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 Most job shops in practice are constrained by both machine and labor availability. Worker 
assignment in these so-called Dual Resource Constrained (DRC) job shops is typically solved in 
the literature via the use of meta-heuristics, i.e. “when” and “where” rules, or heuristic 
assignment rules. While the former does not necessarily lead to optimal results, the latter suffers 
from high computational time and complexity, especially when there is a large number of 
workstations. This paper uses game theory to propose a new worker assignment rule for DRC 
job shops. The Gale-Shapley model (also known as the stable marriage problem) forms a 
‘couple’ made up of a worker and machine following a periodic review strategy. Simulation is 
used to evaluate and compare the proposed model to “when” and “where” rules previously 
proposed in the literature. Simulation experiments under different conditions demonstrate that 
the Gale-Shapley model provides better results for worker assignments in complex DRC 
systems, particularly when the workers have different efficiency levels. The implications of the 
findings for research and practice are outlined. 
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1. Introduction 

 
In recent years, the rapid introduction of new products with shorter life cycles have required shops to 
adapt to rapid changes in the product mix and have driven firms towards adopting more flexible and 
customized job shop manufacturing systems. Job shop manufacturing systems have been widely 
investigated in the extant literature, but the majority of this research has considered only a single capacity 
constraint, i.e. based on the availability of machines only. In practice however, these manufacturing 
systems are typically constrained by two elements, i.e. by both machines and workers (Patel, 1997). 
These so-called Dual Resource Constrained (DRC) systems have received limited attention in the 
literature, where a job can only be processed if both a machine and a skilled worker is available. The 
DRC shop modelled in the literature is characterized by the number of workers rather than the number 
of machines, with the number of machines typically considered fixed. Since the number of workers is 
normally less than the number of machines, worker reallocations amongst the machines are necessary. 
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In such a context, the assignment of workers to machines becomes highly relevant when searching for 
improvements to manufacturing system performance. The job shop environment is not the only context 
in which dual resource constraints occur. Hence, the DRC problem has been modelled in several other 
applications, such as in hybrid push-pull control with a kanban system (Salum and Uraz, 2009), in cellular 
manufacturing systems (Kannan & Jensen, 2004), in virtual cellular manufacturing systems (Hamedi et 
al., 2012), and automobile assembly plants (Fredendall et al., 1996), in addition to call centers, field 
service systems, serial production systems, manufacturing cells, etc. (e.g. Hopp & Van Oyen, 2004; 
Nembhard, 2007). In this study, we focus on the job shop given the importance of short-term worker 
assignment decisions in this context (Delgoshaei et al., 2017). The job shop scheduling problem is an 
Np-hard combinatorial optimization problem (Lenstra & Rinnooy Kan, 1979). The DRC system is even 
more difficult to solve than the job shop problem because of the presence of two resource constraints. It 
therefore becomes difficult to use analytical approaches and there are high computational costs. As a 
consequence, the use of meta-heuristic methods has been widely proposed in the literature (El Maraghy 
et al., 2000; Li et al., 2016; Li & Lang, 2011). The scheduling problem in DRC systems is resolved via 
“when” and “where” rules; the when rule determines the timing of when a worker is considered for 
transferal between machines while the where rule determines the machine to which the worker should be 
transferred (Bokhorst et al., 2004). Often however the meta-heuristic is unable to find a near optimum 
solution (Li et al., 2016). There is thus a trade-off between computational time and near optimality. 
 
