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 Sampling plans are extensively used in pharmaceutical industries to test drugs or other related 
materials to ensure that they are safe and consistent.  A sampling plan can help to determine the 
quality of products, to monitor the goodness of materials and to validate the yields whether it is 
free from defects or not. If the manufacturing process is precisely aligned, the occurrence of defects 
will be an unusual occasion and will result in an excess number of zeros (no defects) during the 
sampling inspection. The Zero Inflated Poisson (ZIP) distribution is studied for the given scenario, 
which helps the management to take a precise decision about the lot and it can certainly reduce the 
error rate than the regular Poisson model. The Bayesian methodology is a more appropriate 
statistical procedure for reaching a good decision if the previous knowledge is available concerning 
the production process. This article proposed a new design of the Bayesian Repetitive Group 
Sampling plan based on Zero Inflated Poisson distribution for the quality assurance in 
pharmaceutical products and related materials. This plan is studied through the Gamma-Zero 
Inflated Poisson (G-ZIP) model to safeguard both the producer and consumer by minimizing the 
Average Sample Number. Necessary tables and figures are constructed for the selection of optimal 
plan parameters and suitable illustrations are provided that are applicable for pharmaceutical 
industries.  
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1. Introduction 

 
Acceptance sampling plans have been widely applied in pharmaceutical products manufacturing industries for inspecting raw 
materials and the final products by drug manufacturers and other stakeholders with an interest in ensuring the protection of 
pharmaceutical products. In such a way, the governmental and non-governmental organizations and consumer advocacy 
groups, use sampling plans, which are considered a key component of pharmaceutical quality assurance and quality control. 
Sampling plans are generally less expensive than coverage of 100% inspection, notably because there is much less inspection. 
It is regularly used to determine the disposition of incoming material when 100% inspection is not advisable. Sampling 
inspection is implemented when samples are drawn at random from a lot of incoming products and it is inspected according 
to certain standards.  A decision is made concerning the lot is dependent on the knowledge acquired using the sample. 
Sampling plans can be broadly classified as a lot by lot sampling by attributes and lot by lot sampling by variables and these 
classifications are mostly dealt with the quality characteristic of inspection products. Generally, an attribute sampling plan 
requires a larger number of samples than variable sampling plans but it is comparatively easy to use. In attribute sampling, a 
predetermined number of units from each lot are inspected by which each unit is classified as conforming or nonconforming. 
If the number of nonconforming units in the sample is less than or equal to the prescribed minimum, accept the lot, otherwise, 
it is rejected. Sampling plans are further categorized as single sampling, double sampling, multiple sampling, sequential 
sampling, repetitive group sampling plans and so on, depending on the number of samples to be taken from the lot. A 
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Repetitive Group Sampling (RGS) plan is more appropriate in situations when sampling inspection products are destructive 
and highly costly. Through this plan, either acceptance or rejection regarding the lot based on repeated sample test results of 
the great deal is same. The RGS plan can give the minimum sample size with desired protection than the single sampling plan. 
Sherman (1965) introduced the designing procedure of the Repetitive Group Sampling plan for attribute quality 
characteristics. Soundararajan and Ramasamy (1986) have developed certain procedures and tables for the selection of 
parameters for the RGS plan based on Poisson distribution. Balamurali et al. (2005) developed tables and the operating 
procedure for RGS plan under the variable quality constraints. Aslam et al. (2011) developed extensive tables for variable 
repetitive group sampling plans to deal with process loss for various combinations of acceptable quality levels. Fallah Nezhad 
et al. (2016) introduced a repetitive group sampling plan based on the Process Capability Index for the lot acceptance problem 
which is based on the concept of the variable sampling plan. Perez Gonzalez et al. (2020) have developed optimal truncated 
repetitive sampling plans for inspecting lots of manufactured material using Poisson defect count data. 
Due to the extreme COVID-19 pandemic, every pharmaceutical products and related materials manufacturing industry in the 
world has increased production in the last few years. Further, they are focused on improving the quality of their own materials 
in the production process for increasing customer satisfaction and continually reducing costs. For that purpose, they are driven 
by rapid technological changes such as computerized automatic control systems, advanced analytical procedures, scientific 
management algorithms, etc. These techniques are used for monitoring and controlling product quality at each stage of 
production. Therefore, the number of defects occurring will be a rare event in such a production process. However, random 
fluctuations and some unavoidable reasons (materials made on different days or machines, materials made on different 
stations, products manufactured with different source materials) in manufacturing processes may lead some products to be in 
an imperfect state. In this case, a Zero Inflated Poisson (ZIP) distribution would be more appropriate than the traditional 
Poisson distribution. The ZIP distribution is widely applied in many practical fields. For example, medical research centers, 
actuarial science, software developing management, manufacturing, agricultural science, etc., Lambert (1992) discussed the 
application of the Zero Inflated Poisson (ZIP) model to count defects in the manufacturing process. Gupta et al. (1996) 
provided a general analysis of zero inflated models. Xie and Goh (1993) constructed a control chart for decision making in 
controlling high yield processes. Bohning et al. (1999) has made few essential comparisons between ZIP distribution and 
Poisson distribution to measure the dental health of individuals in dental epidemiology research. Xie et al. (2001) proposed 
control charts based on the ZIP model instead of the conventional Poisson model. Rodrigues (2003) studied the zero inflated 
Poisson distribution under the Bayesian point of view using the data augmentation algorithm. Rodrigues (2006) discussed an 
application of the full Bayesian significance test introduced by Pereira and Stern (1999) to compute the evidence of Poisson 
distribution against Zero-Inflated Poisson distribution (ZIP). Sim and Lim (2008) proposed the zero inflated models which 
will take the account of excess number of zeros in statistical process control. Mussida et al. (2013) reported that the ZIP 
distribution is well performed to model the excess zero counts data. Loganathan and Shalini (2014) developed the design of 
a single sampling plan by attributes under the conditions of Zero Inflated Poisson Distribution (ZIP). Unhapipet et al. (2017) 
have dealt with Bayesian predictive inference under the ZIP model for various types of prior distributions. Rao and Aslam 
(2017) have designed the resubmitted lots with an attribute single sampling plan for ZIP distribution.  

