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 Artificial neural networks (ANNs) are one of the artificial intelligence techniques used in real-
world problems and applications encountered in almost all industries such as education, health, 
chemistry, food, informatics, logistics, transportation. ANN is widely used in many techniques such 
as optimization, modelling, classification and forecasting, and many empirical studies have been 
carried out in areas such as planning, inventory management, maintenance, quality control, 
econometrics, supply chain management and logistics related to ANN. The most important and just 
as hard stage of ANNs is the learning process. This process is about finding optimal values in the 
search space for different datasets. In this process, the values generated by training algorithms are 
used as network parameters and are directly effective in the success of the neural network (NN). In 
classical training techniques, problems such as local optimum and slow convergence are 
encountered. Meta-heuristic algorithms for the training of ANNs in the face of this negative 
situation have been used in many studies as an alternative. In this study, a new hybrid algorithm 
namely MVOSANN is suggested for the training of ANNs, using Simulated annealing (SA) and 
Multi-verse optimizer (MVO) algorithms. The suggested MVOSANN algorithm has been 
experimented on 12 prevalently classification datasets. The productivity of MVOSANN has been 
compared with 12 well-recognized and current meta-heuristic algorithms. Experimental results 
show that MVOSANN produces very successful and competitive results. 
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1. Introduction 

In recent years, meta-heuristic algorithms have been frequently used in computational methods to increase efficiency and 
quality, reduce costs, and solve various complex problems encountered during the development and management of business 
processes by using production resources at an optimum level. Although the best solution cannot always be found with meta-
heuristic algorithms, they are preferred by researchers because they have features such as ease of application, their 
effectiveness in complex problems, adaptability to different problems, and so on (Kaya & Fığlalı 2018; Talbi, 2009). The 
common goal in such algorithms is to get the best solution in the existing circumstances for difficult and complex problems. 
To obtain the best result, the exploration and exploitation features of the algorithms should be strong, and the balance should 
be struck between these two processes. 
 
One way to equilibrate between exploration and exploitation may be to combine algorithms (Mirjalili & Hashim, 2010; 
Mafarja & Mirjalili, 2017). A hybrid algorithm is to combine one algorithm with another algorithm or algorithms using the 
preferred features of the algorithms. In many studies, it is seen that methods such as improvement, modification and 
hybridization have been tried to increase the success of algorithms. Hybrid algorithms can be essentially classified into two 
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groups. The first group is integrative hybrids, which are constituted by integrating a subsidiary algorithm into a primary 
algorithm. The second group is collaborative hybrids, a combination of two or more algorithms that run sequentially or in 
parallel (Ting et al., 2015). Many studies have been carried out on functions such as function optimization and real-world 
problems with hybrid algorithms. 
 
The process of training for artificial neural networks (ANNs) is an important implementation of meta-heuristic algorithms 
and hybrid versions of these algorithms. ANNs, generally defined as a mathematical model of nerve cells in the human brain 
and the connection between these cells, is one of the most researched artificial intelligence techniques today (McCulloch & 
Pitts, 1943; Anderson, 1995). ANNs are widely used in many fields such as classification, prediction, and optimization. One 
of the different neural networks (NNs) structures suggested in the literature is the feed-forward multi-layer perceptron (MLP). 
MLP has multi-layer neuron architecture. At this structure, the first layer is called the input layer, the last layer is the output 
layer, and the other layers between the first layer and the last layer are named as hidden layers. Neurons in all layers from the 
first to the last layer are connected to neurons in the following layer. The information flow is forward and there is no feedback. 
One of the reasons why this technique is preferred by researchers is its suitability for solving nonlinear and complex problems 
(Faris et al., 2016). 
 
One of the situations that significantly affect performance in MLP and other ANNs structures is the training process. In this 
process, the output value generated at the end of each iteration is compared with the target value. Depending on the error, the 
biases and weights are updated. These operations to minimize the error are known as training the network. Supervised, 
unsupervised and reinforced learning methods are used during the education process. In MLP training, gradient-based and 
stochastic methods are used for the supervised learning method. Gradient-based conventional methods for instance the back 
propagation algorithm (Rumelhart et al., 1986) have disadvantages such as local minima, slow convergence, and dependence 
on initial values (Gori & Tesi, 1992; Gupta & Sexton, 1999).  Stochastic methods, such as meta-heuristic algorithms, are other 
methods recommended as an alternative in the training process to overcome the disadvantages of conventional methods. GA 
(Seiffert, 2001), ABC (Karaboga et al., 2007), MOA (Mirjalili & Sadiq, 2011), AFS (Hasan et al., 2011), PSOGSA (Mirjalili 
et al., 2012), FA (Brajevic & Tuba, 2013; Alweshah, 2014), GWO (Mirjalili et al., 2014a), SSO (Mirjalili et al., 2015), BBO 
(Mirjalili et al., 2014b), MFO (Yamany et al., 2015), CSSO (Abedinia & Amjady, 2015), MBA (Tuba et al., 2015), MVO 
(Faris et al., 2016), MPSO (Kolay et al., 2016), SOS (Wu et al., 2016), GSO (Alboaneen et al., 2017),   WOA (Aljarah et al., 
2018), IMBO (Faris et al., 2018),  SSA (Abusnaina et al., 2018; Bairathi & Gopalani, 2019) algorithms can be given as 
examples of meta-heuristic and hybrid algorithms used in the training of ANNs.  
 
In this study, MVO which is a population-based algorithm and SA which is a single-solution based algorithm used for the 
training of the MLP, in an integrative hybrid structure. Our aim is to increase the success of MLP training with this hybrid 
model. Lately, a new hybrid model has been suggested for function optimization, in which MVO and SA algorithms are used 
together (Yılmaz et al., 2022). However, regarding to the no free lunch (NFL) theorem, a single optimization technique is not 
sufficient to solve all optimization problems (Wolpert & Macready, 1997). MLP training also means a different optimization 
problem for each different data set. For this reason, the proposed algorithm for function optimization has been modified and 
adapted for MLP training. In the literature, a hybrid model that uses MVO and SA algorithms for the training of ANNs not 
found and this model will be implemented for the first time. 
 
The remaining of this article is established as follows: in the second section, a general description of MLP - NN is given. In 
the third section elaborate information regarding the suggested hybrid algorithm (MVOSANN) and its components is 
explained. In the fourth section, it is shown how to use the MVOSANN algorithm to train MLP. Comparing experiment results 
with other algorithms are given in the fifth section. In this section, also, the performance of the suggested algorithm is 
interpreted. Finally, in the sixth section, the results of the implementation were evaluated, and recommendations were made 
for future studies.   
 
2. Feed-forward multilayer perceptron 
ANNs are mathematical models whose names and structures are taken inspiration by the human brain. They mimic the nerve 
cells in the human brain and the connections between these cells. ANNs can be classified into different types to be used for 
various targets. Feed-forward MLP is one of the commonly used types of ANNs. The input layer, the hidden layers, and the 
output layer are the parts that constitute the MLP. Neurons are interconnected in one direction and forward. A simple example 
of a feed-forward MLP architecture with a single hidden layer is shown in Fig.1. Each neuron in one layer connects to all 
neurons in other layers. Each neuron has a different weight and bias values. If the output of any neuron is above the specified 
threshold, that node is activated, and data is sent to the next layer. Otherwise, no data is sent to the next layer. The calculation 
of the weighted sum of the input values is shown below:  
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where, jv  is the net input value of neuron j in the hidden layer, ijw  is the connection weight connecting iI  to neuron j ,  

iI  indicates the neuron i  in the input layer, jβ  is a bias weight of  neuron j ,  and n  is the total number of neuron inputs. 

 
Fig. 1. Multilayer perceptron network with single hidden layer 

 
The outputs of neurons are activated with an activation function which is dependent on the value of the summation function. 
In general, this function is a nonlinear function like hyperbolic tangent sigmoid. The hyperbolic tangent sigmoid function is 
shown as follows: 
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In the hidden layer, the output of each neuron is calculated as follows: 
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After the NN is created, the input data presented to it is expected to give the desired output. For the NN to achieve this, it 
needs to update the network parameters, that is, the weights. This stage is called the training process, which is a tough stage 
that shows the power of the network. The goal here is to minimize the error among the actual values and the calculated output 
values. This process is performed using a training algorithm. The system generates an output value by using the values 
generated at the end of the training and the inputs presented to it. 
 