In response to the aforementioned trade-off, this study proposes and evaluates the use of game theory for 
assignment problems in DRC shops. More specifically, we argue that the assignment problem of workers 
to machines can be adapted to the so-called ‘stable marriage problem’ studied by Gale and Shapley 
(1962). The problem is based on considering n men and m women, where each person has ranked all 
members of the opposite gender in order of preference. The preference of the persons is hereby translated 
to the characteristics of the workers (as efficiency) and machines (as the parts in the queue).  The “when” 
rule follows a periodic review strategy while the “where” rule is based on the Gale-Shapley algorithm 
(Gale & Shapley, 1962). The algorithm is adapted to the asymmetry of the number of workers and 
machines and appropriate preference functions are defined. The Gale-Shapley algorithm allows the time 
to take the decision and to obtain a suitable configuration to be reduced, including in the context of large-
sized problems. We therefore suggest that it could enable the computational complexity of the DRC 
problem to be reduced and that it could be applied to various DRC systems, including the DRC job shop. 
We use simulation to assess its performance compared with the meta-heuristics most typically applied in 
the literature. 
 
The remainder of this paper is organized as follows. Section 2 discusses the literature on worker 
assignments in DRC systems and outlines the research questions that motivate our study. Section 3 
describes the manufacturing system context investigated and the proposed model, based on game theory. 
The simulation model used to evaluate performance is then described in Section 4 before the results are 
presented in Section 5. Finally, conclusions, managerial implications and future research directions are 
provided in Section 6.  
 
2. Literature Review 
 
Most of the contributions presented in the extant literature on worker assignments in DRC shops have 
focused on “when” and “where” rules and proposed meta-heuristic and heuristic approaches. Some 
examples studied the production planning problem in DRC manufacturing systems (El Maraghy, 2000) 
using Genetic Algorithm (GA) with different algorithms to improve the solution as grey simulation 
technology and non-dominated sorting GA II (Li 2011), branch population to accumulate and transfer 
the evolutionary experience of parent chromosomes via pheromone (Li et al., 2006). The advantage of 
GA lies in its global optimization ability while the disadvantage of GA is its low local search ability and 
the time it takes to obtain the solution following several iterations. Araz and Salum (2010) proposed a 
real-time scheduling approach to select a predetermined scheduling rule in DRC manufacturing systems. 
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The model needs the combination of Artificial Neural Networks, fuzzy inference system and simulation 
to provide the knowledge base. The main limitations of this methodology are the predetermination of the 
rules and the accuracy of the Artificial Neural Network model.  Several heuristic models have also been 
proposed, such as the variable neighborhood search approach by Deming and Guo (2014). Meanwhile, 
Mehravaran and Logendran (2013) developed a linear mixed-integer mathematical model and three meta-
heuristic algorithms to solve a bi-criteria non-permutation flow shop with dual resources and sequence-
dependent setup times. Zhang et al. (2017) proposed a hybrid discrete particle swarm optimization 
algorithm to solve the DRC job shop scheduling problem with resource flexibility. The computation time 
is a critical issue that limits the application of this method. Zheng and Wang (2016) proposed a 
knowledge-guided fruit fly optimization algorithm with a new encoding scheme to solve the DRC 
flexible job shop problem with a makespan minimization criterion. Meanwhile, Sammarco et al. (2014) 
used a simulation based on agent system modelling to study the effect of several factors (i.e. workforce, 
distance, buffer capacity, when rule, and where rule) on performance measured in terms of work-in-
process (WIP), flow time, and production rates. The introduction of DRC in cellular manufacturing 
systems was studied by Satoglu and Suresh (2009) for the design of hybrid cellular manufacturing 
systems and in Hamedi et al. (2012) for virtual cellular manufacturing systems. They proposed 
mathematical models to design the cellular manufacturing systems, including the labor assignment 
problem. However, these models were static because they considered the design problem only. Finally, 
some models have been developed to be applicable in large-scale contexts or to make scheduling 
decisions in real-time. For example, Lobo et al. (2013a, 2013b) studied the assignment of each worker 
to a specific machine group in a DRC job shop to minimize the maximum lateness of jobs. Lobo et al. 
(2014) then revised the approach of Lobo et al. (2013b) for the application of large-scale problems with 
tractable computational complexity.  
 

