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 This document presents a simulation-based method for the polyhedra packing problem (PPP). This 
problem refers to packing a set of irregular polyhedra (convex and concave) into a cuboid with the 
objective of minimizing the cuboid’s volume, considering non-overlapping and containment 
constraints. The PPP has applications in additive manufacturing and packing situations where 
volume is at a premium. The proposed approach uses Unity® as the simulation environment and 
considers nine intensification and two diversification movements. The intensification movements 
induce the items within the cuboid to form packing patterns allowing the cuboid to decrease its size 
with the help of gravity-like accelerations. On the other hand, the diversification movements are 
classic transition operators such as removal and filling of pieces and enlargement of the container, 
which allow searching on different solution neighborhoods. All simulated movements were 
hybridized with a probabilistic tabu search. The proposed methodology (with and without the 
hybridization) was compared by benchmarking with all previous works solving the PPP with 
irregular items. Results show that satisfactory solutions were reached in a short time; even a few 
published results were improved. 
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1. Introduction 

Cutting and packing problems (C&PP) have been an object of great interest within the computational geometry and 
operational research communities (Ma et al., 2018). These problems aim to maximize space utilization or minimize space 
waste when embedding a set of items within larger containers (Dyckhoff, 1990), and have numerous applications in 1D, 2D, 
and 3D, which may explain research communities’ interest in solving them. Furthermore, applications of C&PP in 3D with 
irregular items happen in scenarios where the volume is limited and some components have to be tightly packed; for example, 
in automobiles’ engineering design, for example, avionics (Romanova et al., 2018) and furniture transportation (Egeblad et 
al., 2010). An outstanding application of C&PP in 3D with irregular pieces is found in additive manufacturing (AM), in which 
the printing time is reduced when several pieces are placed within the AM machine’s production volume (Egeblad et al., 
2009). AM is also known as 3D printing and layer technology (Araújo et al., 2020); it is a set of technologies developed in 
the late 1980s (Wong and Hernandez, 2012), which allows the production of pieces with specific desired shapes. This is done 
by adding material layer-by-layer (Gebhardt and Hotter, 2016) without requiring other physical devices such as molds (Hague 
et al., 2004). This is a very time-consuming process; producing a piece can take hours or even days. However, production 
time can be decreased by printing several objects in one run of the machine. Thus, in order to minimize the production time, 
the placement of the pieces within the machine’s production volume becomes a 3D packing problem. There is a lack of 
research in C&PP concerning 3D and irregularity in the items to be packed. Wäscher et al. (2007) found that there are fewer 
publications of C&PP in 3D than in 1D and 2D. Furthermore, Dyckhoff (1990) and Wäscher et al. (2007) found fewer 
publications of C&PP involving irregular shapes than regular ones. These differences in the number of publications may 
happen due to the complications that 3D and irregularity imply. 3D generally increases the solution space when compared to 
2D and 1D, which increases the solution time. On the other hand, irregular shapes are more complicated to model than regular 
ones, which complicates the assessment of the interaction between items and makes it more time-consuming (Bennell and 
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Oliveira, 2008). This situation reveals the research opportunity of C&PP in 3D with irregular items, in which this study is 
framed. An important constraint within C&PP is the rotation of the pieces to be packed. The C&PP literature usually considers 
fixed orientations of the pieces, which are appropriated when considering regular shapes, e.g., boxes. However, these fixed 
orientations may not be very suitable when considering irregular shapes in real applications, such as AM. Another less 
common approach is considering the pieces’ free rotation. This approach is more complex to handle due to the solution space 
increase; however, it may lead to better solutions. This study adopts the pieces’ free rotation. This study’s problem is packing 
a polyhedra set (convex and concave) into a minimal volume cuboid, adopting the pieces’ free rotation constraint; this is 
known as the polyhedra packing problem (PPP) (Romanova et al., 2018), which is an NP-hard problem (Chazelle et al., 1989); 
therefore, the use of approaches alternative to mathematical programming may be appropriate. The solution approach in this 
work is a simulation of movements that can be framed within a metaheuristic. We used Unity® as the simulation environment 
and tabu search as the metaheuristic framework. 
 
The article is organized as follows: the problem description and classification are presented in Section 2. In Section 3, a 
summary of existing related work is provided. The details of the simulation and tabu search are shown in Section 4. Section 
5 presents the benchmarks used to validate the algorithm and the computational results, along with their corresponding 
analysis. Finally, the conclusions are shown in Section 6. 
 
2. Problem Description 
 
The problem addressed in this paper is the PPP in which a polyhedra set is packed within a cuboid and the objective is to 
minimize the cuboid’s volume. This problem does not consider a fixed orientation of the items to be packed, i.e., free rotation 
of the items in all axes is allowed. The cuboid has no fixed dimensions, i.e., the cuboid’s width, length, and height can change 
in order to reduce its volume. This problem considers two placement constraints, the non-overlapping constraint and the 
containment constraint (Romanova et al., 2018). The former refers to the fact that each pair of polyhedra cannot share any 
common interior points; however, the polyhedra may touch. The later constraint implies that each polyhedron has to be fully 
contained within the limits of the cuboid. 
 
Researchers have developed some typologies to classify the C&PP; three of them are suitable for the PPP. The first is the one 
developed by Dyckhoff (1990), in which, using his notation, the PPP classifies as 3/V/O/F, 3/V/O/M, or 3/V/O/R. The four 
attributes are associated as follows: 
 

• Dimensionality: “3” means that the problem is three-dimensional. 
• Kind of assignment: “V” denotes that all the small items are placed into a set of large objects. 
• The assortment of large objects: “O” is for only one large object. 
• The assortment of small items: the fourth attribute depends on the instances used: “F” stands for a few small pieces 

of varying figure types. “M” implies that there are many small items of different figure types. “R” means that there 
are many small items of relatively few figure types. 

 
The second typology considered is the one developed by Wäscher et al. (2007), which arises due to the insufficiency of 
Dyckhoff’s typology with respect to the inclusion of some emerging development in the field of C&PP. This second typology 
is an improvement of the first one, particularly in the criterion concerning the assortment of large objects. In this way, the 
improved typology has five criteria in which the PPP is categorized, as follows: 
 

• Dimensionality: the problem is three dimensional. 
• Kind of assignment: in the PPP, all the small items are assigned to a set of large objects; therefore, the kind of 

assignment is input minimization. 
• The assortment of small items: this criterion, once again, depends on the nature of the instances used; therefore, it 

may be a weakly or strongly heterogeneous assortment. 
• The assortment of large items: in this problem, there is only one large object, the cuboid. 
• The shape of small items: the objective of the PPP is to manipulate small irregular items; nonetheless, small regular 

ones can also be used. 
 
Moreover, within the typology of Wäscher et al. (2007), the C&PP can be understood under the concepts of basic, 
intermediate, and refined problem types. The classification of basic problem types uses the combination of the criteria kind 
of assignment and assortment of small items; therefore, the PPP is an Open Dimension Problem (ODP). The intermediate 
problem types are mapped further by considering the criterion of the assortment of large objects, and the refined problem 
types are broken down further by considering the last two criteria (dimensionality and shape of small items). However, 
according to Wäscher et al. (2007), there are not many open dimension problems; therefore, the ODP categorization remains 
the same. 
 
The third and last typology was developed by Araújo et al. (2020) as a refinement of the typology proposed by Wäscher et al. 
(2007) for AM-related problems such as the PPP. This novel typology uses four criteria, as the typology suggested by 
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Dyckhoff, but these include more AM-related information. The PPP under this new typology, in the notation of Araújo et al. 
(2020), would be 3/Si/Oo/A. This notation has the following meanings for each attribute: 
 

• Dimensionality: “3” stands for a three-dimensional problem, which is the usual case in AM. 
• Optimization criterion: “Si” is Single input minimization, which addresses problems with only one container with 

one or more variable dimensions, and the objective is to find a configuration of small items that minimizes the 
variable dimensions. 

