

* Corresponding author
E-mail: omerryilmaz@gmail.com (Ö. Yılmaz)

2022 Growing Science Ltd.
doi: 10.5267/j.ijiec.2022.5.003

International Journal of Industrial Engineering Computations 13 (2022) 617–640

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Optimizing the learning process of multi-layer perceptrons using a hybrid algorithm based on
MVO and SA

Ömer Yılmaza*, Adem Alpaslan Altunb and Murat Köklüb

60100, Tokat, Turkey, Vocational and Technical Anatolian High School Department of Information Technologies, Tokata
bDepartment of Computer Engineering, Faculty of Technology, Konya Selcuk University, 42130, Konya, Turkey
C H R O N I C L E A B S T R A C T

Article history:
Received November 10 2021
Received in Revised Format
May 2 2022
Accepted May 19 2022
Available online
May, 19 2022

 Artificial neural networks (ANNs) are one of the artificial intelligence techniques used in real-
world problems and applications encountered in almost all industries such as education, health,
chemistry, food, informatics, logistics, transportation. ANN is widely used in many techniques such
as optimization, modelling, classification and forecasting, and many empirical studies have been
carried out in areas such as planning, inventory management, maintenance, quality control,
econometrics, supply chain management and logistics related to ANN. The most important and just
as hard stage of ANNs is the learning process. This process is about finding optimal values in the
search space for different datasets. In this process, the values generated by training algorithms are
used as network parameters and are directly effective in the success of the neural network (NN). In
classical training techniques, problems such as local optimum and slow convergence are
encountered. Meta-heuristic algorithms for the training of ANNs in the face of this negative
situation have been used in many studies as an alternative. In this study, a new hybrid algorithm
namely MVOSANN is suggested for the training of ANNs, using Simulated annealing (SA) and
Multi-verse optimizer (MVO) algorithms. The suggested MVOSANN algorithm has been
experimented on 12 prevalently classification datasets. The productivity of MVOSANN has been
compared with 12 well-recognized and current meta-heuristic algorithms. Experimental results
show that MVOSANN produces very successful and competitive results.

© 2022 by the authors; licensee Growing Science, Canada

Keywords:
Optimization
Training neural network
Multi-layer perceptron
Meta-heuristic algorithms
Hybrid optimization algorithm
Simulated annealing
Multi-verse optimizer

1. Introduction

In recent years, meta-heuristic algorithms have been frequently used in computational methods to increase efficiency and
quality, reduce costs, and solve various complex problems encountered during the development and management of business
processes by using production resources at an optimum level. Although the best solution cannot always be found with meta-
heuristic algorithms, they are preferred by researchers because they have features such as ease of application, their
effectiveness in complex problems, adaptability to different problems, and so on (Kaya & Fığlalı 2018; Talbi, 2009). The
common goal in such algorithms is to get the best solution in the existing circumstances for difficult and complex problems.
To obtain the best result, the exploration and exploitation features of the algorithms should be strong, and the balance should
be struck between these two processes.

One way to equilibrate between exploration and exploitation may be to combine algorithms (Mirjalili & Hashim, 2010;
Mafarja & Mirjalili, 2017). A hybrid algorithm is to combine one algorithm with another algorithm or algorithms using the
preferred features of the algorithms. In many studies, it is seen that methods such as improvement, modification and
hybridization have been tried to increase the success of algorithms. Hybrid algorithms can be essentially classified into two

618

groups. The first group is integrative hybrids, which are constituted by integrating a subsidiary algorithm into a primary
algorithm. The second group is collaborative hybrids, a combination of two or more algorithms that run sequentially or in
parallel (Ting et al., 2015). Many studies have been carried out on functions such as function optimization and real-world
problems with hybrid algorithms.

The process of training for artificial neural networks (ANNs) is an important implementation of meta-heuristic algorithms
and hybrid versions of these algorithms. ANNs, generally defined as a mathematical model of nerve cells in the human brain
and the connection between these cells, is one of the most researched artificial intelligence techniques today (McCulloch &
Pitts, 1943; Anderson, 1995). ANNs are widely used in many fields such as classification, prediction, and optimization. One
of the different neural networks (NNs) structures suggested in the literature is the feed-forward multi-layer perceptron (MLP).
MLP has multi-layer neuron architecture. At this structure, the first layer is called the input layer, the last layer is the output
layer, and the other layers between the first layer and the last layer are named as hidden layers. Neurons in all layers from the
first to the last layer are connected to neurons in the following layer. The information flow is forward and there is no feedback.
One of the reasons why this technique is preferred by researchers is its suitability for solving nonlinear and complex problems
(Faris et al., 2016).

One of the situations that significantly affect performance in MLP and other ANNs structures is the training process. In this
process, the output value generated at the end of each iteration is compared with the target value. Depending on the error, the
biases and weights are updated. These operations to minimize the error are known as training the network. Supervised,
unsupervised and reinforced learning methods are used during the education process. In MLP training, gradient-based and
stochastic methods are used for the supervised learning method. Gradient-based conventional methods for instance the back
propagation algorithm (Rumelhart et al., 1986) have disadvantages such as local minima, slow convergence, and dependence
on initial values (Gori & Tesi, 1992; Gupta & Sexton, 1999). Stochastic methods, such as meta-heuristic algorithms, are other
methods recommended as an alternative in the training process to overcome the disadvantages of conventional methods. GA
(Seiffert, 2001), ABC (Karaboga et al., 2007), MOA (Mirjalili & Sadiq, 2011), AFS (Hasan et al., 2011), PSOGSA (Mirjalili
et al., 2012), FA (Brajevic & Tuba, 2013; Alweshah, 2014), GWO (Mirjalili et al., 2014a), SSO (Mirjalili et al., 2015), BBO
(Mirjalili et al., 2014b), MFO (Yamany et al., 2015), CSSO (Abedinia & Amjady, 2015), MBA (Tuba et al., 2015), MVO
(Faris et al., 2016), MPSO (Kolay et al., 2016), SOS (Wu et al., 2016), GSO (Alboaneen et al., 2017), WOA (Aljarah et al.,
2018), IMBO (Faris et al., 2018), SSA (Abusnaina et al., 2018; Bairathi & Gopalani, 2019) algorithms can be given as
examples of meta-heuristic and hybrid algorithms used in the training of ANNs.

In this study, MVO which is a population-based algorithm and SA which is a single-solution based algorithm used for the
training of the MLP, in an integrative hybrid structure. Our aim is to increase the success of MLP training with this hybrid
model. Lately, a new hybrid model has been suggested for function optimization, in which MVO and SA algorithms are used
together (Yılmaz et al., 2022). However, regarding to the no free lunch (NFL) theorem, a single optimization technique is not
sufficient to solve all optimization problems (Wolpert & Macready, 1997). MLP training also means a different optimization
problem for each different data set. For this reason, the proposed algorithm for function optimization has been modified and
adapted for MLP training. In the literature, a hybrid model that uses MVO and SA algorithms for the training of ANNs not
found and this model will be implemented for the first time.

The remaining of this article is established as follows: in the second section, a general description of MLP - NN is given. In
the third section elaborate information regarding the suggested hybrid algorithm (MVOSANN) and its components is
explained. In the fourth section, it is shown how to use the MVOSANN algorithm to train MLP. Comparing experiment results
with other algorithms are given in the fifth section. In this section, also, the performance of the suggested algorithm is
interpreted. Finally, in the sixth section, the results of the implementation were evaluated, and recommendations were made
for future studies.

2. Feed-forward multilayer perceptron
ANNs are mathematical models whose names and structures are taken inspiration by the human brain. They mimic the nerve
cells in the human brain and the connections between these cells. ANNs can be classified into different types to be used for
various targets. Feed-forward MLP is one of the commonly used types of ANNs. The input layer, the hidden layers, and the
output layer are the parts that constitute the MLP. Neurons are interconnected in one direction and forward. A simple example
of a feed-forward MLP architecture with a single hidden layer is shown in Fig.1. Each neuron in one layer connects to all
neurons in other layers. Each neuron has a different weight and bias values. If the output of any neuron is above the specified
threshold, that node is activated, and data is sent to the next layer. Otherwise, no data is sent to the next layer. The calculation
of the weighted sum of the input values is shown below:

1

n

j ij i j
i

v w I β
=

= +

(1)

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 619

where, jv is the net input value of neuron j in the hidden layer, ijw is the connection weight connecting iI to neuron j ,

iI indicates the neuron i in the input layer, jβ is a bias weight of neuron j , and n is the total number of neuron inputs.

Fig. 1. Multilayer perceptron network with single hidden layer

The outputs of neurons are activated with an activation function which is dependent on the value of the summation function.
In general, this function is a nonlinear function like hyperbolic tangent sigmoid. The hyperbolic tangent sigmoid function is
shown as follows:

() 2
2 1

1 nf n
e−= −

+

(2)

In the hidden layer, the output of each neuron is calculated as follows:

1

n

j j ij i j
i

y f w I β
=

 
  
 

= +

(3)

After the NN is created, the input data presented to it is expected to give the desired output. For the NN to achieve this, it
needs to update the network parameters, that is, the weights. This stage is called the training process, which is a tough stage
that shows the power of the network. The goal here is to minimize the error among the actual values and the calculated output
values. This process is performed using a training algorithm. The system generates an output value by using the values
generated at the end of the training and the inputs presented to it.

3. MVOSANN algorithm

3.1. Multi-verse optimizer (MVO)

In 2016, population-based multiverse optimization, taking inspiration from the concepts of wormholes, black holes, and white
holes in the big bang theory and in the multiverse theory, was suggested by Seyedali Mirjalili et al. (Mirjalili et al., 2016). In
this algorithm, where wormholes, black holes, and white holes are mathematically modelled for exploration, exploitation, and
local search, the fitness function for each universe is referred by an inflation rate. Each universe represents a candidate
solution, and each object represents a variable in the candidate solution.