2.1 Assessment of the Literature 
 
Xu et al. (2011) provided an overview of prior work on DRC systems and discussed some possible 
approaches and future directions for solving the resource scheduling problem in a DRC system. The 
authors argued that improved performance could be achieved via the use of a dynamic control system 
that is able to find, in real-time, the best dispatching rule to use based on the current shop state and 
aggregate performance for chosen performance measures (Araz, 2005, 2007; Araz & Salum, 2008). 
Nevertheless, the meta-heuristic methods are also more flexible than simple heuristic assignment rules 
in terms of scheduling ability, which makes future research in this area relevant. The main limits of the 
literature on DRC systems concern the use of meta-heuristic or heuristic approaches with high 
computational complexity, especially when the larger scale characteristics of real industrial cases are 
considered. The mathematical models provided in the literature can be used in a specific context, but 
they cannot be adapted to different industrial cases. Yet, it is also argued that the simple “where” and 
“when” rules are unlikely to find near optimal solutions.  
 
In response, we propose game theory as a novel approach for solving the worker assignment problem in 
DRC job shops. Game theory approaches are widely used in the literature to solve scheduling problems 
in different contexts, such as the parallel machine scheduling problem (Elisha et al., 2008; Opiyo et al., 
2009), Buscemi et al. (2012) addressed the job scheduling problem in heterogeneous computational grids 
by exploiting the concept of Nash equilibrium, Li et al. (2012) presented integrated process planning and 
scheduling in a manufacturing system and Sun et al. (2014) applied a non-cooperative game theory with 
complete information to solve a flexible job shop problem. Meanwhile, Renna (2017) proposed a model 
to support reconfiguration activities in job shop systems based on the Gale-Shapley model. The proposed 
model based on game theory is solved in one step to take the decision and using limited information and 
lower computational complexity. However, despite their promise, game theory models have not been 
used to solve the worker assignment problem in DRC job shops. The Gale-Shapley Algorithm is 
computationally easy to manipulate (Teo et al., 2011) and suitable for short-term decision; Therefore, the 
first research question is:  
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RQ1:  Can the Gale-Shapley Algorithm be adapted to the DRC job shop problem under different 
numbers of workers, workers’ efficiencies and inter-arrival times? 

 

The second research question then asks: 
RQ2:  What is the performance improvement enabled by the Gale-Shapley Algorithm compared with 

simple when and where rules? 
 

Our first research question will be answered in the next section where the Gale-Shapley algorithm is 
introduced. Then, a simulation model is developed to answer the second research question. The 
performance of the proposed model is compared to classical “when” and “where” rules considering 
different numbers of workers, worker efficiencies, and inter-arrival times.  

 

3. Research context and Game model  
 

The model considered is a randomly routed job shop (Conway et al., 1967) or pure job shop (Melnyk & 
Ragatz, 1989; Oosterman et al., 2000). The manufacturing system consists of six workstations, and each 
workstation consists of one machine. Each job is assigned a random routing sequence, the processing 
time for each machine and the due date. The routing sequences assigned to jobs have an undirected flow. 
The assumptions of the manufacturing system are as follows: operations cannot be pre-empted; each 
machine can process only one task at a time; and, the queues are managed by the Earliest Due Date 
(EDD) policy to improve lateness performance. In this research, the material handling time is included 
in the machining time, and the handling resources are always available. The manufacturing system is 
characterized by one bottleneck, as described in Section 4. 
 

The notation is the following: 
 

m =1,.., M is the index of the machines or workstations (the terms can be interchangeable); 
i is the index of the generic part that enters the manufacturing system  
aim =1 if the part i requires the operation of the machine m, 0 otherwise; 
Topim is the process time of the part i in the machine m 
WLm is the workload of the machine/work center m; 
queuem is the processing time of the parts in the queue of the machine/work center m; 
WLav is the average workload over all machines/workstations; 
w=1,..,W is the index of the workers’ set; 
Uw,m is the preference (Gale-Shapley model) of the worker w for the m machine; 
Um,w is the preference (Gale-Shapley model) of the machine m for the w worker; 
Effw,m is the efficiency of the worker w on the machine m; 
Tp is the period time fixed to evaluate the reconfiguration of the machines.   
 