3. MVOSANN algorithm 
 
3.1. Multi-verse optimizer (MVO) 
 
In 2016, population-based multiverse optimization, taking inspiration from the concepts of wormholes, black holes, and white 
holes in the big bang theory and in the multiverse theory, was suggested by Seyedali Mirjalili et al. (Mirjalili et al., 2016). In 
this algorithm, where wormholes, black holes, and white holes are mathematically modelled for exploration, exploitation, and 
local search, the fitness function for each universe is referred by an inflation rate. Each universe represents a candidate 
solution, and each object represents a variable in the candidate solution. 
 
In the algorithm process, sometimes, there is an exchange of objects between universes. Universes with high inflation rate 
prone to send their objects to universes with low inflation rate, while universes with low inflation rate prone to receive objects 
from universes with high inflation rate. Optimization is started with the above steps. In each new iteration, the universes are 
ordered accordingly their inflation rates at the end of the previous iteration. The conceptional model of the suggested algorithm 
is shown in Fig. 2. The following rules apply in optimization: 
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• The odds that universes have white holes increase if inflation rates are higher. 
• The odds that universes have black holes increase if inflation rates are lower. 
• Universes with high inflation rate prone to dispatch objects via white holes. 
• Universes with low inflation rate prone to get more objects from black holes. 
• Wormholes can cause random object movement from the best universe to other universes. 
 
The mathematical model of MVO is as follows: 
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(4) 

 
where, n  is the number of universes (candidate solutions), k  is the number of parameters (variables).  
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where, j
io  defines the jth parameter of ith universe, j

ho  defines the jth parameter of hth universe selected by a roulette wheel 

selection, 1rn  is a number generated randomly in the range [0, 1], ( )iNRM UNV  is normalized inflation rate of the ith 

universe, iUNV  defines the ith universe. 

 
Fig. 2. Conceptional Model of MVO Algorithm. 

 
Wormholes, sometimes randomly replace objects of universes with objects of the best universe to preserve and exploit the 
diversity of universes. The mathematical model of this mechanism is as follows. 
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where, jO  defines the jth parameter of best universe generated up to now, j
io  defines the jth parameter of ith universe, juppb  

is the upper bound of jth variable,  jlowb  is the lower bound of jth variable, Travelling_DR and Wormhole_EP are the 
coefficients, and rn2, rn3, rn4 are numbers acquired randomly in the range [0, 1]. 
 
MVO has two coefficients: Travelling distance rate (Travelling_DR) and Wormhole existence probability (Wormhole_EP) 
(Eq. 6). The mathematical model for both coefficients is as follows:  
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where, l is the current iteration, L is the maximum iteration, min is the minimum value equal to 0.2, and max is the maximum 
value equal to 1. 
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where, p defines the accuracy of exploitation on iterations. Earlier and more accurate local search - exploitation is possible 
with a higher p value. Algorithm 1 shows the pseudocode of MVO.  
 
Algorithm 1. MVO 

1: Create random universes (UNV) 
2: Initialize BestUNV,Wormhole_EP,Travelling_DR 
3: SUNV = Sorted universes 
4: NRM = Normalize inflation rates (fitness) of the universes 
5: while Time < Max_time 
6:  Update Travelling_DR, Wormhole_EP 
7:  Evaluate the fitness of all universes 
8:  for each universe indexed by i       
9:   Black_Hole_Index = i; 

10:   for each object indexed by j 
11:    rn1 = random([0, 1]); 
12:    if rn1 < NRM(UNVi) 
13:     White_Hole_Index = RouletteWheelSelection(-NRM); 
14:     UNV(Black_Hole_Index, j) = SUNV(White_Hole_Index, j); 
15:    end if 
16:    rn2 = random([0, 1]); 
17:    if rn2 < Wormhole_EP 
18:     rn3 = random([0, 1]); 
19:     rn4 = random([0, 1]); 
20:     if rn3 < 0.5 
21:      UNV(i,j)=BestUNV(j)+Travelling_DR ×((uppb(j)-lowb(j))×rn4+lowb(j)); 
22:     else 
23:      UNV(i,j)= BestUNV(j)-Travelling_DR ×((uppb(j)-lowb(j))×rn4+lowb(j)); 
24:     end if 

5:    end if 
26:   end for 
27:  end for 



  

 

622

28: end while 
 
3.2. Simulated annealing (SA) 
 
Simulated annealing (SA) (Kirkpatrick et al., 1983), proposed by Kirkpatrick et al. in 1983, is one of the local search 
algorithms based on hill climbing method used in solving optimization problems. In the algorithm, where the creation of new 
solutions is based on predetermined rules or performed randomly, the newly created solution is compared with the current 
solution in each iteration. To find the global best and not get stuck with the local best, the algorithm, can accept new solutions 
that only enhance the current solution, as well as worse results that provide predetermined criteria. These criteria are decided 
by the Boltzmann probability. The following equation (Eq. 9) shows this mechanism: 
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(9) 

 
where, Prb is defined as the acceptance probability. F(X0) defines the objective function for current solution, F(X) defines the 
objective function for candidate solution. SA uses the acceptance probability mechanism to decide whether the candidate 
solution should be considered as the current solution when F(X) is worse than F(X0). Tk is the temperature value at time k, and 
in each iteration, value of Tk is calculated as follows: 
 

1k kT T c+ = ×   (10) 

 
where, c  refers to the temperature coefficient, Tk is the initial temperature value and Tk+1 is the temperature at time k. 
Algorithm 2 presents the pseudocode of SA algorithm. 
 

Algorithm 2. SA 
1: T = Temperature value 
2: T0 = Final temperature value 
3: c  = Temperature coefficient 
4: A = First solution               
5: f(A) = Fitness value of the first solution                       
6: while T > T0                       
7:  A' = a new solution in the A neighbourhood 
8:  f(A') = Calculate the fitness value of A' 
9:  if f(A') < f(A)           

10:   NSol = A'; 
11:   f(NSol) = f(A'); 
12:  else 
13:   ∆f = f(A') - f(A)                     
14:   r = random[0, 1];               
15:   if r > exp(− ∆f / T ) 
16:    NSol = A'; 
17:    f(NSol) = f(A'); 
18:   else 
19:    NSol = A; 
20:    f(NSol) = f(A); 
21:   end if 
22:  end if 
23:  A = NSol; 
24:  T = T × c 
25: end while 

 
3.3. MVOSANN algorithm 
 
MVO is a population-based meta-heuristic algorithm that produces very accomplished results in the face of many problems. Despite 



Ö. Yılmaz et al. / International Journal of Industrial Engineering Computations 13 (2022) 623

the many advantages of the MVO algorithm, it also has disadvantages such as low accuracy, local minimum, and slow convergence 
(Jia et al., 2019; Song et al., 2020). In this part of the study, to eliminate these disadvantages improvements in the structure of the 
original MVO algorithm are suggested. 
According to the uncertainty principle in physics, the momentum and position of a particle cannot be determined precisely at 
the same time, there is always an error, uncertainty and blurring possible (Heisenberg, 1985). According to the many-worlds 
interpretation (MWI), which is based on the uncertainty principle, there is a single and universal wave function for the entire 
universe as reality itself. This universal wave function, as the wave function of everything, includes all possibilities in the 
known world and an infinite number of parallel worlds in which every possibility exists (Everett et al., 1973). 

 
Fig. 3. Conceptional Model of MVOSANN Algorithm 

 
Inspired by the multiverse theory and the big bang theory, the MVO algorithm has been modified based on the uncertainty 
principle in physics and the MWI. To get the global best without being stuck with local minimums search agents and their 
twins perform the search by acting according to the general rules of the MVO and the acceptance mechanism of the SA. In 
this method, we used the SA algorithm in the integrative hybrid model structure, where exploration and exploitation can be 
increased. Fig. 3 shows the conceptional model of the suggested MVOSANN algorithm. 
 
In the suggested model, unlike the MVO algorithm, two initial populations with the same universes are created (Eq. 11). At 
each iteration, search agents in this twin population act according to the general rules of the MVO algorithm, to which the SA 
algorithm's acceptance probability feature is added. Each object represents a variable in the candidate solution and each 
universe in the populations represents a candidate solution. 
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(11) 

where, k  is the number of parameters (variables), n  is the number of universes (candidate solutions). 
 