In the algorithm process, sometimes, there is an exchange of objects between universes. Universes with high inflation rate
prone to send their objects to universes with low inflation rate, while universes with low inflation rate prone to receive objects
from universes with high inflation rate. Optimization is started with the above steps. In each new iteration, the universes are
ordered accordingly their inflation rates at the end of the previous iteration. The conceptional model of the suggested algorithm
is shown in Fig. 2. The following rules apply in optimization:

620

• The odds that universes have white holes increase if inflation rates are higher.
• The odds that universes have black holes increase if inflation rates are lower.
• Universes with high inflation rate prone to dispatch objects via white holes.
• Universes with low inflation rate prone to get more objects from black holes.
• Wormholes can cause random object movement from the best universe to other universes.

The mathematical model of MVO is as follows:

1 2
1 1 1
1 2
2 2 2

1 2

k

k

k
n n n

o o o
o o o

UNV

o o o

 
 
 =
 
 
  




   


(4)

where, n is the number of universes (candidate solutions), k is the number of parameters (variables).

1 ()
1 ()

j
j h i

i j
i i

o rn NRM UNV
o

o rn NRM UNV
 <

=  ≥

(5)

where, j
io defines the jth parameter of ith universe, j

ho defines the jth parameter of hth universe selected by a roulette wheel

selection, 1rn is a number generated randomly in the range [0, 1], ()iNRM UNV is normalized inflation rate of the ith

universe, iUNV defines the ith universe.

Fig. 2. Conceptional Model of MVO Algorithm.

Wormholes, sometimes randomly replace objects of universes with objects of the best universe to preserve and exploit the
diversity of universes. The mathematical model of this mechanism is as follows.

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 621

()()
()()

4_
_

_

3 0.5
2

3

_

0.54

2

j j j j

j
i j j j j

j
i

O T uppb lowb rn lowb rn
rn

o

ravelling DR
Wormhole EP

Trave rnO uppb lowb rn ll owb

o

ling DR

Wormhole EPrn

 + × − × + < <= ≥ − × − × +
 ≥

(6)

where, jO defines the jth parameter of best universe generated up to now, j
io defines the jth parameter of ith universe, juppb

is the upper bound of jth variable, jlowb is the lower bound of jth variable, Travelling_DR and Wormhole_EP are the
coefficients, and rn2, rn3, rn4 are numbers acquired randomly in the range [0, 1].

MVO has two coefficients: Travelling distance rate (Travelling_DR) and Wormhole existence probability (Wormhole_EP)
(Eq. 6). The mathematical model for both coefficients is as follows:

max minmi_ nW l
L

ormhole EP − = + ×  
 

(7)

where, l is the current iteration, L is the maximum iteration, min is the minimum value equal to 0.2, and max is the maximum
value equal to 1.

1/

1/_ 1
p

pT R lravelling
L

D = −

(8)

where, p defines the accuracy of exploitation on iterations. Earlier and more accurate local search - exploitation is possible
with a higher p value. Algorithm 1 shows the pseudocode of MVO.

Algorithm 1. MVO

1: Create random universes (UNV)
2: Initialize BestUNV,Wormhole_EP,Travelling_DR
3: SUNV = Sorted universes
4: NRM = Normalize inflation rates (fitness) of the universes
5: while Time < Max_time
6: Update Travelling_DR, Wormhole_EP
7: Evaluate the fitness of all universes
8: for each universe indexed by i
9: Black_Hole_Index = i;

10: for each object indexed by j
11: rn1 = random([0, 1]);
12: if rn1 < NRM(UNVi)
13: White_Hole_Index = RouletteWheelSelection(-NRM);
14: UNV(Black_Hole_Index, j) = SUNV(White_Hole_Index, j);
15: end if
16: rn2 = random([0, 1]);
17: if rn2 < Wormhole_EP
18: rn3 = random([0, 1]);
19: rn4 = random([0, 1]);
20: if rn3 < 0.5
21: UNV(i,j)=BestUNV(j)+Travelling_DR ×((uppb(j)-lowb(j))×rn4+lowb(j));
22: else
23: UNV(i,j)= BestUNV(j)-Travelling_DR ×((uppb(j)-lowb(j))×rn4+lowb(j));
24: end if

5: end if
26: end for
27: end for

622

28: end while

3.2. Simulated annealing (SA)

Simulated annealing (SA) (Kirkpatrick et al., 1983), proposed by Kirkpatrick et al. in 1983, is one of the local search
algorithms based on hill climbing method used in solving optimization problems. In the algorithm, where the creation of new
solutions is based on predetermined rules or performed randomly, the newly created solution is compared with the current
solution in each iteration. To find the global best and not get stuck with the local best, the algorithm, can accept new solutions
that only enhance the current solution, as well as worse results that provide predetermined criteria. These criteria are decided
by the Boltzmann probability. The following equation (Eq. 9) shows this mechanism:

() ()()0

k

F X F X
TPrb e

 − −
 
 
 =

(9)

where, Prb is defined as the acceptance probability. F(X0) defines the objective function for current solution, F(X) defines the
objective function for candidate solution. SA uses the acceptance probability mechanism to decide whether the candidate
solution should be considered as the current solution when F(X) is worse than F(X0). Tk is the temperature value at time k, and
in each iteration, value of Tk is calculated as follows:

1k kT T c+ = × (10)

where, c refers to the temperature coefficient, Tk is the initial temperature value and Tk+1 is the temperature at time k.
Algorithm 2 presents the pseudocode of SA algorithm.

Algorithm 2. SA
1: T = Temperature value
2: T0 = Final temperature value
3: c = Temperature coefficient
4: A = First solution
5: f(A) = Fitness value of the first solution
6: while T > T0
7: A' = a new solution in the A neighbourhood
8: f(A') = Calculate the fitness value of A'
9: if f(A') < f(A)

10: NSol = A';
11: f(NSol) = f(A');
12: else
13: ∆f = f(A') - f(A)
14: r = random[0, 1];
15: if r > exp(− ∆f / T)
16: NSol = A';
17: f(NSol) = f(A');
18: else
19: NSol = A;
20: f(NSol) = f(A);
21: end if
22: end if
23: A = NSol;
24: T = T × c
25: end while

3.3. MVOSANN algorithm

MVO is a population-based meta-heuristic algorithm that produces very accomplished results in the face of many problems. Despite

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 623

the many advantages of the MVO algorithm, it also has disadvantages such as low accuracy, local minimum, and slow convergence
(Jia et al., 2019; Song et al., 2020). In this part of the study, to eliminate these disadvantages improvements in the structure of the
original MVO algorithm are suggested.
According to the uncertainty principle in physics, the momentum and position of a particle cannot be determined precisely at
the same time, there is always an error, uncertainty and blurring possible (Heisenberg, 1985). According to the many-worlds
interpretation (MWI), which is based on the uncertainty principle, there is a single and universal wave function for the entire
universe as reality itself. This universal wave function, as the wave function of everything, includes all possibilities in the
known world and an infinite number of parallel worlds in which every possibility exists (Everett et al., 1973).

Fig. 3. Conceptional Model of MVOSANN Algorithm

Inspired by the multiverse theory and the big bang theory, the MVO algorithm has been modified based on the uncertainty
principle in physics and the MWI. To get the global best without being stuck with local minimums search agents and their
twins perform the search by acting according to the general rules of the MVO and the acceptance mechanism of the SA. In
this method, we used the SA algorithm in the integrative hybrid model structure, where exploration and exploitation can be
increased. Fig. 3 shows the conceptional model of the suggested MVOSANN algorithm.

In the suggested model, unlike the MVO algorithm, two initial populations with the same universes are created (Eq. 11). At
each iteration, search agents in this twin population act according to the general rules of the MVO algorithm, to which the SA
algorithm's acceptance probability feature is added. Each object represents a variable in the candidate solution and each
universe in the populations represents a candidate solution.

1 2 1 2
1 1 1 1 1 1
1 2 1 2
2 2 2 2 2 2

1 2 1 2
/2 /2 /2 /2 /2 /2

k k

k k

k k
n n n n n n

o o o o o o
o o o o o o

TP

o o o o o o

    
    
    =     
    
        

 
 

       
 

(11)

where, k is the number of parameters (variables), n is the number of universes (candidate solutions).

In the MVO algorithm, updating the variables in a candidate solution is accomplished with a easy location update (Jia et al.,
2019). The values of the fitness function of the solutions generated using the acceptance probability of the SA algorithm will
not be prone to decrease constantly, and in some circumstances, also, the solutions with high fitness function values will be
accepted and the searching for the global best will be effected. Equation (Eq. 5), which was used in the exploration stage of
the original MVO algorithm, is suggested as follows to increase the exploration and exploitation of the universe around the
best solution.