3.1 Gale Shapley Algorithm (Renna, 2017) 
 
This Section summarizes briefly the Gale- Shapley as reported also in Renna (2017). The Gale-Shapley 
algorithm (Gale & Shapley, 1962) was developed to solve the stable matching problem in order to find 
a stable match between two equal sets of elements, given an ordering preference for each element. The 
algorithm defined two finite sets of players called the set of men (m) and set of women (w). Every 
member of each set has preferences over the members of the opposite sex.  At the start of the algorithm, 
each m and w are free; the algorithm starts from the first m that chooses the most preferred w. If the 
woman is free, then w and m become ‘engaged’. If the w is engaged to another m’, the w rejects the man 
(m or m’) with the lower preference and becomes engaged to the man (m or m’) with the higher 
preference. Then, the rejected man (m or m’) is free and proposes to their subsequent preferred women. 
The algorithm is iterated until all men are engaged, the engaged pairs form the male optimal stable 
matching set. This algorithm needs a number of steps that, in the worst case, is quadratic in n (that is, the 
number of men), and it guarantees that if the number of men and women coincide and all participants 
express a strict order over all the members of the other group, everyone gets married, and the returned 
matching is stable. A pseudo-code that briefly explains the algorithm is the following:  
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GALE-SHAPLEY (Set M, Set W) 
while there is an unmarried man, m do 
m chooses the first woman w on his preference list that he has not proposed to yet and proposes to her 
if w is unmarried or prefers m over her current partner m′ then 
w divorces m′ and w marries m 
 

3.2 The Gale-Shapley Model 
 

The approach proposed supports the allocation of workers to machines following a periodic review 
strategy. The machines and the workers need to be divided into men and women according to the Gale-
Shapley algorithm: the women are workers and the men are the machines. Then, the function to compute 
the preference among the members of the two sets will be defined. When a job enters the manufacturing 
system, the routing (aim) and process time (Topim) is assigned to the part as described in the simulation 
model section below. Then, the workload of the machines is updated, as shown in Eq. (1): 
 

𝑊𝐿 = 𝑊𝐿 +  𝑇𝑜𝑝 ∗ 𝑎

ெ

ୀଵ

 
(1) 

 

 

The workload of the machine m is reduced by the Topim when the part i leaves the machine m after the 
process ends. The preferences of the women (workers) are computed as shown in Eq. (2) as follows: 
 

𝑈௪, = 𝛼 ∙ 𝑞𝑢𝑒𝑢𝑒 + 𝛽 ∙𝑊𝐿 (2) 
 

where,  and  are the weight comprises (0,1) and  + =1. The preference of the workers is higher 
for the machine with the most urgent job in the queue and highest workload. The workload considers 
jobs at other machines that will visit the machine m. The preferences of the men are the efficiency of 
the workers, as shown in Eq. (3): 
 

𝑈,௪ = 𝑒𝑓𝑓௪, (3) 
 

If the workers have the same efficiency, the preference for the machines is the same.  
 

3.3 Benchmark Model  
 
The benchmark model to compare the proposed approach is based on a decentralized “when” rule because 
the Gale-Shapley algorithm can operate only as a decentralized rule. In other words, all operations at a 
station have to be completed before a worker can be reallocated. While this rule is outperformed by 
decentralized rules (Thurer et al., 2018) if worker transfer costs or delays are not considered, it leads to 
substantially lower worker movements or reassignments. This makes it more suitable for many practical 
situations. The “where” rule is based on the number of parts in the queue of the machines. Only one rule 
is considered since there were no significant performance differences between rules in Thurer et al. 
(2018). 
 