In the MVO algorithm, updating the variables in a candidate solution is accomplished with a easy location update (Jia et al., 
2019). The values of the fitness function of the solutions generated using the acceptance probability of the SA algorithm will 
not be prone to decrease constantly, and in some circumstances, also, the solutions with high fitness function values will be 
accepted and the searching for the global best will be effected. Equation (Eq. 5), which was used in the exploration stage of 
the original MVO algorithm, is suggested as follows to increase the exploration and exploitation of the universe around the 
best solution. 
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Algorithm 3. MVOSANN 

1: Create twin populations randomly (TP) 
2: Initialize BestUNV,Wormhole_EP,Travelling_DR, T, c 
3: SUNV= Sorted universes 
4: NRM = Normalize inflation rates (fitness) of the universes 
5: while Time < Max_time 
6:  Update Travelling_DR, Wormhole_EP  
7:  Evaluate the fitness of universes of all populations 
8:  Sort all universes of all populations 
9:  TP[0] = SUNV[0:(N/2)] (Assign the first half of the sorted universes to the first of the twin populations) 

10:  TP[1] = TP[0] (Equalize twin population) 
11:  for each population indexed by k      
12:   for each universe indexed by i       
13:    Black_Hole_Index = i; 
14:    for each object indexed by j 
15:     rn1 = random ([0, 1]); 
16:     if rn1 < NRM(SUNV [i,:]) 
17:      White_Hole_Index = RouletteWheelSelection(-NRM); 
18:      TP[k][Black_Hole_Index][ j] = SUNV[White_Hole_Index,j]; 
19:     else 
20:      Calculate the fitness’s of SUNV[Black_Hole_Index,:] and     

       TP[k][Black_Hole_Index][:] (f( )) 
21:      ∆f = f(SUNV[Black_Hole_Index,:]) - f(TP[k][Black_Hole_Index][:]) 
22:      rn2 = random ([0, 1]); 
23:      if rn2 < exp (-∆f / T) 
24:       White_Hole_Index = RouletteWheelSelection(-NRM); 
25:       TP[k][Black_Hole_Index] [ j] = SUNV[White_Hole_Index,j]; 
26:     end if 
27:     end if 
28:     rn3 = random ([0, 1]); 
29:     if rn3 < Wormhole_EP 
30:      rn4 = random ([0, 1]); 
31:      rn5 = random ([0, 1]); 
32:      if rn4 < 0.5 
33:       TP[k][i][j]=BestUNV(j)+Travelling_DR ×((uppb(j)-lowb(j)×rn5+lowb(j)); 
34:      else 
35:       TP[k][i][j]=BestUNV(j)-Travelling_DR×((uppb(j)-lowb(j))×rn5+lowb(j)); 
36:      end if 
37:     end if 
38:    end for 
39:   end for 
40:  end for 
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41:  T = T × c 
42: end while 
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where, j
io defines the jth parameter of ith universe, j

ho  defines the jth parameter of hth universe chosen by a roulette wheel 

selection, rn1 and rn2 are numbers procured randomly in the range [0, 1], [ ]( ),:NRM SUNV i  is normalized inflation rate 

of the ith sorted universe, [ ],:SUNV i  describes the ith sorted universe. Prb is defined as the acceptance probability (Eq. 9). 
 
At the end of the iteration, the universes of the twin population clusters, which are no longer alike, are sorted collectively 
according to their inflation rates at each new iteration. The first universe in this ranking is the best universe ever found. After 
this stage, the first half of the collectively sorted universes with the best values is selected. This selected universe set creates 
the twin population set of the new iteration. The pseudo code of the MVOSANN algorithm is given in Algorithm 3. 
 
This set of twin populations, with universes containing identical objects at the beginning, diverges from similarity at the end 
of each iteration. As a result of different exploration and exploitation possibilities in the universes of this twin population 
cluster at the same time, it is more likely to reach the best inflation value. Because, as mentioned in the uncertainty principle 
and the MWI, the state of an object cannot be determined simultaneously and there are always parallel worlds where other 
different possibilities take place. 
 
4. MVOSANN for training MLP 
 
In this section, it is explained how the MVOSANN algorithm is used in training a single hidden layer MLP network. As 
mentioned in the introduction, the aim of training the neural network is to find the best weight and bias values. This is the 
main task of the MVOSANN algorithm in this study. Each universe (search agent) in the algorithm consists of the connection 
weights among the input layer to the hidden layer ( nmIw ), the weights among the hidden layer to the output layer ( mHw ), 

and the bias weights ( mβ ).  

 
Fig. 4. Representation of the MVOSANN universe for the MLP network 

 
The representation of the universes consisting of real numbers in the range of [−1, 1] is given in Fig. 4 in vector structure. 
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Equation (Eq. 13) shows how the number of objects in each universe is calculated. 
 

IndividualLength = (m × n) + (2 × m) + 1    (13) 
 
         
 
where, m is the number of neurons in the hidden layer, n is the number of input features. 
 
In all data sets, the mean square error (MSE) fitness function, which is based on calculating the difference between the real 
values and the values predicted by MLP, was used to measure the fitness value of the universes produced by MVOSANN. 
The aim here is to minimize the MSE value until the last iteration. The mathematical representation of MSE is as follows. 
 

2

1

1 ˆ( )
n

i
MSE y y

n =

= −   
 

(14) 

 
where, y is the actual values, and ŷ  is the predicted values, n is the number of samples in the training dataset. 
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Fig. 5. General steps of the MVOSANN for the MLP network training 

 
 
The MVOSANN algorithm is designed to train MLP networks as depicted in Fig. 5. We can summarize this approach with 
the following steps: 
 
1. A predefined number of candidate solution sets are randomly generated, where each universe (candidate solution) 

represents an MLP network. 
2. Universes consisting of all weights, including bias weights, are assigned to MLP networks. All generated MLP networks 

are evaluated using a fitness function (MSE). The aim is to reach the lowest MSE value according to the examples in the 
dataset used. 

3. In this step, the location update of the universes is performed. 
4. Steps 2 and 3 repeat up to the maximum number of iterations. 
 
5. Experimental results 
 
5.1. Datasets and comparison algorithms 
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In this study, a comprehensive analysis was carried out to examine the effectiveness of the MVOSANN in training MLP 
neural networks. MVO (Mirjalili et al., 2016) and 12 algorithms prevalently aforesaided in the literature: Grey Wolf Optimizer 
(GWO) (Mirjalili et al., 2017), Cuckoo Search (CS) (Yang & Deb, 2009), Harris Hawks Optimization (HHO) (Heidari et al., 
2019), Genetic Algorithms (GA) (Holland, 1992), Differential Evolution (DE) (Storn & Price, 1997), Particle Swarm 
Optimization (PSO) (Kennedy & Eberhart, 1995), Firefly Algorithm (FA) (Yang, 2008, 2009), Salp Swarm Algorithm (SSA) 
(Mirjalili et al., 2017), Sine Cosine Algorithm (SCA) (Mirjalili, 2016), Whale Optimization Algorithm (WOA) ( Mirjalili & 
Lewis, 2016), and JAYA Algorithm (JAYA) (Rao, 2016)  were used to evaluate the achievement of the MVOSANN 
algorithm. 
 
MVOSANN and other algorithms have been tested on 12 data sets used in many studies in the literature. These datasets, 
selected from the University of California, Irvine Machine Learning Repository (UCI), are: Abalone (Dua & Graff, 2019), 
Balance Scale (Dua & Graff, 2019),  Blood (Yeh et al., 2009), Breast Cancer (Wolberg & Mangasarian, 1990; Bennett & 
Mangasarian, 1992), Diabetes (Dua & Graff, 2019), Acute Inflammations (Diagnosis I, Diagnosis II) (Czerniak & Zarzycki, 
2003), Glass Identification (Dua & Graff, 2019), Iris (Dua & Graff, 2019), Liver disorders (Dua & Graff, 2019),  Raisin 
(Çınar et al., 2020), Vertebral (Dua & Graff, 2019). Information about these datasets, such as the number of features, the 
number of training samples, and the number of test samples, are given in Table 1. 
 
Table 1 
Classification datasets 

Dataset Features Training Samples Testing Samples 
Abalone 8 2756 1421 
Balance Scale 4 412 213 
Blood 4 493 255 
Breast Cancer 8 461 238 
Diabetes 8 506 262 
Diagnosis I 6 79 41 
Diagnosis II 6 79 41 
Glass 10 141 73 
Iris 4 99 51 
Liver 6 79 41 
Raisin 8 594 306 
Vertebral 6 204 106 

 
5.2.  Experimental setup 
 
Experiments were conducted using the EvoloPy-NN repository created by Faris in 2016 (Faris, 2016; Faris et al., 2016c). 
Evolopy-NN is an open-source framework consisting of classic and recent meta-heuristic algorithms coded with Python, with 
a user-friendly interface. Various studies have been carried out on artificial neural network training using the Evolopy-NN 
repository (Faris et al., 2016a; Faris et al., 2016b; Aljarah et al., 2018a; Aljarah et al., 2018b). All algorithms have been 
experimented on a personal computer with 16 GB (RAM), Intel Core i7-10875H 2.30 GHz (CPU), and 64-Bit Windows 11 
(operating system). 
 
