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 In transportation, the multi-depot heterogeneous fleet vehicle routing problem with time windows 
(MDHFVRPTW) is one of the hard-to-solve real-life problems. In the study, a new node-based 
MDHFVRPTW has been developed. Unlike other studies in the literature, heterogeneous fleets 
including both airline and roadway vehicles are used for routing. In the model, real-life data of the 
airline and roadway are taken into consideration. In particular, important aviation constraints such 
as the range of the aircraft, landing and take-off cycle (LTO) cost according to the engine type, and 
the penalty cost are presented in the model. The problem is analysed by using narrow and wide 
time windows, which is the realization of fast and normal demand. A new hybrid genetic algorithm 
with variable neighborhood search (HGA-VNS) has been proposed for the solution of the 
MDHFVRPTW model. In the solution of the model, remarkable results have been obtained with 
the HGA-VNS algorithm compared to the genetic algorithm and off-the-shelf solvers. Also, the 
HGA-VNS algorithm has been tested with small and large-scale instances and compared with other 
studies in the literature. It is thought that the proposed MDHFVRPTW model and the developed 
HGA-VNS algorithm will bring a different perspective to transportation. 
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1. Introduction 

In recent years, logistics and transportation have played a crucial key role in our lives, with increasing online shopping and e-
commerce due to pandemic COVID 19. Although passenger transportation has come to a halt due to pandemics, freight 
transportation has continued for economic reasons. The decision-making process is very important in the logistics and cargo 
sectors as in every sector. Logistics companies make a short and long-term strategic plan that will increase their shares and 
profits in the sector and decrease their costs by making use of many factors. Common problems encountered in the decision-
making in logistics are transportation type selection, fleet planning, vehicle scheduling, and vehicle routing (Pečený et al., 
2020; Zhen et al., 2020). In the transportation type selection; the transportation mode is chosen to perform frequency of 
service, speed, cost, transport time, accessibility, and reliability. Air freighters are the safest and fastest type of freighters in 
the world. According to the long-term forecast of Airbus before the pandemic, air freighters will grow by about 3.6% per 
annum by 2038. Also, the aircraft freighter fleet is expected to increase by 55% by 2038 (Airbus Global Market Forecast, 
2020).  Considering the increasing trend in airline transportation, both aircraft, and road vehicles have been used in this paper 
as an integrated way. The purpose of fleet planning is to determine the type and number of vehicles that will meet the demand 
of the customers at the desired service level in a way to minimize the cost (Franceschetti et al., 2017; Karimi Dastjerd & 
Ertogral, 2019).  The main problem to be solved in vehicle scheduling is time. It is a form of problem that investigates how 
many vehicles in which day and periods, from where to go (Carosi et al., 2019). Vehicle routing is a problem that determines 
routes with minimum cost considered customer demand and requests (Molina et al., 2020).  All the above-mentioned problems 
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and shown in Fig. 1 such as transportation type selection, fleet planning, vehicle scheduling, and vehicle routing have been 
solved with the proposed model. 

Transportation 
Mode Selection

Vehicle 
Scheduling

Fleet Planning

 

Vehicle Routing

 

Fig. 1. Types of decision-making problems included in the model 

The aim of this paper is twofold: firstly, Mixed Integer Linear Programming (MILP) formulation is developed for a node-
based Multi-Depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows (MDHFVRPTW).  

C1

D1

C5

C7

C4
C13

C9

C3

C12

C2
C11

D2

C8
C6

C10

Depot Customer

[a1, s1, b1]
[a7, s7, b7]

[a5, s5, b5]
[a4, s4, b4][a13, s13, b13]

[a9, s9, b9]

[a3, s3, b3]

[a12, s12, b12]

[a2, s2, b2]
[a11, s11, b11]

[a8, s8, b8]

[a6, s6, b6]

[a10, s10, b10]

[ai, si, bi] Time Window
ai: The Earliest Service Time at Customer i
si: Service Time at Customer i
bi: The Latest Service Time at Customer i  

Vehicle Routes

 

Fig. 2. The schematic representation of MDHFVRPTW 
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This model has not been taken into consideration in the past literature due to the heterogeneous fleet structure related to 
aviation. The developed model has been solved with some off-the-shelf solvers e.g., CPLEX, Intlinprog. Secondly, a hybrid 
genetic algorithm-based variable neighborhood search (HGA-VNS) has been developed to obtain high-quality solutions and 
to reduce search space. The nearest neighborhood search algorithm has been used to determine the initial population. The 
proposed algorithm has been tested with commonly known benchmark data. Also, the developed algorithm has been compared 
with other algorithms in the literature. As mentioned later, the proposed algorithm has produced an effective solution in 
MDHFVRPTW. A schematic representation of the problem is given in Fig. 2. 

The remainder of this paper is structured as follows. In Section 2 related works in literature are reviewed. The mathematical 
model and its assumptions which we have developed are expressed in detail in Section 3. Also, detailed information about the 
parameters has been represented. Section 4 presents our HGA-VNS algorithm for solving MDHFVRPTW. Section 5 describes 
the results of computational experiments. Section 6 discusses the numerical results. Finally, Section 7 concludes the paper 
and briefly outlines our future research directions. 

2. Literature review 

Firstly, the vehicle routing problem (VRP) was suggested by Dantzig and Ramser to find the optimum routing of gasoline 
trucks (Dantzig & Ramser, 1959). After that, many developments and changes took place in the VRP. The development of 
the VRP was taken into account by Laporte (2009). Also, the innovations of VRP, different types and solution methods of 
VRP were tackled by Toth and Vigo (2014). Considering the different assumptions of the Capacitated Vehicle Routing 
Problem, also known as the classical, different types of vehicle routing problems were obtained. Generally, because real-life 
problems depend on multiple depots, different vehicle types, and time, the proposed paper is also based on MDHFVRPTW 
(Mancini, 2016; Montoya-Torres et al., 2015). In the MDHFVRPTW, different types of vehicles and multiple depots are used. 
Additionally, MDHFVRPTW is a different type of classic vehicle routing problem where vehicles leave their depots and 
return to the same depots after servicing customer demands within a certain time. Since this problem involves three types of 
vehicle routing problems based on multi-depot, heterogeneous fleet, and time windows, these vehicle routing problems are 
included in the literature review. The concept of heterogeneous fleet vehicle routing problem (HFVRP) was introduced for 
the first with Kirby's study (Kirby, 1959). HFVRP, which is used the fleet of vehicles with different capacities to service the 
customers for demands, is a routing problem with the minimum cost. For HFVRP, Gheysens et al. (1984) developed a 
mathematical method and a heuristic method. Azimi and Salari developed a mathematical method and proposed a heuristic 
algorithm (Naji-Azimi & Salari, 2013). Takan and Kasimbeyli developed three mathematical models for capacitated, open 
and split delivery heterogeneous fixed fleet vehicle routing problems (Takan & Kasimbeyli, 2021). Taillard (1999), Gendreau 
et al. (1999), Renaud and Boctor (2002) developed an algorithm for HFVRP. HFVRP types in the literature were examined 
by Baldacci, Batara, and Vigo. The proposed lower bound and heuristic algorithms for HFVRP were reviewed (Golden et al., 
2008). Koç et al. conducted a study to classify examine HFVRP species. Besides this, the metaheuristic algorithms developed 
for HFVRP were examined and compared in the study (Koç et al., 2016). Knight and Hofer (1968) worked on the scheduling 
problem for a 40-vehicle company in London according to time and invocation status.  Savelsbergh (1985) developed a local 
search algorithm for TWVRP. Solomon (1987) examined scheduling with time windows and heuristic algorithms for VRP. 
An algorithm based on column generation for VRPTW was developed by Desrochers et al., (1992). Taniguchi and Shimamoto 
(2004) developed a dynamic vehicle scheduling and routing model which carries real travel time information. Hsu et al. (2007) 
worked on probabilistic VRPTW for perishable food delivery. VRP with a fuzzy time windows was proposed and solved by 
Tang et al. (2009).  VRPTW model for balanced cargo was developed by Kritikos and Ioannou (2010) and solved with a 
heuristic approach. A model for semi-flexible TWVRP was established by Qureshi et al. (2010) and the solution was obtained 
by using heuristics based on genetic algorithms in the study. A semi-heuristic tabu search algorithm was developed by 
Repoussis and Tarantilis (2010) for the heterogeneous and fleet-sized vehicle routing problem with time windows. Time 
Windows Vehicle Routing Problem (TWVRP) is an expanded type of CVRP. TWVRP, according to time windows, is divided 
into two as hard time windows and flexible time windows (Toth & Vigo, 2014; Zhang et al., 2019). Zhang et al. (2019) 
developed a hybrid ant colony optimization algorithm for the Multi-objective vehicle routing problem with flexible time 
windows. Laporte et al. (1988) examined multi-depot VRP and location routing problems. Renaud et al. (1996) developed a 
tabu search heuristic algorithm for MDVRP. Crevier et al. (2007) developed a multi-depot vehicle routing model where 
vehicles use intermediate storage points and carried out the solution of the model with a heuristic approach based on adaptive 
memory and tabu search algorithm. Ho et al. (2008) recommended a hybrid genetic algorithm for MDVRP. Within the scope 
of multi-depot, Aksoy and Kapanoglu (2012) carried out the solution of the problem of transporting personnel and parts to 
the requested bases with the existing cargo aircraft in the Turkish Air Force. Xu et al. (2012) developed a variable 
neighborhood search algorithm for MDHVRPTW. Salhi et al. (2014) proposed an algorithm based on the formulation and a 
variable neighborhood search algorithm for the multi-depot heterogeneous fleet vehicle routing problem (MDHFVRP). Bae 
and Moon (2016) developed MDVRPTW mixed-integer programming model for routing delivery and set up tools. For the 
solution of the model, they developed a heuristic method based on the nearest neighbor and genetic algorithm. Li et al. (2018) 
developed a mathematical model for MDVRP, where resources are not shared, and MDVRP, where resources are shared, and 
compared the fuel consumption of the two models. Bezerra et al. (2018) proposed a general neighborhood search metaheuristic 
algorithm. Wang et al. (2020) developed a model for collaborative multi-depot vehicle routing problems with time windows-
(CMDVRPTW). They implemented the solution of the model with the hybrid heuristic algorithm including K-means 
clustering, saving algorithm, and Extended Non-dominated Sorting Genetic Algorithm-II. Zhen et al. (2020) developed a 
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formulation (MIP formulation) for the problem of multi-depot and multi-turn time windows vehicle routing. They also 
proposed a hybrid particle swarm optimization algorithm (HPSO) and a hybrid genetic algorithm. 