The basic assumption underlying the theory of conventional sampling plans by attributes is that the lot or process fraction 
nonconforming is a constant, which implies that the production process is stable. However, in practice, the lots formed from 
a process will have quality variations, which occur due to random fluctuations. The variations in the lots are categorized into 
two types namely within-lot and between-lot variations. When the between-lot variation is more than the within-lot variation, 
the proportion of nonconforming units in the lots will vary continuously. In such cases, the decision on the submitted lots 
should be made with the consideration of the between-lot variations and hence the conventional sampling schemes cannot be 
employed. Alternatively, the sampling plans based on the Bayesian methodology can be applied which uses the knowledge 
on the process variation in making a decision on the disposition of the lot. Hald (1981) has discussed a detailed procedure and 
implication of the Bayesian Single Sampling Plan under the consideration of Gamma Poisson and Beta binomial distributions. 
Moreover, Calvin (1990), Case and Keats (1982), Guthrie and Johns (1959) are also made discussion on choosing a prior 
distribution for the lot fraction non-conforming items in the Bayesian sampling plan. Suresh and Latha (2001) have used 
gamma prior distribution and Poisson sampling to generate the tables for acceptance probabilities, point of inflection and its 
angle. Vijayaraghavan et al. (2008) discussed the Bayesian Single Sampling Plan using Gamma Poisson distribution and 
described a method to study the efficiency of their sampling plan compared to Conventional Poisson Single Sampling 
Plan.  Similarly, Kaviyarasu and Sivakumar (2019) have developed the procedures and tables for a Single sampling plan based 
on ZIP distribution under the Bayesian perspective. Sano et al. (2020) demonstrated the formulation and manufacturing 
conditions that satisfy the criteria with a minimum number of experiments using Bayesian optimization for the pharmaceutical 
products. These techniques are helping to optimize the formulation and manufacturing methods of pharmaceutical products 
to eliminate unnecessary experiments and accelerate method development tasks However, sampling inspection is an effective 
way to ensure the product quality in pharmaceutical industries at various stages of the manufacturing process and before it is 
shipped for marketing. The present article proposed a new design and procedure of group sampling plan under the Bayesian 
perspective to determine the optimized plan parameters for desired quality levels. This proposed sampling plan is technically 
effective and economically efficient for ensuring the quality of the products in pharmaceutical industries.  
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2. WHO guidelines for the sampling of pharmaceutical products and related materials 

According to the World Health Organization (WHO), sampling is a selection of a portion of pharmaceutical products/ goods 
for a definite purpose. The procedure which is used for sampling must be appropriate towards samples. Likewise, for solid 
oral dosage forms or liquid dosages or semi solid dosages, there are specific sampling regulatory procedures. WHO has 
published different plans for a sampling of raw materials which can be categorized as n plan, p plan, and r plan (Schilling & 
Neubauer, 2017). These sampling plans take into consideration the material variability, history of the sampler, and quantity 
needed for analysis. 

The n plan 

The “n plan” should be utilized using excessive carefulness and is mostly utilized when the sampled material is considered as 
uniform and is brought from a known basis as well as when the supplier is recognized and reliable. Samples can be withdrawn 
from any part of the container. The n plan is based on the formula 1n N= + , where N is the number of sampling units in 
the consignment. The value of n is obtained by simple rounding. According to this plan, original samples are taken from n 
sampling units selected at random, and these are subsequently placed in separate sample containers. 

The p plan 

The “p plan” may be used when the material is uniform, is received from a recognized source, and the main purpose is to test 
for identity. The p plan is based on the formula 0.4n N= , where N is the number of sampling units. The data for p is 
obtained by rounding up to the next highest integer. According to this plan, samples are taken from each of the N sampling 
units of the consignment and placed in separate sample containers. These original samples are transferred to the control 
laboratory, visually inspected, and tested for identity (a simplified method may be used). If the results are concordant, p final 
samples are formed by appropriate pooling of the original samples. 