624

Algorithm 3. MVOSANN

1: Create twin populations randomly (TP)
2: Initialize BestUNV,Wormhole_EP,Travelling_DR, T, c
3: SUNV= Sorted universes
4: NRM = Normalize inflation rates (fitness) of the universes
5: while Time < Max_time
6: Update Travelling_DR, Wormhole_EP
7: Evaluate the fitness of universes of all populations
8: Sort all universes of all populations
9: TP[0] = SUNV[0:(N/2)] (Assign the first half of the sorted universes to the first of the twin populations)

10: TP[1] = TP[0] (Equalize twin population)
11: for each population indexed by k
12: for each universe indexed by i
13: Black_Hole_Index = i;
14: for each object indexed by j
15: rn1 = random ([0, 1]);
16: if rn1 < NRM(SUNV [i,:])
17: White_Hole_Index = RouletteWheelSelection(-NRM);
18: TP[k][Black_Hole_Index][j] = SUNV[White_Hole_Index,j];
19: else
20: Calculate the fitness’s of SUNV[Black_Hole_Index,:] and

 TP[k][Black_Hole_Index][:] (f())
21: ∆f = f(SUNV[Black_Hole_Index,:]) - f(TP[k][Black_Hole_Index][:])
22: rn2 = random ([0, 1]);
23: if rn2 < exp (-∆f / T)
24: White_Hole_Index = RouletteWheelSelection(-NRM);
25: TP[k][Black_Hole_Index] [j] = SUNV[White_Hole_Index,j];
26: end if
27: end if
28: rn3 = random ([0, 1]);
29: if rn3 < Wormhole_EP
30: rn4 = random ([0, 1]);
31: rn5 = random ([0, 1]);
32: if rn4 < 0.5
33: TP[k][i][j]=BestUNV(j)+Travelling_DR ×((uppb(j)-lowb(j)×rn5+lowb(j));
34: else
35: TP[k][i][j]=BestUNV(j)-Travelling_DR×((uppb(j)-lowb(j))×rn5+lowb(j));
36: end if
37: end if
38: end for
39: end for
40: end for

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 625

41: T = T × c
42: end while

[]()

[]()2

,

,

1

1

:

:
2

j
h

j j
i h

j
i

o rn
o rn Prbo

rn
rn Pr

N
bo

NRM SUNV i

NRM SU V i

 <


=  <
≥ ≥

(12)

where, j
io defines the jth parameter of ith universe, j

ho defines the jth parameter of hth universe chosen by a roulette wheel

selection, rn1 and rn2 are numbers procured randomly in the range [0, 1], [](),:NRM SUNV i is normalized inflation rate

of the ith sorted universe, [],:SUNV i describes the ith sorted universe. Prb is defined as the acceptance probability (Eq. 9).

At the end of the iteration, the universes of the twin population clusters, which are no longer alike, are sorted collectively
according to their inflation rates at each new iteration. The first universe in this ranking is the best universe ever found. After
this stage, the first half of the collectively sorted universes with the best values is selected. This selected universe set creates
the twin population set of the new iteration. The pseudo code of the MVOSANN algorithm is given in Algorithm 3.

This set of twin populations, with universes containing identical objects at the beginning, diverges from similarity at the end
of each iteration. As a result of different exploration and exploitation possibilities in the universes of this twin population
cluster at the same time, it is more likely to reach the best inflation value. Because, as mentioned in the uncertainty principle
and the MWI, the state of an object cannot be determined simultaneously and there are always parallel worlds where other
different possibilities take place.

4. MVOSANN for training MLP

In this section, it is explained how the MVOSANN algorithm is used in training a single hidden layer MLP network. As
mentioned in the introduction, the aim of training the neural network is to find the best weight and bias values. This is the
main task of the MVOSANN algorithm in this study. Each universe (search agent) in the algorithm consists of the connection
weights among the input layer to the hidden layer (nmIw), the weights among the hidden layer to the output layer (mHw),

and the bias weights (mβ).

Fig. 4. Representation of the MVOSANN universe for the MLP network

The representation of the universes consisting of real numbers in the range of [−1, 1] is given in Fig. 4 in vector structure.

626

Equation (Eq. 13) shows how the number of objects in each universe is calculated.

IndividualLength = (m × n) + (2 × m) + 1 (13)

where, m is the number of neurons in the hidden layer, n is the number of input features.

In all data sets, the mean square error (MSE) fitness function, which is based on calculating the difference between the real
values and the values predicted by MLP, was used to measure the fitness value of the universes produced by MVOSANN.
The aim here is to minimize the MSE value until the last iteration. The mathematical representation of MSE is as follows.

2

1

1 ˆ()
n

i
MSE y y

n =

= −

(14)

where, y is the actual values, and ŷ is the predicted values, n is the number of samples in the training dataset.

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 627

Fig. 5. General steps of the MVOSANN for the MLP network training

The MVOSANN algorithm is designed to train MLP networks as depicted in Fig. 5. We can summarize this approach with
the following steps:

1. A predefined number of candidate solution sets are randomly generated, where each universe (candidate solution)

represents an MLP network.
2. Universes consisting of all weights, including bias weights, are assigned to MLP networks. All generated MLP networks

are evaluated using a fitness function (MSE). The aim is to reach the lowest MSE value according to the examples in the
dataset used.

3. In this step, the location update of the universes is performed.
4. Steps 2 and 3 repeat up to the maximum number of iterations.

5. Experimental results

5.1. Datasets and comparison algorithms

628

In this study, a comprehensive analysis was carried out to examine the effectiveness of the MVOSANN in training MLP
neural networks. MVO (Mirjalili et al., 2016) and 12 algorithms prevalently aforesaided in the literature: Grey Wolf Optimizer
(GWO) (Mirjalili et al., 2017), Cuckoo Search (CS) (Yang & Deb, 2009), Harris Hawks Optimization (HHO) (Heidari et al.,
2019), Genetic Algorithms (GA) (Holland, 1992), Differential Evolution (DE) (Storn & Price, 1997), Particle Swarm
Optimization (PSO) (Kennedy & Eberhart, 1995), Firefly Algorithm (FA) (Yang, 2008, 2009), Salp Swarm Algorithm (SSA)
(Mirjalili et al., 2017), Sine Cosine Algorithm (SCA) (Mirjalili, 2016), Whale Optimization Algorithm (WOA) (Mirjalili &
Lewis, 2016), and JAYA Algorithm (JAYA) (Rao, 2016) were used to evaluate the achievement of the MVOSANN
algorithm.

MVOSANN and other algorithms have been tested on 12 data sets used in many studies in the literature. These datasets,
selected from the University of California, Irvine Machine Learning Repository (UCI), are: Abalone (Dua & Graff, 2019),
Balance Scale (Dua & Graff, 2019), Blood (Yeh et al., 2009), Breast Cancer (Wolberg & Mangasarian, 1990; Bennett &
Mangasarian, 1992), Diabetes (Dua & Graff, 2019), Acute Inflammations (Diagnosis I, Diagnosis II) (Czerniak & Zarzycki,
2003), Glass Identification (Dua & Graff, 2019), Iris (Dua & Graff, 2019), Liver disorders (Dua & Graff, 2019), Raisin
(Çınar et al., 2020), Vertebral (Dua & Graff, 2019). Information about these datasets, such as the number of features, the
number of training samples, and the number of test samples, are given in Table 1.

Table 1
Classification datasets

Dataset Features Training Samples Testing Samples
Abalone 8 2756 1421
Balance Scale 4 412 213
Blood 4 493 255
Breast Cancer 8 461 238
Diabetes 8 506 262
Diagnosis I 6 79 41
Diagnosis II 6 79 41
Glass 10 141 73
Iris 4 99 51
Liver 6 79 41
Raisin 8 594 306
Vertebral 6 204 106

5.2. Experimental setup

Experiments were conducted using the EvoloPy-NN repository created by Faris in 2016 (Faris, 2016; Faris et al., 2016c).
Evolopy-NN is an open-source framework consisting of classic and recent meta-heuristic algorithms coded with Python, with
a user-friendly interface. Various studies have been carried out on artificial neural network training using the Evolopy-NN
repository (Faris et al., 2016a; Faris et al., 2016b; Aljarah et al., 2018a; Aljarah et al., 2018b). All algorithms have been
experimented on a personal computer with 16 GB (RAM), Intel Core i7-10875H 2.30 GHz (CPU), and 64-Bit Windows 11
(operating system).

Table 2 shows the parameter settings of the algorithms used in this study. All datasets are divided into 34 % for testing, and
66 % for training. The number of search agents for the algorithms is set to 50 and the number of iterations to 100. Each
algorithm was run individually 30 times to obtain balanced performance results.
Table 2
Parameters and values of MVOSANN and other algorithms

Algorithm Parameter Value

MVOSANN

Maximum wormhole existence probability 1
Minimum wormhole existence probability 0.2
p 6
T 1
c 0.88

MVO
Maximum wormhole existence probability 1
Minimum wormhole existence probability 0.2

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 629

p 6

GA
Crossover probability 0.9
Mutation probability 0.1
Selection mechanism Roulette wheel

FA
Alpha 0.5
Beta 0.2
Gamma 1

SSA No custom parameters
GWO No custom parameters
WOA b 1

PSO

Vmax 6
c1 2
c2 2
wMax 0.9
wMin 0.2

CS 𝑝௔ 0.25
HHO No custom parameters
SCA a 2
JAYA No custom parameters

DE
Crossover probability 0.9
Differential weight 0.5

In this study, the method in which the number of hidden neurons is 2 × N + 1 was chosen; N is the number of features in each
dataset. For each dataset, all input features values are normalized in the range [0,1] with Min-max normalization technique
(Eq. 15).

min
max min

i A

A A

vv −′ =
−

(15)

where, v′ is the normalized value of v in the range []min , maxA A

5.3. Evaluation metrics

A confusion matrix is a table (Fig. 6), that helps us evaluate the accuracy of a classification model on a dataset with actual
values. On this table is a summary of the results predicted by the model in a classification problem (Stehman, 1997). In the
model, evaluation was made by calculating the number of correctly predicted samples belong to the class (true positives), the
number of incorrectly predicted samples belong to the class (false positives), the number of correctly predicted samples that
do not belong to the class (true negatives), and the number of incorrectly predicted samples that do not belong to the class
(false negatives). How the metrics used for binary classification and multiclass classification are calculated using the
confusion matrix values, are shown in Table 3. (Sokolova & Lapalme, 2009).

