀𝑗 ∈ 𝐶 (3) 

෍𝑥଴௝௥௝∈஼ = 1                                                                                                                                           ∀𝑟 ∈ 𝑉 (4) 

෍𝑥௜଴௥௜∈஼ = 1                                                                                                                                           ∀𝑟 ∈ 𝑉 (5) 

෍𝑥௜௛௥௜∈஼ −෍𝑥௛௝௥௜∈஼ = 0                                                                                                        ∀𝑟 ∈ 𝑉;  ℎ ∈ 𝐶 (6) 

෍෍𝑥௜௝௥௝∈஼ 𝑣௜௜∈஼ ≤ 𝑉𝑜𝑙𝐶                                                                                                                     ∀𝑟 ∈ 𝑉 (7) 

෍෍𝑥௜௝௥௝∈஼ 𝑝௜௜∈஼ ≤ 𝑊𝑒𝑖𝐶                                                                                                                        ∀𝑟 ∈ 𝑉 (8) 

෍෍𝑥௜௝௥௝∈஼௜∈஼ ≤ |𝑆| − 1                                                                                                         ∀ |𝑆| ≥ 1. 𝑆 ⊆ 𝑉 (9) 

෍෍𝑥଴௝௥௥∈௏௝∈஼ ≤ 𝑁 (10) 

𝑥௜௝௥ ∈ {0.1}                                                                                                                            ∀𝑟 ∈ 𝑉; 𝑖. 𝑗 ∈ 𝐶 (11) 

3.3 3L–CVRP solution by column generation (AHBGC) 

One of this work's main contributions is a heuristic algorithm based on column generation for integrated routing and packing 
problems. The algorithm consists of splitting the problem into a master and a slave problem.  

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 1. Sequence of steps of the proposed algorithm 

In addition, communication is established where the master problem sends the values of their dual variables. In contrast, slave 
feedback sends the master problem to transmit their solution, which is incorporated as a new column. The master problem is 
responsible for managing the vehicles' sequences to obtain optimum routes that minimize the total distance and send its 
variables to the slave problem. On the other hand, the slave problem is responsible for generating feasible routes in weight, 
volume, and dimensional constraints (by the packing GRASP algorithm detailed in this section). The results of the slave 
problem are transmitted to the master problem to be incorporated into the model. A diagram of the approach proposed here is 

MSRCA 

Master Problem 

GRASP Slave Problem 
Generated column 

Feasible columns 

Dual variables Feasible generated 
column 
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illustrated in Fig. 1. A more detailed sequence of steps is presented in Algorithm 1, in it must be tunned two sets of parameters, 
the solver parameters that, in this case, are the default values for the CPLEX ® and the GRASP parameters that are detailed 
moreover. As input, the algorithm needs the information problem: the fleet of vehicles, the set of customers and its boxes, the 
size of the fleet, the distance matrix between depot and customers, and the weight and the volume limit of the vehicles. The 
column generation starts with a feasible set of routes obtained by a Multi start Randomized Constructive Algorithm (line 1) 
to create the master problem (line 2). Then, an iterative cycle is imposed (lines 3-23); the general idea on each iteration of this 
process is to solve the master problem to obtain a set of feasible routes that solve the problem (incumbent), and at the same 
time extract the dual variables (𝑾𝒊𝒕) and with the help of the slave problem propose new routes that end up updating the 
incumbent (line 6). Thus, the slave problem is generated (line 7), and internally another cycle is executed (lines 8-22); it can 
be found a new route or the end of the optimization process solving the slave problem (line 10). Whether a new route is found 
(lines 11-19), it must be checked for packing feasibility (using the GRASP Algorithm, line 12), every feasible route is sent to 
the master problem, breaking the internal loop, and continuing the outer cycle (lines 13-15), for unfeasible routes a cut to the 
slave problem is added (line 17) and continue iterating inside the inner cycle. When the solution of the slave problem is 
unfeasible, the complete process stops, returning the incumbent of the column generation algorithm (line 20). 

