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 This paper considers simultaneously two areas of facility location and assortment planning in a 
competitive environment. In fact, a chain store that has competitors in the market locates a new 
facility. As there are different products in the market that can substitute with each other, it is 
intended to determine the best product assortment as well. An integer nonlinear programming 
problem is proposed to model the mentioned subject. For solving the model, the problem is 
reformulated as a mixed integer linear programming one. Therefore, a MIP solver software can be 
used for solving the small- and medium-size problems. For large-scale problems, a firefly algorithm 
is designed for obtaining a satisfactory solution. By using the proposed model, it is numerically 
shown that, in addition to the optimal location, it is also necessary to determine simultaneously the 
best product assortment for the new store. Actually, comparison results reveal that the location 
significantly affects the assortment scenarios for the new store. In other words, the selection of new 
store locations may lead to loss of large profit if the assortment planning is neglected. 
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1. Introduction 

Today, the competition is considered as an integral part of all supply chains in a way that if any chain player becomes unaware 
of it, the failure probability of the supply chain will be increasing. One of the factors that has a great impact on the 
competitiveness of a supply chain is the decisions that are made in a chain at different strategic and tactical levels. Strategic 
decisions are long-term decisions that are difficult and costly to change, such as facility location, facility capacity and 
technology selection. On the other hand, tactical decisions are those which deal with market changes and the factors 
determined by other competitors like assortment, pricing and promotion decisions (Shankar et al., 2013). Both strategic and 
tactical competitive decisions must be considered simultaneously in supply chain network design, as the overall chain structure 
is shaped by these kinds of decisions and the attention to one of them can lead to ignoring other important factors in the chain. 
In this paper, we investigate two important and influential factors in the competition of chain stores: facility location and 
assortment planning; The first one is considered as a strategic decision and the second is a tactical one. 

As the location of a new facility influences a company's profits greatly and cannot be changed easily due to a lot of 
investments, it is considered as a strategic decision (Ma et al., 2020). Many competitive location models are available in the 
literature, see for instance the survey papers (Plastria, 2001; Drezner, 2014; Ashtiani, 2016) and the references therein. They 
vary in the model components, for example: The location space may be a plane, network or discrete set. The number of new 
facilities can be one or more. The competition may be static or with foresight; the first one means that the competitors are 
already in the market and the owner of the new facility is aware of all related information and the second means that the 
facilities of competitors will be entered in the market when a new facility is opened. The demand points can be considered 
inelastic or elastic, depending on whether the goods are necessary or unnecessary. The attraction function of a customer 
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towards a particular facility is also important, and it usually depends on the distance between the customer and the facility 
and the features of the facility that are called facility design.   

On the other hand, selecting a set of products that leads to profit maximization is a major problem in planning retail operations 
and revenue management (Gallego and Topaloglu, 2019). One of the concepts that is widely used in assortment planning is 
choice models, in which customer substitution behavior and the resulting demand are specified from a given set of products 
(Désir et al., 2020). The need to consider customer choice behavior generates a considerable body of literature in the area of 
assortment optimization. 

The rest of the paper is organized as follows. In Section 2, we review related studies in the literature. In Section 3, we present 
the problem. Section 4 introduces the exact solution method and the proposed heuristic. Numerical examples to demonstrate 
the efficiency of the model and the proposed methods are shown in Section 5. Finally, in section 6, the conclusion highlights 
the innovation of the model and concludes with the future work. 

2. Literature Review 

In this section, we first review the location and assortment planning literature separately, and then introduce the research gap 
that exists in this research area. 

2.1. Competitive Location 

One of the important differences among competitive facility location models is their decision variables. In many cases, the 
only decision variable is “location” (see, for example, Levanova & Gnusarev, 2020), but in recent years, other variables have 
been added to the problem. One of the most frequent variables is the design of new facilities (see, for example, Boglárka et 
al., 2019) and the models associated with these types of variables are called location-design problems. Some researchers have 
also studied the subject of both price and location in the competitive environment (see, for example, Zambrano-Rey et al., 
2019). Furthermore, some papers used the other variables except those mentioned above such as the size of the facility (Zhang 
& Rushton, 2008) and the routing problem in the competitive environment (Hosseini-Nasab & Tavana-Chehartaghi, 2021).   

Customer patronizing behavior has been also considered as one of the competitive model components (Fernández et al., 
2017a). The commonly used customer choice rules in the literature can be classified into two kinds: 

• The deterministic rule: A customer only patronizes the facility that attracted him/her most (Drezner, 1994a) 

• The probabilistic rule: A customer splits his/her demand among all facilities in an area proportionally to the attraction 
of each facility to him/her (Drezner, 1994b) 

Table 1 lists the most related past work to the competitive location study by categorizing according to the decision variables 
of the model, and customer patronizing behavior. 

Table 1  
Overview of the most related past studies in competitive location models 

  Decision Variable 
 Location Location & Design Location & Price 

Patronizing 
Behavior 

Deterministic 

Díaz et al. (2017) 
Fernández et al. (2017b) 
Ghaffarinasab (2018) 
Gentile et al. (2018) 
Iellamo et al. (2015) 
Khodaee et al. (2022) 
Rahmani & Hosseini (2021) 
Wang et al. (2018) 

Fernández et al. (2017a) 
Hendrix (2016) 
 

Arbib et al. (2020) 
Rohaninejad et al. (2017) 
 

Probabilistic 

Drezner et al. (2015) 
Drezner et al. (2018) 
Gnusarev (2020) 
Legault & Frejinger (2022) 
Levanova, & Shan et al. (2019) 
Qi et al. (2017) 
Sadjadi et al. (2020) 

Arrondo et al. (2015) 
Bagherinejad & Niknam 
(2018) 
Boglárka et al. (2019) 
Fernández et al. (2019) 
Ma et al. (2020) 
Redondo et al. (2015) 

He et al. (2016) 
Kress & Pesch (2016) 
Li & Li (2021) 
Mahmoodjanloo et al. (2020) 
Zambrano-Rey et al. (2019) 

The vast majority of competitive location models focused on only one product, and very few works have been considered 
multi-product cases. For example, some authors considered price variables in the competitive multi-product space, but optimal 
product selection has not been a decision variable (Meagher & Zauner, 2004; Kress & Pesch, 2016; Economides, 1986). To 
the best of our knowledge, the only papers that considered the product selection as a variable are Beresnev & Suslov (2010) 
and Sadjadi et al. (2020). Beresnev & Suslov (2010) proposed a model in which products selection and pricing are the decision 
variables and Sadjadi et al. (2020) studied a model where the location and product selection are considered as variables, and 
the main difference is that they did not use assortment-oriented approach in their works. In other words, the effect of 
substituting products with each other has been neglected.   
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2.2. Assortment Planning 

The assortment planning literature dates back to the 1950s, when Sadowski (1959) was probably the first to address the 
“assortment problem”. The studies related in this area are different from each other in terms of the features they have been 
considered, such as the consumer demand model, the products' substitution pattern, the decisions at the inventory level and 
consideration of assortment capacity. 

Bernstein et al. (2015) categorized previous works based on the applied customer choice model - such as multinomial logit 
models (MNLs) and exogenous demand models - which greatly affect other problem features. The MNL model assumes that 
each customer visiting a store associates a utility with each product that can be decomposed into two parts: deterministic and 
random components. (See, for example, Besbes & Sauré, 2016). Due to some deficiencies of the MNL model, other choice 
models such as the nested logit model (See, for example, Gallego & Topaloglu, 2019) and a combination of the multinomial 
logit model (See, for example, Sen et al., 2018) have been applied to better formulate the substitution behavior. In an 
exogenous demand model, the demand for each product is determined in advance for all available products, and therefore, 
does not depend on a selected assortment (See, for example, Smith & Agrawal, 2000). Some recent work has used a ranking-
based consumer choice model to depict consumer preferences, so that each customer has a ranking of his or her favorite 
products (See, for example, Goyal et al., 2016). See Train (2009) for an overview of these models. Researchers gradually 
added more variables to their models; for example, Kök & Fisher (2007) considered shelf space limitation and Yücel, et al. 
(2009) paid attention both to shelf space constraint and supplier selection. 