630

Fig. 6. Confusion Matrix

In this study, during the performance evaluation of algorithms, accuracy, recall, precision, error rate and F1 score calculations
were made depending on whether each data set was in a binary classification group or a multiclass classification group. In the
multi-class classification group, the calculations were made using the micro-average method, considering the class imbalance
in the data sets. In addition, the MSE values (Eq. 14) based on the calculation of the difference among the actual values and
the predicted values of MLP, and the standard deviations of the accuracy and MSE values were calculated. All algorithms
were evaluated for each data set with the results obtained from the calculations. Also, a nonparametric Wilcoxon rank sum
test (Wilcoxon, 1992) was applied to the results to analyse the relationship among the algorithms, and the p value was accepted
to be less than 0.05 (5E-02) in this test to evaluate the statistically significant difference.

Table 3
Measures for binary classification and multi-class classification

Binary classification Multiclass classification
Measure Formula Measure Formula

Accuracy
TP TN

TP FN FP TN
+

+ + +
 Average_Accuracy 1

k i i
i

i i i i

TP TN
TP FN FP TN

k

=

+
+ + +

Precision
TP

TP FP+
 Precisionµ

()
1

1

k
ii

k
i ii

TP

TP FP
=

=
+




Recall
TP

TP FN+
 Recallµ

()
1

1

k
ii

k
i ii

TP

TP FN
=

=
+




F1_score 2 Precision Recall
Precision Recall+

× ×
 F1_scoreµ 2 µ µ

µ µ

Precision Recall
Precision Recall

×
×

+

Error rate
FP FN

TP FN FP TN
+

+ + +
 Error_rateµ 1

k i i
i

i i i i

FP FN
TP FN FP TN

k

=

+
+ + +

5.3. Results and discussions

To evaluate the suggested MVOSANN algorithm, accuracy, MSE, recall, precision, error rate and F1 score results of all
algorithms obtained from 12 data sets were compared. For each dataset and 30 trials, Table 4 shows the accuracy averages,

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 631

standard deviations of the mean accuracies of all algorithms, and best accuracies. According to the results, MVOSANN
performs much better than all other algorithms by having the best average accuracy values in all data sets. In addition,
MVOSANN has low standard deviation values for all data sets, which shows that the proposed algorithm is robust and stable.
Considering the best accuracy values, MVOSANN, 5 achieved the highest accuracy values for the data set, and it can be said
that it is superior when compared to other algorithms.

Table 4
Results of classification accuracy for all datasets and algorithms

Datasets Algorithms
MVOSA MVO GA FA SSA PSO GWO WOA CS HHO SCA JAYA DE

Abalone
AVE 0.8230 0.821 0.8047 0.8139 0.8100 0.8122 0.8155 0.7877 0.8066 0.8009 0.8013 0.8040 0.8012
STD 0.0031 0.004 0.0101 0.0080 0.0077 0.0098 0.0058 0.0150 0.0131 0.0100 0.0128 0.0157 0.0199
BEST 0.8291 0.831 0.8249 0.8270 0.8256 0.8277 0.8242 0.8186 0.8326 0.8136 0.8418 0.8319 0.8291

Balance
AVE 0.8376 0.830 0.7746 0.8144 0.8239 0.8282 0.8194 0.7573 0.7850 0.7624 0.7156 0.7654 0.7019
STD 0.0490 0.049 0.0787 0.0682 0.0587 0.0664 0.0519 0.0776 0.0919 0.0660 0.1043 0.1273 0.0874
BEST 0.9296 0.910 0.9296 0.9155 0.9343 0.9343 0.9108 0.9249 0.9014 0.8873 0.8638 0.9437 0.8498

Blood
AVE 0.7906 0.788 0.7837 0.7829 0.7808 0.7843 0.7822 0.7838 0.7829 0.7838 0.7826 0.7835 0.7822
STD 0.0038 0.005 0.0051 0.0054 0.0038 0.0074 0.0048 0.0067 0.0065 0.0070 0.0074 0.0072 0.0083
BEST 0.7961 0.796 0.7922 0.7922 0.7882 0.8000 0.7922 0.7922 0.7961 0.7922 0.7922 0.7961 0.7961

Breast
Cancer

AVE 0.9777 0.975 0.9678 0.9711 0.9721 0.9655 0.9746 0.9682 0.9664 0.9696 0.9602 0.9578 0.9571
STD 0.0044 0.005 0.0085 0.0063 0.0063 0.0072 0.0055 0.0089 0.0085 0.0049 0.0107 0.0103 0.0104
BEST 0.9874 0.983 0.9832 0.9832 0.9832 0.9748 0.9832 0.9790 0.9790 0.9790 0.9832 0.9748 0.9748

Diabetes
AVE 0.7579 0.753 0.7246 0.7490 0.7480 0.7439 0.7497 0.6957 0.7247 0.7118 0.7078 0.7230 0.7289
STD 0.0057 0.005 0.0236 0.0121 0.0075 0.0136 0.0063 0.0329 0.0229 0.0254 0.0267 0.0231 0.0235
BEST 0.7710 0.763 0.7748 0.7748 0.7672 0.7748 0.7672 0.7824 0.7672 0.7481 0.7595 0.7672 0.7710

Diagnosis I
AVE 0.9317 0.915 0.8431 0.8455 0.8683 0.8537 0.9049 0.8106 0.9065 0.8350 0.8293 0.8756 0.8236
STD 0.1057 0.109 0.1170 0.1127 0.1177 0.1133 0.1091 0.1296 0.1150 0.1143 0.1137 0.1321 0.1050
BEST 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Diagnosis
II

AVE 0.8333 0.825 0.7894 0.8138 0.8163 0.8024 0.8146 0.8000 0.8057 0.8073 0.7829 0.7911 0.7911
STD 0.0129 0.019 0.0606 0.0244 0.0210 0.0407 0.0165 0.0422 0.0359 0.0074 0.0688 0.0596 0.0662
BEST 0.8537 0.853 0.8293 0.8537 0.8537 0.8537 0.8537 0.8293 0.8293 0.8293 0.8293 0.8293 0.8537

Glass
AVE 0.8810 0.868 0.8625 0.8606 0.8722 0.8750 0.8653 0.8769 0.8810 0.8755 0.8736 0.8514 0.8597
STD 0.0135 0.025 0.0297 0.0246 0.0191 0.0287 0.0147 0.0455 0.0364 0.0220 0.0395 0.0331 0.0615
BEST 0.9028 0.930 0.9306 0.9167 0.9167 0.9167 0.9028 0.9306 0.9583 0.9167 0.9444 0.9306 0.9583

Iris
AVE 0.7607 0.741 0.7033 0.7467 0.7273 0.7380 0.7267 0.7020 0.7147 0.7060 0.7067 0.7153 0.7160
STD 0.0299 0.024 0.0283 0.0325 0.0170 0.0491 0.0184 0.0280 0.0283 0.0253 0.0275 0.0460 0.0373
BEST 0.8200 0.780 0.7400 0.8400 0.7600 0.9200 0.7600 0.7400 0.7800 0.7400 0.7400 0.8400 0.8200

Liver
AVE 0.7686 0.762 0.6952 0.7395 0.7359 0.7455 0.7517 0.6322 0.6870 0.6630 0.6658 0.6661 0.6661
STD 0.0132 0.012 0.0361 0.0259 0.0231 0.0234 0.0180 0.0460 0.0307 0.0463 0.0458 0.0375 0.0342
BEST 0.7966 0.796 0.7712 0.7797 0.7797 0.7797 0.7797 0.7119 0.7627 0.7627 0.7542 0.7458 0.7203

Raisin
AVE 0.8596 0.859 0.8477 0.8527 0.8529 0.8507 0.8558 0.8354 0.8450 0.8402 0.8404 0.8385 0.8369
STD 0.0041 0.004 0.0074 0.0061 0.0051 0.0131 0.0053 0.0145 0.0123 0.0147 0.0152 0.0148 0.0186
BEST 0.8693 0.869 0.8595 0.8627 0.8627 0.8660 0.8627 0.8529 0.8627 0.8660 0.8562 0.8627 0.8627

Vertebral
AVE 0.8777 0.873 0.8189 0.8509 0.8604 0.8440 0.8701 0.7833 0.8220 0.7947 0.7906 0.8057 0.8088
STD 0.0107 0.007 0.0380 0.0368 0.0242 0.0398 0.0178 0.0480 0.0331 0.0362 0.0390 0.0370 0.0327
BEST 0.8962 0.886 0.8962 0.9151 0.8962 0.8962 0.8962 0.8585 0.8774 0.8679 0.8491 0.8774 0.8774

In 30 trials, for all datasets and all algorithms, the mean of MSE values, the standard deviation of the mean MSE values, and
the lowest MSE values are shown in Table 5. As can be seen from the results, MVOSANN has the best average MSE for all
datasets. When the standard deviation values are examined, it is also supported that MVOSANN is a robust and stable
algorithm. In addition, MVOSANN achieved the lowest MSE value for the 9 dataset and is in the front row compared to other
algorithms.