3. Problem Formulation 
 

In this section, the MILP formulation for MDHFVRPTW developed in this study is presented. Also, detailed information is 
given about the parameters of the proposed model.  

3.1. A mixed-integer linear formulation for MDHFVRPTW 

Let G(N, A) be a completed directed network where N= 1,…,m+n refers to all nodes including potential depots and costumers, 
and A stands for paths between these nodes. N= 1,…,m+n in the set of nodes; N0= 1, …, m refers to m number of depo nodes 
Nc= m+1, …, m+n refers to n number of customer nodes. 𝑁 = 𝑁଴ ∪ 𝑁஼  

Assumptions 

• Each depot nodes are known. 
• Each customer node is known. 
• Airports are depots and customer nodes. 
• The demand of each customer node is specific and cannot be split. 
• The vehicle fleet is known and the vehicles are located at the depot nodes. 
• The company was used its resource and investment costs were ignored.  
• Speed of vehicles: Average speed in road vehicles, cruise speed at 35000 feet (ft) altitude specified by the European 

Air Navigation Safety Organization (Eurocontrol) for aircrafts Airbus and Boeing, cruise speed at an altitude of 
25000 ft for Cessna based on. 

Indices and sets 

i, j: set of all nodes 𝑖, 𝑗 = 1, … ,𝑚 + 𝑛 
k, h: set of customers nodes 𝑘, ℎ = 1, … ,𝑚 
t: the set of vehicle types 𝑡 = 1, … , 𝑝 + 𝑟 
In the set of vehicle type; 1, …, p indicates road vehicles, p+1, …, p+r indicates airway vehicles. 
 
Parameters 
cijt: the distance from node i to j when traveling with vehicle type t 
Hijt: the traveling time between node i and j when traveling with vehicle type t 
Ftv: the fixed cost of vehicle  v of type t 
Ltv: fuel cost of  vehicle v of type t during  take-off, climb, and landing for aircraft, it denoted as Landing-Take Off (LTO) 
cost   
αt: the unit transportation cost of the vehicle type t 
βkt: penalty cost for the empty capacity of the vehicle type t in depot k (for aircrafts) 
At: the number of vehicles type t 
Bt: capacity ratio parameter of vehicle type t (1/ Qt) 
Qt: the vehicle capacity of type t 
dj: the demand for customer j 
Rtv: the range of vehicle v of type t (Since there is no range limitation for road vehicles, roadway distances were examined 
and a value larger than the maximum distance value between two points was used as the range value in the matrix.) 
li: the service time of vehicle at customer i  
ai: the earliest service time at customer i 
bi: the latest service time at customer i 
M: large positive number 
n: customer number 
 
Decision variables 
 𝑥௜௝௧௩ = ൜1,          𝑖𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑗 0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                
 𝑧௞௝ = ൜1, 𝑖𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑒𝑝𝑜𝑡 𝑘                                            0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                 
sktv: empty capacity percent of the vehicle v of the type t departured from depot k 0 ≤ 𝑠௞௧௩ ≤ 1 

ui: decision variable used to prevent subtours 
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witv: the starting service time of vehicle v of type t at customer i 0 ≤ 𝑤௜௧௩ 
Objective function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = ෍ ෍ ෍෍𝐹௧௩஺೟
௩ୀଵ

௣ା௥
௧ୀଵ

௠ା௡
௝ୀ௠ାଵ

௠
௞ୀଵ 𝑥௞௝௧௩ + ෍ ෍ ෍ ෍𝐿௧௩஺೟

௩ୀଵ
௣ା௥
௧ୀ௣ାଵ

௠ା௡
௝ୀଵ௝ஷ௜

௠ା௡
௜ୀଵ 𝑥௜௝௧௩ + ෍ ෍ ෍𝛽௞௧஺೟

௩ୀଵ
௣ା௥
௧ୀ௣ାଵ 𝑠௞௧௩௠

௞ୀଵ
+ ෍ ෍ ෍෍𝛼௧஺೟

௩ୀଵ
௣ା௥
௧ୀଵ

௠ା௡
௝ୀଵ௝ஷ௜

௠ା௡
௜ୀଵ 𝑐௜௝௧𝑥௜௝௧௩ 

(1) 

Constraints 

෍𝑧௞௝௠
௞ୀଵ = 1 𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛 (2) 

෍ ෍෍𝑥௜௝௧௩஺೟
௩ୀଵ

௣ା௥
௧ୀଵ

௠ା௡
௜ஷ௝ = 1 𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛 (3) 

෍ ෍ 𝑥௞௝௧௩௠ା௡
௝ୀ௠ାଵ

௠
௞ୀଵ ≤ 1 ∀𝑡,∀𝑣 (4) 

෍ 𝑥௜௝௧௩௠ା௡
௝ஷ௜ ≤ ෍ ෍ 𝑥௞௝௧௩௠ା௡

௝ୀ௠ାଵ
௠
௞ୀଵ  

𝑖 = 𝑚 + 1, … ,𝑚 + 𝑛 ∀𝑡,∀𝑣 
(5) 

෍ ෍ 𝑥௞௝௧(௩ାଵ)௠ା௡
௝ୀ௠ାଵ

௠
௞ୀଵ ≤෍ ෍ 𝑥௞௝௧௩௠ା௡

௝ୀ௠ାଵ
௠
௞ୀଵ  ∀𝑡,∀𝑣 = 1, … , (𝐴௧ − 1) (6) 