4. Simulation Model 
 

To evaluate the proposed model, when compared to the benchmark (“when”-“where” rules), the 
following simulation model is developed. Table 1 reports the characteristics of the models tested (Thurer 
et al., 2014a; Thurer et al, 2014b, Renna, 2015). The job shop consists of six workstations, and each work 
center is characterized by one machine. A random routing sequence without any directed flow is assigned 
to a job when it enters the manufacturing system. Then, the processing time and due date is assigned, as 
shown in Table 1. The main assumptions of the manufacturing system modelled (as in previous studies) 
are as follows: raw materials are always available; all jobs are accepted; operations cannot be pre-empted; 
each machine can only process one task at a time; the queues are managed by the EDD rule (to improve 
lateness performance); the material handling time is included in the machining time; and, the handling 
resources are always available. The inter-arrival parameter is adapted to the number of workers available; 
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5 workers is the base; the other inter-arrival parameters are calculated by multiplying the base inter-
arrival by (5/4) for the scenario with 4 workers and (5/3) for the scenario with 3 workers. All the models 
are tested with Tp periodic review from 1 to 17 and only the best case is reported in the numerical results. 
Four cases of workers’ efficiency are considered. In the first case, all the workers have the same 
efficiency, then it is considered a difference of efficiency of 10%, 20% and 30% among the workers. 
Several values of and are tested and only the best cases are reported in the numerical results.  
 
Table 1 
Model Characteristics 

Number of machines 6 (1 bottleneck and 5 no bottlenecks) 

Inter-arrival 
EXPO: 0.7704 (H); 0.642 (M); 0.6099 (L) with 5 workers available 
EXPO: 0.963 (H); 0.8346 (M); 0.7704 (L) with 4 workers available 
EXPO: 1.284 (H); 1.156 (M); 1.0914 (L) with 3 workers available 

Number of Operations Discrete Uniform [1,6] 
Due Date (Number of Operations)*(Total processing time)*Uniform[5,10] 

Processing time 
no bottlenecks 

2-Erlang with mean 1 

Processing time  bottlenecks 2-Erlang with mean 1.15 (utilization about 90%) 
Tp 1,3,5,7,10,12,15,17 

Workers’ efficiency 

a)Efficiency all equals (EFF 1);  
b) efficiency by uniform distribution [0.9-1.1] (EFF 2);  
c) efficiency by uniform distribution [0.8-1.2] (EFF 3);  
d) efficiency by uniform distribution [0.7-1.3] (EFF4). 

 
The performance measures concern the following: 
 

 The ability to deliver the job on time is measured by the following indexes: the percentage of tardy 
jobs; the standard deviation of lateness; and, the average lateness [unit time]. The standard deviation 
of job lateness is a measure of how spread out a lateness distribution is. It is used as an indicator of 
timing performance, i.e. it indicates how close the jobs are completed to their due dates.   

 

The manufacturing system is evaluated based on: 
 

 Throughput [parts/unit time]; the total number of items processed/produced by the manufacturing 
system over the simulation time period. 

 Average job-shop time [unit time]; it is the average time from the release time of the order in the 
manufacturing system to the time the order exits the system. 

 Work In Process (WIP) [jobs]; it is the average total number of jobs in the system (the sum of the 
queues and jobs in the machines); 

 Average Workload of the machines [unit time]; it is the average workload of a machine over the 
simulation period; 

 Standard Deviation of the Workload of the machines [unit time]; it measures the distribution of the 
workload of the machines. This performance is reported as the coefficient of variation.  

 
The performance about the workload should be relevant to compare this research to approaches that 
include also the workload control of the manufacturing system. The simulation length is 25,000 time 
units. For each experimental scenario, a number of replications have been conducted that are able to 
assure a 5% confidence interval and 95% confidence level for each performance measure. Each 
combination of the experiment class is characterized by over 3,000 replications and about 12 hours of 
computation time (4 GHz Intel Core i7 and 16 Gb RAM). 