The r plan 

The “r plan” may be used when the material is suspected to be non-uniform and is received from a source that is not well 
known. The r plan may also be used for herbal medicinal products used as starting materials. This plan is based on the formula

1.5r N= , where N is the number of sampling units. The figures for r are obtained by rounding up to the next highest 
integer. However, these types of sampling plans only provide the size of the sample whereas it is not an appropriate method 
to determine the quality level of the bulk materials and ensure quality assurance. In such a situation, we recommend the risk-
based Bayesian sampling plans to ensure the quality assurance of the products. Generally, risk-based Bayesian sampling plans 
are traditional in nature, drawing upon the producer and consumer type of risks as depicted by the OC curve. Therefore, the 
proposed BRGS sampling plan for the inspection has multiple advantages for the producer and the consumer. It helps accept 
a good lot of products and reject a bad lot. The use of a BRGS plan also motivates the producer to enhance the quality level. 

In this paper, we proposed a new design of the Bayesian Repetitive Group sampling plan (BRGS) by attribute under the 
conditions of Gamma-Zero Inflated Poisson (G-ZIP) distribution for the application of pharmaceuticals products and related 
materials. In the next section, provides an operating procedure of the Repetitive Group Sampling plan. In the fourth section, 
a brief description of the Bayesian G-ZIP distribution along with its performance measure is given. The fifth section provides 
the operating procedure and tables for selecting the proposed plan and to determine the optimum plan parameters for the 
specified quality levels through the unity value approach. In the sixth section, numerical illustrations are provided and describe 
the effectiveness and application of the proposed sampling plan towards the pharmaceutical industries. The results are 
summarized in the concluding section. 

Glossary 

N- Lot size 
n - Sample size 
p - Proportion of defective 
c - Acceptance number 
d - Number of defects 
Pa(p) - Probability of acceptance for given p 𝑝ଵ- Acceptance Quality Level (AQL) 
α - Producer’s risk 𝑝ଵ- Limiting Quality Level (LQL) 
β - Consumer’s risk 
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3. Designing of Repetitive Group Sampling plan 

The idea of a Repetitive Group Sampling plan was proposed by Sherman (1965). The simple operating procedure for the 
standard characteristics follows an attribute in nature.  
The operating procedure of the RGS plan is as follows, 
• Step (i): Take a random sample of size n from the lot. 
• Step (ii): Observe the number of non-conforming items, d in the sample. 
• Step (iii): (a) If 𝑑 ≤ 𝑐ଵ, then Accept the lot 
           (b) If 𝑑 > 𝑐ଶ, then Reject the lot 
           (c) If 𝑐ଵ < 𝑑 ≤ 𝑐ଶ, then repeat the steps (i) and (ii) until a decision is made on lot. 
Thus, the RGS plan is completely specified by its parameters, namely sample size n and the acceptance numbers 𝑐ଵ and 𝑐ଶ. It 
is observed that the RGS plan is reduced to a single sampling plan when 𝑐ଵ = 𝑐ଶ and it is always noted that  𝑐ଵ < 𝑐ଶ. In such 
a way, in large lot, let p be the unknown proportion of defectives respectively, the probability of acceptance and rejection 
functions are defined as, 

( ) ( )'
1 /aP p P d c p p= ≤ =  

( ) ( )2 / 'rP p P d c p p= > =  
From the above equations, the probability of acceptance and probability of rejection can be obtained from the group sample, 
when 𝑝 = 𝑝′. Let 𝑃௔ሺ𝑝ሻ and 𝑃௥ሺ𝑝ሻ be the probabilities for eventually accepting and rejecting the lot, 𝑐ଵ and 𝑐ଶ are the 
acceptance numbers of the RGS plan. The probability of acceptance of the RGS plan as given below, 

( ) ( )
( ) ( )

a
A

a r

P pP p
P p P p

=
+

 
(1) 

 
It is usual practice in selecting a sampling plan to fix the operating characteristic curve according to desired discrimination. 
The OC curve is in turn fixed by suitably chosen parameters such as considering two points on it, namely(𝑝ଵ , 1 − 𝛼)  and (𝑝ଶ ,𝛽). Where,  𝑝ଵ is the Acceptable Quality Level (AQL), 𝛼 is the producer’s risk,  𝑝ଶ is Limiting Quality Level (LQL) and 𝛽 is the consumer’s risk. 
 
4. The Operating Characteristic function of Bayesian RGS plan  

The sampling plan based on a Poisson distribution has often been used to monitor the defects in sampling units. However, in 
a zero-defect manufacturing environment, it is frequently observed that significantly higher zero-defect counts come together 
with occasional nonconformities in certain samples. In such a case, the traditional sampling plan for monitoring the number 
of conformities is faced with several problems, and consequently, it fails to achieve the expected control. In such a case, one 
can use an alternative of distribution to monitor the production process, namely a Zero-Inflated Poisson (ZIP) distribution. As 
given by Lambert (1992) the probability function of a Zero Inflated Poisson distribution is as follows, 

( )
( )

( )

1 ,            0  
; ,

1 ,     1,2,3 ,
!

x

e when x
P X x e when x

x

λ

λ

ω ω
ω λ λω

−

−

 + − =
= = 

− = …

 
(2) 

with 0 < 𝜔 < 1, 𝜆 > 0. Here, ω  and λ is the parameters of ZIP distribution. When 𝜔 = 0, this model is reduced by the 
Poisson model. Additionally, the mean and variance of the ZIP distribution are given as ( )  E x ωλ=  and 

( )( ) 1 (1 )Var x λ ω ωλ= − + . When the manufacturing process is well monitored, the occurrence of defects would be a 
rare event. The number of defects for many sampled products would be zero. Under such circumstances, the appropriate 
probability distribution of the number of defects in the sampled products is a ZIP distribution. According to Loganathan and 
Shalini (2014), the OC function under the conditions of ZIP distribution can be defined as,  

( )
0

( ; , , ) ( / , ) 
c

a
x

P p P x n p P X xω ω λ
=

= = =  (3) 

where npλ = , that is n is the sample size and p is proportion defects.  