• Build volume type: “Oo” means one container with an open Z-height or variable-length dimension. 
• Attributes of the assortment of small items: “A” describes the presence of multiple instances with different 

characteristics, particularly in terms of demand variation and complexity of the objects (small pieces). 
 
3. State of the Art 
 
The strip packing problem (SPP) is one of the most researched open dimension problems (ODP). In this problem, a set of 2D 
small items are placed within a large rectangular object, which has a fixed width and a variable length. Then, the objective is 
to minimize the length. The SPP has been studied with regular-shaped small items (SPP) by Martello et al. (2003), Bortfeldt 
(2006), and Alvarez-Valdes et al. (2008), and irregular-shaped small items (ISPP) by Gomes and Oliveira (2006), Leung et 
al. (2012), Alvarez-Valdes et al. (2013), and Cherri et al. (2016). These problems (SPP and ISPP) have their correspondence 
in a higher dimension (3D). In this way, the three-dimensional strip packing problem (3D-SPP) is the problem in which a 
given set of small items has to be packed into a cuboid, with two fixed dimensions (i.e., width and length) and a variable 
dimension (height); therefore, the objective is to minimize the height of the cuboid. This problem has been studied with 
regular-shaped small items (e.g., boxes) (3D-SPP) by Bortfeldt and Mack (2007), Allen et al. (2011), and Wei et al. (2012); 
and with irregular-shaped small items (3D-ISPP) by Stoyan et al. (2004), Egeblad et al. (2009), and Liu et al. (2015). 
 
Within the ODPs, there are other problems in which all dimensions of the large object are variable (e.g., width, length, and 
height of a cuboid). Therefore, these are a generalization of the ODPs mentioned until now. Thus, in 2D, the problem of 
minimizing the size (i.e., area) of a container (e.g., rectangle) in which a set of small items are packed is known as the minimal 
enclosure problem (MEP) (Milenkovic and Daniels, 1999). The correspondence of the MEP in 3D is the PPP (Romanova et 
al., 2018). Relevant studies related to 3D-ODP (PPP included) are expanded below. Egeblad et al. (2009) developed a solution 
method for the multidimensional strip packing problem (3D-SPP included), as a dimensional generalization of the method 
presented in Egeblad et al. (2007). This approach uses a heuristic technique and considers fixed orientations of the small 
items. The algorithm is composed of a local search procedure, and the metaheuristic guided local search (GLS). The algorithm 
begins with the placement of the small items that may have overlap. The overlap is iteratively reduced with the local search 
procedure by translating one piece at a time to a minimum overlap position in an axis-aligned way. Liu et al. (2015) proposed 
the heuristic algorithm HAPE3D for the 3D-SPP based on the principle of minimum potential energy, which states that a body 
will be displaced to a position that minimizes its total potential energy. The HAPE3D is also based on the constructive 
algorithm HAPE (Liu and Ye, 2011), which is a solution approach used for the 2D irregular packing problem (nesting). A 
remarkable distinction of the HAPE3D is that it does not need to calculate the no-fit polygon nor to disassemble a polyhedron 
into simpler ones. This algorithm allows multiple orientations of the small items. Romanova et al. (2018) developed a solution 
algorithm called COMPOLY that compacts polyhedra and found a local optimum by solving a mathematical model based on 
quasi-phi-functions, a concept introduced in Stoyan et al. (2016). Therefore, they formulated the PPP as a nonlinear 
programming problem considering continuous rotations and translations of the small items. Ma et al. (2018) proposed an 
efficient method to obtain sub-optimal solutions for packing 3D small items into 3D containers, considering free rotation of 
the small items. The solution is optimization-based due to the fact it combines continuous local optimization and combinatorial 
optimization. The former iteratively adjusts the positions and orientations of the small items to obtain a tight packing. The 
latter considers operations such as swapping, replacement, and hole filling to escape from local optima. Egeblad et al. (2009) 
and Liu et al. (2015) proposed approaches for the 3D-SPP and adopted the item’s fixed orientations constraint. This problem 
differs from the PPP in two aspects: the cuboid’s dimensions that can change and the rotation constraint. First, in the 3D-SPP, 
the cuboid’s volume changes through the variation of a cuboid’s dimension (height), whereas, in the PPP, the cuboid’s volume 
changes through the variation of a cuboid’s dimensions (width, length, and height). Second, regarding the rotation constraint, 
Egeblad et al. (2009) and Liu et al. (2015) considered the small items to have fixed orientations, whereas this study considers 
the small items to rotate freely in all axes. Ma et al. (2018) focused on a problem that has significant differences when 
compared with PPP. First, the problem studied by Ma et al. (2018) considers arbitrary shapes of the container (including 
cuboid), besides the arbitrary shape of the items to pack. Second, the container does not change its dimensions, i.e., the 
container’s shape and dimensions are fixed. Therefore, all small items may not be placed within the container. However, the 
algorithm developed by Ma et al. (2018) can be used to solve the PPP (and 3D-SPP) by repetitively changing the container’s 
dimensions and verifying that all the small items are placed within the container. Nevertheless, this procedure would be very 
time-consuming. Using the description of PPP in the previous section (Problem description), this problem has only been 
studied by Romanova et al. (2018) to the best of the authors’ knowledge. Their method is based on nonlinear programming, 
which offers outstanding solutions; however, it takes considerable time. In contrast, the methodology proposed in this paper 
gets satisfactory solutions in a short time, taking advantage of a simulation environment. 
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4.  Solution Methodology 
 
The proposed solution is a set of movements (translation and rotation) that are simulated in Unity®. These movements can 
be framed within a structure of a metaheuristic such as tabu search (TS). The proposed approach is explained in four 
subsections: Section 4.1 shows the most relevant Unity features, the simulation environment used in this study, for the PPP. 
Section 4.2 shows the base solution algorithm that includes all movement simulations without a TS structure hybridization. 
Finally, Section 4.3 presents the hybridization of the base model with the probabilistic tabu search (PTS). 
 
4.1. Simulation environment 
 
In the past, simulations were just a tool used to evaluate a solution’s quality or a way to manage uncertainty (Talbi, 2009). 
However, the latest technological advances have made simulation an appealing first choice to face a problem (Lucas et al., 
2015; Martínez et al., 2018a,b). These technological advances have resulted in robust simulation engines that offer several 
useful functionalities; this is the case with Unity. Unity is a suitable tool for 3D simulations. Unity is a multiplatform 
game/simulation engine developed by Unity Technologies that handles simulation projects in 2D and 3D. For 3D simulations, 
Unity uses the physics processing unit PhysXTM, which has been verified to represent physical phenomena accurately 
(Martínez & Álvarez, 2019). This validation is remarkable since PhysX uses a fixed time-step, i.e., all the physical phenomena 
calculations happen within a time frame (0.03 seconds in this study), which may approximate the calculations. Unity has 
several features that are useful to obtain solutions of the PPP. The Unity features used in this study were the following: 
 

• Controlled translations of bodies in the simulation. Unity allows translating each body in the simulation in any 
direction, i.e., a product of the linear combination of the Cartesian axes’ unit vectors (�̂�௫, �̂�௬, and �̂�௭). In this study, 
this feature was only applied to the cuboid and only in axis-aligned directions (see Fig. 1). The details of the 
translational movements are explained in Section 4.2.3.  
 