Algorithm 1. Column Generation Algorithm 
Parameters: SolverP: set of parameters required for the selected solver, ParGRASP: parameters required for the proposed 
GRASP; 
Input: List V: list of vehicles, List B: list of boxes of the customers, N: number of available vehicles, dij: distance matrix, 
WeiC: weight limit of the vehicles, VolC: volume limit of the vehicles;  
Output: Routes Incumbent: set of routes. 
1: Columns ← MSRCA(V, B, N) 
2: MasterModel ← GenerateModel(Columns, dij, N) 
3: FlagCycle ← true 
4: While FlagCycle 
 5:          FlagCycle ← false 
6:          Incumbent, 𝑾𝒊𝒕←Solve(SolverP; MasterModel)  

7:          SlaveModel ← GenerateModel(𝑊௜௧, dij, WeiC, VolC) 
8:          FlagColumn ← true 
9:          While FlagColumn 
 10:              Route, Feasible ←Solve(SolverP; SlaveModel) 
11:                     if Feasible then 
12:                                  if GRASPAlgorithm(ParGRASP; Route, B, V.dimensions) then 
13:                          MasterModel ← AddColumn(Route, MasterModel) 
14:                FlagColumn ← false 
15:                      FlagCycle ← true 
16:                                  else 
17:                                               SlaveModel ← AddCut(Route, SlaveModel) 
18:                                  end if 
19:          else 
20:               return Incumbent 
21:              end if 
22:         end while 
23: end while 
 

3.2.1 Master Problem (MP) 

For the master problem, it is essential to declare a set of routes (𝑅𝑠) and one set of customers (𝐶), where the depot node is 0. 
The binary variable 𝑦௥ (see Eq. (15)) is defined as 1 if the route 𝑟𝜖𝑅𝑠 or 0 otherwise, and the MP ensures that each customer 
is visited once (Eq. (13)) using the 𝑎௝௥ parameter.  𝑚𝑖𝑛෍𝑐௥𝑦௥௥∈ோ  

 
s.t: 

(12) 

෍𝑎௝௥𝑦௥௥∈ோ ≥ 1                                                                                                     ∀𝑗 ∈ 𝐶.  𝜋௝ 𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (13) 



  

 

426෍𝑦௥௥∈ோ ≤ 𝑁                                                                                                                     ∀ 𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝜎) (14) 

𝑦௥ ∈ {0.1}                                                                                                                                              ∀𝑟 ∈ 𝑅𝑠 (15) 

This parameter depends on the number of routes with a reduced cost less than zero obtained from the slave problem and is 
defined mathematically later. In addition, the MP must ensure that the number of optimal routes is less than or equal to the 
number of vehicles 𝑁 (Eq. (14)). The objective function is to minimize the total distance of the routes (Eq. (12)). Once the 
master problem is solved, it generates 𝜋 + 1 dual variables (𝑊௜௧) used by the slave problem in the objective function.  

3.2.2 Slave Problem (AP) 

For the slave problem, a CSP is performed, where the objective is to minimize the reduced cost of the original problem (16). 
We want to achieve as many routes as possible until we obtain a route with a value greater than or equal to 𝜎 in the objective 
function value by using the binary variable 𝑥௜௝, which is defined as a binary variable that takes the value of 1 if the arc linking 
customer 𝑖𝜖𝐶 with customer 𝑗𝜖𝐶 is activated. Additionally, the remaining constraints that were not utilized in the master 
problem are maintained for this problem. Constraints (17) and (18) ensure that each customer is visited strictly once. 
Constraints (19) and (20) ensure that the route starts and ends at the depot, while constraints (21) ensure that if an arc is 
activated (𝑥௜௝  =  1) towards a customer, 𝑗 must also originate from node (𝑥௜௝  =  1). Additionally, the volume and weight of 
the truck cannot be exceeded. This limitation is achieved by constraints (22) and (23), respectively. An iterative system of 
cuts is implemented, where the customers generate sub-tours using customers (24). The number of active nodes of the route 
is restricted to maintain it without sub tours. In this way, the model is reoptimized until there are no subtours in the solution. 
The nature of the variables is described by (25). 
 min ෍෍(𝑑௜௝ − 𝜋௜௧)𝑥௜௝௝∈஼௜∈஼ 𝜎 

s.t: 
(16) 