෍ 𝑥௜௝௧௩௠ା௡
௜ୀଵ − ෍ 𝑥௝௜௧௩௠ା௡

௜ୀଵ = 0 ∀𝑗,∀𝑡,∀𝑣 (7) 

෍෍𝑥௞௝௧௩஺೟
௩ୀଵ

௣ା௥
௧ୀଵ ≤ 𝑧௞௝ ∀𝑘;  𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛 (8) 

෍෍𝑥௝௞௧௩஺೟
௩ୀଵ

௣ା௥
௧ୀଵ ≤ 𝑧௞௝ ∀𝑘;  𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛 (9) 

෍෍𝑥௜௝௧௩஺೟
௩ୀଵ

௣ା௥
௧ୀଵ + 𝑧௞௜ + ෍𝑧௛௝௠

௛ஷ௞ ≤ 2 
∀𝑘; 𝑖, 𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛 𝑖 ≠ 𝑗 (10) 

෍ ෍ 𝑑௝௠ା௡
௝ୀ௠ାଵ

௠ା௡
௜ୀଵ 𝑥௜௝௧௩ ≤ 𝑄௧ ∀𝑡,∀𝑣 (11) 

𝑐௜௝௧𝑥௜௝௧௩ ≤ 𝑅௧௩ 
∀𝑖,∀𝑗, 𝑖 ≠ 𝑗, 𝑡 = 𝑝 + 1, … ,𝑝 + 𝑟;∀𝑣 

(12) 
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෍ 𝑥௞௝௧௩௠ା௡
௝ୀ௠ାଵ − 𝐵௧ ෍ ෍ 𝑑௝௠ା௡

௝ୀ௠ାଵ௝ஷ௜
௠ା௡
௜ୀଵ 𝑥௜௝௧௩ ≤ 𝑠௞௧௩ ∀𝑘;  𝑡 = 𝑝 + 1, … , 𝑝 + 𝑟;∀𝑣  (13) 

𝑤௜௧௩ + ൫𝑙௜ + 𝐻௜௝௧൯𝑥௜௝௧௩ − 𝑤௝௧௩ ≤ (1 − 𝑥௜௝௧௩)𝑀 
∀𝑖;  𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛, 𝑖 ≠ 𝑗,∀𝑡,∀𝑣 

(14) 

𝑤௝௧௩ + (𝑙௝ + 𝐻௝௞௧ − 𝑏௞)𝑥௝௞௧௩ ≤ (1 − 𝑥௝௞௧௩)𝑀 
∀𝑘;  𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛, ∀𝑡,∀𝑣 

(15) 

𝑎௜ ෍ 𝑥௜௝௧௩௠ା௡
௝ୀ௠ାଵ௝ஷ௜

≤ 𝑤௜௧௩ ∀𝑖,∀𝑡,∀𝑣 (16) 

𝑤௜௧௩ ≤ 𝑏௜ ෍ 𝑥௝௜௧௩௠ା௡
௝ஷ௜  ∀𝑖,∀𝑡,∀𝑣 (17) 

𝑢௜ − 𝑢௝ + 𝑛෍෍𝑥௜௝௧௩஺೟
௩ୀଵ

௣ା௥
௧ୀଵ ≤ 𝑛 − 1 𝑖, 𝑗 = 𝑚 + 1, … ,𝑚 + 𝑛, 𝑖 ≠ 𝑗 (18) 

In this formulation, the objective function f (s, x) (1) minimizes the total fixed cost, the total LTO costs for the aircraft, the 
total penalty costs for aircraft, and the total routing costs. Constraints (2) allows each customer node to be assigned to a depot 
node. Constraints (3) ensure that each customer must be visited exactly once. Constraints (3) allow that each customer node 
must be visited once. Constraints (4) ensures the vehicle v of type t to be used on one route at most. It is an important constraint 
in terms of vehicle route tracking. Constraints (5), if the vehicle v of type t has not left any depot and is not assigned to a route, 
it ensures that it cannot be used at customer nodes. Constraints (6), without the use of the vehicle v of type t, ensure that the 
vehicle v + 1 is not used. In other words, it ensures that the vehicle with the last index is not used without using the vehicle 
with the previous index of a type. Constraints (7), are the vehicle flow constraints. If any vehicle reaches a customer node and 
serves, they ensure that it leaves with the same vehicle. Constraints (8) - (10) prevent illegal routes that do not start and end 
in the same depot nodes. They ensure that the route starts and ends in the same depot nodes. These provide the relationship 
between x decision variable and z decision variable. Firstly constraints were applied by Labbé et al. (2004) in the location 
routing problem. Later, they were developed by Karaoglan et al. (2012). In this study, these constraints were modified and 
strengthened for use in MDHFVRPTW problems. Constraints (11) are the vehicle capacity constraints. These constraints 
ensure that the load of the vehicle will carry along its route does not exceed the vehicle's capacity. Constraints (12) are the 
range constraints for aircraft. Constraints (13) determine the amount of empty capacity of the aircraft. Constraints (12) and 
(13) have been proposed firstly in this study. Constraints (14) and (15) are time flow constraints. Constraints (16) and (17) 
allow each customer to be served in its time windows. Constraints (14 - 17) were suggested as time constraints by Toth and 
Vigo (2014). These constraints have been developed in this study for MDHFVRPTW. Constraints (18) are subtour elimination 
constraints. These were developed by Miller et al. (1960). 

3.2. Model Parameters 

Since airway and roadway vehicles are used together in this study, it is necessary to know the costs of both transportation 
types. Especially airline costs differ according to the roadway. Airline costs are divided into direct and indirect operating 
costs. Direct operating cost; these are the costs that vary depending on the aircraft type and flight. The direct operating cost 
includes all flight expenses (flight crew, wages, fuel), maintenance - repair, and depreciation of the aircraft. Costs that are 
independent of the aircraft type and use of the aircraft are considered indirect operating costs. Indirect operating costs include 
passenger-related passenger service costs, ticketing, and sales costs, station and ground service costs, and general 
administrative costs. The sum of both costs gives the fixed cost for the aircraft (Doganis, 1991). 

When various companies engaged in air freight transportation in the world are examined, it is seen that Airbus A300, A330, 
or Boeing 747, 757, 767 type cargo aircraft are used. When the companies such as FedEx and UPS in America, where aviation 
is more developed than other countries, are examined, it is seen that MD11 type aircraft are also used. Besides, companies 
such as FedEx and DHL use small aircraft such as Fokker and Cessna as well as large aircraft in regional freight transportation 
(DHL, 2020; FedEx, 2020; Lufthansa, 2020; THY, 2020; UPS, 2020). 

In the proposed study, Airbus A330-200F and Boeing 747-400ERF, which are used extensively in freight transport as large 
wide-body aircraft types, are taken into consideration. Also, Cessna Grand Caravan Ex aircraft are used, especially in regional 
flights and in cases where the load is low, due to the low purchase cost. The proposed mathematical model could be expressed 
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as three indices. But it was considered as four indices. The same aircraft having different engine options is one of the most 
important reasons for this. For instance, there are different engine options as CF6-80E1A2, PW-4164 or Trent 772 in the 
Airbus A330-200F aircraft (Airbus, 2020). If a different engine type is used, the fuel cost will change. For this reason, the 
same aircraft should be considered as a different aircraft type when the engine types are different. The characteristics of the 
aircraft considered are given in Table 1 (Airbus-A330, 2020; Boeing-747, 2020; Cessna-GrandCaravan, 2020). 

Table 1 
Aircraft types and specifications. 