 
Fig. 1. Translation in the x-axis using the instance SGPS04nc20a 

• Controlled rotations of bodies in the simulation. Each body can rotate at any angle to any Cartesian axis. The rotation 
calculations use quaternions, which do not suffer from gimbal lock and can easily be interpolated. In this study, this 
feature was only applied to the cuboid and in right angles (see Fig. 2). The details of the rotations are explained in 
Section 4.2.3. 
 

 
Fig. 2. Rotation in the �̂�௫ direction using the instance SGPS04nc20a 

• Compaction and expansion of bodies in the simulation. The bodies in the simulation can be scaled up and scaled 
down. In this study, these features were only applied to the cuboid. The cuboid’s volume changed when its 
dimensions (width, length, and height) varied. The details of the cuboid’s compaction and expansion are explained 
in Sections 4.2.2. and 4.2.4. 

• Mass specification of bodies in the simulation. The bodies in the simulation can have a mass specified by the user. 
In this study, the items’ mass within the cuboid was assumed to be the same value as the items’ volume. The volume 
of the items was estimated through the method proposed by Zhang and Chen (2001). 

• Gravity-like accelerations on bodies in the simulation. Unity allows adding multiple accelerations to some bodies in 
the simulation that cause them to move accordingly. The user can change both the magnitude and direction of the 
accelerations, even on runtime. In this study, three accelerations were constantly applied to all the items within the 
cuboid. The magnitude of all three accelerations was the same and equal to 9.81 m/s2, and each one was applied to 
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the negative direction of each axis, i.e., −�̂�௫, −�̂�௬, and −�̂�௭. Therefore, the items within the cuboid tended to cluster 
in one cuboid’s vertex. 

• Free translations and rotations of the bodies in the simulation. PhysX calculates the positions and rotations of the 
bodies in the simulation according to the sum of forces applied to each body; therefore, this feature is one of the main 
reasons for using Unity. In this study, the software automatically calculates the positions and orientations of the items 
within the cuboid when the cuboid translates and rotates. 

• Collision detection between the bodies in the simulation. PhysX resolves contacts through a two-phase collision 
detection that prevents two bodies from overlapping (Unity Technologies, 2019). Therefore, this feature is used to 
verify a solution’s feasibility, i.e., the non-overlapping and containment constraints. The two-phase collision 
detection is composed of a broad and a narrow phase. In the former, fast algorithms are used to discard pairs of 
bodies far away from each other to pass to the narrow phase. The pairs of bodies that move to the later phase (narrow) 
are meticulously checked for a collision using more sophisticated algorithms. For further information about two-
phase collision detection, refer to LaValle (2006). 

• Elimination and insertion of bodies in the simulation. In this study, the insertion of bodies is used to generate the 
initial solution from which the simulation can begin. Moreover, the elimination and insertion of the items within the 
cuboid are used to change the solution neighborhood. The details of the elimination and insertion of bodies applied 
to PPP are found in Section 4.2.4. 
 

4.2. Base model 
 
The base model without a TS structure hybridization is shown in Algorithm 1. 
 

Algorithm 1. Base model 
1: set an initial solution 𝑆 
2: compact the cuboid to get 𝑆 and 𝑉𝑜𝑙ሺ𝑆ሻ 
3: set 𝑆 ← 𝑆, 𝑆∗ ← 𝑆, 𝑉𝑜𝑙ሺ𝑆ሻ, 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 0 
4: while time limit maxTime not reached do 
5:     select the next movement 𝑀 
6:     compact the cuboid to get 𝑆ெ  
7:     set 𝑆 ← 𝑆ெ  and get 𝑉𝑜𝑙(𝑆) 
8:     if (𝑉𝑜𝑙(𝑆) < 𝑉𝑜𝑙∗) then 
9:         set 𝑉𝑜𝑙∗ ← 𝑉𝑜𝑙(𝑆), 𝑆∗ ← 𝑆, 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 0 

10:     else 
11:         𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 + 1 
12:     end if 
13:     if (𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑚𝑎𝑥𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) then 
14:         Apply diversification over 𝑆 randomly choose either 𝑆ℎ𝑎𝑘𝑖𝑛𝑔 or 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 
15:         𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 0 
16:     end if 
17: end while 

 
The notation used in Algorithm 1 is the following: 𝑆 is the initial solution, 𝑆 is the solution obtained after submitting the 𝑆 
to the compaction procedure, 𝑉𝑜𝑙(𝑆) is the volume of the cuboid (objective function) that is obtained with 𝑆, 𝑆 is the current 
solution, 𝑆∗ is the incumbent solution, 𝑉𝑜𝑙(𝑆∗) is the value of the objective function of 𝑆∗, 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is the number 
of iterations without improvement of the incumbent, 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 is the maximum time allowed for the algorithm, 𝑀 is the 
movement that is executed, 𝑆ெ  is the solution obtained after submitting the solution found with 𝑀 to the compaction 
procedure, 𝑉𝑜𝑙(𝑆) is the value of the objective function of 𝑆, and 𝑚𝑎𝑥𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the maximum number of 
iterations without improvement of the incumbent allowed. 
 
The general algorithm flow is described as follows: first, in line 1, a feasible solution is generated by one of the two considered 
methods to create an initial solution; these methods are described in Section 4.2.1. Next, in line 2, the cuboid undergoes the 
compaction procedure to reduce its size; the compaction procedure is detailed in Section 4.2.2. Then, in line 3, the current and 
the incumbent solutions are updated with the solution obtained after the compaction procedure, the incumbent cuboid’s 
volume is updated with the after-compaction solution’s volume, and 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is set to zero. Later, in line 4, the loop 
with a time-stopping criterion begins. Then, in line 5, the following movement’s selection and execution happen; information 
related to the movements is found in Section 4.2.3. Then, in line 6, the compaction procedure takes place (see Section 4.2.2). 
Later, in line 7, the current solution and its volume are updated. Then, in line 8, it is verified if the current solution’s volume 
is better (i.e., smaller) than the incumbent volume. If this condition is satisfied, then the incumbent solution and volume are 
updated, and 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is set to zero (line 9). Otherwise, 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 increases by one (line 11). Finally, in 
line 13, it is verified if 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 has not exceeded 𝑚𝑎𝑥𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠; if this is the case, then one of the 
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two diversification movements (𝑆ℎ𝑎𝑘𝑖𝑛𝑔 or 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛) happens (line 14), and 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is set to zero (line 15). The 
diversification movements are described in Section 4.2.4. 
 
4.2.1. Initialization methods 
 
In this study, two methods to get an initial solution were considered: the box-related method and the sphere-related method. 
These methods are explained below 
 
Box-related method. This method replaces each piece to be packed with a box, which in this case corresponds to the axis-
aligned bounding box (AABB) (the procedure for obtaining the AABB is explained below). After each piece is replaced with 
a box, an algorithm is used to pack the boxes within the cuboid. The chosen algorithm in this study was the one proposed by 
Martínez et al. (2015) due to the flexibility and efficiency of its solutions. 
 
The algorithm proposed by Martínez et al. (2015) had a constructive phase and an improvement phase. Throughout the first 
(constructive) phase, the algorithm returned at least one packing pattern, mainly composed of the boxes’ positions and some 
feasibility indicators. These packing patterns tended to bring pieces of similar shapes together. 
 
It is worth noting that the algorithm proposed by Martínez et al. (2015) was developed for the container loading problem, in 
which the container’s dimensions are known, i.e., the container’s dimensions are parameters of the algorithm. Therefore, an 
initial container size was supposed, and it was iteratively increased until the feasibility indicators stated that all boxes were 
successfully packed within the container (cuboid). The supposed container was a cube with an edge equal to the average of 
the widths, lengths, and heights of all AABBs, multiplied by a factor. This factor initially corresponded to applying the ceiling 
function to the cubic root of the number of boxes (pieces). The container’s size increase happened when the factor mentioned 
above increased by one in each iteration. 
 