෍𝑥௜௝௝∈஼ = 1                                                                                                                                              ∀𝑖 ∈ 𝐶 (17) ෍𝑥௜௝௜∈஼ = 1                                                                                                                                              ∀𝑗 ∈ 𝐶 (18) ෍𝑥଴௝௝∈஼ = 1                                                                                                                                                           (19) ෍𝑥௜଴௜∈஼ = 1                                                                                                                                                           (20) ෍𝑥௜௛௜∈஼ −෍𝑥௛௝௝∈஼ = 0                                                                                                                            ℎ ∈ 𝐶 (21) ෍෍𝑥௜௝௝∈஼ 𝑣௜௜∈஼ ≤ 𝑉𝑜𝑙𝐶                                                                                                                                         (22) ෍෍𝑥௜௝௝∈஼ 𝑝௜௜∈஼ ≤ 𝑝𝑒𝑠𝐶                                                                                                                                         (23) ෍෍𝑥௜௝௥௝∈஼௜∈஼ ≤ |𝑆| − 1                                                                                                         ∀ |𝑆| ≥ 1. 𝑆 ⊆ 𝑉 (24) 

𝑥௜௝ ∈ {0.1}                                                                                                                                         ∀ 𝑖. 𝑗 ∈ 𝐶 (25) 

Once the shortest route problem is solved, parameter 𝑎𝑖𝑟 (26) for the master problem is obtained. 
 𝑎௜௥ = ෍𝑥௜௝௝∈஼                                                                                                           ∀ 𝑖 ∈ 𝐶;  𝑟𝜖𝑅 generated (26) 

  
3.3. Packing validator  
 
In this work, a GRASP algorithm based on the idea proposed by Martínez et al. (2015) was employed as a validation routine 
for the packing constraints. This algorithm is developed to solve the problem of three-dimensional packing considering the 
constraints of multiple destinations. In this way, when a solution is obtained for the slave problem, the GRASP algorithm is 
called to validate if the obtained column meets the packing constraints. If it is a valid solution, it becomes a new column of 
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the Master Problem. Otherwise, this column is discarded, and the slave problem must be solved again until a valid column is 
obtained. 
 

Algorithm 2. Constructive Algorithm  
Parameters: A, N, deterministic: Boolean flag to select the deterministic or random version; 
Input: List Bi: list of boxes of the customer i, List E: current empty spaces, Packing Pattern P: current packing pattern, k: 
current iteration; 
Output: Packing Pattern P, List E, List Bi. 
1: while Bi ≠ ∅ and E ≠ ∅ do  
2:           e ← SelectMaximalSpace(E)  
3:           List Layers ← GenerateLayersList(e, Bi) 
4:           if deterministic = false then  
5:                   List RCL ← BuildRCL(A, N; Layers, k) 
6:                   Layer L ← SelectLayerRandomly(RCL) 
7:    else  
8:           Layer L ← SelectLayerBestFitsOnSpace(Layers, e) 
9:          end if 
10:        P ← LocateLayerOnSpace(L, e) 
11:        E ← UpdateListOfMaximalSpaces(P, e, E)  
12:        Bi ← UpdateListOfRemainingBoxes(L)  
13: end while 
14: return P, E, Bi 
The reactive GRASP algorithm consists of two phases to verify the route's viability. The first phase considers a constructive 
algorithm, and the second is an improvement phase. In the constructive phase, a solution is created by adding the items 
pseudorandomly. In the second phase, the algorithm performs improvement movements that consist of emptying and filling 
again the vehicle but in a deterministic fashion. Algorithm 2 shows the difference between phases, for the constructive phase, 
the flag deterministic has a value false, producing pseudo-random assignations of items to the empty spaces, the degree of 
randomness varies depending on the current iteration (k), the number of iterations for training the alphas values (N), the set of 
alpha values selected (A), and the performance obtained during the training process. A detailed explanation of the 
configuration of the coefficients for the reactive feature is presented in Cuellar-Usaquén et al. (2022). 
 