Specifications 
Airbus 

A330-200F 
Boeing 

747-400ERF 
Cessna 

GrandCaravan Ex 
Maximum range(km) 7400 9230 1689 
Maximum cruise speed 
(km/h) 
(kts) 

35 000 ft altitude 
876 
473 

35 000 ft altitude 
896 
484 

25 000 ft altitude 
343 
185 

Maximum take-off weight (tonnes) 233 412 4 
Maximum payload (tonnes) 65 112 1.4 
Maximum fuel capacity (litres) 97 530 204 350 752 
Engine type CF6-80E1A2 PW 4062 PT6A-140 

 

The idle, take-off-climb, and approach flight phases of the aircraft are called the LTO cycle. The times in the LTO cycle are 
obtained from the ICAO document and are given in Table 2. The cost of fuel consumption during the LTO cycle is considered 
as the LTO cost. LTO cost is a fixed cost type that occurs when the aircraft is assigned to the route. LTO cost varies according 
to the type of engine but does not vary with the distance flown. The total amount of fuel consumed by the aircraft was 
determined by adding the amount of fuel burned during the LTO cycle and the amount of fuel burned during the cruise. The 
amount of fuel consumption during the LTO cycle was calculated using the ICAO document, and the amount of fuel 
consumption during cruise flight was calculated using Eurocontrol's BADA document. When the time elapsed in the LTO 
cycle shown in Table 2 is subtracted from the total flight time, cruise flight time was found. Fuel cost was calculated for each 
flight phase, taking into account the relevant times, speed, and fuel consumption. LTO fuel data was given related to engine 
type by ICAO, while the cruise phase flight fuel data was given related to aircraft type by Eurocontrol BADA (ICAO, 2020; 
Nuic, 2004). 

Table 2 
LTO cycle time 

LTO Time (min) 
Take-Off 0.7 
Climb-Out 2.2 
Approach 4 
Idle 26 
Total Time 32.9 

 

Vehicle types used for the roadway are van, light truck, medium truck, and heavy truck. The costs of the vehicle types used 
in road freight transportation are the fixed cost of the vehicle, the cost of the driver, the cost of an assistant, and the cost of 
fuel. On the other hand, in the study, the fixed cost of the vehicle, the cost of the driver, and the cost of the assistant were 
considered within the total fixed cost. The fixed cost for both types of transport is known as the cost that occurs depending on 
the vehicle's assignment. It is expressed as stated in Eq. (19) and (20). In this study, real operational data are used as fixed 
cost data (Dursun, 2017; EKOL, 2020; Oktal & Ozger, 2013). Also, by assuming that the aircraft fly according to instrument 
flight rules, real distance data of the airline and roadway were used (GoogleMaps, 2020; RocketRoute, 2020). 

For aircraft; 𝐹௧௩ = 𝐷𝑖𝑟𝑒𝑐𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (19) 

For roadway vehicle; 𝐹௧௩ = 𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 + 𝐷𝑟𝑖𝑣𝑒𝑟 𝑐𝑜𝑠𝑡 + 𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑐𝑜𝑠𝑡 (20) 

In the proposed study, penalty cost (βkt) that was handled in the heterogeneous vehicle routing problem by Gheysens et al. 
(1984) and the penalty approaches used in flexible time windows vehicle routing problem was adapted to the MDHFVRPTW 
(Balakrishnan, 1993; Solomon & Desrosiers, 1988; É. Taillard, Badeau, Gendreau, Guertin, & Potvin, 1997; Taş, Jabali, & 
Van Woensel, 2014; Yan, Chu, Hsiao, & Huang, 2015; Zare-Reisabadi & Hamid Mirmohammadi, 2015). The set of customer 
nodes that may belong to the depots was heuristically considered when calculating the βkt. Routes were calculated with the 
savings algorithm, a heuristic algorithm proposed by Clarke-Wright, between the set of customer nodes and the depots 
associated with customer nodes (Clarke & Wright, 1964). The sum of routing cost, fixed cost, and LTO cost, which arise 
when an airplane with a full load capacity visits all customer nodes, gives the penalty cost of the airplane type for that depot 
node. The penalty cost should be considered together with the constraints (13). If the aircraft is not assigned to the route, the 
Sktv decision variable will take the value zero. If it is assigned to a route, Sktv will change between zero and 1, depending on 
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the rate of load it carries. In other words, if the load has filled its capacity, Sktv will be zero, if not, Sktv will take a value between 
zero and 1 according to the occupancy rate. The penalty cost is shown mathematically in Eq. (21). 

𝛽௞௧ = ෍ ෍𝐹௧௩஺೟
௩ୀଵ

௠ା௡
௝ୀ௠ାଵ 𝑥௞௝௧௩ + ෍ ෍ ෍𝐿௧௩஺೟

௩ୀଵ
௠ା௡
௝ୀଵ௝ஷ௜

௠ା௡
௜ୀଵ 𝑥௜௝௧௩ + ෍ ෍ ෍𝛼௧஺೟

௩ୀଵ
௠ା௡
௝ୀଵ௝ஷ௜

௠ା௡
௜ୀଵ 𝑐௜௝௧𝑥௜௝௧௩ 

 ∀𝑘,∀𝑡 
 

(21) 

4. Algorithmic approach 

In this section, we developed an HGA-VNS algorithm to solve our proposed mathematical model. GA is one of the 
metaheuristic methods that has been widely used to solve NP-hard problems. Although GAs have effective global search and 
excellent convergence, their weak local search capacity and efficiency in the last iteration are low (Baniamerian, Bashiri, & 
Tavakkoli-Moghaddam, 2019; Zhen et al., 2020). Therefore, a new state-of-the-art HGA-VNS algorithm has been developed 
that can perform effective local searches for global solutions. 

4.1. HGA-VNS algorithm 

 The proposed algorithm consists of some special algorithmic approaches. These are initial population, roulette wheel 
selection, Partial Mapped Crossover (PMX), swap mutation, VNS for local search. Roulette wheel selection, PMX, swap 
mutation is often based on traditional GA (Bezerra et al., 2018; Gen, Cheng, & Lin, 2008; Pečený et al., 2020). It also forms 
the basis of our algorithm. Although these operators belonging to GA are known, they differ depending on the developed 
mathematical model. The same is valid for the shaking procedure in the VNS algorithm. The general structure of HGA-VNS 
is summarized in Algorithm 1.  

Algorithm 1. (HGA-VNS framework) 

Subroutine separate subtour  
Subroutine ensure all constraints (assign vehicle, demand constraints, time constraints, special aviation 
constraints) 
Subroutine calculate fitness function 
Subroutine improve fitness function (VNS) 
 
Initialize population (first parent generated with NNS) # Section 4.2 
separate subtour (all parents chromosome in populations) 
ensure all constraints 
calculate fitness function # Section 4.3 
improve fitness function (VNS) 
 
while the termination condition is not met 
generate new generations from population (roulette wheel selection) # Section 4.4 
select randomly two parents p1 and p2 from the population 
create two child c1 and c2 from two parents p1 and p2 by crossover routine # Section 4.5 
create two new offspring o1 and o2 from two child c1 and c2 by mutation routine # Section 4.6 
separate subtour (o1 and o2) 
ensure all constraints (o1 and o2) 
calculate fitness function (o1 and o2) 
improve fitness function (o1 and o2) # Section 4.7 
if fitness function is improved 
 delete p1 and p2 from the population 
 add o1 and o2 to the population 
endif 
end while 

  
 

4.2. Initial population construction 

The initial population has a significant effect on the GA search space. So first, to create the first population efficiently, we 
assigned the customers to depots. Next, NNS is used to create the first individual of the population. The NNS framework is 
shown in Algorithm 2. Thus, individuals with different chromosome lengths and populations as many as the number of depots 
are obtained. Other individuals are also produced by randomly shuffling the chromosomes of the first individual. Initial parent 
and randomly generated parents are shown in Fig.3.   
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Algorithm 2. (NNS framework) 

while the termination condition is not met 
if the first individual is not empty 
 for genes of the first individual 
  select the minimum distance (among all genes including depot gene) 
delete gene with minimum distance from the first individual 
add gene with minimum distance to new individual 
  end for 
 endif 
 else 
  break 
 
end while 
 

 

Depot 0 Depot 1

2 5 8 3 6

2 5 3 8 6

5 8 6 3 2

8 5 2 3 6

7 4 9

Population 0 Population 1

9 4 7

7 9 4

4 7 9

First Individual First Individual

Randomly generated 
individuals

Randomly generated 
individuals

 

Fig. 3. Structure of the initial populations 

4.3. Evaluation of fitness function 

Since the proposed model includes both aircraft and road vehicles, the objective function has been developed for both types 
of transport. So, due to the structure and the characteristic of the model the fitness function used for the algorithm is evaluated 
as shown in Eq. (1).   