Table 2 shows the most related research about the assortment planning based on the demand model and the capacity 
consideration. 

Table 2  
Overview of the most related past studies in assortment planning models 

 Capacity Consideration 
                   Yes               No 

Demand Model 

MNL Besbes & Sauré (2016) 
Feldman & Topaloglu (2015a) Bernstein et al. (2015) 

Nested Gallego & Topaloglu (2019)  
Mix MNL Sen et al. (2018) Feldman & Topaloglu (2015b) 

Exogenous  

Çömez-Dolgan et al. (2021) 
Chung et al. (2019) 
Hense & Hübner (2022) 
Kök & Fisher (2007) 
Smith & Agrawal (2000) 
Yücel et al. (2009) 

Our work 

Choice 

Désir et al. (2020) 
Jagabathula & Rusmevichientong (2017) 
Goyal et al. (2016) 
Transchel et al. (2022) 

Aouad et al. (2018) 
Blanchet et al. (2016) 
Feldman et al. (2019) 
Feldman & Topaloglu (2017) 
Nip et al. (2022) 

2.3. Contribution of the paper 

As can be deduced from the literature review of both the location and assortment research, these two domains have been 
investigated separately in the past, whereas in practice, when a facility is opened, it is impossible to neglect choosing the 
products to be offered. Consumers' tastes and choices are different in various regions, and the products that are best-selling in 
one area of a country or a city may be under-sold in another region for various reasons, such as cultural differences, income 
levels, and so on. Therefore, in addition to choosing the optimal location of the new facility, the selection of the best product 
portfolio to be offered to the customer in accordance with the selected location must be determined. If we look at the issue 
from the assortment viewpoint, we will reach the same conclusion again. When we are faced with choosing a product portfolio 
for stores, this product portfolio should not necessarily be the same for all stores. Of course, the answer varies depending on 
the location of the store and the choice of customers in that area. The importance of the interdependence of these two categories 
becomes more apparent when this issue should be considered in a competitive environment, where the consumer can choose 
another facility to buy their products or services, and therefore the facility owner should increasingly pay attention to choosing 
the optimal place as well as the optimal product assortment. 

It should also be noted that these two variables, because they affect each other, must be considered simultaneously, otherwise 
it may result in diminishing sales or lower profits. For example, assume that if we are faced with a pure location problem, 
location A is selected as the optimal solution between locations A and B, and then if we want to select its assortment, scenario 
X (for location A) is the optimal assortment, while if we consider these two variables together, selecting assortment Y for 
location B can be the optimal solution. 

To the best of our knowledge, this paper is the first work to investigate the location and assortment planning of a new facility 
simultaneously in a competitive environment. We call this problem:  competitive “location-assortment” model.  
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3. Proposed Model 

Consider a competitive market in which stores compete with each other to sell groups of products. In this competitive market, 
consider a chain that has o stores of m existing ones and m-o belongs to the competitors. The chain wants to open a new store. 
There are g potential locations for choosing the best site for the new facility. Assume that in this competitive market, there 
are n customers that each of them has different demands for various products.  

On the other hand, p different products are offered in the stores. For kth product, there are 𝑟 different Stock Keeping Units 
(SKUs) from various brands. For the new store, in addition to choosing the optimal location, we must specify which products 
and SKUs should be offered. 

For example, Fig 1 shows two samples of assortment scenarios.  

 
Fig. 1. Different assortment scenario 

As can be seen, on the first floor (from above) there is a product in both scenarios, with the difference that in scenario 1, three 
different SKUs (brands) and in scenario 2, two different SKUs are located, and in this scenario, SKU 2 is removed and 
replaced its vacancy with SKU 1. This is also seen in other floors.  

Assume that the size of the potential locations for the stores is the same. In this model, assortment-based substitution is 
considered for the customer demand. Assortment-based substitution is  the switch to an available variant by a customer when 
her  favorite product is not carried in the store. Therefore, if we assume that the demand of tth SKU of kth product for ith customer 
when the product is available in the store is 𝐷௧, the effective demand rate function under this substitution model is: 

(1) 𝑤௧௦ = 𝐷௧ + 𝛼௧௧ᇲ𝐷௧ᇲ௧ᇲ∉ௌ  

Where 𝛼௧௧ᇲ is the probability of substituting tth SKU of kth product for 𝑡ᇱth SKU and S is the assortment scenario of the new 
store. 

The products are assumed to be necessary and so, the demand is inelastic. Therefore, the demands of all customers are met by 
the existing stores. When a new store enters the market for offering a given product, some parts of the market share of the 
existing stores will be cannibalized. In this competitive market, the chain wants to open a new store (among g potential 
locations). The chain seeks to find answers to the following two questions: 

1. What is the optimal location of a new store? 

2. In a new store, which scenario of assortment should be selected? 

The following notations will be used throughout: 

Indices: 𝑖: Index of customers; 𝑖 = 1, … ,𝑛  𝑙: Index of existing facilities; 𝑙 = 1, … ,𝑚 𝑗: Index of potential locations; 𝑗 = 1, … ,𝑔  𝑘: Index of products; 𝑘 = 1, … ,𝑝 𝑡: Index of SKUs of kth product; 𝑡 = 1, … , 𝑟 𝑠: Index of assortment scenarios; 𝑠 = 1, … , 𝜃 
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Data: 
 𝑃: Location of the ith customer 𝑍: Location of the jth potential new store 𝐹: Location of the lth existing facility 𝑑: Distance between 𝑃 and 𝐹 𝑑ᇱ: Distance between 𝑃 and 𝑍 𝛽: Quality of 𝐹 perceived by 𝑃 𝛽ᇱ: Quality of 𝑍perceived by 𝑃 𝜋௦: Weight for the assortment scenario s as perceived by 𝑃 𝑃𝑟௧: Profit of tth SKU kth product 
 
Variable: 𝑥௦: A binary variable that is equal to 1 if the sth assortment is chosen for store at jth potential location, 0 otherwise 

The patronizing behavior of the customers is considered according to Huff rule. In this rule, the attraction that customer i feels 
for existing store l has a direct relationship with design (quality) of the store and a reverse one with a function of distance 
between the customer and the facility (Fernández et al., 2007) 

(2) 𝐴 = 𝛽 𝑔ሺ𝑑ሻ൘  

where 𝑔ሺ. ሻ is a non-negative non-decreasing function. Similar to Eq. (2), the attraction that customer i feels for the new store 
is as follows: 

(3) 𝐴௦ᇱ = 𝜋௦𝛽ᇱ 𝑔൫𝑑ᇱ൯൘  

Obviously, the more the attraction to one store, the higher the probability of attracting the customers by the mentioned store. 
Therefore, the market share of the chain from the demand of a particular customer i equals the total attraction of the facilities 
of the chain (existing and new) divided by the attraction of all facilities as follows: 

(4) 𝑀 = ∑ 𝐴 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵୀଵ∑ 𝐴 +ୀଵ ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ  

The chain’s total profit is as follows: 

(5) 𝑃𝑟௧ ൭𝐷௧ + 𝛼௧௧ᇲ𝐷௧ᇲ௧ᇲ∉ௌ ൱ 𝑥௦ ∑ 𝐴 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵୀଵ∑ 𝐴 +ୀଵ ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ
ఏ
௦ୀଵ


ୀଵ

ೖ
௧ୀଵ


ୀଵ


ୀଵ  

Note that, in the Eq (5), depending on the location and the scenario of assortment, the demand of products for various 
customers is different, because, as mentioned earlier, due to the availability (or not availability) of products in the stores and 
the possibility of replacement, part of the demand for one product is transferred to another product. 