Algorithm 3. GRASP Algorithm  

Parameters: TotalIter: total GRASP iterations, A: set of α coefficients for the reactive feature, N: number of iterations for α 
training, K: percentage of removed boxes; 
Input: List R: route, List B: list of boxes of each customer in the route R, Space v: dimensions of the vehicle; 
Output: Boolean Packable. 
1: for k ← 1 to TotalIter do 
2:         List E ← CreateMaximalSpace(v) 
3:         Packing Pattern P ← ∅ 
2. 4:         for each customer i in R do   
5:                P, E, Bi ← ConstructiveAlgorithm(A, N, false; Bi, E, P, k)  
6:        if Bi ≠ ∅ then 
7:                        E ← UpdateListOfMaximalSpacesForNextCustomer(P, E) 
8:           else 
9:                        P, E, Bi ← RemoveK%(Bi, E, P, K) 
10:                      P, E, Bi ← ConstructiveAlgorithm(A, N, true; Bi, E, P, k)  
11:                if Bi ≠ ∅ then 
12:                                E ← UpdateListOfMaximalSpacesForNextCustomer(P, E) 
13:                       else 
14:             break for  
15:                              next k and goto line 1: 
16:                end if 
17:               end if  
18: end for 
19:       return Packable = true  
20: end for 
21: return Packable = false 
 
Algorithm 3 details the main steps of the GRASP; it consists of an iterative process (lines 1-20); in each iteration, all the boxes 
are trying packed, as soon all boxes can be packed the iterating process is finished (line 19), but if the iterations are exhausted 
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then the algorithm returns saying that the route is not packable (line 21). Thus, each customer is intended to pack inside the 
remaining space (lines 4-18), using the scheme of construct and improved (lines 5-12), when a mid-route customer cannot be 
packed, all the iteration is discarded (line 15). The highlighting issues of the GRASP are listed as follows: 

I. A random strategy based on maximizing the use of the box spaces that best fit into the available (empty) space is 
applied. This process consists of five steps. In step zero, a list of empty three-dimensional spaces is created in the 
form of a parallelepiped. In the next step, the space with the greatest possible capacity is chosen from the list. In step 
two, the customer is chosen, and its items are packed depending on the increased occupied volume that best fits into 
the container. The list of spaces is updated in the third step, iteratively generating new parallelepipeds for the current 
customer every time a new item is added. The list of parallelepipeds of the remaining spaces for the next customer 
is updated. 

II. The randomization procedure allows generating combinations of packing with the selected items and occupying as 
much space as possible. This outcome is achieved by creating combinations of the boxes' packing and then randomly 
generating the scenarios based on the dimensions of the boxes and possible orientations of packing. 

III. The improvement of the current solutions allows mobilizing and compressing the load to increase the occupied space. 
The first part of the algorithm uses a constructive deterministic method to repack the unpacked and removed boxes 
based on the criterion of "best item that fits." The second part of the improved algorithm performs the previously 
mentioned method to obtain a partial solution when the occupied space decreases. 

 
The GRASP packing solution indicates whether the generated column (R route) could be packed. If the route could be packed, 
the results are sent to the master problem and the next iteration of the generation of columns. Otherwise, if the route is not 
feasible by packing, the AP is reoptimized by adding a cut that prohibits the obtained column (27). This process is repeated 
until the packaging algorithm accepts a new solution. ∑ ∑ 𝑥௜௝௝∈஼ோ௜∈஼ோ ≤ |𝑛|; where CR and n are the ids and number of customers in the route R (27) 

3.4 Multi-Start Randomized Constructive Algorithm (MSRCA) 
 
A MSRCA was employed to initialize the master problem, which consists of 4 steps: 
 

I. The list of vehicles and customers is initialized. 
II. A vehicle (Vs) is selected depending on one of the following two criteria, with a probability of 50% each: 

• Vehicle with less remaining volume (0% - 50%) 
• Vehicle with less remaining weight (51% - 100%) 

 
According to the chosen criterion, the vehicles are ordered, and a pseudorandom probability is assigned to each 
vehicle (see Equation 28). One vehicle is selected randomly. 