4.4. Selection method 

The roulette wheel selection based on the probabilistic selection of individuals related to their fitness function is applied in 
the developed algorithm for selection methodology. In the selection procedure first, new generations are generated from the 
populations.  The fitness function of the individuals in the populations related to the depots is calculated according to the 
equation in Eq. (1). Since the model is a minimization problem, the inverse of the fitness function 1 / f (x) is taken. The 
selection probability of each individual is obtained with the inverse of the fitness function. The cumulative probabilities of 
individuals are also taken into account. Each individual is placed on the roulette wheel to the selection probabilities percentage 
of individuals. Therefore, individuals with a high selection probability are more likely to be selected. The roulette wheel is 
rotated to the number of generations and the selection of individuals is made randomly. At each turn of the roulette wheel, an 
individual is added to the new generation. This selection is made for each population. Thus, new generations are generated 
from populations. The selection procedure and steps are shown in Fig. 4 (Gen et al., 2008; Tasan & Gen, 2012). Nodes 0 and 
1, represent the depots. For the elite to survive, two parents with the maximum fitness function are selected for the crossover 
operator. 

4.5. Crossover operator 

One of the main genetic operators is a crossover in which two different parent chromosomes are crossed to reproduce the new 
offspring. The new offspring don't have completely different characteristics from their parents. Some characteristics of parents 
are passed on to them. So, new characteristics are not obtained with the crossover operator. In the study PMX which one of 
the most proposed is used for crossover operators (Gen et al., 2008). (see Table 3). 
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Table 3  
PXM crossover operator. 

PMX Procedure 
Input Two Parent 
Step 1 Select two positions at random called mapping sections 
Step 2 Exchange the genes of both parents in mapping sections 
Step 3 Determine mapping relationship between parents genes 
Step 4 Obtain offsprings 
Output Two Offsprings 

2 5 8 3 6

2 5 3 8 6

5 8 6 3 2

8 2 3 5 6

Population
Individuals

5 3 6 2 8

3 5 8 2 6

6 8 5 2 3

6 2 8 5 3

3 8 6 2 5

8 5 2 3 6

1

2

3

4

5

6

7

8

9

10

Individuals fi 1/fi pi pC 

1 75 0,013 0,07 0,067896 
2 15 0,066 0,34 0,412597 
3 45 0,022 0,11 0,527498 
4 35 0,0285 0,15 0,676346 
5 84 0,0119 0,06 0,738497 
6 95 0,0105 0,05 0,793336 
7 105 0,0095 0,05 0,842952 
8 115 0,0086 0,04 0,887868 
9 205 0,00487 0,03 0,913302 
10 60 0,0166 0,09 1 
fi: Fitness function of ith individual’s 
pi: Selection probability of the ith individual’s 
pc: Cumulative probability of the ith individual’s  

 

7

34

11156

5

5
4 3

9

Percent of selection probability 
of individual's

Individual1
Individual2
Individual3
Individual4
Individual5
Individual6
Individual7
Individual8
Individual9
Individual10

Roulette wheel selection

Individuals Selection population fi 

1 Individual2 15 
2 Individual2 15 
3 Individual10 60 
4 Individual4 35 
5 Individual5 84 

 

8 2 3 5 6

3 5 8 2 65

10

New generation

 

Fig.4. Selection method steps 
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4.6. Mutation operator 

The mutation is the other genetic operator. A completely new individual is created in the mutation. Small changes are made 
in the solution with the mutation operator. With the random changes made, new characteristics are gradually added to the 
population. New characteristics cannot be added to the population by the crossover operator. Swap mutation was used in the 
study.  Unlike other studies, the mutation rate was determined in swap mutation. The determined mutation rate was multiplied 
by the chromosome length of the individual. Thus, the number of genes to be swapped was obtained. If the number of genes 
is odd, it is increased by one and completed to an even number. This is because the exchange is only possible between two 
genes. Genes were selected randomly as much as the resulting even number and were changed randomly. The swap mutation 
procedure is shown in Table 4 (Gen et al., 2008).  
 

Table 4 
Swap mutation operator 

Swap Mutation Procedure 
Input Parent 
Step 1 Select the number of genes by mutation rate multiplied by chromosome length 
Step 2 Check the number of genes, if it is odd, increase it by one and obtain an even number 
Step 3 Swap two genes randomly selected, repeat it during gene length 
Step 4 Obtain offspring 
Output Offspring 

 

4.7. VNS algorithm 

VNS used to search the solution space is an algorithm based on local search.  VNS obtains better solutions by improving the 
search space with different neighborhood structures. It offers effective solutions in combinatorial optimization problems such 
as traveling salesman, vehicle routing, and scheduling (Dong, Zhang, Xu, & Shen, 2021). Effective solutions are provided 
with the help of the shaking procedure (Baniamerian et al., 2019). Diversity is increased by investigating different 
neighborhood structures with the shaking procedure. By making more local searches, the proposed algorithm converges to 
the global optimum solution. In this study, a three-step shaking procedure is proposed. Within VNS, iteration can be done in 
two ways. One of them is the termination of the iteration if there is an improvement in the fitness function. Another is the 
investigation of neighborhoods as much as the given iteration value. A different iteration method was applied in the proposed 
study. Since there is no neighborhood for genes with a single element, the VNS was terminated without any action in the 
algorithm. For subtour or number of the genes, greater than one and less than six, the number of iterations was determined by 
taking the factorial of the number of the gene. Factorial is used because the cost matrix of the problem consists of both road 
vehicles and airway vehicles and at the same time this matrix is not symmetrical. If the cost matrix were symmetrical, it would 
be better to take half of the factorial as an iteration. A certain number of iterations is taken for subtour with six and greater 
genes. In the first stage of the VNS algorithm, the swap is applied to each subtour of the parent that is divided into subtour. 
Considering the gene length of the subtour, the swap procedure was applied both randomly selected as a single gene or as a 
group with half the number of genes. In the second stage, the reversion procedure was applied. In reversion, a random gene 
sequence is selected in the subtour and inserted in reverse order. In the last stage, the insertion process was applied. During 
the insertion process, a randomly selected gene was taken and placed in a randomly determined location. The best objective 
function was obtained by calculating the fitness function at each stage by the number of iterations. One of the differences of 
the proposed VNS algorithm from the basic and the previous studies is that the swap, reversion, and insertion procedures are 
applied to the subtour obtained from the parent. The shaking structure steps of the VNS algorithm in this study are shown in 
Fig. 5.   

3 5 8 2 6 4 11 9 10 7

Parent

3 5 8 2 6

Subtour
Randomly Selected Genes

3 2 6 5 8
Swap

Exchange

3 5 8 2 6

Subtour
Randomly Selected Genes

Reverse

3 2 8 5 6
Reversion

3 5 8 2 6

Subtour
Randomly Selected 
Gene and Position

3 5 2 8 6
Insertion

Insert  

Fig. 5. Shaking structure of VNS 
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5. Experimental Results 

In this section, numerical results are presented for the proposed MDHFVRPTW. The problem expressed as narrow time 
windows and large time windows has been addressed in two ways namely fast demand fulfillment and normal demand 
fulfillment. At the same time, the problem addressed is expressed as a hard time window according to the time window. In 
other words, customer demands must be fulfilled within the specified time windows. Experimental results of real data have 
been calculated using a computer with Intel Core I7 (TM) -8750H CPU and 2.20 GHz 16 GB RAM. While calculations were 
made, the real data, which were small in size, were first solved using The General Algebraic Modelling Language (GAMS) 
with the CPLEX solver and MATLAB with the Intlinprog solver. It was seen that the developed model could not reach the 
global optimum even with small data using off-the-shelf solvers. For this reason, a new HGA-VNS algorithm was developed 
in Python for the solution of the model. The problem was solved by using the proposed HGA-VNS algorithm and genetic 
algorithm. Both algorithms were compared numerically. At the same time, the developed HGA-VNS algorithm was tested 
with large and small size test samples using the instances of Cordeau (Cordeau et al., 2001). Also, the proposed HGA-VNS 
algorithm was compared with Bae and Moon's heuristic and GA (Bae and Moon, 2016). 