The competitive “Location-Assortment” problem (P1) to be solved is: 

(6) 𝑚𝑎𝑥 𝑧 = 𝑃𝑟௧𝑤௧௦𝑥௦ ∑ 𝐴 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵୀଵ∑ 𝐴 +ୀଵ ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ
ఏ
௦ୀଵ


ୀଵ

ೖ
௧ୀଵ


ୀଵ


ୀଵ  

 s.t. 

(7) 𝑥௦ఏ
௦ୀଵ


ୀଵ = 1 

(8) 𝑥௦ ∈ ሼ0,1ሽ                          𝑗 = 1, … ,𝑔 𝑎𝑛𝑑 𝑠 = 1, … ,𝜃 

Where, the Eq. (6) represents the chain’s profit, which must be maximized. Eq. (7) ensures that among potential locations and 
assortment scenarios, one of them should be chosen.  

The model is an integer nonlinear programming problem with a particular structure: numerators and denominators of a ratio 
differ by the constants only. It has been shown in Benati & Hansen (2002) that a similar problem to P1 is NP-hard. Intuitively, 
the reason is easy to understand: if 𝑔൫𝑑ᇱ൯ → 0, the customers do not like to travel and tend to buy from the nearest store 
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and therefore, the Problem P1 becomes close to the ൫𝑟|𝑋൯ − 𝑚𝑒𝑑𝑖𝑎𝑛𝑜𝑖𝑑 problem with of 0/1 choices, whose NP-hardness 
was proved by Hakimi  (1990). 

4. Solution Methods 

This section presents two methods for determining the optimal solution and then two techniques for obtaining the upper bound 
of the objective function in order to provide a comparison and validate two solution methods. 

4.1. Integer linear formulation from fractional programming 
 

Assume 𝛿 = ∑ 𝐴ୀଵ   and 𝛿ᇱ = ∑ 𝐴ୀଵ  for 𝑖 = 1, … ,𝑛. 

The objective function can be expressed: 

(9)  𝑃𝑟௧𝑤௧௦𝑥௦ 𝛿 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ𝛿ᇱ + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ
ఏ
௦ୀଵ


ୀଵ

ೖ
௧ୀଵ


ୀଵ


ୀଵ  

Let a variable 𝜗௦ = 𝛿 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ𝛿ᇱ + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ  

As the denominator is positive this is equivalent to:  

𝜗௦ ቌ𝛿ᇱ + 𝐴௦ᇱ 𝑥௦
ୀଵ

ఏ
௦ୀଵ ቍ = 𝛿 + 𝐴௦ᇱ 𝑥௦

ୀଵ
ఏ
௦ୀଵ  

As a result 

𝜗௦𝛿ᇱ + 𝐴௦ᇱ 𝜗𝑥௦
ୀଵ

ఏ
௦ୀଵ − 𝛿 −𝐴௦ᇱ 𝑥௦

ୀଵ
ఏ
௦ୀଵ = 0 

Now we introduce a variable 𝜑௦ = 𝜗௦𝑥௦ 
For which the following inequalities are valid: 𝜑௦ ≤ 𝑥௦ 
And 𝜑௦ ≥ 𝜗௦ − ൫1 − 𝑥௦൯ 
Therefore, 

𝜗௦𝛿ᇱ + 𝐴௦ᇱ 𝜑௦
ୀଵ

ఏ
௦ୀଵ − 𝛿 −𝐴௦ᇱ 𝑥௦

ୀଵ
ఏ
௦ୀଵ = 0 

So that 

𝜗௦ = 1𝛿ᇱ ቌ𝐴௦ᇱ 𝑥௦
ୀଵ

ఏ
௦ୀଵ −𝐴௦ᇱ 𝜑௦

ୀଵ
ఏ
௦ୀଵ + 𝛿ቍ  

Finally, the problem may be rewritten as follows (P2): 

(10)  𝑚𝑎𝑥 𝑧 = 𝑃𝑟௧𝑤௧௦ఏ
௦ୀଵ


ୀଵ

ೖ
௧ୀଵ


ୀଵ


ୀଵ 𝜑௦ 

 s.t. 

(11) 𝜑௦ ≥ 1𝛿ᇱ ቌ𝐴௦ᇱ 𝑥௦
ୀଵ

ఏ
௦ୀଵ −𝐴௦ᇱ 𝜑௦

ୀଵ
ఏ
௦ୀଵ + 𝛿ቍ − ൫1 − 𝑥௦൯;      𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑠 

(12) 𝜑௦ ≤ 𝑥௦;                                                                                                               𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑠 
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(13) 𝑥௦ఏ
௦ୀଵ


ୀଵ = 1;                                                                                      

(14) 𝜑௦ ≥ 0; 𝑥 ∈ ሼ0,1ሽ                                                                                             𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑠 
 
which can be directly handled by MIP solvers. For large-scale problems, the resulting MIP may be difficult to solve to global 
optimality in a reasonable computational time. 
 
4.2. Discrete Firefly Algorithm (DFA) 
 

Since the problem is NP-hard, heuristic methods must be devised to implement a procedure and to obtain an approximate 
solution, when the dimension of the problem makes exact methods too time-consuming. 

FA is a new ecological intelligence meta-heuristic method for solving optimization problems, in which the search algorithm 
is inspired by firefly social behavior and the phenomenon of bioluminescent communication (Yang, 2009).  

There are many applications and uses of FA in different aspects of engineering. The reader can refer to Tilahun & 
Ngnotchouye (2017) for further details. 

To design a firefly inspired algorithm, the three rules are as follows: 

1) All fireflies are homogenous, so a firefly is attracted to other fireflies despite its sex. 

2) The attractiveness is proportional to the brightness that decreases as the distance between the fireflies increases. For 
both flashing fireflies, less light travels to the brighter one. If there is no brighter firefly than a particular one, this 
individual randomly moves through the search space. 

3) The brightness of a firefly is determined or affected by the objective function. 

For a maximization problem, brightness can simply be proportional to the value of the objective function. The main update 
formula for any couple of two fireflies i and j at 𝑋 and 𝑋 is: 

(15) 𝑋௧ାଵ = 𝑋௧ + 𝛽𝑒ିఊೕమ ൫𝑋௧ − 𝑋௧൯ + 𝛼𝜀௧ 
Where α is a parameter controlling the step size, 𝛽 is the attractiveness at 𝑟 = 0, the second term is due to the attraction, 
while the third term is randomization with the vector of random variables 𝜀 being drawn from a distribution. The distance 
between any pair of fireflies can be the Cartesian distance or the 𝑙ଶ − 𝑛𝑜𝑟𝑚. 

In this paper, discrete firefly is used for obtaining location and assortment variables. 

4.2.1. Representation scheme 

The encoding scheme of the proposed method has been illustrated in Fig 2. This scheme denotes the location and assortment 
of the new store for a special firefly, which is indicated by an 𝑔 × 𝜃 matrix.  

 Location (j) 

Assortment Scenario (s) 

𝑋ଵଵ௧  𝑋ଵଶ௧  … 𝑋ଵ௧  𝑋ଶଵ௧  𝑋ଶଶ௧  … 𝑋ଶ௧  

…
 

…
 … 

…
 

𝑋ఏଵ௧  𝑋ఏଶ௧  … 𝑋ఏ௧  

Fig 2. Representation scheme of the solution 

The location and assortment type of firefly i in the generation t can be denoted by 𝑋௧ = ൫𝑋ଵଵ௧ ,𝑋ଵଶ௧ , … ,𝑋ఏ௧ ൯. The value of 1 
shows the location and assortment scenario of the new store. 

4.2.2. Initialization 
 

In this paper, the location of the new store is initialized in such a way that the total demand of each customer is calculated, 
and the new store is located in the closest potential location to that customer and if there are two or more customers with the 
same demand, one of them is randomly selected. For assortment type, the full assortment is considered as the initial solution. 
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4.2.3. The movement of fireflies 
 

The movement of a firefly i attracted to another more attractive (brighter) firefly j is determined by relation (15). 