632

Table 5
Results of MSE for all datasets and algorithms

Datasets Algorithms
MVOSA MVO GA FA SSA PSO GWO WOA CS HHO SCA JAYA DE

Abalone
AVE 0.126 0.1275 0.1332 0.1299 0.1311 0.1311 0.1290 0.1379 0.1329 0.1340 0.1351 0.1345 0.1352
STD 0.000 0.0008 0.0017 0.0022 0.0015 0.0025 0.0012 0.0038 0.0010 0.0022 0.0017 0.0022 0.0017
BES 0.125 0.1259 0.1287 0.1259 0.1279 0.1268 0.1272 0.1299 0.1312 0.1304 0.1316 0.1296 0.1319

Balance
AVE 0.043 0.0461 0.0599 0.0532 0.0531 0.0491 0.0521 0.0616 0.0569 0.0610 0.0632 0.0591 0.0610
STD 0.002 0.0021 0.0032 0.0045 0.0034 0.0034 0.0029 0.0044 0.0023 0.0033 0.0035 0.0041 0.0032
BES 0.040 0.0425 0.0519 0.0447 0.0465 0.0424 0.0483 0.0546 0.0516 0.0532 0.0574 0.0494 0.0560

Blood
AVE 0.154 0.1548 0.1581 0.1571 0.1572 0.1558 0.1569 0.1602 0.1579 0.1595 0.1598 0.1588 0.1599
STD 0.000 0.0009 0.0010 0.0016 0.0011 0.0012 0.0010 0.0038 0.0006 0.0022 0.0012 0.0015 0.0016
BES 0.152 0.1534 0.1560 0.1544 0.1547 0.1535 0.1547 0.1563 0.1559 0.1563 0.1576 0.1548 0.1554

Breast Cancer
AVE 0.032 0.0339 0.0425 0.0389 0.0386 0.0420 0.0359 0.0478 0.0445 0.0413 0.0510 0.0520 0.0543
STD 0.001 0.0015 0.0025 0.0028 0.0017 0.0033 0.0016 0.0045 0.0017 0.0013 0.0049 0.0049 0.0047
BES 0.031 0.0320 0.0362 0.0349 0.0350 0.0342 0.0316 0.0392 0.0405 0.0369 0.0417 0.0430 0.0414

Diabetes
AVE 0.150 0.1517 0.1675 0.1561 0.1557 0.1570 0.1539 0.1842 0.1685 0.1716 0.1755 0.1705 0.1721
STD 0.001 0.0009 0.0061 0.0027 0.0018 0.0027 0.0010 0.0143 0.0035 0.0069 0.0051 0.0043 0.0045
BES 0.148 0.1496 0.1571 0.1519 0.1525 0.1517 0.1517 0.1582 0.1627 0.1583 0.1685 0.1623 0.1629

Diagnosis I
AVE 0.090 0.0913 0.0963 0.0931 0.0936 0.0921 0.0928 0.1049 0.0959 0.1001 0.1021 0.0976 0.1003
STD 0.000 0.0008 0.0019 0.0015 0.0012 0.0029 0.0009 0.0147 0.0015 0.0077 0.0038 0.0028 0.0023
BES 0.090 0.0898 0.0936 0.0902 0.0912 0.0899 0.0914 0.0941 0.0927 0.0933 0.0951 0.0934 0.0967

Diagnosis II
AVE 0.112 0.1177 0.1459 0.1292 0.1319 0.1169 0.1351 0.1492 0.1409 0.1482 0.1515 0.1444 0.1509
STD 0.002 0.0046 0.0049 0.0083 0.0071 0.0070 0.0054 0.0089 0.0041 0.0063 0.0066 0.0083 0.0052
BES 0.107 0.1096 0.1354 0.1123 0.1198 0.1078 0.1247 0.1311 0.1314 0.1347 0.1340 0.1265 0.1394

Glass
AVE 0.028 0.0296 0.0397 0.0361 0.0355 0.0380 0.0325 0.0532 0.0419 0.0408 0.0490 0.0481 0.0534
STD 0.001 0.0015 0.0037 0.0028 0.0022 0.0037 0.0012 0.0126 0.0017 0.0046 0.0060 0.0043 0.0051
BES 0.025 0.0266 0.0343 0.0299 0.0288 0.0321 0.0299 0.0368 0.0375 0.0353 0.0395 0.0418 0.0422

Iris
AVE 0.011 0.0126 0.0189 0.0142 0.0167 0.0147 0.0158 0.0231 0.0186 0.0214 0.0215 0.0192 0.0207
STD 0.001 0.0013 0.0015 0.0030 0.0018 0.0023 0.0017 0.0034 0.0010 0.0020 0.0019 0.0019 0.0020
BES 0.009 0.0111 0.0161 0.0090 0.0127 0.0110 0.0121 0.0166 0.0161 0.0181 0.0179 0.0158 0.0155

Liver
AVE 0.192 0.1960 0.2157 0.2026 0.2064 0.1972 0.2024 0.2257 0.2147 0.2212 0.2206 0.2158 0.2191
STD 0.002 0.0029 0.0025 0.0055 0.0038 0.0044 0.0026 0.0064 0.0026 0.0061 0.0039 0.0046 0.0036
BES 0.189 0.1905 0.2119 0.1927 0.1989 0.1890 0.1969 0.2137 0.2096 0.2089 0.2124 0.2098 0.2126

Raisin
AVE 0.102 0.1036 0.1152 0.1086 0.1108 0.1050 0.1087 0.1249 0.1139 0.1209 0.1186 0.1160 0.1176
STD 0.001 0.0018 0.0031 0.0038 0.0026 0.0036 0.0017 0.0092 0.0019 0.0058 0.0027 0.0034 0.0029
BES 0.098 0.0992 0.1100 0.1012 0.1074 0.0990 0.1051 0.1106 0.1092 0.1124 0.1135 0.1100 0.1110

Vertebral
AVE 0.128 0.1314 0.1475 0.1378 0.1398 0.1348 0.1364 0.1631 0.1478 0.1562 0.1559 0.1518 0.1551
STD 0.001 0.0018 0.0046 0.0057 0.0042 0.0038 0.0040 0.0108 0.0037 0.0069 0.0058 0.0060 0.0061
BES 0.124 0.1278 0.1385 0.1285 0.1343 0.1265 0.1306 0.1490 0.1345 0.1424 0.1448 0.1412 0.1429

Table 6 contains the results obtained using the Recall, Error rate, F1 score, and Precision evaluation measures of all algorithms
for all datasets. According to the results, in the training process, MVOSANN has the best values in 7 data sets (Balance,
Blood, Diabetes, Diagnosis I, Glass, Iris, Liver) for precision measurement, 9 data sets (Abalone, Balance, Breast Cancer,
Diabetes, Diagnosis I, Glass, Iris, Liver, Raisin) for recall measurement, 11 data sets (Abalone, Balance, Blood, Diabetes,
Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral) for F1 score measurement, and 11 data sets (Abalone, Balance,
Blood, Diabetes, Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral) for error rate measurement. In the
experimenting stage, MVOSANN has the best values in 7 data sets (Blood, Diabetes, Diagnosis I, Glass, Iris, Liver, Vertebral)
for precision measurement, 9 data sets (Abalone, Breast Cancer, Diabetes, Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin)
for recall measurement, 12 data sets (Abalone, Balance, Blood, Breast Cancer, Diabetes, Diagnosis I, Diagnosis II, Glass, Iris,
Liver, Raisin, Vertebral) for F1 score measurement, and 12 data sets (Abalone, Balance, Blood, Breast Cancer, Diabetes,
Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral) for error rate measurement. The outcomes again show the
supremacy of MVOSANN over other algorithms according to these four evaluation measures.

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 633

Table 6
Results of precision, recall, F1 score, error rate for all datasets (continued overleaves)

Datasets Algorithms
Train Test

Precision Recall F1 Score Error Precision Recall F1 Score Error

Abalone

MVOSANN 0.9027 0.7815 0.8377 0.2055 0.8857 0.8488 0.8668 0.1770
MVO 0.9018 0.7794 0.8361 0.2074 0.8844 0.8469 0.8652 0.1790
GA 0.9055 0.7474 0.8184 0.2247 0.8878 0.8159 0.8499 0.1953
FA 0.9003 0.7719 0.8310 0.2130 0.8804 0.8400 0.8597 0.1861
SSA 0.9020 0.7650 0.8279 0.2159 0.8804 0.8332 0.8561 0.1900
PSO 0.8933 0.7745 0.8288 0.2167 0.8771 0.8425 0.8587 0.1878
GWO 0.9006 0.7749 0.8330 0.2108 0.8795 0.8437 0.8612 0.1845
WOA 0.8961 0.7220 0.7989 0.2460 0.8794 0.7974 0.8358 0.2123
CS 0.9037 0.7488 0.8183 0.2251 0.8883 0.8187 0.8514 0.1934
HHO 0.9019 0.7459 0.8163 0.2276 0.8821 0.8160 0.8475 0.1991
SCA 0.9017 0.7418 0.8132 0.2306 0.8846 0.8143 0.8473 0.1987
JAYA 0.8932 0.7593 0.8193 0.2261 0.8776 0.8286 0.8510 0.1960
DE 0.8942 0.7545 0.8161 0.2288 0.8787 0.8230 0.8480 0.1988

Balance

MVOSANN 1.0000 0.5420 0.7023 0.2468 0.9715 0.7200 0.8246 0.1624
MVO 1.0000 0.5132 0.6771 0.2623 0.9701 0.7096 0.8149 0.1695
GA 1.0000 0.3462 0.5098 0.3523 0.9661 0.6107 0.7320 0.2254
FA 1.0000 0.4089 0.5770 0.3185 0.9786 0.6728 0.7880 0.1856
SSA 1.0000 0.3980 0.5676 0.3244 0.9807 0.6896 0.8031 0.1761
PSO 0.9992 0.4596 0.6263 0.2914 0.9490 0.7249 0.8128 0.1718
GWO 1.0000 0.4191 0.5891 0.3130 0.9777 0.6814 0.7987 0.1806
WOA 0.9985 0.3110 0.4716 0.3715 0.9825 0.5641 0.7013 0.2427
CS 0.9989 0.3583 0.5211 0.3460 0.9645 0.6304 0.7435 0.2150
HHO 1.0000 0.3096 0.4710 0.3720 0.9880 0.5693 0.7122 0.2376
SCA 0.9956 0.3170 0.4723 0.3689 0.9746 0.4951 0.6226 0.2844
JAYA 0.9975 0.3785 0.5408 0.3354 0.9505 0.6070 0.7222 0.2346
DE 0.9968 0.3107 0.4651 0.3721 0.9532 0.4835 0.6126 0.2981