5.1. Fast demand fulfillment 

In the proposed study, a total of 24 nodes are considered, including 12 nodes from Europe and 12 from Turkey. Istanbul 
Sabiha Gokcen Airport in Turkey and Bonn / Koln Airport in Europe were selected from these nodes as the depots. The 
remaining airports were expressed as customer nodes. Node IDs 1 and 2 express the depots and the others represent customers. 
Since all nodes occur from airports, they are expressed together with the airport's codes determined by ICAO. The nodes and 
their ICAO codes are shown in Table 5.  
 
Table 5  
Depot and customer nodes. 

Node ID ICAO Code Depots and Customers (Airports) 
1 LTFJ Istanbul Sabiha Gokcen 
2 EDDK Bonn/Koln 
3 LTAC Ankara  
4 LTAI Antalya 
5 LTBD Aydin 
6 LTFD Balikesir 
7 LTBR Bursa  
8 LTAY Denizli 
9 LTCA Elazig 
10 LTBJ İzmir  
11 LTAU Kayseri 
12 LTBV Mugla 
13 LTAR Sivas 
14 LTBU Tekirdag/Corlu 
15 EDDT Berlin 
16 EDDW Bremen 
17 EDLW Dortmund 
18 EDDF Frankfurt 
19 EDNY Friedrichshafen 
20 EDQM Hof/Plauen 
21 EDSB Karlsruhe 
22 ELLX Luxembourg 
23 EDDM Munich 
24 LIRN Napoli 

 

In the developed mathematical model, both roadway and airline vehicles were used as heterogeneous vehicle fleets.  It was 
assumed that each vehicle type consists of a fleet of 10 vehicles. The vehicles and their capacities used in MDHFVRPTW are 
presented in Table 6 (Airbus, 2020; Boeing-747, 2020; Cessna-GrandCaravan, 2020; EKOL, 2020). 

Table 6 
Vehicle types and capacities. 

Vehicle ID Vehicle Type Capacity (kg) 
1 Van 1000 
2 Light truck 1300 
3 Medium truck 3400 
4 Heavy truck  13000 
5 Cessna Grand Caravan Ex 1600 
6 Airbus A330-200F 65000 
7 Boeing 747-400ERF 112000 
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Vehicles used in roadway transportation offer cheaper transportation in terms of cost compared to aircraft used in airline 
transportation. In the study, the costs of the trucks used for the roadway and the aircraft used for the airline are shown in Table 
7 and Table 8 (EKOL, 2020; ICAO, 2020; Nuic, 2004; Oktal & Ozger, 2013).  

Table 7  
Roadway vehicle costs 

Vehicle Type Fixed cost ($/day) Fuel cost Driver cost Assistant cost 
($/km) ($/day) ($/day) 

Van 25 0.2 27 21 
Light truck 24 0.1 27 21 
Medium truck 48 0.2 27 21 
Heavy truck 29 0.3 27 21 

 

Table 8 
Airline costs 

Aircraft Type Transport cost ($/km) LTO cost ($) 
Cessna Grand Caravan Ex 0.5 31 
Airbus A330-200F 2.6 888 
Boeing 747-400ERF 4.2 843 

 

Roadway transportation is insufficient for the loads requiring rapid transportation such as food, medicine, and vaccines, 
especially during the pandemic period. In such cases, airline transportation, which is the fastest and most reliable type of 
transportation regardless of the cost, comes to the fore. In the study, it was assumed that some customer points had fast 
demands. The customers who have a fast freight demand are given in Table 9. 

Table 9  
Customers with fast demand freights. 

Node ID ICAO Code Customers 
4 LTAI Antalya 
9 LTCA Elazig 
14 LTBU Tekirdag/Corlu 
15 EDDT Berlin 
16 EDDW Bremen 
24 LIRN Napoli 

 

The narrow time windows [6, 192] were applied for the customers who have a fast demand. In the specified time windows, 
the demands of these customers must be met within 6 hours by a vehicle. Also, the vehicle serving the customer must return 
to its depot within 192 hours. The time windows [96, 192] were considered for the customers who have no fast demand. The 
service time for each customer was assumed as one hour. The depots, customers who have a fast demand or not, demand 
quantities and the latest service times are shown in Table10. 

Table 10  
Demands and latest service time.     

Node ID ICAO Code Depots/Customers Demand (kg) Latest 
Service Time (h) 

1 LTFJ İstanbul Sabiha Gokcen 0 192 
2 EDDK Bonn/Koln 0 192 
3 LTAC Ankara 727 96 
9 LTCA Elazig 2 6 
10 LTBJ Izmir 47 96 
17 EDLW Dortmund 3810 96 
18 EDDF Frankfurt 8447 96 
21 EDSB Karlsruhe 2808 96 
24 LIRN Napoli 781 6 

 

Developed MDHFVRPTW to fulfill fast demand was solved using some off-the-shelf solvers CPLEX and Intlinprog. The 
best objective function value was found as 23458.54 at the end of 9000 seconds with the CPLEX. Although a result was 
obtained with a CPLEX solver in solving the problem, no result was found with Intlingprog solver for fast demand fulfillment 
(see Fig. 6). When only the x decision variable xijtv (i=24, j=24, t=7, v=10) was considered in the problem, the number of 
decision variables x was found to be 40320 (24 × 24 × 7 × 10). Considering the constraint numbers of the problem and the 
number of other decision variables, it could be seen how complex and NP-hard the problem was. Therefore, the problem was 
solved by using GA which is one of the metaheuristic methods, and the newly developed HGA-VNS algorithm. Solution 
results are shown in Table 11. Customers who have a fast demand are stated in bold fonts in Table 11. When the first route of 
the CPLEX algorithm in Table 11 was considered, freight distribution was carried out on the Istanbul Sabiha Gokcen - 
Tekirdag/Corlu - Mugla - Izmir - Balikesir - İstanbul Sabiha Gokcen route by light trucks. 
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Fig. 6. Fast demand fulfillment results of the Intlinprog solver 

Table 11 
Fast demand fulfillment performance of the solvers and algorithms     

Solver/Algorithm Routes 
(Node ID) 

Vehicle type 
(Vehicle ID) 

Vehicle 
number 

Objective 
function 

($) 

Time 
(seconds) 

CPLEX 

1 - 14 -5 -12 - 10 - 6 - 1 
2 - 17 - 16 - 23 - 21 - 2 
1 - 4 - 9 - 13 - 11 - 3 - 8 - 7 - 1 
2 - 19 - 24 - 22 - 2 
2 - 15 - 20 - 18 - 2 

2 
4 
5 
5 
6 

1 
1 
1 
2 
1 

23458.54 9000 

Intlinprog 
 
- 
 

- - - - 

GA 

1 - 14 - 5 - 10 - 12 - 13 - 11 - 1 
1 - 6 - 1 
1 - 8 - 4 - 1 
2 - 16 - 22 - 17 - 23 - 21 - 2 
1 - 9 - 3 - 7 - 1 
2 - 20 - 2 
2 - 24 - 19 - 2 
2 - 18 - 15 - 2 