Bayesian methods arise naturally when the prior information is available for planning and estimation. When the number of 
nonconformities in sample follows the model of Zero Inflated Poisson distribution with parameter ( , ) np ω , when the 
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proportion of nonconformities p varies at random from lot to lot and is distributed according to a gamma distribution, which 
is a natural conjugate prior to p, then the prior density function of the p  is given by, 

~ ( , )p Gamma t s   

( )
1

/ , ,  0 ,  , 0
Γ

tp s se t pf p t s p t s
s

− −
= ≤ < ∞ >  

(4) 

Where, t  is the scale parameter and s  is the shape parameter. If ( )E p p=  is gives the scale parameter is obtained by
/t s p= . Here, the prior knowledge s is estimated from the past history of the production process. Further, the uniform 

distribution is assumed to be the conjugate prior to ω  with parameters a  and b . The probability density function of the ω
is defined as, 

( )~ a,bUniformω  
 

( ) 1/ ,   ,f a b a b
b a

ω ω= ≤ ≤
−

 
(5) 

The limitation of the parameter ω can be taking 0a =  and 1b = , that is the uniform prior on (0,1). Then the equation for 
the standard uniform distribution is ( ) 1f ω =  with limitation 0 1ω≤ ≤ . Thus, parameter ω could be considered as the 
weighting parameter. Therefore, the predictive distribution of the number of defectives x is reduced to the G-ZIP distribution. 
When the production process is not stable, the non-conforming items 𝑥 and the average number of defects p are independently 
distributed. According to Hald (1981), the average probability of acceptance 𝑝̅  is approximately obtained by, 

( )
0

( ) ( ; , , ) aP p P x n p f p dpω
∞

=   
(7) 

Thus, therefore, the predictive distribution of the number of defectives x is reduced to the G-ZIP distribution and is given as, 
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Let us take it for convenience ( )np np sρ = + . It is to be observed that the sampling distribution of x is the Zero Inflated 
Negative binomial model with parameter s and ( )np np sρ = + . When production is not stable, both x  and p   are 
independently distributed, and hence the sampling distribution of x, according to Hald (1981) under the conditions that 0.1p <
, / 0.2p s < , the OC function is given by, 

( )
0

( ) ; , ,
c

a
x

P p p x np sω
=

=  
 

(9) 

where p is the average lot quality or average fraction non-conforming. Here, the value of s can be estimated from prior 
information about the production process. When 0c = , the lot acceptance probability becomes as, 

( ) ( )1 (1 )s
aP p ω ω ρ= + − −  (10) 

Moreover, the mean and variance of Gamma-Zero Inflated Poisson distribution as follows, 
( )  (1 )E x ω λ= −

 
and 

( ) ( )( ) 1 [ (1 )]Var x sω λ λ ωλ= − + +  
Based on this, the OC function of the Bayesian RGS plan under the conditions of Gamma-Zero Inflated Poisson distribution 
is given by, 
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(11) 

 
5. Determination of plan parameters  
 
The determination of parameters for the Bayesian RGS plan under the conditions of G-ZIP distribution can be obtained 
through the two points on the OC curve approach for the specified strength 1 2( , , , )p pα β . The plan parameters are determined 
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to protect both the producers and consumers. Hence, the optimum plan parameters are studied by satisfying the following 
conditions, 
a) ( )1 1aP p α≥ −   
b) ( )2aP p β≤  
Here 𝑝ଵ is the Acceptable Quality Level (AQL) corresponding to the producer’s risk, 𝑝ଶ is the Rejection Quality Level (LQL) 
corresponding to the consumer’s risk. Under these conditions, can determine the plan parameters and minimize the Average 
Sample Number at the level of Limiting Quality Level (LQL). The ASN of the RGS plan is given by,  

( ) ( )a rp
nASN

P P p
=

+
 

(12) 

where ( )aP p  and ( )rP p  are the probability of acceptance and probability of rejection of a lot under the G-ZIP model. The 

design parameters of BRGS such as 1,n c  and 2c  are found at various values of fixed parameters 1 2( , , , )p pα β  and the 
limiting values of ω  and s by using the unity value approach proposed by Cameron (1952). The use of operating ratio

2 1R p p= reduces the number of tables. Moreover, the operating ratio may be considered as a measure of discrimination of 
the sampling plans.  