Through the AABB procedure, each piece is enclosed within the smallest axis-aligned bounding box (AABB). This box is 
generated with the highest and lowest values of the pieces’ points at each Cartesian axis. Therefore, each AABB is formed by 
six points and has six faces parallel to a Cartesian axis. 
 
Fig. 3 shows the process of creating AABB of two polyhedra used by the container loading algorithm. Fig. 4 shows the process 
of replacing the AABBs with their respective small items in the positions obtained with the container loading algorithm. 
 

 
Fig. 3. Construction of AABB of two polyhedra 

 

 
Fig. 4. Replacement of the packed AABB, packed by the algorithm presented in Alvarez Martínez et al. (2015), by the 

corresponding small items. The instance used in the example is SGPS04nc20a 
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Sphere-related method. This method replaces each piece with the smallest enclosing ball computed with the fast algorithm 
proposed by Fischer et al. (2003). The largest ball replaced all the small items to facilitate the initial items’ placement within 
the cuboid in this study. This placement was a product of locating the balls next to each other, forming an equal-sided cuboid, 
which happened when the number of small items was equal to the third power of an integer, e.g., 8, 27, or 64. However, in 
the case when the number of small items was not equal to an integer’s third power, the cuboid could be equal-sided or could 
have two equal sides and a different one. In this situation, the cuboid’s size began by considering the smallest equal-sided 
cuboid. Then it was analyzed if all the items are contained within the cuboid with one or two shortened sides. The length of a 
side was measured with the distance of the number of large balls covering the side, e.g., a side can be 2, 3, or 4 large balls 
long. Therefore, the shortening of a side was the decrease of the number of large balls by one, e.g., a side that was three large 
balls long was the shortened side of a four large balls long side. 
 
Fig. 5 shows the substitution of the small items by the largest enclosing ball, and Fig. 6 shows the replacement of the spheres 
with the small items. 
 

 
Fig. 5.  Enclosing of the small items into the largest enclosing ball 

 

 
Fig. 6.  Assignation of small items to the spheres and then the elimination of the spheres 

 
4.2.2. Compaction procedure 
 
In this study, the compaction procedure is the most crucial section for the PPP since it reduces the cuboid’s size. The size 
reduction happened by moving the cuboid’s faces towards the center of the cuboid. Three of the faces (one per each axis) are 
momentarily assigned a mass, and each face is affected by one gravity acceleration only, the one with the same direction as 
the face. Therefore, in each axis, one face pressed the small items against a fixed face not affected by gravity accelerations. 
The compaction procedure finished 3 seconds after all gravity-affected faces detected that they had touched a small item; 
therefore, the time is dependent on the configuration of the pieces at that moment, but it was unlikely to last more than 6 
seconds in total. 
 
The mass assigned to the three faces was half the sum of the items’ mass. 
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4.2.3. Movements and selection of movements 
 
This study considered nine cuboid movements: three axis-aligned translational movements, and six axis-aligned rotational 
movements. There was one translation per each axis and two rotations per each axis (negative and positive directions). Each 
translational movement was composed of three serial translations, which left the cuboid in the same original position. In the 
first translation, the cuboid displaced half the cuboid’s dimension (width, length, and height) parallel to the axis in which the 
translations happened. This first translation was in the axis’ positive direction. The second translation happened in the axis’ 
negative direction, and the displacement was equal to the cuboid’s dimension parallel to the axis. Finally, the third translation 
occurred in the axis’ positive direction, and the displacement was half the cuboid’s dimension parallel to the axis in which the 
translation happened. Each translational movement composed of three serial translation lasted 11.25 seconds. In each serial 
translation, the cuboid displaced 0.8% of the total displacement in each time window, which in this study was specified by 
the fixed time step and was 0.03 seconds long. Therefore, each of the serial translations lasted 3.75 seconds, and it was 
independent of the instance. Each rotational movement was composed of two serial movements: one rotation and one 
translation, which left the cuboids in the same position as before the rotation. The first serial movement was a 90 degree 
rotation from an axis, after which a fast translation happened to take the cuboid to the same position as before the beginning 
of the rotation. It is worth noting that the fast translation is unnecessary when the center of the cuboid meets the Cartesian 
origin when rotating; otherwise, it is necessary to maintain a single reference point. Each rotational movement composed of 
the two serial movements lasted 4.125 seconds. In the rotation, the cuboid rotated 0.8% of the total rotation angle in each time 
window. Therefore, the rotation lasted 3.75 seconds, and it was independent of the instance. The fast translation in this study 
was ten times faster than a regular translation; therefore, the fast translation lasted 0.375 seconds. In the base model, the 
movements were cyclically selected in the following order: translation in the x-axis (𝑇௫), translation in the y-axis (𝑇௬), 
translation in the z-axis (𝑇௭), rotation in the negative x-axis (𝑅௫ି ), rotation in the positive x-axis (𝑅௫ା), rotation in the negative 
y-axis (𝑅௬ି ), rotation in the positive y-axis (𝑅௬ା), rotation in the negative z-axis (𝑅௭ି ), and rotation in the positive z-axis (𝑅௭ା). 
 
4.2.4. Diversification movements 
 
In this study, two diversification movements were implemented: Shaking and Insertion. The diversification movements aim 
to abruptly change the small items’ positions and orientation to change the solution neighborhood. Shaking had three phases: 
an expansion, an abrupt rotation, and a fast translation. The expansion caused the cuboid’s size to increase (worsening the 
objective function value) by moving the cuboid’s faces away from the cuboid’s center. The cuboid’s faces moved away from 
the cuboid’s center such that the cuboid became a cube with a side value of 1.2 times the maximum cuboid’s dimension (with, 
length, and height). The abrupt rotation was the simultaneous execution of 𝑅௭ି  and 𝑅௫ି . Since these rotations were 
simultaneous, the time they took was the same as the time that one single rotation would have taken (3.75 seconds). The 
expansion happened in the same time frame, in which the abrupt rotation began; therefore, the expansion did not take 
additional time. Finally, the last phase was the fast translation that was the same as the one explained in Section 4.2.3. 
 
On the other hand, Insertion had two phases: removal and reinsertion of items. In the former, the small items whose ratio 
between the number of contact points with the cuboid’s faces divided by the number of contacting faces was greater than 0.5 
and lesser than 1.5 were removed. Thus, the items with several contacting points with the cuboid’s faces or those with no 
contact with the cuboid’s faces were not removed. In the second phase, all the removed items were reinserted at the center of 
the cuboids. These two phases happened in a single time frame (0.03 seconds); however, two additional time frames were 
needed for PhysX to solve possible overlapping. Therefore, Insertion lasted 0.09 seconds to be executed, and it was 
independent of the instance. 
 
4.3. Hybridization of simulations with a TS structure 
 
The hybridization of simulations with metaheuristics is a flexible and powerful tool for optimization problems that allows 
obtaining good quality (near-optimal) solutions in reasonable computing time (Chica et al., 2017). The metaheuristic chosen 
to hybridize the simulations is tabu search (TS), specifically probabilistic tabu search (PTS) because it has been used to find 
efficient solutions to large combinatorial problems (Gendreau and Potvin, 2010). Furthermore, TS is organic to the base model 
since the TS’s searching moves can be easily associated with the base model’s nine movements described in Section 4.2.3. 
 