4.2.4. Discretization 
 

When firefly i moves toward firefly j, the position of firefly i changes from a binary number to a real number. Therefore, we 
must replace this real number by a binary one. By using the sigmoid function, the position value is limited to the interval of 
[0,1]. The structure of the discretization is fully described in Tilahun & Ngnotchouye (2017). 

4.2.5. Pseudo code of the algorithm 
 

The steps of the DFA can be summarized as the pseudo code shown in Fig. 3. 

 Run DFA 
 Generate initial population of fireflies 𝑋 (𝑖 = 1,2, … ,𝑛).  
 Determine objective function. Light intensity 𝐼 at 𝑋 
 Set light absorption coefficients γ, randomization parameters 𝛼 and maximum iterations (MaxItr). 
 while (t <MaxItr) 
       for i = 1 : n       all fireflies 
              for j = 1 : i       
                     if (𝐼 > 𝐼), Move firefly i towards j in all dimensions 

Attractiveness varies with distance r via exp[−𝛾𝑟ଶ] for location and assortment of  
new store. 𝑋 = 𝑋 + 𝛽𝑒ିఊమ൫𝑋 − 𝑋൯ + 𝛼𝜀 
Discrete the decision variable of i-th firefly. 𝑆൫𝑋௦௧ ൯ = 11 + exp (−𝑋௦௧ ) 

Each firefly locates new store and select new assortment based on its changes 
of probabilities. 

Evaluate new solution (position of i-th firefly) and update light intensity 𝐼. 
end if 

            end for j 
      end for i 
      Rank the fireflies and find the current best 
 End while 
 Show the best-known solution and its objective value  

Fig. 3. Procedure of the DFA algorithm. 

4.3. Upper bounds for objective function 
 

In this study, the quality of solution obtained from the model is very important. Hence, we present below two methods that 
can, in a short time, provide an exact upper bound for the objective function, which allows us to estimate the accuracy of the 
obtained solutions by proposed methods in previous sections. 

4.3.1. The continuous relaxation of P2 is a linear programming 
 

The continuous relaxation of P2 is a linear programming problem (P3). The result of model P3 is called UB1. 

(16) 𝑀𝑎𝑥 𝑧 = 𝑃𝑟௧𝑤௧௦ఏ
௦ୀଵ


ୀଵ

ೖ
௧ୀଵ


ୀଵ


ୀଵ 𝜑௦ 

 s.t. 

(17) 𝜑௦ ≥ 1𝛿ᇱ ቌ𝐴௦ᇱ 𝑥௦
ୀଵ

ఏ
௦ୀଵ −𝐴௦ᇱ 𝜑௦

ୀଵ
ఏ
௦ୀଵ + 𝛿ቍ − ൫1 − 𝑥௦൯;      𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑠 

(18) 𝜑௦ ≤ 𝑥௦;                                                                                                               𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑠 

(19) 𝑥௦ఏ
௦ୀଵ


ୀଵ ≤ 1;                                                                                      

(20) 𝜑௦𝑎𝑛𝑑 𝑥௦ ≥ 0                                                                                                     𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑠 

By using this relaxation technique, the NP-hard optimization problem (integer programming) is turned into a linear 
programming that is solvable in polynomial time. 
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4.3.2. The continuous and full assortment relaxation of the objective function of P1 is concave  
 

Since 𝑤௧௦ in the full assortment scenario is at its maximum value, we can prove that continuous relaxation of the following 
function is concave. 

(21) 𝑧ᇱ = 𝑃𝑟௧𝐷௧ ∑ 𝐴 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵୀଵ∑ 𝐴 +ୀଵ ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ
ೖ
௧ୀଵ


ୀଵ


ୀଵ  

where 𝐷௧ is the full assortment scenario. In this case, the continuous relaxation of the function does not have any singularity 
points, which allows us to compute the second cross-derivative by standard methods. As the objective function is a sum of 
ratios, it is sufficient to prove that each term is concave. Therefore, consider the term ikt: 

(22) 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) = 𝑃𝑟௧𝐷௧ ∑ 𝐴 + ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵୀଵ∑ 𝐴 +ୀଵ ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ  

In the Hessian matrix, 𝐻 = ሾℎ௪ሿ, where: 

(22) ℎ௪ = 𝜕𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥)𝜕𝑥𝜕𝑥௪ = −2𝑃𝑟௧𝐷௧𝐴ᇱ 𝐴௪ᇱ ∑ 𝐴 −ୀଵ ∑ 𝐴ୀଵቀ∑ 𝐴 +ୀଵ ∑ ∑ 𝐴௦ᇱ 𝑥௦ୀଵఏ௦ୀଵ ቁଷ 

Since ∑ 𝐴 −ୀଵ ∑ 𝐴ୀଵ ≥ 0, ℎ௪is always negative. Every submatrix of order two has a determinant equal to 0, whereas 
the diagonal elements are negative. Thus, 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) is concave. 

The continuous relaxation of the domain is a convex set, so we can compute an upper bound by using gradient methods. The 
result of this method is called UB2. 

5. Numerical examples 

This section provides computational experiments to evaluate the performance of the proposed model. At first, a small-sized 
problem is solved by DICOPT as an MINLP solver available in the modeling system GAMS and the results are analyzed. 
Then several examples with different sizes are solved to show the efficiency and effectiveness of the proposed methods. All 
computational experiments are done on a Core i7 with 3.5 GHz CPU and 8 GB memory. The heuristic is coded in MATLAB 
R2020b. 

5.1. Illustrative examples 
  

5.1.1. Example 1 
 
It is assumed that 𝑚 = 2, 𝑜 = 1,𝑛 = 10, 𝑘 = 3, 𝑡 = 3, 𝐹ଵ = (1,4),𝐹ଶ = (2,3), 𝛽ଵ = 8,𝛽ଶ = 9.  𝑔(𝑑) = 𝜀 + 𝑑ଶ . Table 3 depicts 𝑃 and 𝐷௧. 
 
Table 3  
The locations and the demands of different customers 

 Location (0,0) (2,0) (4,1) (1,2) (3,2) (2.5,2.5) (1,3) (1,4) (2.5,4) (4,4) Profit 

Product 1 
SKU 1 5 8 10 15 13 30 50 100 100 100 6.7 
SKU 2 40 45 50 55 50 45 40 45 50 45 3.2 
SKU 3 100 100 100 90 90 50 40 10 5 5 2.0 

Product 2 
SKU 1 1 19 31 46 47 52 64 60 88 98 3.2 
SKU 2 23 30 21 51 71 13 61 74 76 40 3.8 
SKU 3 25 51 14 27 5 26 97 35 99 33 4.0 

Product 3 
SKU 1 77 106 180 37 104 35 55 39 29 30 3.0 
SKU 2 84 108 185 37 99 35 52 40 39 36 4.0 
SKU 3 83 105 180 35 114 31 53 39 35 26 5.0 𝑍 are (2,4), (1,2) and (4,0) and 𝛽ᇱ = 8.  

For all three products, the chain’s existing store sells SKUs 2 and 3 and the competitor’s store offers SKUs 1 and 2. In Table 
4, seven assortment scenarios and 𝛼௧௧ᇲ are depicted. 
 
In Table 4, for example, in the scenario that only SKU 1 is present for product 1, 80% of customers that SKU 2 are their 
favorite and 10% of customers that want to buy SKU 3, will purchase SKU 1 instead. In dual assortments, the interpretation 
is slightly different. For example, in scenario 1-2 which shows the combination of SKU 1 and 2, 10% of customers whose 
demands are SKU 3 will buy from SKU 1 and 50% of them will meet their demands from SKU 2 and in fact 40% of them do 
not purchase anything.  𝜋௦ = 0.95, 095, 095, 1,1,1, 1.05 𝑓𝑜𝑟 𝑠 = 1, . . ,7 
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Table 4  
The substitution probabilities for different SKUs in different assortment scenarios 

Products SKUs 
 Assortment scenarios 

1 2 3 4 5 6 
1 2 3 1-2 1-3 2-3 

Product 1 
SKU 1 - 0.6 0.1 0.1 0.3 - 
SKU 2 0.8 - 0.7 0.5 - 0.6 
SKU 3 0.1 0.8 - - 0.3 0.1 

Product 2 
SKU 1 - 0.8 0.1 0.4 0.5 - 
SKU 2 0.7 - 0.1 0.5 - 0.4 
SKU 3 0.7 0.8 - - 0.3 0.5 

Product 3 
SKU 1 - 0.9 0.95 0.3 0.3 - 
SKU 2 0.9 - 0.95 0.3 - 0.3 
SKU 3 0.8 0.8 - - 0.3 0.3 

  

After solving the model, the chain’s profit for every assortment scenario and potential location in terms of three products is 
shown in Table 5.  
 