Table 2 shows the parameter settings of the algorithms used in this study. All datasets are divided into 34 % for testing, and 
66 % for training. The number of search agents for the algorithms is set to 50 and the number of iterations to 100. Each 
algorithm was run individually 30 times to obtain balanced performance results. 
Table 2  
Parameters and values of MVOSANN and other algorithms 

Algorithm Parameter Value 

MVOSANN 

Maximum wormhole existence probability 1 
Minimum wormhole existence probability 0.2 
p 6 
T 1 
c 0.88 

MVO 
Maximum wormhole existence probability 1 
Minimum wormhole existence probability 0.2 
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p 6 

GA 
Crossover probability 0.9 
Mutation probability 0.1 
Selection mechanism Roulette wheel 

FA 
Alpha 0.5 
Beta 0.2 
Gamma 1 

SSA No custom parameters 
GWO No custom parameters 
WOA b 1 

PSO 

Vmax 6 
c1 2 
c2 2 
wMax 0.9 
wMin 0.2 

CS 𝑝௔ 0.25 
HHO No custom parameters 
SCA a 2 
JAYA No custom parameters  

DE 
Crossover probability 0.9 
Differential weight 0.5 

 
In this study, the method in which the number of hidden neurons is 2 × N + 1 was chosen; N is the number of features in each 
dataset. For each dataset, all input features values are normalized in the range [0,1] with Min-max normalization technique 
(Eq. 15). 
 

min
max min

i A

A A

vv −′ =
−

  
 

(15) 

where, v′  is the normalized value of v in the range [ ]min , maxA A  
 
5.3. Evaluation metrics 
 
A confusion matrix is a table (Fig. 6), that helps us evaluate the accuracy of a classification model on a dataset with actual 
values. On this table is a summary of the results predicted by the model in a classification problem (Stehman, 1997). In the 
model, evaluation was made by calculating the number of correctly predicted samples belong to the class (true positives), the 
number of incorrectly predicted samples belong to the class (false positives), the number of correctly predicted samples that 
do not belong to the class (true negatives), and the number of incorrectly predicted samples that do not belong to the class 
(false negatives). How the metrics used for binary classification and multiclass classification are calculated using the 
confusion matrix values, are shown in Table 3. (Sokolova & Lapalme, 2009). 
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Fig. 6. Confusion Matrix 

 
In this study, during the performance evaluation of algorithms, accuracy, recall, precision, error rate and F1 score calculations 
were made depending on whether each data set was in a binary classification group or a multiclass classification group. In the 
multi-class classification group, the calculations were made using the micro-average method, considering the class imbalance 
in the data sets. In addition, the MSE values (Eq. 14) based on the calculation of the difference among the actual values and 
the predicted values of MLP, and the standard deviations of the accuracy and MSE values were calculated. All algorithms 
were evaluated for each data set with the results obtained from the calculations. Also, a nonparametric Wilcoxon rank sum 
test (Wilcoxon, 1992) was applied to the results to analyse the relationship among the algorithms, and the p value was accepted 
to be less than 0.05 (5E-02) in this test to evaluate the statistically significant difference. 

 
Table 3 
Measures for binary classification and multi-class classification 

Binary classification Multiclass classification 
Measure Formula Measure Formula 

Accuracy 
TP TN

TP FN FP TN
+

+ + +
 Average_Accuracy 1

k i i
i

i i i i

TP TN
TP FN FP TN

k

=

+
+ + +

 

Precision 
TP

TP FP+
 Precisionµ 

( )
1

1

k
ii

k
i ii

TP

TP FP
=

=
+




 

Recall 
TP

TP FN+
 Recallµ 

( )
1

1

k
ii

k
i ii

TP

TP FN
=

=
+




 

F1_score 2 Precision Recall
Precision Recall+

× ×
 F1_scoreµ 2 µ µ

µ µ

Precision Recall
Precision Recall

×
×

+
 

Error rate 
FP FN

TP FN FP TN
+

+ + +
 Error_rateµ 1

k i i
i

i i i i

FP FN
TP FN FP TN

k

=

+
+ + +

 

 
5.3.  Results and discussions 
 
To evaluate the suggested MVOSANN algorithm, accuracy, MSE, recall, precision, error rate and F1 score results of all 
algorithms obtained from 12 data sets were compared. For each dataset and 30 trials, Table 4 shows the accuracy averages, 
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standard deviations of the mean accuracies of all algorithms, and best accuracies.  According to the results, MVOSANN 
performs much better than all other algorithms by having the best average accuracy values in all data sets. In addition, 
MVOSANN has low standard deviation values for all data sets, which shows that the proposed algorithm is robust and stable. 
Considering the best accuracy values, MVOSANN, 5 achieved the highest accuracy values for the data set, and it can be said 
that it is superior when compared to other algorithms. 
 
Table 4 
Results of classification accuracy for all datasets and algorithms 

Datasets  Algorithms 
MVOSA MVO GA FA SSA PSO GWO WOA CS HHO SCA JAYA DE 

Abalone 
AVE 0.8230 0.821 0.8047 0.8139 0.8100 0.8122 0.8155 0.7877 0.8066 0.8009 0.8013 0.8040 0.8012
STD 0.0031 0.004 0.0101 0.0080 0.0077 0.0098 0.0058 0.0150 0.0131 0.0100 0.0128 0.0157 0.0199
BEST 0.8291 0.831 0.8249 0.8270 0.8256 0.8277 0.8242 0.8186 0.8326 0.8136 0.8418 0.8319 0.8291

Balance 
AVE 0.8376 0.830 0.7746 0.8144 0.8239 0.8282 0.8194 0.7573 0.7850 0.7624 0.7156 0.7654 0.7019
STD 0.0490 0.049 0.0787 0.0682 0.0587 0.0664 0.0519 0.0776 0.0919 0.0660 0.1043 0.1273 0.0874
BEST 0.9296 0.910 0.9296 0.9155 0.9343 0.9343 0.9108 0.9249 0.9014 0.8873 0.8638 0.9437 0.8498

Blood 
AVE 0.7906 0.788 0.7837 0.7829 0.7808 0.7843 0.7822 0.7838 0.7829 0.7838 0.7826 0.7835 0.7822
STD 0.0038 0.005 0.0051 0.0054 0.0038 0.0074 0.0048 0.0067 0.0065 0.0070 0.0074 0.0072 0.0083
BEST 0.7961 0.796 0.7922 0.7922 0.7882 0.8000 0.7922 0.7922 0.7961 0.7922 0.7922 0.7961 0.7961

Breast 
Cancer 

AVE 0.9777 0.975 0.9678 0.9711 0.9721 0.9655 0.9746 0.9682 0.9664 0.9696 0.9602 0.9578 0.9571
STD 0.0044 0.005 0.0085 0.0063 0.0063 0.0072 0.0055 0.0089 0.0085 0.0049 0.0107 0.0103 0.0104
BEST 0.9874 0.983 0.9832 0.9832 0.9832 0.9748 0.9832 0.9790 0.9790 0.9790 0.9832 0.9748 0.9748

Diabetes 
AVE 0.7579 0.753 0.7246 0.7490 0.7480 0.7439 0.7497 0.6957 0.7247 0.7118 0.7078 0.7230 0.7289
STD 0.0057 0.005 0.0236 0.0121 0.0075 0.0136 0.0063 0.0329 0.0229 0.0254 0.0267 0.0231 0.0235
BEST 0.7710 0.763 0.7748 0.7748 0.7672 0.7748 0.7672 0.7824 0.7672 0.7481 0.7595 0.7672 0.7710

Diagnosis I 
AVE 0.9317 0.915 0.8431 0.8455 0.8683 0.8537 0.9049 0.8106 0.9065 0.8350 0.8293 0.8756 0.8236
STD 0.1057 0.109 0.1170 0.1127 0.1177 0.1133 0.1091 0.1296 0.1150 0.1143 0.1137 0.1321 0.1050
BEST 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Diagnosis 
II 