PTS gets its name due to its probabilistic procedure in the selection of the movements. This procedure is explained in Section 
4.3.3. The hybridization of the base model with the PTS is shown in Algorithm 2. The notation used in Algorithm 2 is the 
same as the one used in Algorithm 1 with the introduction of the following terms: 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 is the tabu moves list, 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒 is the maximum number of elements in 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡, i.e., the maximum number of iterations that a move has the 
tabu status; 𝑁෩(𝑆) is the set of possible movements 𝑀′ that can be applied to the current solution, and 𝑓መ is a function that 
estimates a usage probability to each 𝑀′. 
 
Algorithm 2 has some steps equal to Algorithm 1; therefore, the steps that are different are described as follows: in line 5, it 
is verified if the length of 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 is equal to 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒. The tabu status declaration is explained in Section 4.3.1. If the 
condition in line 5 is satisfied, then a move with tabu status is aspirated from 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 through the procedure described in 
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Section 4.3.2. Next, in line 8, a movement is randomly selected using the roulette method based on the probabilities assigned 
to each movement. These probabilities are obtained through the estimation procedure presented in Section 4.3.3. Finally, in 
line 11, 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 is updated, i.e., a move gets the tabu status according to the last executed movement, and the tabu move 
that stayed the longest in 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 is declared as no tabu. 
 
 

Algorithm 2. Hybridization of the base model with PTS 
1: set an initial solution 𝑆 
2: compact the cuboid to get 𝑆 and 𝑉𝑜𝑙(𝑆) 
3: set 𝑆 ← 𝑆, 𝑆∗ ← 𝑆, 𝑉𝑜𝑙(𝑆), 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 0 
4: while time limit maxTime not reached do 
5:     if (|𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡| = 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒) then 
6:         Aspirate a Tabu move from the 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 
7:     end if 
8:     select the next movement 𝑀 using the roulette method with probability 𝑓መ(𝑀ᇱ)|𝑀′ ∈ 𝑁෩(𝑆) 
9:     compact the cuboid to get 𝑆ெ  
10:     set 𝑆 ← 𝑆ெ  and get 𝑉𝑜𝑙(𝑆) 
11:     update 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 
12:     if (𝑉𝑜𝑙(𝑆) < 𝑉𝑜𝑙∗) then 
13:         set 𝑉𝑜𝑙∗ ← 𝑉𝑜𝑙(𝑆), 𝑆∗ ← 𝑆, 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 0 
14:     else 
15:         𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 + 1 
16:     end if 
17:     if (𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑚𝑎𝑥𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) then 
18:         Apply diversification over 𝑆 randomly choose either 𝑆ℎ𝑎𝑘𝑖𝑛𝑔 or 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 
19:         𝐼𝑡𝑒𝑟𝑈𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 0 
20:     end if 
21: end while 

 
4.3.1. Tabu status 
 
A tabu move or a move with tabu status is a move that does not occur for some iterations (Gendreau and Potvin, 2010). The 
declaration of moves as tabu may avoid reversing the effect of recent moves. Therefore, the moves that are declared as tabu 
are those whose effect may reverse previous ones. For example, the 𝑅௫ା movement may reverse the effect of the 𝑅௫ି  movement 
if these movements are executed one after the other. This situation can be avoided if the 𝑅௫ା movement gets a tabu status after 
the 𝑅௫ି  movement execution. In this study, the tabu declaration depended on the type (rotational and translational) of the last 
executed movement. If the last executed movement was translational, the movement itself got the tabu status because it was 
the more likely movement to reverse its effect. On the other hand, if the last executed movement was rotational, the rotation 
movement in the same axis and the opposite directions got the tabu status. However, if the reverse rotational movement was 
already in the 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡, the last executed movement itself got the tabu status to avoid a biased repetition of movements. 
Table 1 shows which movement got the tabu status according to the last executed movement. 
 
Table 1 
Declaration of tabu moves 

Executed movement Tabu movement 𝑇௫ 𝑇௫ 𝑇௬ 𝑇௬ 𝑇௭ 𝑇௭ 𝑅௫ି  𝑅௫ା 𝑅௫ା 𝑅௫ି  𝑅௬ି  𝑅௬ା 𝑅௬ା 𝑅௬ି  𝑅௭ି  𝑅௭ା 𝑅௭ା 𝑅௭ି  
 

 
4.3.2. Aspiration procedure 
 
The aspiration procedure is used to cancel the tabu status of a move that could be attractive (Gendreau & Potvin, 2010). In 
this study, this procedure happened in all iterations in which the condition in line 5 of Algorithm 2 was satisfied. In this 
procedure, each move with tabu status was assigned a probability value through the estimation procedure described in Section 
4.3.3. Then, one of these moves was randomly chosen to be aspirated (the move was removed of its tabu status) through the 
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roulette method. The aspirated move was then considered to be executed along with the moves without the tabu status. The 
roulette method is used to randomly select an element considering the probability associated with each element. In this study, 
the elements were the movements, and their probabilities were obtained from the estimation procedure (Section 4.3.3.). This 
method was used because it is recommended to apply randomness to the aspiration procedure (Gendreau and Potvin, 2010). 
 
4.3.3. Estimation procedure 
 
The estimation procedure was used to assign a probability to each movement. These probabilities depended on the number of 
considered movements and their estimated effect on the objective function value. These probabilities were used by the roulette 
method described in Section 4.3.2. to select a movement. In cases where the effect of a move over the objective function value 
is hard to determine, the effect can be estimated using a surrogate objective function. The PPP’s objective function is the 
cuboid’s volume minimization, and the effect that a movement would have on the cuboid’s volume was hard to determine 
without performing it. Therefore, in this study, a surrogate function was used to estimate the effect of the movements. The 
used surrogate function was based on the concept of free space, which refers to the available space that the items have to move 
within the cuboid in a specific direction. This function was related to the original objective function assuming that if the free 
space was large in a specific direction, then the items had a large space to move and find a better pattern that would decrease 
the cuboid’s volume. The value of the free space specified the probability of each movement. As the free space of a movement 
increased, the probability of choosing that movement through the roulette method also increased. The free space related to 
each cuboid movement (effect) was established with the free space values of two axis-aligned orientations (�̂�௫, −�̂�௫, �̂�௬, −�̂�௬, �̂�௭, and −�̂�௭). For translational movements, the effect was estimated as the mean of the free space values associated with the 
translation axis. Moreover, for rotational movements, their effect was estimated as the mean of the free space values associated 
with perpendicular orientations to the axis in which the rotation happened, maintaining the orientation’s sign. Table 2 shows 
the established relationship between the free space associated with each movement with the free space of each direction.  
 
Table 2 
Assignation of the six values of free space (𝑓𝑠) to the nine movements. 