Blood

MVOSANN 0.7821 0.9799 0.8699 0.2236 0.7977 0.9711 0.8759 0.2094
MVO 0.7795 0.9819 0.8691 0.2256 0.7945 0.9732 0.8748 0.2119
GA 0.7718 0.9881 0.8667 0.2319 0.7881 0.9789 0.8732 0.2163
FA 0.7731 0.9855 0.8664 0.2317 0.7886 0.9765 0.8725 0.2171
SSA 0.7715 0.9864 0.8658 0.2331 0.7877 0.9746 0.8712 0.2192
PSO 0.7793 0.9816 0.8687 0.2263 0.7915 0.9730 0.8729 0.2157
GWO 0.7737 0.9841 0.8663 0.2316 0.7891 0.9741 0.8719 0.2178
WOA 0.7703 0.9899 0.8664 0.2329 0.7852 0.9856 0.8740 0.2162
CS 0.7729 0.9853 0.8662 0.2321 0.7886 0.9765 0.8725 0.2171
HHO 0.7697 0.9910 0.8665 0.2330 0.7853 0.9854 0.8740 0.2162
SCA 0.7722 0.9879 0.8668 0.2316 0.7865 0.9808 0.8728 0.2174
JAYA 0.7781 0.9823 0.8682 0.2275 0.7904 0.9741 0.8726 0.2165
DE 0.7739 0.9861 0.8671 0.2305 0.7865 0.9801 0.8726 0.2178

Breast Cancer

MVOSANN 0.9781 0.9598 0.9689 0.0403 0.9832 0.9830 0.9831 0.0223
MVO 0.9767 0.9591 0.9678 0.0416 0.9820 0.9807 0.9813 0.0246
GA 0.9824 0.9507 0.9663 0.0433 0.9862 0.9648 0.9753 0.0322
FA 0.9808 0.9560 0.9683 0.0409 0.9843 0.9718 0.9780 0.0289
SSA 0.9825 0.9564 0.9693 0.0396 0.9858 0.9718 0.9787 0.0279
PSO 0.9813 0.9480 0.9643 0.0458 0.9864 0.9611 0.9735 0.0345
GWO 0.9763 0.9584 0.9673 0.0424 0.9799 0.9817 0.9808 0.0254
WOA 0.9815 0.9461 0.9634 0.0469 0.9857 0.9658 0.9757 0.0318
CS 0.9791 0.9480 0.9632 0.0473 0.9853 0.9637 0.9742 0.0336
HHO 0.9837 0.9555 0.9694 0.0394 0.9845 0.9692 0.9768 0.0304
SCA 0.9768 0.9406 0.9582 0.0535 0.9818 0.9577 0.9695 0.0398
JAYA 0.9781 0.9395 0.9583 0.0534 0.9808 0.9550 0.9676 0.0422
DE 0.9726 0.9405 0.9561 0.0565 0.9786 0.9563 0.9672 0.0429

634

Table 6. Continued

Datasets Algorithms
Train Test

Precision Recall F1 Score Error Precision Recall F1 Score Error

Diabetes

MVOSANN 0.7666 0.5419 0.6348 0.2119 0.7428 0.5191 0.6109 0.2421

MVO 0.7604 0.5388 0.6306 0.2146 0.7355 0.5122 0.6037 0.2463

GA 0.7338 0.4674 0.5665 0.2398 0.7074 0.4309 0.5313 0.2754

FA 0.7464 0.5194 0.6124 0.2235 0.7350 0.4931 0.5899 0.2510

SSA 0.7549 0.5176 0.6140 0.2211 0.7321 0.4931 0.5890 0.2520

PSO 0.7589 0.5151 0.6133 0.2206 0.7332 0.4750 0.5758 0.2561

GWO 0.7591 0.5339 0.6268 0.2161 0.7329 0.4990 0.5936 0.2503

WOA 0.6768 0.3820 0.4853 0.2704 0.6495 0.3670 0.4669 0.3043

CS 0.7275 0.4847 0.5805 0.2374 0.6938 0.4479 0.5427 0.2753

HHO 0.7144 0.4562 0.5550 0.2469 0.6684 0.4243 0.5177 0.2882

SCA 0.7142 0.4289 0.5308 0.2540 0.6819 0.3962 0.4960 0.2922

JAYA 0.7377 0.4756 0.5741 0.2373 0.6917 0.4424 0.5361 0.2770

DE 0.7282 0.4558 0.5565 0.2441 0.7228 0.4312 0.5353 0.2711

Diagnosis I

MVOSANN 1.0000 0.7500 0.8571 0.1266 1.0000 0.8667 0.9142 0.0683

MVO 1.0000 0.7500 0.8571 0.1266 1.0000 0.8349 0.8943 0.0846

GA 1.0000 0.7500 0.8571 0.1266 1.0000 0.6937 0.7995 0.1569

FA 1.0000 0.7500 0.8571 0.1266 1.0000 0.6984 0.8042 0.1545

SSA 1.0000 0.7500 0.8571 0.1266 1.0000 0.7429 0.8332 0.1317

PSO 1.0000 0.7500 0.8571 0.1266 1.0000 0.7143 0.8151 0.1463

GWO 1.0000 0.7500 0.8571 0.1266 1.0000 0.8143 0.8819 0.0951

WOA 0.9926 0.7417 0.8486 0.1333 0.9856 0.6444 0.7715 0.1894

CS 1.0000 0.7500 0.8571 0.1266 1.0000 0.8175 0.8821 0.0935

HHO 1.0000 0.7500 0.8571 0.1266 1.0000 0.6778 0.7889 0.1650

SCA 1.0000 0.7500 0.8571 0.1266 1.0000 0.6667 0.7813 0.1707

JAYA 1.0000 0.7500 0.8571 0.1266 1.0000 0.7571 0.8348 0.1244

DE 1.0000 0.7500 0.8571 0.1266 1.0000 0.6556 0.7758 0.1764

Diagnosis II

MVOSANN 0.8853 0.8812 0.8830 0.1359 0.7993 0.9653 0.8705 0.1667

MVO 0.8796 0.8848 0.8819 0.1380 0.8242 0.9236 0.8580 0.1748

GA 0.8917 0.7616 0.8039 0.2059 0.9303 0.7222 0.7999 0.2106

FA 0.8839 0.8616 0.8709 0.1473 0.9101 0.7931 0.8289 0.1862

SSA 0.8876 0.8449 0.8646 0.1532 0.9132 0.7903 0.8291 0.1837

PSO 0.8725 0.8783 0.8750 0.1460 0.8518 0.8542 0.8313 0.1976

GWO 0.8919 0.8275 0.8562 0.1599 0.9398 0.7514 0.8221 0.1854

WOA 0.9277 0.6543 0.7558 0.2363 0.9268 0.7431 0.8103 0.2000

CS 0.8607 0.8362 0.8407 0.1823 0.8910 0.7944 0.8223 0.1943

HHO 0.9324 0.6783 0.7693 0.2253 0.9744 0.7000 0.8077 0.1927

SCA 0.8188 0.8072 0.7850 0.2435 0.8715 0.7875 0.8053 0.2171

JAYA 0.8764 0.7790 0.8071 0.2084 0.9253 0.7347 0.8026 0.2089

DE 0.8825 0.7420 0.7767 0.2325 0.8928 0.7861 0.8092 0.2089

Glass

MVOSANN 0.9909 0.8892 0.9373 0.1031 1.0000 0.8618 0.9257 0.1190
MVO 0.9909 0.8851 0.9350 0.1066 1.0000 0.8468 0.9168 0.1319