2 
2 
4 
4 
5 
5 
5 
6 

1 
2 
1 
2 
1 
2 
3 
1 

23974.83 469 

 
HGA-VNS 

1 - 7 - 6 - 5 - 12 - 8 - 11 - 1 
1 - 14 - 3 - 1 
2 - 16 - 17 - 20 - 23 - 19 - 21 - 2 
1 - 10 - 9 - 1 
1 - 13 - 4 - 1 
2 - 22 - 24 - 2 
2 - 18 - 15 - 2 

2 
2 
4 
5 
5 
5 
6 

1 
2 
1 
1 
2 
3 
1 

 
19776.62 

 
8724 

 

The developed MDHFVRPTW was solved with GA one of the metaheuristic algorithms. The best objective function value 
was found as 23974.83 in 469 seconds solution time in GA. Detailed information about the solution is given in Table 11. 
Also, the change with time of the average fitness function obtained from the solution of the problem with GA is shown in Fig. 
7 (a), and the change of the best fitness function with time is shown in Fig. 7 (b).  
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Fig. 7. (a) The change of the average fitness function of the GA with time for the fast demand fulfillment, (b) The change of 
the best fitness function of the GA with time for the fast demand fulfillment 
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The problem was solved by using the newly developed HGA-VNS algorithm to fulfill the fast demand and effective results 
were found. With the HGA-VNS algorithm, the best objective function was obtained as 19776.62 in 8724 seconds solution 
time. In Fig. 8 (a), the change of the average fitness function of the HGA-VNS algorithm with time, and in Fig. 8 (b) the 
change of the best fitness function of the HGA-VNS algorithm with time are given. 
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Fig. 8. (a) The change of the average fitness function of the HGA-VNS with time for the fast demand fulfillment, (b) The 
change of the best fitness function of the HGA-VNS with time for the fast demand fulfillment 

As seen in Table 11, the best objective function was obtained with the HGA-VNS algorithm. The routes that were found in 
the HGA-VNS algorithm to fulfill the fast demand were shown in Fig. 9. 

Vehicle Route

Istanbul Sabiha Gokcen
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Aydin
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Kayseri
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Napoli

Luxembourg
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Karlsruhe

Frankfurt
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Hof / Plauen

Berlin
Bremen

Dortmund

 

Fig. 9. The routes found by the HGA-VNS algorithm for the fast demand fulfillment 

5.2. Normal (Non-fast) demand fulfillment 

The large time windows [96, 196] were used to fulfill the normal (non-fast) demands of the customers. It was assumed that 
each customer was served in the 96 hours. Vehicles must return to their depots where they start their route in the 196 hours. 
The difference between normal and fast demand fulfillment is the use of a large time windows. It was observed that all solvers 
and algorithms achieve a result when customer demands were fulfilled using a large time windows. When the problem was 
solved with CPLEX, the best objective function value in 1000 seconds solution time was calculated as 2131.4. The best 
objective function value was obtained as 3576.3 in 14580 seconds solution time with the Intlinprog solver. The solution graph 
of the Intlinprog solver is shown in Fig. 10.   
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Fig. 10. Normal demand fulfillment results of Intlinprog solver 

When the first route of the Intlinprog solver shown in Table 12 was examined, it was seen that the light truck started its route 
from the Bonn/Koln depot and returned to the Bonn/Koln depot after serving Napoli and Luxembourg customers. The details 
about the solution to the problem are given in Table 12. 

Table 12  
Normal demand fulfillment performance of the solvers and algorithms.     

Solver 
Algorithm 

Routes 
(Node ID) 

Vehicle type 
(Vehicle ID) 

Vehicle 
number 

Objective 
function 

($) 

Time 
(seconds) 

CPLEX 

1 - 14 - 6 - 10 - 5 - 12 - 4 - 8 - 7 - 1 
2 - 22 - 24 - 2 
1 - 3 - 11 - 9 - 13 - 1 
2 - 20 - 23 - 19 - 21 - 2 
2 - 15 - 16 - 17 - 2 
2 - 18 - 2 

2 
2 
2 
4 
4 
4 

1 
2 
3 
1 
2 
3 

2131.4 1000 

 
Intlinprog 

2 - 24 - 22 - 2 
1 - 3 - 11 - 13 - 9 - 4 - 8 - 5 -12 - 10 - 6 - 1 
1 - 14 - 7 - 1 
2 - 20 - 23 - 19 - 21 - 2 
2 - 16 - 15 - 17 - 2 
2 - 18 - 2 

2 
2 
2 
4 
4 
4 

1 
2 
3 
1 
2 
3 

 
3576.3 

 
14580 

 
GA 

1 - 10 - 5 - 12 - 8 - 7 - 1 
1 - 3 - 11 - 13 - 9 - 4 - 6 - 14 - 1 
2 - 22 - 24 - 15 - 16 - 17 - 2 
2 - 20 - 23 - 19 - 21 - 2 
2 - 18 - 2  

2 
2 
4 
4 
4 

1 
2 
1 
2 
3 

 
2141.6 

 
3234 

 
HGA-VNS 

1 - 7 - 6 - 10 - 8 - 4 - 12 - 5 - 14 - 1 
1 - 9 - 13 - 11 - 3 – 1 
2 - 24 - 2 
2 - 17 - 20 - 21 - 22 - 2 
2 - 18 - 2 
2 -19 - 23 - 15 - 16 - 2 

2 
2 
2 
4 
4 
4 

1 
2 
3 
1 
2 
3 

 
2068.2 

 
197 

 

As in the narrow time windows, the problem was solved using GA. When the problem was solved with GA, the best objective 
function value was found as 2141.6 in 3234 seconds solution time. GA graphs to the fulfillment of the normal demand are 
shown in Fig. 11. By using the large time windows, the change of the average fitness function of the GA algorithm with time 
in Fig. 11 (a), and the change of the best fitness function of the GA algorithm with time in Fig. 11 (b) are given.  
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Fig. 11. (a) The change of the average fitness function of GA with time for the normal demand fulfillment, (b) The change of 
the best fitness function of GA with time for the normal demand fulfillment  
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The problem was successfully solved using the large time windows with the proposed HGA-VNS algorithm. The best 
objective function value was found as 2068.2 in 197 seconds solution time with the HGA-VNS algorithm. HGA-VNS 
algorithm graphs obtained using large time windows are seen in Fig. 12. The change of the average fitness function of the 
HGA-VNS algorithm with time for the normal demand fulfillment is shown in Fig. 12 (a), and the change of the best fitness 
function of the HGA-VNS algorithm with time for the normal demand fulfillment is shown in Fig. 12 (b). 
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Fig. 12. (a) The change with time of the average fitness function in HGA-VNS for the normal demand fulfillment, (b) The 
change with time of the best fitness function in HGA-VNS for the normal demand fulfillment 

As seen in Table 12, the best objective function was obtained with the HGA-VNS algorithm for the normal demand fulfillment. 
The routes that were found in the HGA-VNS algorithm to fulfill the normal demand were shown in Fig. 13. 

Vehicle Route
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Fig. 13. The routes found by the HGA-VNS algorithm for the normal demand fulfillment 

5.3. Parameters selection of GA and HGA-VNS 

The selection of population size, generation size, mutation rate, and crossing rate parameters for both GA and HGA-VNS 
algorithms were performed sensitively.  The population size and generation size were considered as 50, 100, 150. It is quite 
difficult to evaluate all tuning parameters in terms of performance. In the proposed study was preferred mutation rate and 
crossover rate parameters frequently used in the literature. The predefined parameter values were applied as 0.003 for mutation 
rate and 0.9 for crossover (Hassanat et al., 2019; Yıldırım & Kuvvetli, 2021). The parameter settings with the best objective 
function are shown in Table 13.  
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Table 13  
Parameters of algorithms. 