Movement Estimation function 𝑇௫ 𝐴𝑉𝐺(𝑋ത௦−.𝑋ത௦+) 𝑇௬ 𝐴𝑉𝐺(𝑌ത௦−.𝑌ത௦+) 𝑇௭ 𝐴𝑉𝐺(�̅�௦−. �̅�௦+) 𝑅௫ି  𝐴𝑉𝐺(𝑌ത௦−. �̅�௦−) 𝑅௫ା 𝐴𝑉𝐺(𝑌௦+. �̅�௦+) 𝑅௬ି  𝐴𝑉𝐺(𝑋ത௦−. �̅�௦−) 𝑅௬ା 𝐴𝑉𝐺(𝑋ത௦+. �̅�௦+) 𝑅௭ି  𝐴𝑉𝐺(𝑋ത௦−.𝑌ത௦−) 𝑅௭ା 𝐴𝑉𝐺(𝑋ത௦+.𝑌௦+) 
 
In this study, two methods to determine the free space were considered: one based on the φ-functions and the other one based 
on AABBs. In the former, φ-functions were used to determine the distance between items considering the items’ actual shape. 
In the latter, the distance was determined between the AABBs which enclosed the items. The φ-functions return a value that 
corresponds to the interaction between a pair of phi-objects (particular geometric objects); the value is positive for non-
overlapping objects, zero for touching objects, and negative for overlapping objects (Chernov et al., 2010). The φ-functions 
were constructed using the procedure presented in Stoyan et al. (2002) with the algorithm’s assistance based on Barber et al. 
(1996). Unfortunately, the φ-functions take considerable time to be computed due to their mathematical complexity. The 
computation can even take several minutes, which was not suitable for a fast estimation using a surrogate function. Therefore, 
these functions were discarded from this study, and the only considered estimation method was the AABBs-based, which is 
much less sophisticated than the method based on φ-functions. There were two cases in the AABBs-based estimation method 
considering overlapping between a pair of AABB: overlap and no overlap. The second case happened when there was 
overlapping at most on one Cartesian plane in which the boxes were orthogonally projected; otherwise, the first case happened. 
The AABBs-based method estimated the free space using one-axis distances, which depended on the boxes’ overlapping case. 
There were six one-axis distances for each AABB, one per each face. When there was no overlap in the face’s direction, the 
one-axis distance was calculated as the distance with the nearest box (other AABB or cuboid) in the face direction. Therefore, 
the free space increased as the one-axis distance increased. Otherwise, when there was overlap in the face’s direction, then 
the one-axis distance was calculated as the inverse distance between the face and the overlapping face. Therefore, the free 
space decreased as the overlapping between the AABBs increased because that would mean that the pieces are close. 
 
5.  Computational experiments and results analysis 
 
To demonstrate the efficiency of the proposed algorithms, we have run and compared it with other methodologies. All 
simulations were run on an Intel® CoreTM i7-7700HQ CPU @ 2.80 GHz computer with a 16 GB RAM, an NVIDIA GeForce 
GTX 1050 Ti GPU, and a Windows 10 operative system. The programming language was C#. 
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5.1. Instances 
 
The polyhedra sets were named using the authors’ last name and the publication year of the paper in which the polyhedra 
information was found. Therefore, the polyhedra sets’ names were formed with the initial of each author’s last name, followed 
by the last two digits of the publication year. Each instance was coded using the name of the polyhedra set followed by two 
features: the convexity of the pieces and the number of pieces. If all pieces of the instance were convex, then a “c” appeared 
after the polyhedra set’s name. Otherwise, if at least one piece of the instance was non-convex, then an “nc” appeared after 
the polyhedra set’s name. Then, the name was followed by the number of pieces that formed the instance. Also, if two or more 
instances had the same name, they were differentiated by adding a letter at the end of the name. Table 3 shows all the instances 
found in the literature, whose items are composed of convex parts to the authors’ best knowledge. These instances were 
classified according to the assortment of the pieces. The classification criterion was based on the ratio between the number of 
types of pieces and the number of pieces that composed the instance. If this ratio was less than 0.5, then the instance was 
considered a weak assortment of the pieces; Otherwise, if the ratio was greater than or equal to 0.5, then the instance was 
considered a strong assortment of the pieces. 
 
Table 3 
Details of the instances. 

Instance Assortment Composition 
SGPS04c80 Weak 20 pieces of types 1, 2, and 4, and 10 pieces of types 3 and 5 

SGPS04nc20a Strong 2 pieces of each type 
SGPS04nc20b Weak 10 pieces of types 9 and 10 
SGPS04nc20c Weak 20 pieces of type 9 
SGPS04nc30 Weak 3 pieces of each type 
SGPS04nc40 Weak 4 pieces of each type 
SGPS04nc45 Weak 5 pieces of types 1-5, and 4 pieces of types 6-10 
SGPS04nc50 Weak 5 pieces of each type 
SGSPM05c7 Strong 1 piece of each type 

SGSPM05c12 Strong 1 piece of types 1-4, 3 pieces of types 5 and 7, and 2 pieces of type 6 
SGSPM05c25 Weak 2 pieces of types 1 and 7, 3 pieces of type 6, 4 pieces of types 2, 4, and 5, and 6 pieces of type 3 
SGSPM05c98 Weak 14 pieces of each type 

GP08nc14 Strong 3 pieces of type 4, 2 pieces of types 1, 7, and 8, and 1 piece of types 2, 3, 5, 6, and 9 
LLCY15nc36 Weak 8 pieces of types 1, 2, 4, and 5, and 4 pieces of type 3 
AÖAB19nc4 Strong 1 piece of types 1-4 
AÖAB19nc7 Strong 1 piece of types 5-11 

 

 
Fig. 7. Convex Pieces (1 to 5 from left to right) of the data set SGPS04 from Stoyan et al. (2004) 

 
Fig. 8. Non-Convex Pieces (1 to 10 from left to right, from top to bottom) of the data set SGSPM04 from Stoyan et al. 

(2004) 

 
 

 
Fig. 9. Convex Pieces (1 to 7 from left to right) of the data set SGSPM05 from Stoyan et al. (2005) 
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Fig. 10. Pieces (1 to 9 from left to right, from top to bottom) of the data set GP08 from Gogate and Pande (2008) 

 
Fig. 11. Non-Convex Pieces (1 to 5 from left to right) of the data set LLCY15 from Liu et al. (2015) 

 

 
Fig. 12. Non-Convex Pieces (1 to 11 from left to right, from top to bottom) of the data set AÖAB19 from Araújo et al. 

(2020) 

5.2. Combinations of parameters 
 
Each instance was run ten times with each combination of factors. There were five factors: maxTime, tabuTenure, 
maxUnimprovedIterations, diversification, and initialization. The first factor (maxTime) was set for each simulation and used 
as a stopping criterion. This time can be arbitrarily set at the discretion of the users. However, to compare each combination 
of factors, the same maxTime was set to each simulation. This time was set considering the behavior of Algorithm 2 throughout 
time with four instances: AÖAB19nc7, SGPS04nc50, SGPS04c80, and SGSPM05c7. Simulations were run for 2000 seconds, 
and for each instance, the cuboid’s volume was recorded each time it changed. 
 

 
Fig. 13. Behavior of algorithm 2 throughout time on instances AÖAB19nc7 (non-convex strongly sorted), SGPS04nc50 

(non-convex weakly sorted), SGPS04c80 (convex weakly sorted), and SGSPM05c7 (convex strongly sorted) 
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Fig. 13 shows how the cuboid’s volume of four instances changed over time; at the beginning of the simulations, the cuboid’s 
volume rapidly decreases, but the algorithm’s capacity to find better solutions decreases as time passes. Furthermore, the most 
notorious changes in the cuboid’s volume happened in the first 200 seconds. Therefore, maxTime was set to 200 seconds for 
each simulation. 
 
The parameter tabuTenure was set to 2, 4, and 6, and maxUnimprovedIterations to 5 to 10. 
 
The diversification was done using one of the two movements explained in Section 4.2.4 in two ways. The first one was 
named Shak, and it only used the shaking movement. The second one was named Rand, and it randomly chose either the 
shaking movement or the insertion movement with a 50% chance each. The initialization was done through one of the two 
methods explained in Section 4.2.1. The Box related method is hereinafter referred to as B, and the Sphere-related method is 
hereinafter referred to as S. These factors led to a complete factorial design of experiments with 24 different combinations for 
Algorithm 2 and 8 different combinations for Algorithm 1. Algorithm 1 had fewer combinations than Algorithm 2 because 
the parameter tabuTenure is not present in Algorithm 1. 
 