GA 0.9872 0.8756 0.9280 0.1176 1.0000 0.8403 0.9129 0.1375

FA 0.9890 0.8780 0.9302 0.1141 1.0000 0.8382 0.9117 0.1394

SSA 0.9897 0.8840 0.9338 0.1085 1.0000 0.8516 0.9197 0.1278

PSO 0.9890 0.8780 0.9301 0.1141 1.0000 0.8548 0.9214 0.1250

GWO 0.9906 0.8821 0.9332 0.1094 1.0000 0.8435 0.9150 0.1347

WOA 0.9773 0.8783 0.9247 0.1232 1.0000 0.8570 0.9221 0.1231

CS 0.9841 0.8821 0.9301 0.1146 1.0000 0.8618 0.9253 0.1190

HHO 0.9874 0.8892 0.9356 0.1059 1.0000 0.8554 0.9219 0.1245

SCA 0.9809 0.8694 0.9214 0.1279 0.9988 0.8543 0.9202 0.1264

JAYA 0.9852 0.8715 0.9246 0.1228 1.0000 0.8274 0.9051 0.1486

DE 0.9844 0.8585 0.9163 0.1345 0.9993 0.8376 0.9097 0.1403

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 635

Table 6. Continued

Datasets Algorithms
Train Test

Precision Recall F1 Score Error Precision Recall F1 Score Error

Iris

MVOSANN 1.0000 0.6242 0.7682 0.2480 1.0000 0.6480 0.7856 0.2393

MVO 1.0000 0.6081 0.7559 0.2587 1.0000 0.6196 0.7645 0.2587

GA 1.0000 0.5384 0.6997 0.3047 1.0000 0.5637 0.7201 0.2967

FA 1.0000 0.6010 0.7501 0.2633 1.0000 0.6275 0.7701 0.2533

SSA 1.0000 0.5672 0.7236 0.2857 1.0000 0.5990 0.7489 0.2727

PSO 1.0000 0.5934 0.7438 0.2683 1.0000 0.6147 0.7592 0.2620

GWO 1.0000 0.5601 0.7179 0.2903 1.0000 0.5980 0.7481 0.2733

WOA 0.9990 0.5202 0.6839 0.3170 1.0000 0.5618 0.7185 0.2980

CS 1.0000 0.5505 0.7096 0.2967 1.0000 0.5804 0.7336 0.2853

HHO 1.0000 0.5283 0.6911 0.3113 1.0000 0.5676 0.7235 0.2940

SCA 1.0000 0.5439 0.7041 0.3010 1.0000 0.5686 0.7242 0.2933

JAYA 1.0000 0.5601 0.7168 0.2903 1.0000 0.5814 0.7331 0.2847

DE 1.0000 0.5576 0.7152 0.2920 1.0000 0.5824 0.7346 0.2840

Liver

MVOSANN 0.7262 0.5474 0.6241 0.2759 0.7444 0.6920 0.7170 0.2314

MVO 0.7113 0.5365 0.6115 0.2852 0.7365 0.6860 0.7101 0.2373

GA 0.6613 0.4421 0.5243 0.3302 0.6932 0.5273 0.5915 0.3048

FA 0.6953 0.5161 0.5922 0.2972 0.7144 0.6427 0.6761 0.2605

SSA 0.6837 0.4937 0.5730 0.3075 0.7119 0.6327 0.6691 0.2641

PSO 0.7144 0.5260 0.6045 0.2872 0.7250 0.6460 0.6823 0.2545

GWO 0.6820 0.5140 0.5860 0.3038 0.7251 0.6687 0.6953 0.2483

WOA 0.6353 0.3414 0.4367 0.3568 0.6169 0.3607 0.4446 0.3678

CS 0.6743 0.4365 0.5240 0.3266 0.6812 0.5160 0.5789 0.3130

HHO 0.6747 0.3842 0.4823 0.3361 0.6487 0.4300 0.5114 0.3370

SCA 0.6509 0.3961 0.4716 0.3501 0.6844 0.4533 0.5166 0.3342

JAYA 0.6589 0.4354 0.5098 0.3373 0.6627 0.4933 0.5436 0.3339

DE 0.6849 0.4042 0.4882 0.3363 0.6908 0.4640 0.5261 0.3339

Raisin

MVOSANN 0.8713 0.8897 0.8804 0.1209 0.8291 0.9059 0.8658 0.1404

MVO 0.8703 0.8872 0.8787 0.1225 0.8304 0.9035 0.8654 0.1405

GA 0.8764 0.8617 0.8688 0.1300 0.8334 0.8697 0.8508 0.1523

FA 0.8717 0.8763 0.8740 0.1264 0.8304 0.8867 0.8575 0.1473

SSA 0.8740 0.8728 0.8734 0.1265 0.8347 0.8802 0.8568 0.1471

PSO 0.8725 0.8808 0.8762 0.1241 0.8276 0.8867 0.8554 0.1493

GWO 0.8738 0.8725 0.8731 0.1268 0.8360 0.8852 0.8599 0.1442

WOA 0.8681 0.8510 0.8591 0.1395 0.8271 0.8490 0.8373 0.1646

CS 0.8720 0.8618 0.8662 0.1328 0.8288 0.8715 0.8486 0.1550

HHO 0.8730 0.8504 0.8612 0.1369 0.8341 0.8497 0.8414 0.1598

SCA 0.8687 0.8637 0.8652 0.1342 0.8257 0.8656 0.8436 0.1596

JAYA 0.8721 0.8568 0.8639 0.1347 0.8286 0.8551 0.8406 0.1615

DE 0.8750 0.8455 0.8589 0.1383 0.8348 0.8420 0.8369 0.1631

Vertebral

MVOSANN 0.8738 0.8802 0.8770 0.1634 0.9127 0.9147 0.9136 0.1223
MVO 0.8732 0.8802 0.8767 0.1639 0.9096 0.9116 0.9105 0.1267

GA 0.8400 0.8825 0.8600 0.1902 0.8598 0.8902 0.8742 0.1811

FA 0.8635 0.8810 0.8720 0.1712 0.8901 0.9009 0.8953 0.1491

SSA 0.8580 0.8933 0.8752 0.1686 0.8886 0.9182 0.9030 0.1396

PSO 0.8805 0.8627 0.8700 0.1699 0.9027 0.8756 0.8868 0.1560

GWO 0.8694 0.8832 0.8761 0.1654 0.9040 0.9138 0.9087 0.1299

WOA 0.7950 0.8719 0.8303 0.2358 0.8262 0.8800 0.8513 0.2167

CS 0.8402 0.8802 0.8578 0.1931 0.8662 0.8880 0.8753 0.1780

HHO 0.8169 0.8756 0.8446 0.2134 0.8376 0.8813 0.8585 0.2053

SCA 0.8167 0.8716 0.8403 0.2193 0.8349 0.8818 0.8557 0.2094

JAYA 0.8320 0.8810 0.8518 0.2031 0.8581 0.8751 0.8633 0.1943

DE 0.8394 0.8689 0.8508 0.2008 0.8636 0.8711 0.8643 0.1912

636

In Fig. 7 and Fig. 8, convergence curves are given to observe the convergence behaviour of the MVOSANN algorithm and to
compare its performance with other algorithms. The figure shows that MVOSANN has the fastest convergence rate and the
lowest MSE values in all datasets. MVOSANN algorithm has acquired powerful results by surpassing other algorithms in terms
of robustness and stability.

The MVOSANN algorithm outclasses all other algorithms used in the comparing. To understand the relationship among the
proposed algorithm and other algorithms, non-parametric Wilcoxon rank-sum statistical test was applied. The results of this
test are shown in Table 7. The algorithm with the best average value gets the N/A value and is compared with other algorithms.
According to table, the MVOSANN algorithm has a p value less than 0.05 for all data sets and for all algorithms, and it is
seen to be statistically significant.

MLP training is a problem that has many local solutions and is also difficult to solve. As can be seen from the results obtained,
the MVOSANN algorithm shows the best productivity against this difficult problem compared to the other 12 algorithms used
for comparison. It has also proven this success in all the different search spaces of 12 different data sets. The reason for this
success of MVOSANN is the high exploration - exploitation ability it has and the ability to avoid the local minimum.

Table 7
Wilcoxon rank sum test 𝑝-values (N/A = not applicable)

Datasets
Algorithms

MVOSANN MVO GA FA SSA PSO GWO WOA CS HHO SCA JAYA DE

Abalone N/A 4.98E-04 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Balance N/A 5.10E-05 2.87E-11 2.74E-10 7.03E-11 5.31E-08 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Blood N/A 4.97E-03 2.87E-11 7.73E-10 1.04E-10 9.18E-07 9.44E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 5.23E-11 3.88E-11

Breast Cancer N/A 1.54E-04 2.87E-11 3.88E-11 3.51E-11 4.29E-11 1.06E-08 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diabetes N/A 2.92E-04 2.87E-11 4.29E-11 2.87E-11 5.77E-11 6.37E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diagnosis I N/A 9.77E-04 2.87E-11 3.06E-09 5.23E-11 2.96E-03 1.15E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diagnosis II N/A 6.97E-06 2.87E-11 1.86E-10 2.87E-11 0.054609 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Glass N/A 1.41E-03 2.87E-11 4.29E-11 9.44E-11 2.87E-11 5.23E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Iris N/A 3.26E-03 2.87E-11 8.93E-05 7.03E-11 8.70E-08 1.04E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Liver N/A 9.85E-06 2.87E-11 4.01E-10 2.87E-11 1.29E-05 3.88E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Raisin N/A 4.97E-03 2.87E-11 4.00E-09 2.87E-11 4.22E-05 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Vertebral N/A 5.39E-07 2.87E-11 2.74E-10 2.87E-11 1.63E-08 7.76E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Fig. 7. Convergence curves of Abalone, Balance, Blood, Breast Cancer, Diabetes, Diagnosis I datasets.

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 637

Fig. 8. Convergence curves of Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral datasets.

6. Conclusion remarks
One of the problems met in implementations of ANNs is related to the training of the ANNs model. Training in ANNs is one
of the determinants that directly affects the achievement of the model. In the studies, it is seen that many different techniques
are used in ANNs training. Today, meta-heuristic algorithms are preferred over traditional algorithms during the training stage
in ANNS models. Meta-heuristic algorithms appear to produce more effective results than traditional algorithms. An algorithm
cannot be expected to perform highly against every problem. Therefore, it may be necessary to work on different algorithms
for different problems or to develop existing algorithms.

In this article, the MVOSANN algorithm, which was developed based on the MVO and SA algorithms, is tested for the
training of the feed forward MLP. The suggested algorithm (MVOSANN) has been used to optimize biases and weights in
MLP for better results. The algorithm has been experimented on 12 datasets with different characteristics. The outcomes were
compared with the outcomes of 12 various meta-heuristic algorithms. Experimental results suggest that the MVOSANN
algorithm significantly enhances the performance of the MVO algorithm and carries out better than other algorithms. As a
result, MVOSANN is an effective alternative for training ANNs.

In the future, larger and different datasets can be studied with the proposed MVOSANN algorithm. In addition, the
MVOSANN algorithm can be experimented for the training of different model neural networks or real-world problems.