The unity values are computed for various combinations of , , ( )ac P pω and s  are tabulated in Table 1-2. The values taken 

for the shape parameter are 5,10s =  and the parameter ω are 0.001,0.01,0.05,0.09  for the probability of acceptance values 
are 0.99,0.95,0.90,0.20 and 0.10 . It should be noted that the parametric values s in the prior distribution, range over 
the interval (0, )∞ . The procedure for selecting an optimum sampling plan for the suggested value of ω and s with the given 
strength of 1 2, ,p pα  and β . 

• Step 1. Specify the value of estimated parameters ω and s with the strength 1 2( , , , )p pα β   
• Step 2. Compute operating ratio value of 2 1R p p= .  
• Step 3. Select the R value from Table 1 and 2 that is the nearest to computed R value.  
• Step 4. Determine the values of 1np , and 2np  that correspond to the operating ratio R value located.  

• Step 5. The sample size is obtained by 1 1n np p=  or 2 2np p whichever is larger. Also, the optimal parameter c 
that can be obtained corresponding to the operating ratio value R obtained in Step 2. 

 
6. Numerical illustration  
 

The quality control authorities are desired to determine a sampling plan by protecting both the producers and consumers risk 
in the pharmaceuticals manufacturing industry. Suppose that, they want to determine plan parameters for a proposed sampling 
plan with given values of 1 0.01,  0.05p α= = and 2 0.08, 0.10p β= =  with the estimated value of zero inflation parameter 

0.05ω = and the production process parameter 5s = respectively. Compute the operating ratio value 2 1R p p=  as

0.08 0.01 8= . Using Table 1, choose an optimum sampling parameter and the unity values 1np and 2np corresponding to the 

nearest operating ratio value R for a given strength. Here the values are obtained as 2,c =  1 0.6126np =  and 2 4.9157.np =  
Now calculate the sample size 1 1 0.6126 0.01 61n np p= = ≈  and 2 2 4.9157 0.08 62n np p= = ≈ . Among the two sample 
sizes we choose the larger 62.n ≈  Hence the required sampling plan for the given specification is 162, 0n c= =  and 2 2c = . 

6.1 The advantage of proposed sampling plan 

In this section, we describe the advantages of proposed BRGS plan over WHO guidelines recommended plans such as n plan, 
p plan and r plan. The p plan is primarily used to test the identity and only a few samples are required. Therefore, this plan is 
not suitable for making a comparison with the other existing plans. Hence, we compare the performance of the proposed 
BRGS plan with other two plans in terms of the operating characteristic curve. For instance, the quality control inspector fixed 
the parameters 1 21000, 0.01, 0.05, 0.08,N p pα= = = =  0.10, 5sβ = =  and 0.05ω = . Now, we can obtain the sample size 

of these plans for the given values using the formulas i.e. the sample size for n plan is, 1 1000 32.62 33n = + = ≈  and the 
sample size of r plan is, 1.5 1000 47.43 48n = = ≈ . 

 In order to compare these plans, we provide the OC curves of n plan with parameters ( )1 21000, 33, 0, 2N n c c= = = = , r plan 

with parameters ( )1 21000, 48, 0, 2N n c c= = = =  and BRGS plan with parameters 1 21000, 62, 0, 2N n c c= = = = . In all the 
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three plans, the same acceptance criteria with these plans recommended sample size are used. Now, we will investigate how 
these three plans are performing under identical AQL and LQL requirements. Figure 1 portrays the OC curves of these three 
plans.  

 

Fig. 1. The Operating characteristic (OC) curves of BRGS plan, n plan and r plan 

This figure clearly shows that for smaller values of fraction non-conforming, the BRGS plan has a higher probability than the 
other two plans. This means that the BRGS plan yields a lesser producer’s risk and it also safeguards the consumer’s interest 
compared to the other two sampling plans. Similarly, it is noted that for all higher values of fraction non-conforming, the 
probability of acceptance is low for the BRGS plan than the other two sampling plans. Thus the proposed sampling plan gives 
better precision and protection to consumers compared to other conventional sampling plans. 

6.2. The significance of BRGS plan in pharmaceuticals and materials  

The quality of finished pharmaceutical products frequently needs to be verified at the time of their importation or purchase. 
For example, before a pharmaceutical manufacturer releases a batch of new drugs to the public, it would like to test a sample 
from the batch to determine whether or not it is safe for public consumption. The choice of the sampling plan should always 
take into consideration the risks and consequences associated with the error. For instance, a well-designed drug manufacturing 
company is fully integrated to serve the drugs needed for government agencies of a country with quality and reliability.  

Suppose the quality inspector has found the value of lot fraction nonconforming is  0.06p= .  Now, we obtained the consumer 
risk of RGS plan under ZIP distribution for different values of 0.01,0.05,0.09ω =  are 16.41%, 13.27%, 11.00% respectively. 
Similarly, the RGS plan under G-ZIP distribution will provide the consumer risks as 14.05%, 12.43%, 10.64%. It can be 
observed from Table 3. Thus, the proposed Bayesian RGS plan will give more protection to the consumer than the RGS plan 
under the ZIP distribution by reducing the risk of accepting lots of poor quality.  