III. Choosing the customer is performed in a similar way to choosing the vehicles. A customer is chosen (𝐶௦) based on 
two criteria with a probability of 50% each: 

• Customer with the highest volume (0% - 50%) 
• Customer with better weight adjustment (51% - 100%) 

 
Customers that can be packed are ordered according to the chosen criterion. A pseudorandom probability is assigned 
to each customer (see Equation 28). If there are no customers on the list, the vehicle is closed, and we return to step 
2. 

IV. The list of customers and remaining vehicles is updated, and the 𝑉௦ route is updated with the 𝐶௦. In addition, if the 𝑉௦ ' available volume is less than the minimum of the remaining customers' volumes or if the 𝑉௦ ' available weight is 
less than the remaining customers' minimum weight, the vehicle is closed, and it returns to step 2. If there are no 
vehicles available, but if the remaining customers are returned to step 1, in the opposite case where vehicles and 
customers remain, return to step 2. 
   𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅𝑎𝑛𝑑𝑜𝑚 𝑃𝑟𝑜𝑏 = ቂௌ௜௭௘ ௅௜௦௧ି௉௢௦௜௧௜௢௡ ஼௔௡ௗ௜ௗ௔௧௘ାଵௌ௜௭௘ ௅௜௦௧ ቃ0,5(𝑆𝑖𝑧𝑒 𝐿𝑖𝑠𝑡 + 1)                                                  (28) 

 
An example of the pseudorandom probability is presented as follows: We consider three homogeneous vehicles in weight and 
volume (a, b, and c). For an intermediate iteration, truck a has 30 units of remaining volume, truck b has 50 units of remaining 
volume, and truck c has 20 remaining volume units. In step 2, with a probability of 0.45, the vehicle's criterion with the least 
volume is chosen. The trucks' final results obtain c, a, and b by using (28). 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅𝑎𝑛𝑑𝑜𝑚 𝑃𝑟𝑜𝑏(𝑇𝑟𝑢𝑐𝑘 𝑎) = ቂଷିଶାଵଷ ቃ0,5(3 + 1) = 26                                                                        (29) 
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𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅𝑎𝑛𝑑𝑜𝑚 𝑃𝑟𝑜𝑏(𝑇𝑟𝑢𝑐𝑘 𝑏) = ቂଷିଷାଵଷ ቃ0,5(3 + 1) = 16                                                                        (30) 

 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅𝑎𝑛𝑑𝑜𝑚 𝑃𝑟𝑜𝑏(𝑇𝑟𝑢𝑐𝑘 𝑐) = ቂଷିଵାଵଷ ቃ0,5(3 + 1) = 12                                                                        (31) 

 
Therefore, from 0% to 50% probability, the chosen truck is c, from 51% to 83.3% probability, the chosen truck is b, and from 
83.4% to 100% probability, the chosen truck is a. From a random number of 0.38 results, vehicle c is chosen. In this way, the 
MSRCA algorithm was utilized to obtain the routes initializing the 𝑎௜௥parameter of the master problem. 
 
4. Computational results  
 
The MSRCA algorithm was coded on a computer with the following specifications: Windows 7 Enterprise ®, with an Intel 
® Core ™ i7-4610 M CPU @ 3.0 GHz and 16 GB of RAM. The column generation for the CVRP and GRASP algorithm 
was coded on a computer with the following specifications: Lenovo Legion Y520 – Linux Ubuntu 16.04 LTS - Intel® Core 
™ i7-7700HQ CPU @ 2.80 GHz × 8 and 15.5 GB of RAM. The optimization algorithm is IBM CPLEX Studio 12.6®, and 
the C ++ programming language has been chosen. This study uses the value of the number of iterations proposed by Escobar 
et al. (2015). The proposed approach has considered the classical set of benchmark instances (27 instances) to validate the 
performance of the proposed approach. The former has been compared with the best-known published approaches for the 3L–
CVRP. Several best-known results have been reached. The computing time of the proposed methodology is quite high 
compared to the published approaches. The benchmark set for the 3L–CVRP has been taken from the library published in 
http://or.dei.unibo.it/instances/three-dimensional-capacitated-vehicle-routing-problem-3l-cvrp. On the other hand, given that 
the slave problem is not necessarily solved to optimality, it was necessary to calibrate the maximum number of obtained 
solutions. An experimental value of a maximum of six complete solutions was obtained. 
 