References

Abedinia, O., & Amjady, N. (2015). Short-term wind power prediction based on Hybrid Neural Network and chaotic shark

smell optimization. International journal of precision engineering and manufacturing-green technology, 2(3), 245-254.
Abusnaina, A. A., Ahmad, S., Jarrar, R., & Mafarja, M. (2018, June). Training neural networks using salp swarm algorithm

for pattern classification. In Proceedings of the 2nd international conference on future networks and distributed
systems (pp. 1-6).

Alboaneen, D. A., Tianfield, H., & Zhang, Y. (2017, December). Glowworm swarm optimization for training multi-layer
perceptrons. In Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications
and Technologies (pp. 131-138).

Aljarah, I., Faris, H., & Mirjalili, S. (2018a). Optimizing connection weights in neural networks using the whale optimization
algorithm. Soft Computing, 22(1), 1-15.

Aljarah, I., Faris, H., Mirjalili, S., & Al-Madi, N. (2018b). Training radial basis function networks using biogeography-based
optimizer. Neural Computing and Applications, 29(7), 529-553.

Alweshah, M. (2014). Firefly algorithm with artificial neural network for time series problems. Research Journal of Applied
Sciences, Engineering and Technology, 7(19), 3978-3982.

638

Anderson, J. A. (1995). An introduction to neural networks. MIT press.
Bairathi, D., & Gopalani, D. (2019). Salp swarm algorithm (SSA) for training feed-forward neural networks. In Soft computing

for problem solving (pp. 521-534). Springer, Singapore.
Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable

sets. Optimization methods and software, 1(1), 23-34.
Brajevic, I., & Tuba, M. (2013). Training feed-forward neural networks using firefly algorithm. In Proceedings of the 12th

International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED’13) (pp. 156-161).
Czerniak, J., & Zarzycki, H. (2003). Application of rough sets in the presumptive diagnosis of urinary system diseases.

In Artificial intelligence and security in computing systems (pp. 41-51). Springer, Boston, MA.
Çınar, İ., Köklü, M., & Taşdemir, Ş. (2020). Classification of raisin grains using machine vision and artificial intelligence

methods. Gazi Mühendislik Bilimleri Dergisi (GMBD), 6(3), 200-209.
Dua, D., & Graff, C. (2019). UCI Machine Learning Repository [http://archive. ics. uci. edu/ml]. Irvine, CA: University of

California. School of Information and Computer Science.
Everett, H., Wheeler, J. A., DeWitt, B. S., Cooper, L. N., Van Vechten, D. & Graham, N. (1973). DeWitt, Bryce; Graham, R.

Neill (eds.). The Many-Worlds Interpretation of Quantum Mechanics. Princeton Series in Physics. Princeton,
NJ: Princeton University Press.

Faris, H. (2016). EVOLOPY_NN. [Repository]. https://github.com/7ossam81/EvoloPy-NN
Faris, H., Aljarah, I., & Mirjalili, S. (2016a). Training feedforward neural networks using multi-verse optimizer for binary

classification problems. Applied Intelligence, 45(2), 322-332.
Faris, H., Aljarah, I., Al-Madi, N., & Mirjalili, S. (2016b). Optimizing the learning process of feedforward neural networks

using lightning search algorithm. International Journal on Artificial Intelligence Tools, 25(06), 1650033.
Faris, H., Aljarah, I., Mirjalili, S., Castillo, P. A., & Guervós, J. J. M. (2016c). EvoloPy: An Open-source Nature-inspired

Optimization Framework in Python. In IJCCI (ECTA) (pp. 171-177).
Faris, H., Aljarah, I., & Mirjalili, S. (2018). Improved monarch butterfly optimization for unconstrained global search and

neural network training. Applied Intelligence, 48(2), 445-464.
Gori, M., & Tesi, A. (1992). On the problem of local minima in backpropagation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(1), 76-86.
Gupta, J. N., & Sexton, R. S. (1999). Comparing backpropagation with a genetic algorithm for neural network

training. Omega, 27(6), 679-684.
Hasan, S., Tan, S. Q., Shamsuddin, S. M., & Sallehuddin, R. (2011). Artificial neural network learning enhancement using

artificial fish swarm algorithm. In Proceedings of the 3rd International Conference on Computing and Informatics
(ICOCI), (pp 117–122).

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris Hawks Optimization: Algorithm
and Applications. Future Generation Computer Systems, 97, 849–872.

Heisenberg, W. (1985). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. In Original
Scientific Papers Wissenschaftliche Originalarbeiten (pp. 478-504). Springer, Berlin, Heidelberg.

Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
Jia, H., Peng, X., Song, W., Lang, C., Xing, Z., & Sun, K. (2019). Hybrid multiverse optimization algorithm with gravitational

search algorithm for multithreshold color image segmentation. IEEE Access, 7, 44903-44927.
Karaboga, D., Akay, B., & Ozturk, C. (2007). Artificial bee colony (ABC) optimization algorithm for training feed-forward

neural networks. In International conference on modeling decisions for artificial intelligence (pp. 318-329). Springer,
Berlin, Heidelberg.

Kaya, S., & Fığlalı, N. (2018). Çok amaçlı esnek atölye tipi çizelgeleme problemlerinin çözümünde meta sezgisel yöntemlerin
kullanımı. Harran Üniversitesi Mühendislik Dergisi, 3 (3), 222-233.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of ICNN’95-International Conference on
Neural Networks, (pp. 1942– 1948), IEEE.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Kolay, E., Tunç, T., & Eğrioğlu, E. (2016). Classification with some artificial neural network classifiers trained a modified

particle swarm optimization. American Journal of Intelligent Systems, 6(3), 59-65.
Mafarja, M. M., & Mirjalili, S. (2017). Hybrid whale optimization algorithm with simulated annealing for feature

selection. Neurocomputing, 260, 302-312.
McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical

Biophysics 5, 115–133 (1943)
Mirjalili, S., & Hashim, S. Z. M. (2010). A new hybrid PSOGSA algorithm for function optimization. In 2010 international

conference on computer and information application (pp. 374-377). IEEE.
Mirjalili, S., & Sadiq, A. S. (2011). Magnetic optimization algorithm for training multi layer perceptron. In 2011 IEEE 3rd

International Conference on Communication Software and Networks (pp. 42-46). IEEE.
Mirjalili, S., Hashim, S. Z. M., & Sardroudi, H. M. (2012). Training feedforward neural networks using hybrid particle swarm

optimization and gravitational search algorithm. Applied Mathematics and Computation, 218(22), 11125-11137.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014a). Let a biogeography-based optimizer train your multi-layer

perceptron. Information Sciences, 269, 188-209.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014b). Grey wolf optimizer. Advances in engineering software, 69, 46-61.

Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 639

Mirjalili, S. (2015). How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence, 43(1),
150-161

Mirjalili, S. Z., Saremi, S., & Mirjalili, S. M. (2015). Designing evolutionary feedforward neural networks using social spider
optimization algorithm. Neural Computing and Applications, 26(8), 1919-1928.

Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133.
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global

optimization. Neural Computing and Applications, 27(2), 495-513.
Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-

inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization

problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning Internal Representations by Error Propagation. In D. E.

Rumelhart & J. L. Mcclelland (ed.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations (pp. 318--362) . MIT Press.

Seiffert, U. (2001). Multiple layer perceptron training using genetic algorithms. In ESANN (pp. 159-164).
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information

processing & management, 45(4), 427-437.
Song, R., Zeng, X., & Han, R. (2020). An Improved Multi-Verse Optimizer Algorithm For Multi-Source Allocation Problem.

International Journal of Innovative Computing, Information and Control, 16(6), 1845–1862.
Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote sensing of

Environment, 62(1), 77-89.
Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over

Continuous Spaces. Journal of Global Optimization, 11(4), 341–359.
Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). John Wiley & Sons.
Ting, T. O., Yang, X. S., Cheng, S., & Huang, K. (2015). Hybrid metaheuristic algorithms: past, present, and future. Recent

advances in swarm intelligence and evolutionary computation, 71-83.
Tuba, M., Alihodzic, A., & Bacanin, N. (2015). Cuckoo search and bat algorithm applied to training feed-forward neural

networks. In Recent advances in swarm intelligence and evolutionary computation (pp. 139-162). Springer, Cham.
Wilcoxon, F. (1992). Individual Comparisons by Ranking Methods. Breakthroughs in Statistics, 196–202, Springer, New

York, NY.
Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern separation for medical diagnosis applied to

breast cytology. Proceedings of the national academy of sciences, 87(23), 9193-9196.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary

computation, 1(1), 67-82.
Wu, H., Zhou, Y., Luo, Q., & Basset, M. A. (2016). Training feedforward neural networks using symbiotic organisms search

algorithm. Computational intelligence and neuroscience, 2016.
Yamany, W., Fawzy, M., Tharwat, A., & Hassanien, A. E. (2015). Moth-flame optimization for training multi-layer

perceptrons. In 2015 11th International computer engineering Conference (ICENCO) (pp. 267-272). IEEE.
Yang, X. S. (2008). Nature-inspired metaheuristic algorithms, Luniver press. Beckington, UK, 242-246.
Yang, X. S., & Deb, S. (2009). Cuckoo Search via L´evy Flights. In 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), (pp. 210–214), IEEE.
Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp.

169-178). Springer, Berlin, Heidelberg.
Yeh, I. C., Yang, K. J., & Ting, T. M. (2009). Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems

with Applications, 36(3), 5866-5871.
Yılmaz, Ö., Altun, A., & Köklü, M. (2022). A new hybrid algorithm based on MVO and SA for function

optimization. International Journal of Industrial Engineering Computations, 13(2), 237-254.

640

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