 

5. Results 
 

Table 2 reports the Analysis of Variance (ANOVA) for the lateness performance (average, standard 
deviations- DS and percentage of items) and Table 3 reports the Analysis of Variance (ANOVA) for the 
system time, throughput, Work In Process (WIP), and Workload performance (average and standard 
deviation - DS).  
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Table 2 
ANOVA Results - Delivery Performance 

 Source of variance Sum of 
Square 

Degree of  
Freedom 

Mean Square F-value P-value 

Lateness 

Efficiency 6050.000 3 2016.700 14.420 0.000 
Inter-arrival 4418.000 2 2209.000 15.790 0.000 

Workers 1303.000 2 651.600 4.660 0.032 
Efficiency*inter-arrival 5064.000 6 844.000 6.030 0.034 

Efficiency* Workers 1338.000 6 223.000 1.590 0.231 
Workers* inter-arrival 1749.000 4 437.300 3.130 0.056 

Error 1678.000 12 139.900   
Total 21601.000 35    

Lateness DS 

Efficiency 1899.800 3 633.300 8.470 0.003 
Inter-arrival 1834.900 2 917.500 12.260 0.001 

Workers 674.600 2 337.300 4.510 0.035 
Efficiency*inter-arrival 1107.100 6 184.520 2.470 0.086 

Efficiency* Workers 724.700 6 120.760 1.610 0.226 
Workers* inter-arrival 1029.100 4 257.280 3.440 0.043 

Error 897.700 12 74.810   
Total 8167.900 35    

Lateness% 

Efficiency 2.886 3 0.962 112.260 0.000 
Inter-arrival 1.123 2 0.563 65.740 0.000 

Workers 0.259 2 0.129 15.110 0.001 
Efficiency*inter-arrival 0.433 6 0.072 8.420 0.001 

Efficiency* Workers 0.233 6 0.039 4.540 0.013 
Workers* inter-arrival 0.094 4 0.024 2.750 0.078 

Error 0.103 12 0.009   
Total 5.133 35    

 
 
 
 

Table 3 
ANOVA Results - Manufacturing System Performance 

 Source of variance Sum of 
Square 

Degree of  
Freedom 

Mean Square F-value P-value 

System Time 

Efficiency 9700.000 3 3233.300 21.830 0.000 
Inter-arrival 5905.000 2 2952.300 19.930 0.000 

Workers 1156.000 2 578.100 3.900 0.049 
Efficiency*inter-arrival 5220.000 6 869.900 5.870 0.005 

Efficiency* Workers 2002.000 6 333.700 2.250 0.109 
Workers* inter-arrival 2028.000 4 506.900 3.420 0.044 

Error 1778.000 12 148.100   
Total 27788.000 35    

Throughput 

Efficiency 0.000 3 0.000 0.500 0.687 
Inter-arrival 0.376 2 0.188 112369.000 0.000 

Workers 2.485 2 1.242 742144.000 0.000 
Efficiency*inter-arrival 0.000 6 0.000 1.010 0.463 

Efficiency* Workers 0.000 6 0.000 2.230 0.112 
Workers* inter-arrival 0.050 4 0.012 7436.920 0.000 

Error 0.000 12 0.000   
Total 2.911 35    

WIP 

Efficiency 14554.000 3 4851.000 10.780 0.001 
Inter-arrival 13299.000 2 6649.000 14.770 0.001 

Workers 7366.000 2 3683.000 8.180 0.006 
Efficiency*inter-arrival 10108.000 6 1684.000 3.740 0.025 

Efficiency* Workers 6047.000 6 1008.000 2.240 0.111 
Workers* inter-arrival 7300.000 4 1825.000 4.050 0.026 

Error 5401.000 12 450.100   
Total 64075.000 35    

Workload AV 

Efficiency 497.000 3 165.670 11.030 0.001 
Inter-arrival 443.200 2 221.600 14.750 0.001 