Table 1 
Obtained results by the MSRCA Heuristic Algorithm 

Instance Customers Items Vehicles Time (Seconds) 
1 15 32 4 <1 
2 15 26 5 <1 
3 20 37 4 6 
4 20 36 6 <1 
5 21 45 6 <1 
6 21 40 6 <1 
7 22 46 6 1 
8 22 43 6 <1 
9 25 50 8 2 
10 29 62 8 1 
11 29 58 8 1 
12 30 63 9 <1 
13 32 61 8 1 
14 32 72 9 1 
15 32 68 9 1 
16 35 63 11 <1 
17 40 79 14 <1 
18 50 99 12 4 
19 71 147 18 9 
20 75 155 17 12 
21 75 146 18 9 
22 75 150 17 7 
23 75 143 16 19 
24 100 193 22 25 
25 100 199 26 15 
26 100 198 23 13 

Average  5.2 
Source: Owner 
 
The obtained results of the proposed approach are shown in Table 1 and Table 2. For Table 1, the first columns indicate the 
number of instances, number of customers, items, and vehicles. In the last column, the duration time is described in seconds, 
and the MSRCA is applied to obtain the solution of the routes for each instance, demonstrating its high effectiveness. Table 
2 shows the summary for the best obtained results. We have defined independent parameters whose values must be determined 
by extensive computational experiments for the proposed approach. A calibration process has been carefully performed 
because the proposed approach's performance depends on the value for each parameter. This procedure is iteratively 
performed by considering every single factor (variable) and finding its "best value." The initial values of some parameters are 
obtained from previous similar works for some variants of routing and packing problems. In this way, a comparative analysis 
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of the efficiency and quality of the solution was carried out. The other parameters were adjusted by implementing extensive 
computational tests, fixing the operator that generates the best quality solutions. Based on the test results, we examine the 
parameters sequentially according to their a priori importance and attempt to find the "best" treatment for each factor. 
 
Table 2  
Obtained results of proposed approach 

Instance  Customers Items Vehicles Proposed Approach †Solution Time(s) 

1 15 32 4 300.70 185 

2 15 26 5 334.96 1 

3 20 37 4 392.63 79 

4 20 36 6 448.48 5 

5 21 45 6 443.61 138 

6 21 40 6 498.16 149 

7 22 46 6 769.68 92 

8 22 43 6 884.32 209 

9 25 50 8 641.23 6 

10 29 62 8 820.35 57 

11 29 58 8 804.32 1242 

12 30 63 9 624.24 3 

13 32 61 8 2645.95 157 

14 32 72 9 1482.88 233 

15 32 68 9 1341.14 79 

16 35 63 11 698.61 1 

17 40 79 14 824.01 8 

18 50 99 12 762.35 105 

19 71 147 18 604.65 275 

20 75 155 17 1168.20 1557 

21 75 146 18 1150.32 7160 

22 75 150 17 1130.54 925 

23 75 143 16 1165.43 834 

24 100 193 22 1464.87 670 

25 100 199 26 1600.35 725 

26 100 198 23 1622.20 2138 
Source: Owner 

Table 3 shows the obtained results on the benchmarking set comparing with the previous published papers. The first columns 
describe the number of nodes, items, and vehicles for each instance. A set of instances of the specialized literature has been 
employed to validate the efficiency of the AHBGC algorithm. The obtained solution and computational time necessary to 
reach it were taken into account. The obtained results are compared with the best solutions obtained in previous works. We 
have considered the best solution (BKS) published by the literature's different previous works. Four representative works are 
shown, each with its respective total distance of the routes, GAP concerning the BKS, and computing time (seconds) to obtain 
the solution. In the last columns, the obtained solution of the former algorithm is shown. In addition, Table 2 shows the 
average time and average GAP (%) of the published works concerning the BKS values and relative GAP (%) concerning the 
BKS. For the applied instances, the MSRCA algorithm identified a feasible solution for 3D-BPP, where the large problem 
had 26 boxes and 15 customers, while the most complex problem had 199 boxes and 100 customers. As shown in Table 2, 
the algorithm has very competitive results regarding the objective function and time to obtain solutions, with an average of 
655 seconds for the 26 instances. 
 