5.3. Statistical analyses 
 
An ANOVA was performed over the simulations’ results of each combination with each instance using Minitab 19; the Pareto 
chart of the standardized effects is shown in Fig. 15. It is worth noting that the instances were treated as a block of the design 
experiment, and the interactions between the instances and the other factors were analyzed. Fig. 15 shows that evidently, there 
are significant interactions between the instances and other factors, which means that each instance may have a preferred 
combination of parameters. This situation could affect the determination of a single combination of parameters that have a 
good performance with any instance. When pairwise comparisons were performed using the Fisher LSD method with 95% 
confidence, significant differences were found between the results associated with the 32 treatments for each instance. 
 

 
Fig. 14. Pareto chart of the standardized effects (Confidence = 95%). A = instance, B = tabuTenure, C = initialization, D = 

maxUnimprovedIterations, and E = diversification 

 
Fig. 14 shows that tabuTenure and the initialization method directly affect the value of the objective function in contrast of 
maxUnimprovedIterations and the diversification method. However, these two last factors form significant 2-way and 3-way 
interactions.The parameter that differentiated Algorithm 1 and Algorithm 2 was tabuTenure because it was related to the 
hybridization with the PTS. Therefore, this factor’s significance indicated the possibility of finding significant differences 
between Algorithm 1 and Algorithm 2 in some instances. In this sense, when reviewing the pairwise comparisons for each 
instance, results showed that in 11 out of the 16 instances, there was no significant difference between using Algorithm 1 and 
Algorithm 2, i.e., at least one combination of each algorithm was not significantly different in the best Fisher LSD group. The 
remaining five instances showed that the results obtained with Algorithm 2 were significantly better than the results obtained 
with Algorithm 1; these instances were: SGPS04c20, SGPS04nc20a, SGPS04nc20b, SGSPM05c7, and SGSPM05c12. The 
simulation approaches’ initialization method significantly affected the final volume of the cuboid due to the huge difference 
in the initial volume of the cuboid. The sphere-related method always led to a larger initial cuboid’s volume than the box-
related method. Theoretically, the difference in the initial cuboid’s volume should not significantly affect the final cuboid’s 
volume since the volume rapidly decreased in the initial iterations. However, simulations could be negatively affected by this 
initial difference because when the cuboid’s initial volume was large, all objects could reach higher speeds than the ones 
PhysX could handle. These higher speeds were reached because all objects within the cuboid were under the influence of 
gravity-like accelerations and had more space to move. When objects move fast, the simulations may become unstable since 
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the collision calculations may not be appropriate. Therefore, PhysX could take more time to perform these calculations or 
even the simulations had to return to the last stable point and recalculate each object’s physics within the simulation. 
 
maxUnimprovedIterations and the diversification method were not a significant factor in the value of the objective function, 
which can be explained by the low number of iterations that occurred in each simulation. The expected time for a movement 
was 6.5 seconds, and the compression lasted at least 3 seconds; therefore, in a 200 seconds simulation, there would be near 
20 iterations. Therefore, a diversification method would have happened 2 (with maxUnimprovedIterations = 10) or 4 times 
(with maxUnimprovedIterations = 5). The maxTime value and the movement’s duration with the compression limited the 
possibility to determine the effect of maxUnimprovedIterations and the diversification method. 
 
5.4. Analysis procedures 
 
Two procedures were used to facilitate the solutions’ analysis: one to determine the solutions’ feasibility according to the non-
overlapping constraint, and the other one to indicate how much intertwining existed when instances had pieces with holes. 
The first procedure is detailed in Section 5.4.1, and the second one is described in Section 5.4.2. It is worth noting that there 
is no metric for the considered intertwining to the authors’ best knowledge. Furthermore, in this study, the metric GAP was 
used to compare the approach’s results with published results. This metric is explained in Section 5.4.3. 
 
5.4.1. Solutions’ feasibility 
 
This procedure estimates how much overlapping was in the solutions. Overlapping in the solutions was possible since PhysX 
may estimate the physics calculations due to the fixed time step feature. A four-step procedure estimated this overlapping: 
 

1. A 3D grid was superposed on each solution’s cuboid. The 3D grid was created by dividing each cuboid’s dimension 
(width, length, and height) into 250 lines. Therefore, there were 15,625,000 points to verity for each solution. 

2. For each point of the grid, the number of pieces containing it was determined. 
3. The point was classified according to the number of pieces containing it. If any piece did not contain the point, it was 

classified as blank. If a single piece contained the point, it was classified as right. If two or more pieces contained 
the point, it was classified as wrong. 

4. The overlapping was estimated as the percentage that wrong points represented of all no blank points. 
 

5.4.2. Intertwining metric 
 
This procedure was used to determine how much intertwining exists in a solution when the instance has pieces with holes. 
 

 
Fig. 15. Intertwining of two ring-like pieces 

 
In this study, intertwining is considered to have occurred when ring-like pieces are interlaced (see Fig. 15). In this study, the 
ring-like pieces are pieces with a convex hole formed by the union of the piece’s parts. It is worth noting that all pieces with 
holes from the instances were ring-like pieces. 
 
The intertwining metric is the percentage of intertwining pieces (IP), indicating how much of the total ring-like pieces 
intertwine. The procedure of obtaining IP is composed of the following three steps: 
 

1. Determine the hole of each piece as a convex part. The points in which the inner faces of the ring-like piece intersect 
each other constitute the hole. The convex hull of these points constitutes the hole as a convex part. 

2. Determine if a pair of ring-like pieces are intertwining. The pair of pieces are intertwining only if their holes 
simultaneously intersect with at least one convex part of the other piece. Otherwise, the pair of pieces are not 
intertwining. 

3. Divide the number of intertwining pieces between the number of ring-like pieces in the instance. 
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5.4.3. Gap  
 
This metric is used to determine how close the obtained results (r) are to published results (pr). This metric is calculated 
through Eq. (1). 
 𝐺𝑎𝑝 = 𝑟 − 𝑝𝑟𝑝𝑟 ∗ 100 (1) 

 
A positive Gap implies that the obtained result was not better than the literature’s result. In contrast, a negative Gap implies 
that the obtained result was better than the literature’s result. 
 
5.5. Results of convex instances 
 
All simulations were run all convex instances with the following combination of parameters: Algorithm 2, tabuTenure = 4, 
box-related method as initialization method, maxUnimprovedIterations = 10, and the Rand diversification method. This 
combination was chosen because it statistically had the best results in four of the five convex instances 
 
Tables 4 - 6 show the results of the 5 considered convex instances. Fig. 16 shows the layout of the best solution to the instance 
SGSPM05c7, Fig. 17 shows the layout of the best solution to the instance SGSPM05c12, Fig. 18 shows the layout of the best 
solution to the instance SGSPM05c25, and all of these results are shown in Table 4. Fig. 19 shows the layout of the best 
solution to the instance SGPS04c80 and its results are shown in Table 5. Fig. 20 shows the layout of the best solution to the 
instance SGSPM05c98 and its results are shown in Table 6. 
 
Table 4 
Results of the instances: SGSPM05c7, SGSPM05c12, and SGSPM05c25 

Instance Stoyan et al. (2005) Egeblad et al. (2009) Proposed approach 
Volume Time [s] Volume Time [s] Mean Sd Gap [%] Overlap [%] 

SGSPM05c7 3240.0 - 2317.2 600 2490.8 237.2 7.49 0 
SGSPM05c12 6492.6 - 4164.3 600 4396.0 207.0 5.56 0 
SGSPM05c25 11006.4 - 7156.8 600 8021.7 177.8 12.08 0 

 
 

 

 
 

Fig. 16. Best solution obtained of the 
instance SGSPM05c7 

Fig. 17. Best solution obtained of the 
instance SGSPM05c12 

Fig. 18. Best solution obtained of the 
instance SGSPM05c25 

 
Table 5  
Results of the instance SGPS04c80 

Instance Stoyan et al. (2004) Proposed approach 
Volume Time [s] Mean Sd Gap [%] Overlap [%] 

SGPS04c80 113582.3 3388.0 110288.7 1834.3 -2.90 0 
 
 
Table 6  
Results of the instance SGSPM05c98. 