Table 5  
The chain’s profit for different assortment scenario 

  Assortment scenarios 
  1 2 3 4 5 6 7 
  1 2 3 1-2 1-3 2-3 1-2-3 

Product 1 
Location 1 2871 2367 2033 2487 2785 2370 2860 
Location 2 2699 2576 2292 2769 2686 2533 2762 
Location 3 2658 2623 2441 2279 2671 2598 2731 

Product 2 
Location 1 2739 2926 2471 2980 2974 3093 3086 
Location 2 2799 2947 2604 2991 2975 3068 3073 
Location 3 2896 2970 2788 3006 2997 3046 3060 

Product 3 
Location 1 3479 3735 4079 3618 3737 3873 3951 
Location 2 3427 3758 4209 3591 3751 3921 4010 
Location 3 3424 3773 4247 3596 3763 3940 4030 

For example, regardless of products 2 and 3, if we only offer product 1 in assortment scenario 1-2 at potential location 1, the 
chain profit is 2487. 

As can be seen from Table 5, the best assortment for product 1 is as follows: 𝑠 = 1 𝑖𝑓 the potential location 1 is selected 𝑠 = 4 𝑖𝑓 the potential location 2 is selected 𝑠 = 7 𝑖𝑓 the potential location 3 is selected 

This shows that the best assortment scenario depends entirely on the location of the store. Among these three locations, the 
highest profit belongs to the potential location 1.  

Similarly, for product 2 and 3 the results are visible in Table 5. The best location for different products (regardless of the other 
two products) is as follows: 

Product 1: Location 1 

Product 2: Location 1 

Product 3: Location 3 

As these products must be considered together, the best solution is to choose potential location 2 with the following scenarios 
for products: 

Product 1: 𝑠 = 4 

Product 2: 𝑠 = 7 

Product 3: 𝑠 = 3 

This example easily shows the dependency of two variables: location and assortment. In this case, the profit of the chain is 
equal to 10,051. 

Non-Optimal solutions comparison 
 
In this section, we examine what is lost if we did not consider location and assortment variables simultaneously. 
Table 6 provides a comparison between the optimal solution and some feasible answers. 
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Table 6  
Comparison between different solutions 

Solution Location Assortment for product 1 Assortment for product 2 Assortment for product 2 Objective function % Loss 
1 2 4 7 3 10,051 - 
2 1 4 7 3 9,652 4.0% 
3 3 4 7 3 9,586 4.6% 
4 1 7 7 7 9,898 1.5% 
5 2 7 7 7 9,845 2.0% 
6 3 7 7 7 9,820 2.3% 
7 1 6 6 6 9,335 7.1% 
8 2 6 6 6 9,522 5.3% 
9 3 6 6 6 9,584 4.6% 
10 1 3 3 1 7,983 20.6% 

In Table 6, row 1 is the optimal answer to the problem and the other 9 solutions are selected for comparison. In the solutions 
2 and 3, the current optimal assortment is considered for locations 1 and 3, but the computational result shows that in these 
cases, we will lose 4.0% and 4.6% of profit, respectively. 

The solutions 4, 5, and 6 are considered the full assortment: in these conditions, we will lose profits between 1.5% and 2.3%. 

The solutions 7, 8 and 9 are the current assortment of the chain’s existing store, because we want to investigate the impact of 
using the current assortment of the existing store in the new one. In these cases,  we will lose between 4.6% and 7.1%. 

Row 10 is also the worst possible answer to this example, with a profit loss of 20.6%. 

As it was observed, the percentage of profit loss due to not considering two variables at the same time is significant, and this 
proves that these two variables are interdependent and must be considered simultaneously in order to achieve the maximum 
possible profit. 

5.1.2. Other examples 
 

To demonstrate the efficiency of the model, ten problems are solved, and the results have been shown in Table 7. Instances 
consist of different numbers of customers (n = 5, 10, 20, 50) and different numbers of facilities (m = 2, 4,10) for one product 
and 3 SKUs. 

We randomly selected the parameters of the problems from the following intervals for each type of setting: 𝐷௧~ U(1, 100), 𝑃~ U(1, 10)2, 𝑍~ U(1, 10)2, 𝑓~ U(1, 10)2 𝛼௧௧ᇱ~ U(0.1, 1), 𝛽~ U(1, 10), 𝛽′~ U(1, 10), 𝑃𝑟௧~ U(3,6), 𝜀=0.005. 

Table 7  
Results for the different problems 

# n m Optimal 
location 

Optimal 
assortment 

% Average loss of other assortment 
scenarios 

% Average loss of other potential 
locations 

 

1 5 2 2 1 8.5% 8.3%  
2 5 4 1 4 7.2% 12.3%  
3 10 2 5 4 11.2% 9.6%  
4 10 4 5 7 5.6% 10.9%  
5 20 2 2 5 10.3% 4.8%  
6 20 4 4 2 4.9% 5.2%  
7 20 10 3 3 8.3% 3.1%  
8 50 2 1 6 7.6% 5.2%  
9 50 4 7 4 10.5% 12.8%  
10 50 10 1 7 12.3% 11.6%  

 
5.1.3. Sensitivity Analysis 
 

In this section, the changes are made in the model parameters of Example 1 and two other examples are examined and the 
percentage of changes in the optimal solutions is analyzed. 

5.1.3.1. Probability substitution changes 

Table 8 shows the rate of change of the optimal solution relative to the change of substitution probabilities. As shown in Table 
8, the effect of substitution probabilities on the objective function and the optimal solution is very strong, and the estimation 
of this parameter must be done accurately, otherwise the wrong estimation will lead to incorrect decisions. When the 
probability of replacement is zero or very low, the model follows a full assortment because the products cannot be replaced 
with each other, but when the probability of replacement is higher, the occurrence of full assortment modes becomes lower 
and also the profit of the chain becomes higher. Changing the probability of replacement, in addition to affecting the store's 
assortment, has also affected the optimal facility location. 
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Table 8  
Probability substitution changes effect 

Example # Change Opt. 
Location 

Opt. 
Assortment P1 

Opt. 
Assortment P2 

Opt. 
Assortment P3 

Objective 
function 

% 
Change 

1 

1 𝛼௧௧ᇲ = 0 1 7 7 7 8,053 Base 
2 𝛼௧௧ᇲ = 0.2 1 7 7 7 8,605 6.9% 
3 𝛼௧௧ᇲ = 0.5 1 1 7 7 9,465 17.5% 
4 𝛼௧௧ᇲ = 0.8 2 1 7 4 10,661 32.4% 
5 𝛼௧௧ᇲ = 1 2 1 4 4 13,714 70.3% 

2 

1 𝛼௧௧ᇲ = 0 3 7 7 7 14,273 Base 
2 𝛼௧௧ᇲ = 0.2 3 7 4 7 15,786 10.6% 
3 𝛼௧௧ᇲ = 0.5 3 2 4 5 16,542 15.9% 
4 𝛼௧௧ᇲ = 0.8 3 2 4 5 19,725 38.2% 
5 𝛼௧௧ᇲ = 1 2 2 1 3 22,152 55.2% 

3 

1 𝛼௧௧ᇲ = 0 4 7 7 7 10,838 Base 
2 𝛼௧௧ᇲ = 0.2 4 2 7 7 11,402 5.2% 
3 𝛼௧௧ᇲ = 0.5 4 2 6 6 12,128 11.9% 
4 𝛼௧௧ᇲ = 0.8 1 2 6 3 13,157 21.4% 
5 𝛼௧௧ᇲ = 1 1 2 2 3 14,707 35.7% 

 

5.1.3.2. New Store’s quality changes 
 

Table 9 shows the optimal solution changes to varying the quality of new store. 