AVE 0.8333 0.825 0.7894 0.8138 0.8163 0.8024 0.8146 0.8000 0.8057 0.8073 0.7829 0.7911 0.7911
STD 0.0129 0.019 0.0606 0.0244 0.0210 0.0407 0.0165 0.0422 0.0359 0.0074 0.0688 0.0596 0.0662
BEST 0.8537 0.853 0.8293 0.8537 0.8537 0.8537 0.8537 0.8293 0.8293 0.8293 0.8293 0.8293 0.8537

Glass 
AVE 0.8810 0.868 0.8625 0.8606 0.8722 0.8750 0.8653 0.8769 0.8810 0.8755 0.8736 0.8514 0.8597
STD 0.0135 0.025 0.0297 0.0246 0.0191 0.0287 0.0147 0.0455 0.0364 0.0220 0.0395 0.0331 0.0615
BEST 0.9028 0.930 0.9306 0.9167 0.9167 0.9167 0.9028 0.9306 0.9583 0.9167 0.9444 0.9306 0.9583

Iris 
AVE 0.7607 0.741 0.7033 0.7467 0.7273 0.7380 0.7267 0.7020 0.7147 0.7060 0.7067 0.7153 0.7160
STD 0.0299 0.024 0.0283 0.0325 0.0170 0.0491 0.0184 0.0280 0.0283 0.0253 0.0275 0.0460 0.0373
BEST 0.8200 0.780 0.7400 0.8400 0.7600 0.9200 0.7600 0.7400 0.7800 0.7400 0.7400 0.8400 0.8200

Liver 
AVE 0.7686 0.762 0.6952 0.7395 0.7359 0.7455 0.7517 0.6322 0.6870 0.6630 0.6658 0.6661 0.6661
STD 0.0132 0.012 0.0361 0.0259 0.0231 0.0234 0.0180 0.0460 0.0307 0.0463 0.0458 0.0375 0.0342
BEST 0.7966 0.796 0.7712 0.7797 0.7797 0.7797 0.7797 0.7119 0.7627 0.7627 0.7542 0.7458 0.7203

Raisin 
AVE 0.8596 0.859 0.8477 0.8527 0.8529 0.8507 0.8558 0.8354 0.8450 0.8402 0.8404 0.8385 0.8369
STD 0.0041 0.004 0.0074 0.0061 0.0051 0.0131 0.0053 0.0145 0.0123 0.0147 0.0152 0.0148 0.0186
BEST 0.8693 0.869 0.8595 0.8627 0.8627 0.8660 0.8627 0.8529 0.8627 0.8660 0.8562 0.8627 0.8627

Vertebral 
AVE 0.8777 0.873 0.8189 0.8509 0.8604 0.8440 0.8701 0.7833 0.8220 0.7947 0.7906 0.8057 0.8088
STD 0.0107 0.007 0.0380 0.0368 0.0242 0.0398 0.0178 0.0480 0.0331 0.0362 0.0390 0.0370 0.0327
BEST 0.8962 0.886 0.8962 0.9151 0.8962 0.8962 0.8962 0.8585 0.8774 0.8679 0.8491 0.8774 0.8774

 
 
In 30 trials, for all datasets and all algorithms, the mean of MSE values, the standard deviation of the mean MSE values, and 
the lowest MSE values are shown in Table 5. As can be seen from the results, MVOSANN has the best average MSE for all 
datasets. When the standard deviation values are examined, it is also supported that MVOSANN is a robust and stable 
algorithm. In addition, MVOSANN achieved the lowest MSE value for the 9 dataset and is in the front row compared to other 
algorithms. 
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Table 5  
Results of MSE for all datasets and algorithms 

Datasets  Algorithms 
MVOSA MVO GA FA SSA PSO GWO WOA CS HHO SCA JAYA DE 

Abalone 
AVE 0.126 0.1275 0.1332 0.1299 0.1311 0.1311 0.1290 0.1379 0.1329 0.1340 0.1351 0.1345 0.1352 
STD 0.000 0.0008 0.0017 0.0022 0.0015 0.0025 0.0012 0.0038 0.0010 0.0022 0.0017 0.0022 0.0017 
BES 0.125 0.1259 0.1287 0.1259 0.1279 0.1268 0.1272 0.1299 0.1312 0.1304 0.1316 0.1296 0.1319 

Balance 
AVE 0.043 0.0461 0.0599 0.0532 0.0531 0.0491 0.0521 0.0616 0.0569 0.0610 0.0632 0.0591 0.0610 
STD 0.002 0.0021 0.0032 0.0045 0.0034 0.0034 0.0029 0.0044 0.0023 0.0033 0.0035 0.0041 0.0032 
BES 0.040 0.0425 0.0519 0.0447 0.0465 0.0424 0.0483 0.0546 0.0516 0.0532 0.0574 0.0494 0.0560 

Blood 
AVE 0.154 0.1548 0.1581 0.1571 0.1572 0.1558 0.1569 0.1602 0.1579 0.1595 0.1598 0.1588 0.1599 
STD 0.000 0.0009 0.0010 0.0016 0.0011 0.0012 0.0010 0.0038 0.0006 0.0022 0.0012 0.0015 0.0016 
BES 0.152 0.1534 0.1560 0.1544 0.1547 0.1535 0.1547 0.1563 0.1559 0.1563 0.1576 0.1548 0.1554 

Breast Cancer 
AVE 0.032 0.0339 0.0425 0.0389 0.0386 0.0420 0.0359 0.0478 0.0445 0.0413 0.0510 0.0520 0.0543 
STD 0.001 0.0015 0.0025 0.0028 0.0017 0.0033 0.0016 0.0045 0.0017 0.0013 0.0049 0.0049 0.0047 
BES 0.031 0.0320 0.0362 0.0349 0.0350 0.0342 0.0316 0.0392 0.0405 0.0369 0.0417 0.0430 0.0414 

Diabetes 
AVE 0.150 0.1517 0.1675 0.1561 0.1557 0.1570 0.1539 0.1842 0.1685 0.1716 0.1755 0.1705 0.1721 
STD 0.001 0.0009 0.0061 0.0027 0.0018 0.0027 0.0010 0.0143 0.0035 0.0069 0.0051 0.0043 0.0045 
BES 0.148 0.1496 0.1571 0.1519 0.1525 0.1517 0.1517 0.1582 0.1627 0.1583 0.1685 0.1623 0.1629 

Diagnosis I 
AVE 0.090 0.0913 0.0963 0.0931 0.0936 0.0921 0.0928 0.1049 0.0959 0.1001 0.1021 0.0976 0.1003 
STD 0.000 0.0008 0.0019 0.0015 0.0012 0.0029 0.0009 0.0147 0.0015 0.0077 0.0038 0.0028 0.0023 
BES 0.090 0.0898 0.0936 0.0902 0.0912 0.0899 0.0914 0.0941 0.0927 0.0933 0.0951 0.0934 0.0967 

Diagnosis II 
AVE 0.112 0.1177 0.1459 0.1292 0.1319 0.1169 0.1351 0.1492 0.1409 0.1482 0.1515 0.1444 0.1509 
STD 0.002 0.0046 0.0049 0.0083 0.0071 0.0070 0.0054 0.0089 0.0041 0.0063 0.0066 0.0083 0.0052 
BES 0.107 0.1096 0.1354 0.1123 0.1198 0.1078 0.1247 0.1311 0.1314 0.1347 0.1340 0.1265 0.1394 

Glass 
AVE 0.028 0.0296 0.0397 0.0361 0.0355 0.0380 0.0325 0.0532 0.0419 0.0408 0.0490 0.0481 0.0534 
STD 0.001 0.0015 0.0037 0.0028 0.0022 0.0037 0.0012 0.0126 0.0017 0.0046 0.0060 0.0043 0.0051 
BES 0.025 0.0266 0.0343 0.0299 0.0288 0.0321 0.0299 0.0368 0.0375 0.0353 0.0395 0.0418 0.0422 

Iris 
AVE 0.011 0.0126 0.0189 0.0142 0.0167 0.0147 0.0158 0.0231 0.0186 0.0214 0.0215 0.0192 0.0207 
STD 0.001 0.0013 0.0015 0.0030 0.0018 0.0023 0.0017 0.0034 0.0010 0.0020 0.0019 0.0019 0.0020 
BES 0.009 0.0111 0.0161 0.0090 0.0127 0.0110 0.0121 0.0166 0.0161 0.0181 0.0179 0.0158 0.0155 