Workers 232.900 2 116.450 7.750 0.007 
Efficiency*inter-arrival 312.300 6 52.050 3.460 0.032 

Efficiency* Workers 196.200 6 32.700 2.180 0.118 
Workers* inter-arrival 245.500 4 61.370 4.090 0.026 

Error 180.300 12 15.020   
Total 2107.400 35    

Workload DS 

Efficiency 0.397 3 0.132 8.240 0.003 
Inter-arrival 0.174 2 0.087 5.420 0.021 

Workers 0.948 2 0.474 29.480 0.000 
Efficiency*inter-arrival 0.091 6 0.015 0.950 0.497 

Efficiency* Workers 0.079 6 0.013 0.820 0.573 
Workers* inter-arrival 0.241 4 0.060 3.740 0.034 

Error 0.193 12 0.016   
Total 2.124 35    
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All main effects, except the efficiency for the throughput, and the majority of the two-way interactions 
were shown to be statistically significant at α = 0.05. Detailed results will be presented next in Section 
5.1 before a discussion of the results is presented in Section 5.2 
 
 
 

5.1 Performance Assessment 
 
The main performance measures are presented in the form of performance curves. The curves present 
the percentage difference between the game theory and the benchmark for different settings in terms of 
the number of workers, the inter-arrival time, and the efficiency of the workers (see Fig. 1 and Fig. 2). 
  

 
Lateness (3 workers) 

 
Lateness (4 workers) 

 
Lateness (5 workers) 

 
Lateness DS (3 workers) 

 
Lateness DS (4 workers) 

 
Lateness DS (5 workers) 

 
Tardy % (3 workers)  

Tardy % (4 workers)  
Tardy % (5 workers) 

Fig. 1. Performance Assessment - Delivery Performance 
 

The ability to deliver the job on time is significantly improved by our new approach to worker 
assignment. The average and the standard deviation of lateness (see Fig. 1) exhibit the same behavior. 
The game theory approach leads to a significant reduction in lateness. The reduction is higher when 
workers have a different efficiency level (EFF 2, 3 and 4). The inter-arrival parameter is of greater 
importance when the number of workers is 5. In this case, each inter-arrival has a different trend on the 
lateness. The percentage of tardy jobs (Tardy %, Fig. 1c) leads to the biggest improvement for the 
efficiency of EFF 3 of the workers; when the number of workers is 5, the improvements are relevant only 
when the efficiency of the workers is different. Meanwhile, in terms of the performance of the 
manufacturing system (see Fig. 2), the system time, WIP level, and throughput of the parts through the 
manufacturing system reduce with the proposed approach when the workers have different efficiencies. 
Meanwhile, the coefficient of variation for the workload distribution across the machines of the 
manufacturing system increases with the proposed approach.  
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System time (3 workers) 

 
System time (4 workers)  

System time (5 workers) 

 
Work in process (3 workers) 

 
Work in process (4 workers) 

 
Work in process (5 workers) 

 
Workload average (3 workers) 

 
Workload average (4 workers)  

Workload average (5 workers) 

 
Workload coefficient of variation (3 workers) 

 
Workload coefficient of variation (4 
workers) 

 
Workload coefficient of variation (5 workers) 

Fig. 2. Performance Assessment - Manufacturing System Performance 
 

5.2 Discussion of Results  
 
The proposed approach based on game theory improves all of the main performance measures analyzed; 
the different efficiencies of the workers is relevant for the game model. The game model is robust because 
all the conditions tested highlight better performances compared to the benchmark. When the number of 
workers increases, the different efficiencies is more important and has a major impact on the ability to 
obtain better results. 
 