Table 9  
New Store’s quality changes effect 

Example # Change Opt. 
Location 

Opt. 
Assortment P1 

Opt. 
Assortment P2 

Opt. 
Assortment P3 

Objective 
function 

% 
Change 

1 

1 𝛽ᇱ = 8 2 4 7 3 10,051 Base 
2 𝛽ᇱ = 11 2 4 7 3 10,872 8.2% 
3 𝛽ᇱ = 12 2 4 6 3 11,114 10.6% 
4 𝛽ᇱ = 100 2 4 6 3 17,444 73.6% 
5 𝛽ᇱ = 7 2 4 7 3 9,728 -3.2% 
6 𝛽ᇱ = 6 3 7 7 3 9,406 -6.4% 
7 𝛽ᇱ = 1 3 7 7 3 7,011 -30.2% 

2 

1 𝛽ᇱ = 8 3 4 5 7 19,526 Base 
2 𝛽ᇱ = 11 3 4 5 7 20,951 7.3% 
3 𝛽ᇱ = 12 3 4 2 6 21,752 11.4% 
4 𝛽ᇱ = 100 3 4 2 6 36,162 85.2% 
5 𝛽ᇱ = 7 3 4 5 7 18,921 -3.1% 
6 𝛽ᇱ = 6 3 4 7 7 18,511 -5.2% 
7 𝛽ᇱ = 1 2 4 7 7 14,391 -26.3% 

3 

1 𝛽ᇱ = 8 4 1 5 6 13,257 Base 
2 𝛽ᇱ = 11 4 1 5 6 14,463 9.1% 
3 𝛽ᇱ = 12 4 1 2 6 15,033 13.4% 
4 𝛽ᇱ = 100 4 1 2 6 26,289 98.3% 
5 𝛽ᇱ = 7 4 1 5 6 12,912 -2.6% 
6 𝛽ᇱ = 6 1 4 5 6 12,647 -4.6% 
7 𝛽ᇱ = 1 1 7 5 7 10,327 -22.1% 

 
As shown in Table 9, the effect of the quality of the new facility on the optimal location and assortment is not tangible (hardly 
the optimal location and assortment has been changed) but it has a significant effect on the objective function value in which 
1 unit increase or decrease of the quality can change objective function value about 2% - 3%. 
 
5.1.3.3. Distance decay changes 
 

In this section, we examine the impact of the shape of the distance effect decay functions 𝑔(𝑑) = 𝑑ఠ in the solution of the 
problems, more particularly with respect to the choice of the exponent ω. The five examined cases are ω = 1,2,4,8,16. The 
case ω = 2 is considered as the original problem. 

As ω increases, the customer's willingness to use more distant facilities decreases and only refers to closer facilities. From 
Table 10 we can see that the locations and assortments are only slightly affected by the changes in the parameter ω. However, 
with the increase of ω, the amount of objective function is strongly affected, which is due to the decrease in demand for stores 
that are only visited by local customers. 
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Similarly, the rest of the model parameters can be tested, but the effect of some parameters in the model is quite clear. For 
example, if the variety of products is more attractive to customers ( 𝜋), the model will move to a full assortment mode, and 
therefore the correct estimation of this parameter is very important. As another example, the higher the profit of a product, 
the more likely it is to be included in the assortment, especially when the probability of its replacement is low. 

 

Table 10  
Distance decay changes effect 

Example # Change Opt. 
Location 

Opt. 
Assortment P1 

Opt. 
Assortment P2 

Opt. 
Assortment P3 

Objective 
function 

% 
Change 

1 

1 𝜔 = 2 2 4 7 3 10,051 Base 
2 𝜔 = 1 2 4 6 3 11,219 11.6% 
3 𝜔 = 4 1 1 6 3 8,235 -18.1% 
4 𝜔 = 8 1 1 6 3 6,525 -35.1% 
5 𝜔 = 16 1 1 6 3 5,862 -41.7% 

2 

1 𝜔 = 2 3 4 5 7 19,526 Base 
2 𝜔 = 1 3 4 5 6 22,142 13.4% 
3 𝜔 = 4 2 4 5 7 15,601 -20.1% 
4 𝜔 = 8 2 4 5 7 11,286 -42.2% 
5 𝜔 = 16 5 4 2 7 9,314 -52.3% 

3 

1 𝜔 = 2 4 1 5 6 13,257 Base 
2 𝜔 = 1 4 1 5 6 21,322 9.2% 
3 𝜔 = 4 1 4 5 6 16,363 -16.2% 
4 𝜔 = 8 1 4 5 6 13,785 -29.4% 
5 𝜔 = 16 1 4 7 6 12,126 -37.9% 

The conclusion that can be drawn here is that in addition to this subject that is shown in the previous section about the 
importance and dependency of two location and assortment variables, the model parameters, especially those that have a great 
impact on the optimal solution, must be estimated correctly to make the right decisions. 

5.2. The test problems 
 

Several examples are provided in this section for testing the performance of the proposed methods: 1) MINLP solver 
(DICOPT) for P1, 2) MIP solver (CPLEX-12.6.1.0) for P2 and 3) DFA method . The instances vary in the number of customers 
(n = 50, 100, 200), the number of existing facilities (m = 10, 20), the number of potential locations (g = 15, 30, 60), the number 
of products (p = 5, 10) and the number of brands for every product (rk=2, 4). 

10 problems have been generated for every type of settings, in which, the parameters of the problems are randomly chosen 
from the following intervals: 𝐷௧~ U(1, 100), 𝑃~ U(1, 10)2, 𝑍~ U(1, 10)2, 𝑓~ U(1, 10)2 𝛼௧௧ᇱ~ U(0.1, 1), 𝛽~ U(1, 10), 𝛽′~ U(1, 10), 𝑃𝑟௧~ U(3,6), 𝜀=0.005. 

5.2.1. The Performance of CPLEX in comparison with upper bounds 
 

Our first step involves evaluating CPLEX's performance against upper bounds UB1 and UB2, so that if it is valid, we can 
compare DFA's solution with CPLEX. Table 11 records the objective function values of ten problems of varying sizes. 

Table 11  
Results for the different problem size 

# n m Objective Function  𝑪𝑷𝑳𝑬𝑿 𝑼𝑩𝟏ൗ  𝑪𝑷𝑳𝑬𝑿 𝑼𝑩𝟐ൗ  CPLEX UB 1 UB 2  
1 50 5 246,506 254,130 283,340  0.97 0.87 
2 50 10 127,103 132,399 146,095  0.96 0.87 
3 50 20 143,699 202,393 159,666  0.71 0.90 
4 100 5 216,627 228,028 243,401  0.95 0.89 
5 100 10 149,865 180,560 197,191  0.83 0.76 
6 100 20 272,602 320,708 278,165  0.85 0.98 
7 200 5 644,912 749,898 826,810  0.86 0.78 
8 200 10 571,149 751,512 664,127  0.76 0.86 
9 200 20 293,371 333,376 386,014  0.88 0.76 
10 200 30 416,800 473,636 463,111  0.88 0.90 

As shown in Table 11, the CPLEX method provides good quality solutions even with large data sets. 