Similarly, the quality authorities has found the value of lot fraction nonconforming is 0.005p = , the RGS plan under ZIP 
distribution has the producers risk, when 0.01,0.05,0.09ω =  are respectively 0.16%, 0.31%, and 0.21%. The RGS plan under 
the G-ZIP distribution has producer risks as 0.51%, 0.22%, and 0.02% at the same specified quality levels. Thus, when 𝜔 is 
moderately large, the RGS under G-ZIP distribution provides more protection to the producer by reducing the risk of rejecting 
lots of good quality than the RGS plan under ZIP distribution. 

Hence, when the parameters of the plan are specified as 1 20.005, 0.05, 0.06, 0.10p pα β= = = = and 5s = , the total sum of 
risk of producer and consumer under the RGS plan with ZIP distribution is 16.57%, 13.58% and 11.21% with different values 
of 0.01,0.05,0.09ω =  respectively. Whereas, for RGS plan under Gamma Poisson (GP) distribution, the total sum of producer 
and consumer risk level is 15.09%. But the consumer and producers risk will be equal strength of specification parameters, 
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the RGS plan under G-ZIP distribution when 0.01,0.05,0.09ω =  are respectively 14.56%, 12.66%, 10.66%. Therefore, the 
application of the proposed BRGS plan will reduce the total risks of producer and consumer simultaneously. 

6.3 The comparative analysis 

The Operating Characteristic curve describes clearly the performance of the sampling plan against good and bad quality. 
Hence, we describe some interesting trends of the plan parameters under the G-ZIP model over other sampling plans. Suppose 
the quality control inspector fixed the parameters 1 20.01, 0.05, 0.07,p pα= = = 0.10, 5sβ = =  and 0.09ω = . The OC curve 
of RGS plan under the conditions of ZIP distribution with optimum parameters 1 296, 0, 2n c c= = = , the Bayesian RGS plan 
under the conditions of the Gamma Poisson (GP) distribution with optimum parameter 1 251, 0, 2n c c= = =  and the RGS plan 
under G-ZIP distribution with the optimum plan parameters 1 2360, 0, 11n c c= = =  are given in Fig.2.  

 

Fig. 2. The OC Curve of RGS plan under the Conditions of distributions is Gamma Poisson, Zero Inflated Poisson and 
Gamma-Zero Inflated Poisson distribution 

From the comparison, it is noted that for all lower values of proportion defective (p), the probability of acceptance is high. 
Therefore, the proposed plan provides more protection to the consumer than the compared sampling plans by reducing the 
risk of accepting lots of poor quality. Further, we can note that for all high values of proportion defective (p), the probability 
of acceptance is low, which concludes that this plan provides more protection to the producer by reducing the risk of rejecting 
lots of good quality. The given figure clearly shows that the proposed sampling plan gives better precision and production to 
consumers as well as producers for our considered combinations (see Table 3) and it is performed better than the RGS plan 
under ZIP distribution and Bayesian RGS plan under Gamma Poisson distribution. 

7. Conclusion 
In this article, we have investigated the application of Bayesian Repetitive Group Sampling plan under the conditions of 
Gamma-Zero Inflated Poisson distribution in pharmaceuticals products and related materials. The proposed sampling plan is 
useful when the production processes are well monitored and produce a significant number of non-defectives in the 
process.  Further, this sampling plan is considered the past history of the production process, which is useful, and can be 
taking much attention to a certain amount of inherent or natural variability in the process.  This article also provides a detailed 
procedure for designing and selecting the plan parameters through the unity value approach. From the illustrations, it can be 
observed that the optimum proposed RGS plan may require more items to be sampled from a lot submitted for inspection. 
However, it reduces the risk of producers regarding the rejection of good quality lots and safeguards the consumer against 
poor quality lots with an assigned risk. Therefore, the proposed sampling plan has better performance measures than some 
existing sampling plans. This sampling plan can be applied in various disciplines including Government pharmaceuticals 
agencies, drug regulatory authorities, quality control laboratories and customs, medical research centers and food industries, 
etc. It is strongly suggested that the proposed plan can be utilized in industries for lot sentencing and product quality 
determination. A further study can be extended to other types of sampling plans available in the literature. 
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Appendix. A 

Table 1 
Unity values of Bayesian RGS plan with fixed parameter 1 0c =  and 5s =  

    Pa(p) Operating Ratio (R) 

ω  2c  0.99 0.95 0.90 0.50 0.20 0.10 α=0.01 β=0.10 α=0.05 β=0.10 

0.001 

1 0.1292 0.2932 0.4240 1.2220 2.2913 3.2230 24.9460 10.9926 
2 0.1330 0.5968 0.7683 1.6532 2.6926 3.5688 26.8362 5.9804 
3 0.5912 0.9066 1.1106 2.0589 3.0866 3.9393 6.6630 4.3453 
4 0.8432 1.2162 1.4449 2.4449 3.4801 4.3020 5.1023 3.5374 
5 1.1094 1.5233 1.7716 2.8189 3.8637 4.6817 4.2198 3.0733 
6 1.3776 1.8256 2.0909 3.1808 4.2388 5.0579 3.6716 2.7705 
7 1.6452 2.1228 2.4034 3.5333 4.6022 5.4300 3.3004 2.5579 
8 1.9115 2.4152 2.7098 3.8755 4.9650 5.7980 3.0332 2.4007 
9 2.1758 2.7032 3.0107 4.2136 5.3218 6.1621 2.8321 2.2796 