Liver 
AVE 0.192 0.1960 0.2157 0.2026 0.2064 0.1972 0.2024 0.2257 0.2147 0.2212 0.2206 0.2158 0.2191 
STD 0.002 0.0029 0.0025 0.0055 0.0038 0.0044 0.0026 0.0064 0.0026 0.0061 0.0039 0.0046 0.0036 
BES 0.189 0.1905 0.2119 0.1927 0.1989 0.1890 0.1969 0.2137 0.2096 0.2089 0.2124 0.2098 0.2126 

Raisin 
AVE 0.102 0.1036 0.1152 0.1086 0.1108 0.1050 0.1087 0.1249 0.1139 0.1209 0.1186 0.1160 0.1176 
STD 0.001 0.0018 0.0031 0.0038 0.0026 0.0036 0.0017 0.0092 0.0019 0.0058 0.0027 0.0034 0.0029 
BES 0.098 0.0992 0.1100 0.1012 0.1074 0.0990 0.1051 0.1106 0.1092 0.1124 0.1135 0.1100 0.1110 

Vertebral 
AVE 0.128 0.1314 0.1475 0.1378 0.1398 0.1348 0.1364 0.1631 0.1478 0.1562 0.1559 0.1518 0.1551 
STD 0.001 0.0018 0.0046 0.0057 0.0042 0.0038 0.0040 0.0108 0.0037 0.0069 0.0058 0.0060 0.0061 
BES 0.124 0.1278 0.1385 0.1285 0.1343 0.1265 0.1306 0.1490 0.1345 0.1424 0.1448 0.1412 0.1429 

 
Table 6 contains the results obtained using the Recall, Error rate, F1 score, and Precision evaluation measures of all algorithms 
for all datasets. According to the results, in the training process, MVOSANN has the best values in 7 data sets (Balance, 
Blood, Diabetes, Diagnosis I, Glass, Iris, Liver) for precision measurement, 9 data sets (Abalone, Balance, Breast Cancer, 
Diabetes, Diagnosis I, Glass, Iris, Liver, Raisin) for recall measurement, 11 data sets (Abalone, Balance, Blood, Diabetes, 
Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral) for F1 score measurement, and 11 data sets (Abalone, Balance, 
Blood, Diabetes, Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral) for error rate measurement. In the 
experimenting stage, MVOSANN has the best values in 7 data sets (Blood, Diabetes, Diagnosis I, Glass, Iris, Liver, Vertebral) 
for precision measurement, 9 data sets (Abalone, Breast Cancer, Diabetes, Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin) 
for recall measurement, 12 data sets (Abalone, Balance, Blood, Breast Cancer, Diabetes, Diagnosis I, Diagnosis II, Glass, Iris, 
Liver, Raisin, Vertebral) for F1 score measurement, and 12 data sets (Abalone, Balance, Blood, Breast Cancer, Diabetes, 
Diagnosis I, Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral) for error rate measurement. The outcomes again show the 
supremacy of MVOSANN over other algorithms according to these four evaluation measures. 
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Table 6  
Results of precision, recall, F1 score, error rate for all datasets (continued overleaves) 

Datasets Algorithms 
Train  Test 

Precision Recall F1 Score Error  Precision Recall F1 Score Error 

Abalone 

MVOSANN 0.9027 0.7815 0.8377 0.2055  0.8857 0.8488 0.8668 0.1770 
MVO 0.9018 0.7794 0.8361 0.2074  0.8844 0.8469 0.8652 0.1790 
GA 0.9055 0.7474 0.8184 0.2247  0.8878 0.8159 0.8499 0.1953 
FA 0.9003 0.7719 0.8310 0.2130  0.8804 0.8400 0.8597 0.1861 
SSA 0.9020 0.7650 0.8279 0.2159  0.8804 0.8332 0.8561 0.1900 
PSO 0.8933 0.7745 0.8288 0.2167  0.8771 0.8425 0.8587 0.1878 
GWO 0.9006 0.7749 0.8330 0.2108  0.8795 0.8437 0.8612 0.1845 
WOA 0.8961 0.7220 0.7989 0.2460  0.8794 0.7974 0.8358 0.2123 
CS 0.9037 0.7488 0.8183 0.2251  0.8883 0.8187 0.8514 0.1934 
HHO 0.9019 0.7459 0.8163 0.2276  0.8821 0.8160 0.8475 0.1991 
SCA 0.9017 0.7418 0.8132 0.2306  0.8846 0.8143 0.8473 0.1987 
JAYA 0.8932 0.7593 0.8193 0.2261  0.8776 0.8286 0.8510 0.1960 
DE 0.8942 0.7545 0.8161 0.2288  0.8787 0.8230 0.8480 0.1988 

Balance 

MVOSANN 1.0000 0.5420 0.7023 0.2468  0.9715 0.7200 0.8246 0.1624 
MVO 1.0000 0.5132 0.6771 0.2623  0.9701 0.7096 0.8149 0.1695 
GA 1.0000 0.3462 0.5098 0.3523  0.9661 0.6107 0.7320 0.2254 
FA 1.0000 0.4089 0.5770 0.3185  0.9786 0.6728 0.7880 0.1856 
SSA 1.0000 0.3980 0.5676 0.3244  0.9807 0.6896 0.8031 0.1761 
PSO 0.9992 0.4596 0.6263 0.2914  0.9490 0.7249 0.8128 0.1718 
GWO 1.0000 0.4191 0.5891 0.3130  0.9777 0.6814 0.7987 0.1806 
WOA 0.9985 0.3110 0.4716 0.3715  0.9825 0.5641 0.7013 0.2427 
CS 0.9989 0.3583 0.5211 0.3460  0.9645 0.6304 0.7435 0.2150 
HHO 1.0000 0.3096 0.4710 0.3720  0.9880 0.5693 0.7122 0.2376 
SCA 0.9956 0.3170 0.4723 0.3689  0.9746 0.4951 0.6226 0.2844 
JAYA 0.9975 0.3785 0.5408 0.3354  0.9505 0.6070 0.7222 0.2346 
DE 0.9968 0.3107 0.4651 0.3721  0.9532 0.4835 0.6126 0.2981 

Blood 

MVOSANN 0.7821 0.9799 0.8699 0.2236  0.7977 0.9711 0.8759 0.2094 
MVO 0.7795 0.9819 0.8691 0.2256  0.7945 0.9732 0.8748 0.2119 
GA 0.7718 0.9881 0.8667 0.2319  0.7881 0.9789 0.8732 0.2163 
FA 0.7731 0.9855 0.8664 0.2317  0.7886 0.9765 0.8725 0.2171 
SSA 0.7715 0.9864 0.8658 0.2331  0.7877 0.9746 0.8712 0.2192 
PSO 0.7793 0.9816 0.8687 0.2263  0.7915 0.9730 0.8729 0.2157 
GWO 0.7737 0.9841 0.8663 0.2316  0.7891 0.9741 0.8719 0.2178 
WOA 0.7703 0.9899 0.8664 0.2329  0.7852 0.9856 0.8740 0.2162 
CS 0.7729 0.9853 0.8662 0.2321  0.7886 0.9765 0.8725 0.2171 
HHO 0.7697 0.9910 0.8665 0.2330  0.7853 0.9854 0.8740 0.2162 
SCA 0.7722 0.9879 0.8668 0.2316  0.7865 0.9808 0.8728 0.2174 
JAYA 0.7781 0.9823 0.8682 0.2275  0.7904 0.9741 0.8726 0.2165 
DE 0.7739 0.9861 0.8671 0.2305  0.7865 0.9801 0.8726 0.2178 

Breast Cancer 

MVOSANN 0.9781 0.9598 0.9689 0.0403  0.9832 0.9830 0.9831 0.0223 
MVO 0.9767 0.9591 0.9678 0.0416  0.9820 0.9807 0.9813 0.0246 
GA 0.9824 0.9507 0.9663 0.0433  0.9862 0.9648 0.9753 0.0322 
FA 0.9808 0.9560 0.9683 0.0409  0.9843 0.9718 0.9780 0.0289 
SSA 0.9825 0.9564 0.9693 0.0396  0.9858 0.9718 0.9787 0.0279 
PSO 0.9813 0.9480 0.9643 0.0458  0.9864 0.9611 0.9735 0.0345 
GWO 0.9763 0.9584 0.9673 0.0424  0.9799 0.9817 0.9808 0.0254 
WOA 0.9815 0.9461 0.9634 0.0469  0.9857 0.9658 0.9757 0.0318 
CS 0.9791 0.9480 0.9632 0.0473  0.9853 0.9637 0.9742 0.0336 
HHO 0.9837 0.9555 0.9694 0.0394  0.9845 0.9692 0.9768 0.0304 
SCA 0.9768 0.9406 0.9582 0.0535  0.9818 0.9577 0.9695 0.0398 
JAYA 0.9781 0.9395 0.9583 0.0534  0.9808 0.9550 0.9676 0.0422 
DE 0.9726 0.9405 0.9561 0.0565  0.9786 0.9563 0.9672 0.0429 
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Table 6. Continued 