The parameters to set the game model are stable when the efficiency among the workers is significantly 
different. A major advantage of the proposed model is its periodic when rule, which allows for better 
planning in practice. In contrast, both a decentralized and centralized when rule may trigger a worker 
movement at any moment in time. However, it is important to determine the best value of Tp in order to 
obtain the improvement in performance shown. Table 4 reports the best value of Tp,  and for each 
simulation class. The simulation experiments show the efficiency of the workers is relevant for these 
values. In particular, when the workers have a high difference of efficiency, the Tp tends to 5,  to 1 and 
 to 0.  Another important issue concerns the Tp value; the values of the Tp studied show that a low 
difference of Tp from the best value dramatically reduces the performance. Therefore, a when rule that 
leads to different values from the best Tp cannot be proposed in combination with the Gale-Shapley 
algorithm.  
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Table 4  
Best cases of Tp,  and values 

3 Workers 
 EXPO H EXPO M EXPO L 

EFF 1 Tp=5; =0.8, =0.2 Tp=10; =0.8, =0.2 Tp=20; =0.9, =0.1 
EFF 2 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 
EFF 3 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 
EFF 4 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 

4 workers 
 EXPO H EXPO M EXPO L 

EFF 1 Tp=5; =1, =0 Tp=6; =1, =0 Tp=10; =1, =0 
EFF 2 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 
EFF 3 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 
EFF 4 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 

5 workers 
 EXPO H EXPO M EXPO L 

EFF 1 Tp=5; =1, =0 Tp=15; =1, =0 Tp=15; =1, =0 
EFF 2 Tp=5; =1, =0 Tp=10; =1, =0 Tp=15; =1, =0 
EFF 3 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 
EFF 4 Tp=5; =1, =0 Tp=5; =1, =0 Tp=5; =1, =0 

 
6. Conclusions 
 

Manufacturing systems constrained by machine capacity and labor capacity are known as Dual Resource 
Constraint (DRC) shops. Although a broad literature on DRC shops exists, the application of game theory 
has not been investigated in this context. In response, our first research question asked: Can the Gale-
Shapley Algorithm be adapted to the DRC job shop problem under different number of workers, workers’ 
efficiency and inter-arrival time? Our second research question then asked: What is the performance 
improvement enabled by the Gale-Shapley Algorithm if compared to simple when and where rules? Using 
simulation, we have demonstrated how the Gale-Shapley algorithm has the potential to significantly 
improve DRC shop performance and that results are robust to changes in demand, the number of workers, 
and different efficiencies among the workers. The model proposed allows labor efficiency information 
to be included with a positive effect on performance when the efficiency among the workers is different. 
Moreover, the robustness of the approach is demonstrated by the improvements obtained for all 
performance measures considered and under different conditions of demand, the number of workers, and 
different efficiencies among the workers.  
 

6.1 Managerial Implications 
 

The proposed model can handle fluctuations in manufacturing systems due to labor turnover, 
absenteeism, different worker competences, etc. The model supports the assignment of workers to 
workstations following a periodic review policy. The game model reduces the number of worker 
movements compared to a centralized when rule that allows for worker re-allocation after each operation 
completion. While the game model may increase the number of transfers compared to a decentralized 
rule because it re-assigns all of the workers in the manufacturing system, it fixes the time when transfers 
occur. Hence, transfers are only triggered at fixed intervals (i.e. at a shift change or lunch break), whereas 
decentralized and centralized when rules may trigger a worker movement at any moment in time. The 
manager can use simulation with the game model to pursue a given performance target, adapting 
conditions such as the inter-arrival time to the number of workers available (absenteeism), or making 
capacity adjustments, such as the temporary introduction of a new machine. The game model assures a 
solution with low computational complexity is provided even when the number of workers and/or 
machines increase.   
 

6.2 Limitations and Future Research 
 

A limitation of our study is that we assume workers are fully interchangeable, and we omit behavioral 
factors such as learning and forgetting. The game model can include these features in the assignment 
problem and future research could therefore take these features into account.  Meanwhile, the only 
performance measure that deteriorated in our study was the variation in the workload on the shop floor. 
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Future research could therefore explore the interaction of the game model with workload control 
mechanisms to stabilize the workload. 
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