10 2.4105 2.9873 3.3066 4.5456 5.6733 6.5224 2.7059 2.1834 

0.01 

1 0.1313 0.2952 0.4286 1.2368 2.3515 3.3635 25.6156 11.3932 
2 0.3296 0.5995 0.7732 1.6751 2.7674 3.7353 11.3328 6.2305 
3 0.5930 0.9115 1.1179 2.0891 3.1845 4.1411 6.9835 4.5433 
4 0.8464 1.2233 1.4553 2.4863 3.5954 4.5565 5.3833 3.7246 
5 1.1138 1.5332 1.7858 2.8714 4.0079 4.9802 4.4712 3.2482 
6 1.3833 1.8388 2.1098 3.2480 4.4167 5.4106 3.9114 2.9424 
7 1.6525 2.1401 2.4279 3.6179 4.8236 5.8472 3.5384 2.7322 
8 1.9206 2.4376 2.7411 3.9827 5.2302 6.2901 3.2750 2.5805 
9 2.1869 2.7317 3.0501 4.3439 5.6376 6.7397 3.0818 2.4672 

10 2.4512 3.0227 3.3555 4.7026 6.0467 7.1967 2.9360 2.3809 

0.05 

1 0.1342 0.3033 0.4413 1.3131 2.6783 4.3904 32.7231 14.4776 
2 0.3368 0.6126 0.7957 1.7817 3.1614 4.9157 14.5953 8.0238 
3 0.6013 0.9342 1.1512 2.2324 3.6839 5.4962 9.1400 5.8834 
4 0.8727 1.2609 1.5036 2.6772 4.2224 6.1810 7.0823 4.9021 
5 1.1515 1.5846 1.8518 3.1194 4.7808 6.9668 6.0504 4.3967 
6 1.4105 1.9069 2.2018 3.5626 5.3596 7.7686 5.5079 4.0740 
7 1.6874 2.2275 2.5458 4.0095 5.9592 8.6160 5.1060 3.8680 
8 1.9647 2.5469 2.8888 4.4618 6.5790 9.5011 4.8360 3.7304 
9 2.2418 2.8659 3.2321 4.9207 7.2178 10.4163 4.6464 3.6346 

10 2.5188 3.1851 3.5764 5.3871 7.8738 11.3546 4.5079 3.5650 

0.09 

1 0.1373 0.3119 0.4552 1.3957 3.1377 7.8917 57.4961 25.3018 
2 0.3445 0.6322 0.8211 1.9009 3.7390 9.0086 26.1499 14.2490 
3 0.6107 0.9585 1.1879 2.3971 4.4015 10.3880 17.0107 10.8378 
4 0.8855 1.2940 1.5568 2.8934 5.1113 11.9681 13.5155 9.2492 
5 1.1683 1.6301 1.9233 3.3958 5.8642 13.6737 11.7043 8.3885 
6 1.4545 1.9668 2.2900 3.9076 6.6561 15.4566 10.6270 7.8588 
7 1.7419 2.3045 2.6582 4.4305 7.4810 17.2806 9.9204 7.4986 
8 2.0301 2.6440 3.0291 4.9650 8.3328 19.1233 9.4199 7.2328 
9 2.3187 2.9859 3.4092 5.5106 9.2059 20.9713 9.0444 7.0234 

10 2.6079 3.3383 3.7823 6.0666 10.0954 22.8172 8.7492 6.8350 
 
Table 2  
Unity values of Bayesian RGS plan with fixed parameter 1 0c =  and 10s =  

 
ω 

           Operating Ratio (R) 

2c  0.99 0.95 0.90 0.50 0.25 0.10 α=0.01 β=0.10 α=0.05 β=0.10 

0.001 

1 0.1348 0.3000 0.4300 1.1830 2.1043 2.8555 21.1832 9.5176 
2 0.3682 0.6168 0.7887 1.6093 2.4882 3.1762 8.6264 5.1496 
3 0.6257 0.9509 1.1492 2.0139 2.8707 3.5223 5.6293 3.7041 
4 0.9184 1.2896 1.5061 2.4042 3.2510 3.8771 4.2217 3.0064 
5 1.2210 1.6169 1.8528 2.7836 3.6270 4.2400 3.4726 2.6223 
6 1.4956 1.9462 2.1963 3.1542 3.9985 4.6049 3.0790 2.3661 
7 1.7931 2.2709 2.5339 3.5174 4.3654 4.9703 2.7719 2.1887 
8 2.1218 2.5980 2.8662 3.8755 4.7288 5.3342 2.5140 2.0532 
9 2.4151 2.9168 3.1933 4.2262 5.0888 5.6971 2.3590 1.9532 
10 2.6756 3.2319 3.5220 4.5734 5.4460 6.0595 2.2647 1.8749 