The proposed approach has been tested in 26 instances of the literature, where the small problem has 15 customers and 4 
vehicles, and the large problem has 100 customers and 26 vehicles (Table 2). The results show stable behavior, although when 
increasing the number of customers, there is an overflow of distance and time. As the number of customers increases, the 
slave problem presents great inconveniences due to its complexity. It is important to note that competitive results have been 
obtained in fewer than 50 customers. The average computing time is still very competitive, despite analyzing the routes' total 
distances. On the other hand, the GAP percentage concerning the BKS obtains a value of 2.26 %, and although it is not the 
best solution if competitive results are presented, it will serve as a reference for future work.
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Table 3 
Comparison results of published algorithms for 3L–CVRP 

Instance  BKS  
Gendreau 

et al. 
(2006) 

GAP 
BKS 
(%) 

Solution 
Time (s) 

Tarantilis 
et al. 

(2009) 

GAP 
BKS 
(%) 

Solution 
Time (s) 

Bortfeldt 
(2012) 

GAP 
BKS 
(%) 

Average 
Time (s) 

Ruan, 
et al. 

(2013) 

GAP 
BKS 
(%) 

Solution 
Time (s) 

Escobar, 
et al. 

(2015) 

GAP 
BKS 
(%) 

Solution 
Time (s) 

Proposed 
Approach 

GAP 
BKS 
(%) 

Solution 
Time(s)† 

1 300.70 316.32 5.20 1800 321.47 6.91 13 302.02 0.44 72 303.21 0.84 99 300.70 0.00 107 300.70 0.00 185 
2 334.96 350.58 4.66 1800 334.96 0.00 12 334.96 0.00 1 334.96 0.00 5 340.55 1.67 7 334.96 0.00 1 
3 392.63 447.73 14.03 1800 430.95 9.76 541 392.63 0.00 182 398.05 1.38 94 404.03 2.90 154 392.63 0.00 79 
4 430.89 448.48 4.08 1800 458.04 6.30 324 437.19 1.46 16 440.68 2.27 47 430.89 0.00 8 448.48 4.08 5 
5 443.61 464.24 4.65 1800 465.79 5.00 100 443.61 0.00 183 452.56 2.02 64 492.24 10.96 456 443.61 0.00 138 
6 498.16 504.46 1.26 1800 507.96 1.97 1212 498.16 0.00 24 498.56 0.08 197 498.32 0.03 17 498.16 0.00 149 
7 769.68 831.66 8.05 1800 796.61 3.50 365 769.68 0.00 133 790.23 2.67 317 789.78 2.61 335 769.68 0.00 92 
8 810.89 871.77 7.51 1800 880.93 8.64 230 810.89 0.00 139 820.67 1.21 99 875.08 7.92 496 884.32 9.06 209 
9 630.13 666.1 5.71 1800 642.22 1.92 982 630.13 0.00 24 635.50 0.85 353 639.26 1.45 78 641.23 1.76 6 