Datasets Algorithms 
Train Test 

Precision Recall F1 Score Error  Precision Recall F1 Score Error 

Diabetes 

MVOSANN 0.7666 0.5419 0.6348 0.2119  0.7428 0.5191 0.6109 0.2421 

MVO 0.7604 0.5388 0.6306 0.2146  0.7355 0.5122 0.6037 0.2463 

GA 0.7338 0.4674 0.5665 0.2398  0.7074 0.4309 0.5313 0.2754 

FA 0.7464 0.5194 0.6124 0.2235  0.7350 0.4931 0.5899 0.2510 

SSA 0.7549 0.5176 0.6140 0.2211  0.7321 0.4931 0.5890 0.2520 

PSO 0.7589 0.5151 0.6133 0.2206  0.7332 0.4750 0.5758 0.2561 

GWO 0.7591 0.5339 0.6268 0.2161  0.7329 0.4990 0.5936 0.2503 

WOA 0.6768 0.3820 0.4853 0.2704  0.6495 0.3670 0.4669 0.3043 

CS 0.7275 0.4847 0.5805 0.2374  0.6938 0.4479 0.5427 0.2753 

HHO 0.7144 0.4562 0.5550 0.2469  0.6684 0.4243 0.5177 0.2882 

SCA 0.7142 0.4289 0.5308 0.2540  0.6819 0.3962 0.4960 0.2922 

JAYA 0.7377 0.4756 0.5741 0.2373  0.6917 0.4424 0.5361 0.2770 

DE 0.7282 0.4558 0.5565 0.2441  0.7228 0.4312 0.5353 0.2711 

Diagnosis I 

MVOSANN 1.0000 0.7500 0.8571 0.1266  1.0000 0.8667 0.9142 0.0683 

MVO 1.0000 0.7500 0.8571 0.1266  1.0000 0.8349 0.8943 0.0846 

GA 1.0000 0.7500 0.8571 0.1266  1.0000 0.6937 0.7995 0.1569 

FA 1.0000 0.7500 0.8571 0.1266  1.0000 0.6984 0.8042 0.1545 

SSA 1.0000 0.7500 0.8571 0.1266  1.0000 0.7429 0.8332 0.1317 

PSO 1.0000 0.7500 0.8571 0.1266  1.0000 0.7143 0.8151 0.1463 

GWO 1.0000 0.7500 0.8571 0.1266  1.0000 0.8143 0.8819 0.0951 

WOA 0.9926 0.7417 0.8486 0.1333  0.9856 0.6444 0.7715 0.1894 

CS 1.0000 0.7500 0.8571 0.1266  1.0000 0.8175 0.8821 0.0935 

HHO 1.0000 0.7500 0.8571 0.1266  1.0000 0.6778 0.7889 0.1650 

SCA 1.0000 0.7500 0.8571 0.1266  1.0000 0.6667 0.7813 0.1707 

JAYA 1.0000 0.7500 0.8571 0.1266  1.0000 0.7571 0.8348 0.1244 

DE 1.0000 0.7500 0.8571 0.1266  1.0000 0.6556 0.7758 0.1764 

Diagnosis II 

MVOSANN 0.8853 0.8812 0.8830 0.1359  0.7993 0.9653 0.8705 0.1667 

MVO 0.8796 0.8848 0.8819 0.1380  0.8242 0.9236 0.8580 0.1748 

GA 0.8917 0.7616 0.8039 0.2059  0.9303 0.7222 0.7999 0.2106 

FA 0.8839 0.8616 0.8709 0.1473  0.9101 0.7931 0.8289 0.1862 

SSA 0.8876 0.8449 0.8646 0.1532  0.9132 0.7903 0.8291 0.1837 

PSO 0.8725 0.8783 0.8750 0.1460  0.8518 0.8542 0.8313 0.1976 

GWO 0.8919 0.8275 0.8562 0.1599  0.9398 0.7514 0.8221 0.1854 

WOA 0.9277 0.6543 0.7558 0.2363  0.9268 0.7431 0.8103 0.2000 

CS 0.8607 0.8362 0.8407 0.1823  0.8910 0.7944 0.8223 0.1943 

HHO 0.9324 0.6783 0.7693 0.2253  0.9744 0.7000 0.8077 0.1927 

SCA 0.8188 0.8072 0.7850 0.2435  0.8715 0.7875 0.8053 0.2171 

JAYA 0.8764 0.7790 0.8071 0.2084  0.9253 0.7347 0.8026 0.2089 

DE 0.8825 0.7420 0.7767 0.2325  0.8928 0.7861 0.8092 0.2089 

Glass 

MVOSANN 0.9909 0.8892 0.9373 0.1031  1.0000 0.8618 0.9257 0.1190 
MVO 0.9909 0.8851 0.9350 0.1066  1.0000 0.8468 0.9168 0.1319 

GA 0.9872 0.8756 0.9280 0.1176  1.0000 0.8403 0.9129 0.1375 

FA 0.9890 0.8780 0.9302 0.1141  1.0000 0.8382 0.9117 0.1394 

SSA 0.9897 0.8840 0.9338 0.1085  1.0000 0.8516 0.9197 0.1278 

PSO 0.9890 0.8780 0.9301 0.1141  1.0000 0.8548 0.9214 0.1250 

GWO 0.9906 0.8821 0.9332 0.1094  1.0000 0.8435 0.9150 0.1347 

WOA 0.9773 0.8783 0.9247 0.1232  1.0000 0.8570 0.9221 0.1231 

CS 0.9841 0.8821 0.9301 0.1146  1.0000 0.8618 0.9253 0.1190 

HHO 0.9874 0.8892 0.9356 0.1059  1.0000 0.8554 0.9219 0.1245 

SCA 0.9809 0.8694 0.9214 0.1279  0.9988 0.8543 0.9202 0.1264 

JAYA 0.9852 0.8715 0.9246 0.1228  1.0000 0.8274 0.9051 0.1486 

DE 0.9844 0.8585 0.9163 0.1345  0.9993 0.8376 0.9097 0.1403 
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Table 6. Continued 