Instance Stoyan et al. (2005) Proposed approach 
Volume Time [s] Mean Sd Gap [%] Overlap [%] 

SGSPM05c98 23113.06 147967.3 31265.1 708.4 35.27 0 
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Fig. 19. Best solution obtained of the instance SGPS04c80 Fig. 20. Best solution obtained of the instance 

SGSPM05c98 
 

When applied on convex instances, the results of the proposed methodology are competitive with results obtained with other 
methodologies.  
 
5.6. Results of non-convex instances 
 
All simulations were run all non-convex instances with the following combination of parameters: Algorithm 2, tabuTenure = 
2, box-related method as initialization method, maxUnimprovedIterations = 5, and the Rand diversification method. This 
combination was chosen because it statistically had the best results in ten of the eleven non-convex instances. 
 

   
Fig. 21. Best solution obtained of the 

instance SGPS04nc20a 
Fig. 22. Best solution obtained of the 

instance SGPS04nc30 
Fig. 23. Best solution obtained of the 
instance SGPS04nc40 

 
 
Tables 7 - 10 show the results of the 11 considered non-convex instances. Fig. 21 shows the layout of the best solution to the 
instance SGPS04nc20a, Fig. 22 shows the layout of the best solution to the instance SGPS04nc30, Fig. 23 shows the layout 
of the best solution to the instance SGPS04nc40, Fig. 24 shows the layout of the best solution to the instance SGPS04nc50, 
Fig. 25 shows the layout of the best solution to the instance LLCY15nc36, and all of these results are shown in Table 7. Fig. 
26 shows the layout of the best solution to the instance SGPS04nc20b, Fig. 27 shows the layout of the best solution to the 
instance SGPS04nc20c, Fig. 28 shows the layout of the best solution to the instance SGPS04nc45, and all of these results are 
shown in Table 8. Fig. 29 shows the layout of the best solution to the instance GP08nc14 and its results are shown in Table 
9. Fig. 30 shows the layout of the best solution to the instance AÖAB19nc4, Fig. 31 shows the layout of the best solution to 
the instance AÖAB19nc7, and these results are shown in Table 10. It is worth noting that Tables 7 and 8 include the IP metric 
because the instances displayed in the table are composed of at least two ring-like pieces. 
 
Table 7 
Results of the instances: SGPS04nc20a, SGPS04nc30, SGPS04nc40, SGPS04nc50, and LLCY15nc36 

Instance 
Liu et al. (2015) Romanova et al. (2018) Proposed approach 

Volume Time [s] Volume Time [s] Mean Sd Gap 
[%] 

Overlap 
[%] 

IP 
[%] 

SGPS04nc20a 32550.0 26202.1 27432.6 34313.3 39080.5 2305.5 42.46 0.01 0 
SGPS04nc30 48300.0 53741.5 40277.2 33008.9 54337.4 2837.7 34.91 0.08 0 
SGPS04nc40 61950.0 99952.0 53158.9 201501.5 71233.6 3790.2 34.00 0.17 0 
SGPS04nc50 77280.0 125210.6 61630.7 270654.8 89419.7 2470.1 45.09 0.10 40 
LLCY15nc36 12480.0 9637.5 10461.7 23023.1 13751.2 351.6 31.44 0.12 0 
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Fig. 24. Best solution obtained of the instance SGPS04nc50 Fig. 25. Best solution obtained of the instance LLCY15nc36 
 
Table 8 
Results of the instances: SGPS04nc20b, SGPS04nc20c, and SGPS04nc45 

Instance 
Romanova et al. (2018) Proposed approach 

Volume Time [s] Mean Sd Gap [%] Overlap 
[%] 

IP 
[%] 

SGPS04nc20b 15275.5 8729.4 27625.2 1604.6 80.85 0.03 - 
SGPS04nc20c 12805.7 59497.9 35416.0 1218.43 176.56 0.01 - 
SGPS04nc45 61860.8 159884 83307.1 2920.7 34.67 0.07 50 

 

   
Fig. 26. Best solution obtained of the 

instance SGPS04nc20b 
Fig. 27. Best solution obtained of the 

instance SGPS04nc20c 
Fig. 28. Best solution obtained of the 
instance SGPS04nc45 

 
Table 9  
Results of the instances GP08nc14 

Instance Gogate and Pande (2008) Proposed approach 
Volume Time [s] Mean Sd Gap [%] Overlap [%] 

GP08nc14 514.1 < 1800 440.6 13.3 -14.30 0 
 

 

   
Fig. 29. Best solution obtained of the 

instance GP08nc14 
Fig. 30. Best solution obtained of the 

instance AÖAB19nc4 
Fig. 31. Best solution obtained of the 

instance AÖAB19nc7 
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Table 10 
Results of the instances: AÖAB19nc4 and AÖAB19nc7 

Instance Araújo et al. (2020) Proposed approach 
Volume Time [s] Mean Sd Gap [%] Overlap [%] 

AÖAB19nc4 1000000 < 140 1747869 290548.6 74.79 0.02 
AÖAB19nc7 ≈1430000 > 2000 3758747 309836 162.85 < 0.01 

 
When applied on non-convex instances, the proposed methodology results have a considerable gap compared with other 
methodologies. This situation particularly arises in two scenarios: when the assortment of the pieces is very weak, such as in 
the instances SGPS04nc20b and SGPS04nc20c; and when the pieces have a high fitting degree, such as in the instances 
AÖAB19nc4 and AÖAB19nc7, which form a Soma cube. This methodology's performance seems to be affected due to the 
roughness of the movements that led to fast collisions and caused the pieces to separate. Furthermore, these instances required 
a high-level fit which is hard to meet with rough movements. 
 
6. Conclusions and future work  
 
Two simulation-based algorithms were presented to tackle the polyhedra packing problem. The first algorithm considered all 
simulated movements, and the second algorithm was the hybridization of the first algorithm with the probabilistic tabu search. 
These algorithms included basic simulation movements, which can be used as a starting point for developing more 
sophisticated algorithms that better exploit the structure of C&PP. 
  
Results showed that the hybridization led to significantly better results in 5 of the 16 instances than the algorithm without 
hybridization; in the other 11 instances, the two algorithms were not significantly different. This situation could indicate that 
hybridization with metaheuristics improves the performance of simulation-based algorithms. 
  
The simulation-based algorithms were used to obtain satisfactory results in a short time. These algorithms were fast, and the 
results were competitive when compared with other methodologies. In some instances, the gap was substantial; however, it 
should be noted that the maximum running time for the algorithms was short. The speed of this algorithm makes it suitable to 
hybridize with other more sophisticated approaches. 
  
Results showed that simulation is a suitable tool to verify containment and non-overlapping constraints due to the low overlap 
values. Overlap values for all instances were under 0.2%, demonstrating the capacity of PhysX to efficiently calculate the 
physics of the objects within the simulation. 
  
The intertwining metric was proposed in cases where pieces had a hole. This metric shows the percentage of pieces which are 
interlacing. This metric can be used as a starting point to create constraints that can be considered in future studies to obtain 
more realistic packing patterns. 
  
As future work, we propose considering different shaped containers such as cylinders, spheres, or even more complicated 
shapes. This would lead to more applications in the industry. Also, we propose to hybridize simulations with other 
metaheuristics or with mathematical programming to get better solutions.  
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