10 820.35 911.16 11.07 3600 884.74 7.85 1308 820.35 0.00 175 836.21 1.93 411 829.23 1.08 2063 820.35 0.00 57 
11 762.51 819.36 7.46 3600 873.43 14.55 523 803.61 5.39 136 825.75 8.29 198 762.51 0.00 1370 804.32 5.48 1242 
12 614.59 651.58 6.02 3600 624.24 1.57 295 614.59 0.00 14 626.59 1.95 89 641.30 4.35 62 624.24 1.57 3 
13 2645.95 2928.34 10.67 3600 2799.74 5.81 2193 2645.95 0.00 268 2739.80 3.55 320 2759.12 4.28 2017 2645.95 0.00 157 
14 1368.42 1559.64 13.97 3600 1504.44 9.94 4581 1368.42 0.00 312 1469.38 7.38 268 1482.88 8.36 3599 1482.88 8.36 233 
15 1341.14 1452.34 8.29 3600 1415.42 5.54 2528 1341.14 0.00 312 1369.69 2.13 357 1374.22 2.47 3598 1341.14 0.00 79 
16 698.61 707.85 1.32 3600 698.61 0.00 4257 698.61 0.00 3 703.15 0.65 432 703.38 0.68 11 698.61 0.00 1 
17 824.01 920.87 11.75 3600 872.79 5.92 2096 866.4 5.14 3 872.05 5.83 375 871.63 5.78 23 824.01 0.00 8 
18 741.74 871.29 17.47 7200 818.68 10.37 2509 741.74 0.00 417 780.37 5.21 326 838.45 13.04 3613 762.35 2.78 105 
19 587.95 732.12 24.52 7200 641.57 9.12 1941 587.95 0.00 427 605.59 3.00 1375 634.27 7.88 3601 604.65 2.84 275 
20 1090.22 1275.2 16.97 7200 1159.72 6.37 2823 1090.22 0.00 443 1119.45 2.68 1337 1147.64 5.27 3599 1168.20 7.15 1557 
21 1147.80 1277.94 11.34 7200 1245.35 8.50 2686 1147.80 0.00 424 1167.28 1.70 1248 1218.54 6.16 3599 1150.32 0.22 7160 
22 1130.54 1258.16 11.29 7200 1231.92 8.97 4659 1130.54 0.00 426 1171.77 3.65 1295 1133.71 0.28 3598 1130.54 0.00 925 
23 1116.13 1307.09 17.11 7200 1201.96 7.69 4854 1116.13 0.00 411 1136.27 1.80 1106 1189.25 6.55 3598 1165.43 4.42 834 
24 1407.36 1570.72 11.61 7200 1457.46 3.56 5726 1407.36 0.00 453 1426.34 1.35 2001 1464.03 4.03 3598 1464.87 4.09 670 
25 1585.46 1847.95 16.56 7200 1711.93 7.98 6283 1600.35 0.94 431 1585.46 0.00 1459 1664.84 5.01 3599 1600.35 0.94 725 
26 1529.86 1747.52 14.23 7200 1646.44 7.62 9916 1529.86 0.00 435 1562.18 2.11 3140 1647.88 7.71 3600 1622.20 6.04 2138 

Average 
Time (s)       4223     2421     226     654     1800     655 

Average 
GAP (%)     10.26     6.36     0.51     2.48     4.25     2.26   

Source: Owner 

* BKS, Best Known Solution is calculated from the compilation of the different previous works that reached this solution. 
† All computing times are reported in seconds.  
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5. Conclusing remarks and future work  
 
This paper has presented a novel heuristic solution based on the generation of columns for vehicle routing and packaging of 
goods, which finds feasible routes in terms of volume, weight, and load inside the truck and minimizes the distances of these 
routes. In addition, the formulation and different algorithms used to perform the work have been presented. Additionally, the 
results were presented for different instances of the literature. Regarding the model's behavior, it can be inferred that the model 
presents competitive results on a small scale. In contrast, there is an overflow of time and distance on a large scale because 
the slave problem is an NP-hard problem. Finding optimal solutions for this model becomes very difficult. Therefore, the 
AHBGC algorithm's performance depends on the AP model's structure, given by the number of customers to address the 
problem. In future work, we propose acceleration methods for the slave problem. In addition, an algorithm to complement the 
column generation approach must be developed. Indeed, since a new column is added to the master problem, it is impossible 
to ensure that it belongs to the base by considering a favorable reduced cost. The new approach must help the solution enter 
the base. On the other hand, a new column control procedure must be considered to remove it from the routing matrix and 
decrease its size. Additionally, stochastic considerations with appropriate solution techniques must be considered, such as 
those proposed by Escobar (2012), Escobar et al. (2012), Escobar et al. (2013a), and Paz et al. (2015), for related problems. 
In addition, metaheuristic algorithms based on granular search space could be extended to related routing problems (Escobar 
et al., 2014a; Escobar et al., 2013b; Bernal et al., 2021; Linfati et al., 2014; Escobar et al., 2014b). 
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