Datasets Algorithms 
Train Test 

Precision Recall F1 Score Error  Precision Recall F1 Score Error 

Iris 

MVOSANN 1.0000 0.6242 0.7682 0.2480  1.0000 0.6480 0.7856 0.2393 

MVO 1.0000 0.6081 0.7559 0.2587  1.0000 0.6196 0.7645 0.2587 

GA 1.0000 0.5384 0.6997 0.3047  1.0000 0.5637 0.7201 0.2967 

FA 1.0000 0.6010 0.7501 0.2633  1.0000 0.6275 0.7701 0.2533 

SSA 1.0000 0.5672 0.7236 0.2857  1.0000 0.5990 0.7489 0.2727 

PSO 1.0000 0.5934 0.7438 0.2683  1.0000 0.6147 0.7592 0.2620 

GWO 1.0000 0.5601 0.7179 0.2903  1.0000 0.5980 0.7481 0.2733 

WOA 0.9990 0.5202 0.6839 0.3170  1.0000 0.5618 0.7185 0.2980 

CS 1.0000 0.5505 0.7096 0.2967  1.0000 0.5804 0.7336 0.2853 

HHO 1.0000 0.5283 0.6911 0.3113  1.0000 0.5676 0.7235 0.2940 

SCA 1.0000 0.5439 0.7041 0.3010  1.0000 0.5686 0.7242 0.2933 

JAYA 1.0000 0.5601 0.7168 0.2903  1.0000 0.5814 0.7331 0.2847 

DE 1.0000 0.5576 0.7152 0.2920  1.0000 0.5824 0.7346 0.2840 

Liver 

MVOSANN 0.7262 0.5474 0.6241 0.2759  0.7444 0.6920 0.7170 0.2314 

MVO 0.7113 0.5365 0.6115 0.2852  0.7365 0.6860 0.7101 0.2373 

GA 0.6613 0.4421 0.5243 0.3302  0.6932 0.5273 0.5915 0.3048 

FA 0.6953 0.5161 0.5922 0.2972  0.7144 0.6427 0.6761 0.2605 

SSA 0.6837 0.4937 0.5730 0.3075  0.7119 0.6327 0.6691 0.2641 

PSO 0.7144 0.5260 0.6045 0.2872  0.7250 0.6460 0.6823 0.2545 

GWO 0.6820 0.5140 0.5860 0.3038  0.7251 0.6687 0.6953 0.2483 

WOA 0.6353 0.3414 0.4367 0.3568  0.6169 0.3607 0.4446 0.3678 

CS 0.6743 0.4365 0.5240 0.3266  0.6812 0.5160 0.5789 0.3130 

HHO 0.6747 0.3842 0.4823 0.3361  0.6487 0.4300 0.5114 0.3370 

SCA 0.6509 0.3961 0.4716 0.3501  0.6844 0.4533 0.5166 0.3342 

JAYA 0.6589 0.4354 0.5098 0.3373  0.6627 0.4933 0.5436 0.3339 

DE 0.6849 0.4042 0.4882 0.3363  0.6908 0.4640 0.5261 0.3339 

Raisin 

MVOSANN 0.8713 0.8897 0.8804 0.1209  0.8291 0.9059 0.8658 0.1404 

MVO 0.8703 0.8872 0.8787 0.1225  0.8304 0.9035 0.8654 0.1405 

GA 0.8764 0.8617 0.8688 0.1300  0.8334 0.8697 0.8508 0.1523 

FA 0.8717 0.8763 0.8740 0.1264  0.8304 0.8867 0.8575 0.1473 

SSA 0.8740 0.8728 0.8734 0.1265  0.8347 0.8802 0.8568 0.1471 

PSO 0.8725 0.8808 0.8762 0.1241  0.8276 0.8867 0.8554 0.1493 

GWO 0.8738 0.8725 0.8731 0.1268  0.8360 0.8852 0.8599 0.1442 

WOA 0.8681 0.8510 0.8591 0.1395  0.8271 0.8490 0.8373 0.1646 

CS 0.8720 0.8618 0.8662 0.1328  0.8288 0.8715 0.8486 0.1550 

HHO 0.8730 0.8504 0.8612 0.1369  0.8341 0.8497 0.8414 0.1598 

SCA 0.8687 0.8637 0.8652 0.1342  0.8257 0.8656 0.8436 0.1596 

JAYA 0.8721 0.8568 0.8639 0.1347  0.8286 0.8551 0.8406 0.1615 

DE 0.8750 0.8455 0.8589 0.1383  0.8348 0.8420 0.8369 0.1631 

Vertebral 

MVOSANN 0.8738 0.8802 0.8770 0.1634  0.9127 0.9147 0.9136 0.1223 
MVO 0.8732 0.8802 0.8767 0.1639  0.9096 0.9116 0.9105 0.1267 

GA 0.8400 0.8825 0.8600 0.1902  0.8598 0.8902 0.8742 0.1811 

FA 0.8635 0.8810 0.8720 0.1712  0.8901 0.9009 0.8953 0.1491 

SSA 0.8580 0.8933 0.8752 0.1686  0.8886 0.9182 0.9030 0.1396 

PSO 0.8805 0.8627 0.8700 0.1699  0.9027 0.8756 0.8868 0.1560 

GWO 0.8694 0.8832 0.8761 0.1654  0.9040 0.9138 0.9087 0.1299 

WOA 0.7950 0.8719 0.8303 0.2358  0.8262 0.8800 0.8513 0.2167 

CS 0.8402 0.8802 0.8578 0.1931  0.8662 0.8880 0.8753 0.1780 

HHO 0.8169 0.8756 0.8446 0.2134  0.8376 0.8813 0.8585 0.2053 

SCA 0.8167 0.8716 0.8403 0.2193  0.8349 0.8818 0.8557 0.2094 

JAYA 0.8320 0.8810 0.8518 0.2031  0.8581 0.8751 0.8633 0.1943 

DE 0.8394 0.8689 0.8508 0.2008  0.8636 0.8711 0.8643 0.1912 
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In Fig. 7 and Fig. 8, convergence curves are given to observe the convergence behaviour of the MVOSANN algorithm and to 
compare its performance with other algorithms. The figure shows that MVOSANN has the fastest convergence rate and the 
lowest MSE values in all datasets. MVOSANN algorithm has acquired powerful results by surpassing other algorithms in terms 
of robustness and stability. 
 
The MVOSANN algorithm outclasses all other algorithms used in the comparing. To understand the relationship among the 
proposed algorithm and other algorithms, non-parametric Wilcoxon rank-sum statistical test was applied. The results of this 
test are shown in Table 7. The algorithm with the best average value gets the N/A value and is compared with other algorithms. 
According to table, the MVOSANN algorithm has a p value less than 0.05 for all data sets and for all algorithms, and it is 
seen to be statistically significant. 
 
MLP training is a problem that has many local solutions and is also difficult to solve. As can be seen from the results obtained, 
the MVOSANN algorithm shows the best productivity against this difficult problem compared to the other 12 algorithms used 
for comparison. It has also proven this success in all the different search spaces of 12 different data sets. The reason for this 
success of MVOSANN is the high exploration - exploitation ability it has and the ability to avoid the local minimum. 
 
 
Table 7  
Wilcoxon rank sum test 𝑝-values (N/A = not applicable) 

Datasets 
Algorithms 

MVOSANN MVO GA FA SSA PSO GWO WOA CS HHO SCA JAYA DE 

Abalone N/A 4.98E-04 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Balance N/A 5.10E-05 2.87E-11 2.74E-10 7.03E-11 5.31E-08 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Blood N/A 4.97E-03 2.87E-11 7.73E-10 1.04E-10 9.18E-07 9.44E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 5.23E-11 3.88E-11

Breast Cancer N/A 1.54E-04 2.87E-11 3.88E-11 3.51E-11 4.29E-11 1.06E-08 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diabetes N/A 2.92E-04 2.87E-11 4.29E-11 2.87E-11 5.77E-11 6.37E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diagnosis I N/A 9.77E-04 2.87E-11 3.06E-09 5.23E-11 2.96E-03 1.15E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diagnosis II N/A 6.97E-06 2.87E-11 1.86E-10 2.87E-11 0.054609 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Glass N/A 1.41E-03 2.87E-11 4.29E-11 9.44E-11 2.87E-11 5.23E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Iris N/A 3.26E-03 2.87E-11 8.93E-05 7.03E-11 8.70E-08 1.04E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Liver N/A 9.85E-06 2.87E-11 4.01E-10 2.87E-11 1.29E-05 3.88E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Raisin N/A 4.97E-03 2.87E-11 4.00E-09 2.87E-11 4.22E-05 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Vertebral N/A 5.39E-07 2.87E-11 2.74E-10 2.87E-11 1.63E-08 7.76E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

 
 

 
Fig. 7. Convergence curves of Abalone, Balance, Blood, Breast Cancer, Diabetes, Diagnosis I datasets. 
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Fig. 8. Convergence curves of Diagnosis II, Glass, Iris, Liver, Raisin, Vertebral datasets. 

 
6. Conclusion remarks 
One of the problems met in implementations of ANNs is related to the training of the ANNs model. Training in ANNs is one 
of the determinants that directly affects the achievement of the model. In the studies, it is seen that many different techniques 
are used in ANNs training. Today, meta-heuristic algorithms are preferred over traditional algorithms during the training stage 
in ANNS models. Meta-heuristic algorithms appear to produce more effective results than traditional algorithms. An algorithm 
cannot be expected to perform highly against every problem. Therefore, it may be necessary to work on different algorithms 
for different problems or to develop existing algorithms. 
 
In this article, the MVOSANN algorithm, which was developed based on the MVO and SA algorithms, is tested for the 
training of the feed forward MLP. The suggested algorithm (MVOSANN) has been used to optimize biases and weights in 
MLP for better results. The algorithm has been experimented on 12 datasets with different characteristics. The outcomes were 
compared with the outcomes of 12 various meta-heuristic algorithms. Experimental results suggest that the MVOSANN 
algorithm significantly enhances the performance of the MVO algorithm and carries out better than other algorithms. As a 
result, MVOSANN is an effective alternative for training ANNs. 
 
In the future, larger and different datasets can be studied with the proposed MVOSANN algorithm. In addition, the 
MVOSANN algorithm can be experimented for the training of different model neural networks or real-world problems. 
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