0.01 

1 0.1310 0.3019 0.4329 1.1981 2.1604 2.9715 22.6830 9.8411 
2 0.3665 0.6204 0.7936 1.6300 2.5501 3.3116 9.0358 5.3381 
3 0.6277 0.9558 1.1557 2.0434 2.9485 3.6790 5.8607 3.8490 
4 0.9161 1.2954 1.5155 2.4439 3.3544 4.0808 4.4546 3.1502 
5 1.2129 1.6337 1.8700 2.8385 3.7622 4.4979 3.7084 2.7531 
6 1.5131 1.9696 2.2204 3.2276 4.1740 4.9297 3.2581 2.5029 
7 1.8141 2.3027 2.5672 3.6143 4.5917 5.3772 2.9641 2.3352 
8 2.1394 2.6332 2.9113 4.0006 5.0174 5.8420 2.7307 2.2186 
9 2.4292 2.9618 3.2535 4.3886 5.4531 6.3257 2.6041 2.1358 
10 2.7419 3.2891 3.5947 4.7800 5.9010 6.8294 2.4908 2.0764 
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Table 2  
Unity values of Bayesian RGS plan with fixed parameter 1 0c =  and 10s = (Continued) 

 
ω 

           Operating Ratio (R) 

2c  0.99 0.95 0.90 0.50 0.25 0.10 α=0.01 β=0.10 α=0.05 
β=0.10 

0.05 

1 0.1388 0.3104 0.4482 1.2673 2.4274 3.7397 26.9508 12.0491 
2 0.3732 0.6394 0.8182 1.7281 2.8893 4.2124 11.2873 6.5880 
3 0.6499 0.9800 1.1931 2.1818 3.3887 4.7922 7.3733 4.8899 
4 0.9466 1.3307 1.3305 2.6352 3.9222 5.4609 5.7690 4.1037 
5 1.2477 1.6841 1.9471 3.0950 4.4918 6.2093 4.9766 3.6869 
6 1.5639 2.0398 2.3252 3.5659 5.0994 7.0250 4.4920 3.4440 
7 1.8773 2.4037 2.7068 4.0516 5.7446 7.8917 4.2037 3.2831 
8 2.1794 2.7633 3.0937 4.5547 6.4243 8.8519 4.0616 3.2034 
9 2.4782 3.1214 3.4889 5.0766 7.1334 9.8027 3.9555 3.1405 
10 2.8435 3.5068 3.8903 5.6176 7.8657 10.7701 3.7876 3.0712 

0.09 

1 0.1420 0.3191 0.4619 1.3458 2.8090 6.1057 43.0125 19.1326 
2 0.3802 0.6539 0.8418 1.8412 3.3656 7.0195 18.4627 10.7356 
3 0.6563 1.0058 1.2305 2.3384 3.9988 8.1848 12.4716 8.1375 
4 0.9545 1.3727 1.6247 2.8442 4.6997 9.5246 9.9786 6.9388 
5 1.2524 1.7406 2.0231 3.3709 5.4636 10.9503 8.7435 6.2911 
6 1.5777 2.1144 2.4306 3.9246 6.2809 12.6897 8.0431 6.0016 
7 1.9341 2.5021 2.8429 4.4986 7.1393 14.2358 7.3604 5.6896 
8 2.2609 2.8901 3.2685 5.0953 8.0272 15.7806 6.9797 5.4602 
9 2.6170 3.2888 3.7039 5.7123 8.9352 17.3171 6.6172 5.2655 
10 2.9363 3.6963 4.1497 6.3465 9.8564 18.8433 6.4173 5.0978 
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Appendix B 

Table 3  
OC values of GP RGS plan, ZIP RGS plan and G-ZIP RGS plan for the given strength as 1 25, 0.01, 0.07, 5%s p p α= = = =  and 10%β =  

  parameters Lot fraction nonconforming (p) 

Model ω n c 0.005 0.007 0.010 0.012 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.650 

GP RGS - 51 2 0.9956 0.9882 0.9672 0.9455 0.9008 0.7986 0.6766 0.5542 0.4449 0.3539 0.2814 0.2247 0.1807 0.1465 0.1199 

ZIP RGS 0.01 42 2 0.9984 0.9955 0.9866 0.9766 0.9540 0.8923 0.8005 0.6871 0.5665 0.4527 0.3544 0.2745 0.2120 0.1641 0.1279 

 0.05 53 2 0.9969 0.9914 0.9745 0.9559 0.9152 0.8132 0.6817 0.5451 0.4239 0.3267 0.2534 0.1997 0.1608 0.1327 0.1122 

 0.09 96 3 0.9979 0.9919 0.9666 0.9331 0.8520 0.6560 0.4615 0.3224 0.2359 0.1838 0.1519 0.1318 0.1187 0.1100 0.1040 
                   

G-ZIP RGS 0.01 54 2 0.9949 0.9863 0.9621 0.9374 0.8872 0.7755 0.6474 0.5237 0.4170 0.3306 0.2631 0.2111 0.1712 0.1405 0.1166 

 0.05 80 3 0.9978 0.9920 0.9707 0.9449 0.8862 0.7447 0.5854 0.4459 0.3395 0.2632 0.2094 0.1715 0.1442 0.1243 0.1095 

  0.09 360 11 0.9998 0.9964 0.9562 0.8798 0.7013 0.4283 0.2801 0.2059 0.1659 0.1425 0.1277 0.1179 0.1112 0.1064 0.1028 
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