5.2.2. Tuning of the DFA parameters 
 

For the proposed DFA strategy, parameter tuning is necessary to achieve the best performance. Three parameters determine 
the behavior of the FA method: 𝛼, 𝛾 and β0. In Table 12, we present the average results of five generated problems for the 
cases n=50, m=10, g=15, p=5, and rk=2 and 20 runs of the DFA for each parameter value.  
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Table 12 
The average results for different value of DFA parameters 𝜸 β0 

Difference in Obj (%) 
α 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 

0.1 3.8 2.9 2.8 3.0 3.7 4.5 4.6 5.6 6.0 6.2 
0.5 3.7 2.5 2.3 2.7 3.2 3.5 3.6 3.8 4.8 5.3 
1.0 2.7 1.7 2.0 2.5 3.1 3.3 3.4 3.5 3.8 4.9 
1.5 3.3 2.2 2.2 2.6 3.2 3.4 3.9 5.1 5.2 5.8 
2.0 3.7 2.8 1.9 2.8 3.5 3.9 4.5 5.7 5.9 6.3 

0.25 

0.1 2.6 1.9 2.0 2.1 2.6 2.9 3.5 4.1 5.2 6.1 
0.5 2.4 1.4 1.3 1.6 1.9 2.5 3.0 3.5 4.2 5.3 
1.0 2.3 1.3 1.0 1.2 1.5 1.8 2.1 3.0 3.6 4.1 
1.5 2.5 1.5 1.6 1.9 2.3 2.7 3.2 3.6 3.9 5.1 
2.0 2.6 2.1 2.0 2.6 3.0 3.2 3.4 3.9 4.9 5.8 

0.5 

0.1 2.0 1.1 0.9 1.0 1.1 1.6 1.9 2.3 3.1 3.5 
0.5 1.8 0.9 0.8 0.9 0.9 1.0 1.2 1.5 1.9 2.3 
1.0 1.4 0.8 0.7 0.8 0.9 1.0 1.1 1.4 1.7 2.0 
1.5 1.8 0.9 0.8 0.9 1.0 1.2 1.4 1.8 2.1 2.9 
2.0 2.1 1.0 0.9 1.1 1.5 1.6 2.1 2.5 3.5 3.8 

0.75 

0.1 2.6 1.8 2.0 2.2 2.5 2.9 3.4 3.9 4.6 5.7 
0.5 2.2 1.6 1.7 1.8 1.9 2.3 2.9 3.1 4.1 5.2 
1.0 1.8 1.2 1.3 1.5 1.8 2.0 2.3 2.6 3.7 4.4 
1.5 2.1 1.7 1.7 1.9 2.2 2.5 2.9 3.2 3.8 4.5 
2.0 2.8 2.1 1.9 2.3 2.5 2.7 3.2 3.6 4.2 5.2 

0.9 

0.1 3.9 2.9 2.9 3.2 3.6 4.5 4.9 5.2 5.6 6.3 
0.5 3.3 2.8 2.7 3.1 3.3 4.1 4.3 4.5 5.0 5.8 
1.0 2.4 1.9 2.5 2.9 3.0 3.5 3.9 4.2 4.6 5.1 
1.5 2.7 2.1 2.6 3.1 3.5 4.2 4.3 4.5 5.1 5.9 
2.0 3.5 2.6 2.8 3.3 3.8 4.8 5.2 5.5 6.0 6.6 

By comparing different values, 𝛽 = 1,  𝛾 = 0.5 and 𝛼 = 0.3 leads to the best performance of the algorithm. The optimal 
solution can be found after about 500 evaluations for most cases. So, 25 fireflies and 20 generations have been selected in the 
computational experiment.   

5.2.3. Investigating the performance of different methods 
 

Now we can examine how different methods perform. In Table 13, the results corresponding to the 10 generated problems for 
the case n=50, m=10, g=15, p=5, rk=2 and 100 runs of the DFA are presented one by one. The last two lines show the total 
average and total standard deviation. 

We present the differences between the optimal value obtained by the optimization solvers and the best solution obtained by 
the DFA method in the 100 runs, in percentage. The column “Times found” refers to the number of times that DFA found the 
best solution. Also, the CPU time spent by the MINLP solver, MIP solver and DFA method for 10 generated problems are 
presented.  

Table 13 
The difference in objective and CPU time for the ten examples with 50 customers, 10 existing facilities, 15 potential locations, 
5 products and 2 brands for each product 

Problem Difference in obj (%) Times found  CPU seconds 
 DICOPT CPLEX DFA 

1 0.514 2  798.30 22.49 0.76 
2 0.373 3  741.96 28.23 1.26 
3 1.876 1  657.68 22.78 0.77 
4 0.638 1  780.43 21.04 0.58 
5 0.483 2  705.62 23.52 1.28 
6 0.811 1  715.29 24.53 0.81 
7 1.480 1  685.06 26.24 1.48 
8 0.969 1  760.80 20.64 1.43 
9 0.000 26  719.83 20.27 1.17 
10 0.417 2  652.13 24.67 0.78 

Average 0.756 4.0  721.71 23.44 1.03 
Standard Deviation 0.559 7.8  49.26 2.55 0.32 

As can be seen from Table 13, the solution of DFA is not much different from the optimization solvers in terms of the objective 
function, although there are cases where the difference is much larger than the average. In addition, DFA is much faster than 
the other two methods.  

From now on, only average values are shown to check the results. Depending on the number of products, a summary table is 
created. Each line in it corresponds to a table like Table 10. The values in Table 14 represent the average values of the solved 
instances, and the standard deviation values are shown in brackets. Since the objective function difference for some problems 
is sometimes much larger than the average, we will also show the maximum difference in the set of 10 problems. The last line 
shows the average for the setting, regardless of the number of products. 
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Table 14  
The average and standard deviation values of difference in objective and CPU time for the examples with 50 customers, 10 
existing facilities, 15 potential locations, 2 brands and 5, 10 products 

Number of Products Difference in   CPU seconds 
Obj (%) Max (%)  DICOPT CPLEX DFA 

5 0.76 (0.56) 1.9  721.71 (49.26) 23.44 (2.55) 1.03 (0.32) 
10 0.85 (0.59) 3.2  3521.71 (215.10) 62.59 (9.67) 1.70 (0.99) 
All 0.81 (0.58) 3.2  2121.71 (132.18) 43.02 (6.11) 1.37 (0.66) 

As Table 14 shows, when the number of products increases, the solution time will increase significantly, especially in MINLP 
solver. The DFA is a very fast method and at the same time it produces very good quality solutions. The MIP solver is 
recommended till here, because although it has more CPU time than the DFA, it produces the optimal solution, and the CPU 
time is still short enough. This issue is examined in more detail in Table 15, where the number of potential locations has been 
increased. 

Table 15  
The average and standard deviation values of difference in objective and CPU time for the examples with 50 customers, 10 
existing facilities, 10 products, 2 brands and 15, 30 and 60 potential locations  

Number of Potential Locations Difference in   CPU seconds 
Obj (%) Max (%)  DICOPT CPLEX DFA 

15 0.9 (0.6) 3.2  3521.7 (215.1) 62.6 (9.7) 1.7 (1.0) 
30 0.9 (0.3) 5.1  15844.5 (1025.4) 129. 3 (29.2) 4.9 (1.3) 
60 0.8 (0.3) 6.3  98236.0 (10362.4) 302.3 (83.1) 13.1 (4.9) 
All 0.9 (0.4) 6.3  39200.7 (3867.6) 167.7 (40.7) 6.6 (2.4) 

As can be seen in Table 15, increasing the number of potential locations will drastically increase the MINLP solver CPU time, 
while MIP solver and heuristic methods are less affected. According to Table 14, the MINLP solver is no longer practical on 
this scale and must use the MIP solver and heuristic methods. The larger the problem size, the better the heuristic method is 
used due to less CPU time. But for medium-sized problems, the MIP solver is still effective. 
Table 16 Shows the results of large sized instances with up to 200 customers obtained by MIP solver and heuristic method. 