Algorithm Population size Generation size Mutation rate Crossover rate 
GA 100 50 0.03 0.9 
HGA-VNS 150 50 0.03 0.9 

 

5.4. Comparison of algorithms 

The proposed algorithm was compared with previous algorithms using instances developed by Cordeau et al. (2001). Cordeau 
et al.’s instances consist of two groups as (a) and (b). The group (a) consists of a narrow time window by selecting the uniform 
random ei in the intervals [60, 480] and then the uniform random li in the interval [ei + 90, ei + 180]. The group (b) consists 
of a large time window by selecting the uniform random ei in the intervals [60, 300] and then the uniform random li in the 
interval [ei + 180, ei + 360]. The instances of Cordeau et al. are presented in Table 14. As seen in Table 14, m refers to the 
number of vehicles, n number of customers, t number of depots, D maximal route duration, Q vehicle capacity. 

Table 14 
Cordeau’s instances characteristics 

No. m n t D Q No. m n t D Q 
1a 2 48 4 500 200 1b 1 48 4 500 200 
2a 3 96 4 480 195 2b 2 96 4 480 195 
3a 4 144 4 460 190 3b 3 144 4 460 190 
4a 5 192 4 440 185 4b 4 192 4 440 185 
5a 6 240 4 420 180 5b 5 240 4 420 180 
6a 7 288 4 400 175 6b 6 288 4 400 175 
7a 2 76 6 500 200 7b 1 72 6 500 200 
8a 3 144 6 475 190 8b 2 144 6 475 190 
9a 4 216 6 450 180 9b 3 216 6 450 180 
10a 5 288 6 425 170 10b 4 288 6 425 170 

 

Cordeau et al.’s instances include one type of vehicle that is homogeneous. The mathematical model proposed in the study 
includes heterogeneous vehicle types, as well as different types of transportation. For this reason, a new model has been 
obtained according to the homogeneous vehicle type by modifying the proposed mathematical model to make a comparison 
with the algorithm proposed by Bae and Moon (2016). The model is considered as two indices. Besides, all constraints except 
assignment, time, vehicle capacity, depot, and subtour elimination constraints are ignored. Bae and Moon compared their 
Heuristic algorithm with the genetic algorithm, taking into account the fixed costs of the vehicle's departure from the depots. 
However, in this study, Bae and Moon's heuristic and genetic algorithm, and proposed HGA-VNS algorithm were compared 
according to the distance. As a result of the comparison, it is seen that the proposed HGA-VNS algorithm gives better results 
than the results obtained from previous algorithms compared to both groups in terms of distance. Comparison results are 
shown in Table 15. 

Table 15 
Comparison results 

No. 

Bae et al. Proposed HGA-VNS algorithm Heuristic Genetic algorithm 
CPU Time 
(seconds) 

Distance CPU Time 
(seconds) 

Distance CPU Time 
(seconds) 

Distance 

1a 13 2225.4 180 2691.0 180 2053.4 
2a 25 3759.6 180 3885.0 180 3441.3 
3a 37 6186.5 180 6600.6 180 5873.7 
4a 49 8265.5 180 9821.4 180 7869.0 
5a 60 8401.4 180 8996.5 180 8223.1 
6a 71 8898.3 180 9654.4 180 8557.0 
7a 20 3156.1 180 3248.3 180 3046.5 
8a 38 6234.3 180 6651.1 180 6115.8 
9a 55 7225.0 180 8305.7 180 6874.5 
10a 72 10659.7 180 11232.9 180 10126.3 
1b 14 1854.0 180 1904.6 180 1732.5 
2b 25 3061.9 180 3061.9 180 2556.8 
3b 38 5222.0 180 5195.1 180 4862.0 
4b 50 6236.3 180 6236.3 180 5883.6 
5b 61 5989.4 180 5989.4 180 5697.8 
6b 71 7729.7 180 7729.7 180 7554.9 
7b 20 2638.6 180 3097.6 180 2441.5 
8b 38 4635.6 180 4635.6 180 4156.8 
9b 55 5511.0 180 6149.2 180 5216.7 
10b 73 7559.3 180 7559.3 180 7148.6 
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6. Discussion 

The node-based MDHFVRPTW model, which includes a heterogeneous fleet of airlines and roadways, was developed. New 
constraints on aviation were presented in the model. The developed model was solved using real data. The model was analysed 
in two scenarios as narrow time windows and large time windows. Firstly, it was ensured that customers who were determined 
by using narrow time windows were fulfilled their demands quickly. The problem was solved with the basic solvers CPLEX, 
Intlinprog solvers while fulfilling the fast demand. While CPLEX, one of the solvers, obtained the objective function value 
of 23458.54 at the end of 9000 seconds, Intlinprog could not find any solution. Therefore, the problem was solved with the 
metaheuristic methods GA and the developed HGA-VNS algorithm. The objective function value of 23974.83 was found in 
469 seconds with GA. The objective function value was obtained in 8724 seconds as 19776.62 using the HGA-VNS algorithm. 
Considering the solution time, it was seen that GA provides a fast solution. However, considering the objective function, the 
HGA-VNS algorithm gave a better result than both CPLEX and GA. Also, because the time was crucial for distribution while 
the fast demand was fulfilled the distribution was made to long distances by aircraft. If the customer who needs fast demand 
was close to the depot, the distribution was made by roadway vehicle. If it was in a remote location, the distribution carried 
out with small or wide-body aircraft types, taking into account the amount of demand. The distribution was fulfilled to 
customers with low demand by small aircraft, and to customers with a large demand by wide-body aircraft type. It is seen in 
detail in Table 11. In the other scenario, the demands of the customers were fulfilled by using the large time windows. In the 
second scenario, the problem was evaluated with CPLEX, Intlinprog solvers, GA, and HGA-VNS algorithms. In this scenario, 
a solution was obtained with all of them, including Intlinprog. The objective function value 2131.4 with the CPLEX solver in 
1000 seconds solution time, the objective function value 3576.3 with the Intlinprog solver in 14580 seconds solution time, 
the objective function value 2141.6 with the GA in 3234 seconds solution time and the HGA-VNS objective function value 
was obtained as 2068.2 in 197 seconds solution time. When the second scenario was evaluated in terms of both the solution 
time and the best objective function, the superiority of the HGA-VNS algorithm was seen. In this scenario where the large 
time windows were used, only roadway vehicles were used. Because there was no time limit and also the airline was costly, 
the aircraft wasn't used in the normal demand fulfillment. The HGA-VNS algorithm, which was evaluated in two scenarios 
with a dataset based on real data, was also examined with test data developed by Cordeau. The HGA-VNS algorithm examined 
with Cordeau instances was compared in terms of distance with the heuristic and GA proposed by Bae and Moon. As seen in 
Table 15, it obtained better results than both algorithms. The significant contributions of this study are as follows: 

• Node-based MILP model MDHFVRPTW is developed.  
• Different aircraft fleets and road vehicles are considered for the heterogeneous fleet. 
• New constraints and costs are achieved for aviation, for instance, range constraint, penalty cost, and real 

unit transportation cost depending on aircraft type, landing and taking off cost varying to aircraft engine 
type. 

• Real aviation flight path data considering instrument flight rules and real highway distance data are used. 
• The HGA-VNS algorithm is proposed for the solution of MDHFVRPTW.       

  

The limitation of the study can be considered as not using the other transportation types such as railway and maritime transport. 

7. Conclusions 

In this study q node-based, mixed-integer linear programming model and a new hybrid genetic algorithm with variable 
neighborhood search for its solution were proposed for MDHFVRPTW. Especially, airline and roadway integrated 
heterogeneous fleet was used for this model. New constraints were presented for airline transportation and these were 
examined in detail. Hard time windows that the arrival times of delivery of customers must not exceed the maximum allowable 
time interval were evaluated in terms of time. The results of the computational experiments also showed the applicability and 
effectiveness of the developed HGA-VNS algorithm.  MDHFVRPTW model and the HGA-VNS algorithm used in its solution 
are thought to play an effective role in freight transportation for logistics and different types of transport. Considering other 
modes of transport such as rail and maritime transport, re-evaluation of the constraints of the mathematical model according 
to the type of transport used should also be taken into account. In future studies, different transportation types and their 
constraints will also be considered. 
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