Table 16 
Results for the problems with 60 potential locations and 10 products  

Number of 
Customers 

Number of Existing 
Facilities 

Number of 
Brands 

Difference in  CPU Time (seconds) 
Obj (%) Max (%)  MIP Solver Heuristic 

50 
10 2 0.8 (0.3) 6.3  302 (83) 13 (5) 

4 0.9 (0.2) 5.2  736 (275) 26 (8) 

20 2 0.9 (0.2) 7.4  642 (252) 18 (6) 
4 1.0 (0.1) 7.7  2089 (516) 39 (12) 

100 
10 2 0.9 (0.4) 6.9  782 (211) 25 (9) 

4 1.0 (0.3) 7.3  1624 (575) 41 (14) 

20 2 0.9 (0.1) 9.3  1281 (175) 33 (13) 
4 1.1 (0.7) 8.5  3610 (812) 57 (16) 

200 
10 2 0.9 (0.3) 6.9  1763 (436) 47 (16) 

4 1.2 (0.2) 9.5  4681 (939) 82 (31) 

20 2 1.0 (0.1) 9.1  3589 (982) 70 (29) 
4 1.2 (0.1) 9.7  8736 (1028) 126 (35) 

According to Table 16, as the size of the problem increases, the CPU time for MIP solver increases significantly. The DFA is 
less sensitive to these changes. Finally, we test the solution quality of the DFA algorithm, regardless of the size of the problem. 
The objective of this research is to statistically compare the performance of the DFA method, using a representative set of test 
problems that are of diverse properties. For this purpose, like the previous tables, 10 problems with different sizes have been 
generated and each of them has been run 100 times by the DFA algorithm. The results are shown in Table 17.  

Table 17 
Results for the random problems  

Problem Number of 
Customers 

Number of 
Existing Facilities 

Number of Potential 
Locations Number of 

Products 
Number of 

Brands 
Difference in obj 

(%) 

1 50 10 60 10 2 0.741 
2 50 10 60 5 2 0.555 
3 200 20 30 5 2 1.023 
4 100 10 15 10 2 0.825 
5 50 10 15 5 4 0.629 
6 200 20 30 5 4 1.037 
7 200 20 60 5 2 1.088 
8 100 20 15 5 4 0.866 
9 50 20 15 10 2 0.638 
10 100 10 15 10 4 0.863 

Average 110 15 32 7 3 0.827 
SD 66 5 21 3 1 0.186 
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The t-test (hypothesis testing) is used to assess the effectiveness of the DFA algorithm. Effectiveness is defined as a high 
probability of finding a high-quality solution. Here, the quality of a solution is measured by how close the solution is to the 
known global solution as shown in the last column of Table 17 “Difference in obj” which is briefly called “Diff” in the 
following. 

The objective of the effectiveness test is to examine whether ൜𝐻: 𝜇 ≤ 1%𝐻ଵ: 𝜇 > 1%. This test checks whether the quality of the 

obtained solutions is more than 99 % or not. The formula for calculating the t value is shown in Eq. (16):  

(16) 𝑡 = 𝐷𝚤𝑓𝑓തതതതതതത − 1𝑆(𝐷𝑖𝑓𝑓)/√𝑛 

First, we use the Kolmogorov-Smirnov test of Normality to check whether the data has a normal distribution. The value of 
the K-S test statistic (D) is 0.168, the P-Value is 0.898 and therefore the data does not differ significantly from that which is 
normally distributed.  

The value of t-test is -2.96, the P-value is 0.992 and therefore the effectiveness of the DFA algorithm for generating high-
quality solutions is accepted.  

5.3. Case Study 
 

In this section, we describe an actual application of the model to find the location and assortment of a chain store’s new branch 
in the city of Tehran, Iran. 

5.3.1. Case description 
 

Several discount stores can be found in Tehran, Iran. Ofogh Koorosh, Haftstore, Canbo, and Winmarket are some major 
discount store chains in Tehran. Table 18 shows the branches of these chain stores in Tehran, as well as the number of product 
groups and brands available in them. 

Table 18 
Information about discount stores in Tehran  

Discount Store Number of stores Number of product groups Number of brands 
Ofogh Koorosh 431 154 1224 

Haftstore 103 142 975 
Canbo 123 147 1015 

Winmarket 67 131 726 

Tehran consists of 22 districts, each of them can be considered as a customer. Ofogh Koorosh is under study and the other 
stores are competitors. There are 20 potential locations. Each product group contains approximately 8 brands, so there are 
roughly 255 assortment scenarios for each product group.  

5.3.2. Model Results 
 

Since there are a lot of variables in the problem, we use the DFA algorithm to solve the existing case. The optimal location is 
17th potential site and the optimal assortment scenario of different product groups are summarized in Table 19. 

Table 19 
Optimal assortment for new store of Ofogh Koorosh  

PG* OSSc** PG OSSc PG OSSc PG OSSc PG OSSc 
1 215 32 139 63 254 94 232 125 75 
2 233 33 61 64 115 95 239 126 75 
3 155 34 52 65 167 96 56 127 134 
4 17 35 190 66 70 97 5 128 231 
5 35 36 22 67 243 98 52 129 154 
6 196 37 134 68 144 99 243 130 238 
7 38 38 173 69 226 100 31 131 105 
8 123 39 98 70 114 101 180 132 65 
9 214 40 220 71 256 102 32 133 241 
10 214 41 230 72 110 103 38 134 249 
11 137 42 108 73 72 104 137 135 204 
12 175 43 118 74 20 105 42 136 213 
13 8 44 245 75 126 106 246 137 153 
14 88 45 60 76 247 107 130 138 20 
15 19 46 31 77 226 108 89 139 246 
16 30 47 253 78 10 109 253 140 224 
17 213 48 215 79 234 110 93 141 85 

 



F. Mohammadipour et al. / International Journal of Industrial Engineering Computations 13 (2022) 657

Table 19 
Optimal assortment for new store of Ofogh Koorosh (Continued) 

PG* OSSc** PG OSSc PG OSSc PG OSSc PG OSSc 
18 113 49 206 80 212 111 83 142 64 
19 190 50 41 81 246 112 121 143 86 
20 186 51 80 82 28 113 84 144 130 
21 256 52 11 83 145 114 38 145 54 
22 10 53 103 84 241 115 37 146 125 
23 95 54 242 85 168 116 116 147 121 
24 259 55 87 86 157 117 58 148 50 
25 207 56 43 87 215 118 28 149 15 
26 231 57 180 88 219 119 247 150 126 
27 159 58 163 89 204 120 172 151 54 
28 81 59 193 90 112 121 8 152 72 
29 177 60 228 91 232 122 235 153 210 
30 180 61 67 92 112 123 64 154 150 
31 39 62 204 93 220 124 66   

* PG: Product Group 
** OSSc: Optimal Assortment Scenario 

6. Conclusion 

In this paper, a new concept is introduced in the competitive location literature. The concept is that when locating a new store, 
it is also important to choose the best product portfolio offered by that store. This choice is made with an assortment-oriented 
approach, meaning that customers may substitute products or brands if their favorite product is not available in the store. 
Therefore, a model has been developed to find the best location and assortment scenario in a competitive environment. In this 
model, it is assumed that the competitive environment is static, which means that competitors are already present in the market 
and compete with each other for the same products. Customer patronizing behavior is assumed based on Huff's rule, and 
customers split their demands among all existing and new stores. The more attractive a store is, the more likely the customer 
is fascinated by it.  

The model developed in this paper is an integer nonlinear programming model. We reformulate the model into a mixed integer 
linear problem. Therefore, a standard optimization solver can be used for obtaining the optimal solutions to small- and 
medium-size problems. In addition, a heuristic algorithm has been developed to solve the model for large size problems. 
Several examples have been solved to evaluate the efficiency of the model and the proposed methods, and the results have 
been analyzed, and it was found that the developed methods have good performance. The results also show the importance of 
considering both location and assortment variables simultaneously.  

Among the possible extensions of this work, we mention the multi-facility model, in which the chain wants to locate more 
than one new facility. Also, it is interesting to study the proposed model for the leader-follower case. Using the model for 
situations where the customer chooses the closest facility is another proposal for future studies. On the other hand, there are 
many other choice models in the assortment literature that can be added to the model, for example MNL, Nested, Mixed MNL 
etc. 

Also, adding other variables such as facility design, shelf space location and pricing can be considered for further research. 
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