

* Corresponding author
E-mail: daniel.rossit@uns.edu.ar (D. A. Rossit)

2020 Growing Science Ltd.
doi: 10.5267/j.ijiec.2019.8.001

International Journal of Industrial Engineering Computations 11 (2020) 281–298

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Critical paths of non-permutation and permutation flow shop scheduling problems

 Óscar C. and b,eMartín Safe ,a,dMariano Frutos ,b,cFernando Tohmé ,a,b*Rossit Daniel Alejandro
fVásquez

aDepartment of Engineering, Universidad Nacional del Sur, Argentina
bINMABB UNS CONICET - Av. Alem 1253, Bahía Blanca, Buenos Aires, Argentina
cDepartment of Economy, Universidad Nacional del Sur, Argentina
dIIESS UNS CONICET, Argentina
eDepartment of Mathematics, Universidad Nacional del Sur, Argentina
fDepartment of Industrial Engineering, Universidad de Santiago de Chile, Chile
C H R O N I C L E A B S T R A C T

Article history:
Received July 1 2019
Received in Revised Format
August 10 2019
Accepted August 10 2019
Available online
August 10 2019

 The literature on flow shop scheduling has extensively analyzed two classes of problems:
permutation and non-permutation ones (PFS and NPFS). Most of the papers in this field have
been just devoted on comparing the solutions obtained in both approaches. Our contribution
consists of analyzing the structure of the critical paths determining the makespan of both kinds
of schedules for the case of 2 jobs and m machines. We introduce a new characterization of the
critical paths of PFS solutions as well as a decomposition procedure, yielding a representation
of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in
which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a
wider dispersion of processing times improves the chances of obtaining optimal non-permutation
schedules, in particular when this dispersion affects only a few machines.

© 2020 by the authors; licensee Growing Science, Canada

Keywords:
Non-permutation flow shop
Scheduling
Makespan
Critical path

1. Introduction

Flow Shop scheduling problems involve finding job schedules by optimizing some criteria. A flow shop
system is such that all its jobs j, j = 1, 2,…, n, visit all the machines m, m = 1, 2,…, M, following the
same technological order (all the jobs must visit the first machine, then the second machine and so on).
Each job j performs an operation Oj,m on a machine m. Each such operation has a processing time, pj,m.
The goal is to find a sequence of jobs, optimizing the objective function (here we consider only the most
common objective, the makespan criterion Cmax). One way of dealing with this NP-hard problem (Garey
et al., 1976), is by focusing on the permutation flow shop scheduling problem (PFS), where the order of
jobs going through a machine is repeated on all machines (in Graham et al. (1979) notation, F|prmu|Cmax).
This condition involves considering n! possible schedules, being n the number of jobs. This permutation
condition ensures the optimality of the solutions of problems with up to 3 machines (Conway et al., 1967;

282

Pinedo, 2002; Błażewicz et al., 2013) since in an optimal flow shop schedule, the ordering of jobs on the
first two machines (m1 and m2) and on the last two machines (mM-1 and mM) can be the same. This implies,
in turn, that in larger instances the permutation condition can exclude the optimal solution. To ensure
optimality we consider the variant known as non-permutation flow shop scheduling problem (NPFS) (in
Graham’s notation, F||Cmax). The optimal solution of the NPFS is in fact the optimal solution for the
entire problem. The main disadvantage of considering the NPFS problem is that the number of possible
schedules grows as n!M, being n the number of jobs and M the number of machines. NPFS has thus a
huge search space, even for medium size instances. So, for example, for 20 jobs and 5 machines the total
number of possible schedules is 8.52 x 1091. This means that the problem becomes easily intractable. One
of the implicit conditions for the feasibility of the NPFS schedules is the existence of intermediate storage
steps between successive stages in the flow of activities. If the storage capacity or the number of storage
steps is limited, the complexity of the problem increases (Li & Tang 2005). According to Rossi and
Lanzetta (2014) “storage facilities for NPFS schedules can either be between, on board or shared among
the machines”. They also point out that, in the NPFS case with sequence-dependent setups, allowing
different jobs to share setups at some stages can reduce the impact of those setups. Potts et al. (1991) and
Tandon et al. (1991) make, in the same sense, a stronger claim, namely that PFS yields lower quality
solutions.

In this paper, we present a contribution to further understanding of these problems. We restrict our
attention to problems with 2 jobs and M machines, with makespan as the objective function. We focus
on the internal structure of both kinds of schedules in order to analyze the transition from PFS solutions
to NPFS ones. We introduce a novel characterization of their critical paths (i.e. the sequences of activities
that support the makespans of the schedules), showing that in the case of 2 jobs the critical path of NPFS
schedule can be seen as a sequence of PFS critical paths. This allows us to analyze the time length of the
critical path, by identifying the processing times of their component operations. Starting from these
analyses we study the dominance relations between both types of schedules. We find some particular
cases in which NPFS schedules are worse, in terms of their makespans, than PFS ones. Numerical
explorations provide information about the impact of processing times in 2-job flow shop problems. As
we will show, the critical paths of NPFS schedules tend to incorporate more operations than those of PFS
schedules, but nevertheless may yield better makespans (Rossit et al., 2018). This indicates that the
comparison among critical paths depends not only on the number of operations in them but also on their
processing times. We design and run experiments to assess the dispersion of processing times. The results
are evaluated in terms of the exact solutions of mixed-integer formulation of PFS and NPFS problems.
Given the complexity of running this kind of experiments we consider a study case of a flow shop
scheduling problem with 2 jobs and m-machines, which is known to be polynomially solvable (Akers,
1956; Błażewicz et al., 2007).

The plan of the paper is as follows. Section 2 reviews the literature on both NPFS and critical paths in
PFS flow shop problems. Section 3 describes the critical paths of both PFS and NPFS solutions. Section
4 evaluates critical paths and presents some hypotheses about their relation to parameters of the problem,
which in Section 5 are experimentally tested. Finally, Section 6 concludes.

2. Literature review

This section reviews the state of the art in the research on NPFS and PFS problems, providing a
framework for our own work.

2.1. NPFS problems1

In the last years, with the huge increases in computing power and the development of efficient algorithms,
NPFS problems have gained the attention of the scientific community. Several variations have been

1 Rossit et al. (2018a) presents a comprehensive discussion of all the relevant aspects of NPFS problems, covering some issues
that are beyond the scope of this paper.

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 283

studied under the NPFS scheme. For instance, Ying et al. (2010) study a flow shop scheduling problem
that is solved by simulated annealing, showing that NPFS schedules yield better results than PFS ones.
Rudek (2011) shows that for the two-machine case if learning effect is considered, PFS is not optimal
anymore, being necessary to analyze NPFS schedules. Vahedi-Nouri et al. (2013) solve NPFS problems
with learning effects and availability constraints, solving them with a heuristic (VFR) developed by the
authors. Ziaee (2013) addresses NPFS with sequence-dependent setup times through a two-phase
heuristic. Rossi and Lanzetta (2013) deal with the NPFS problem with an ACO algorithm. A particular
feature of the ACO algorithm is that from the beginning it explores non-permutation solutions. In Rossi
& Lanzetta (2014) they use the benchmarks of Demirkol et al. (1998) for the same problem. For these
instances, their ACO algorithm outperforms other variants also used to solve NPFS problems. These
authors also outline a sequence of logical steps for the passage from a physical layout (the actual
production assets) to a mathematical model and its algorithmic treatment. Splitting the lot of units of each
product is considered under a NPFS scheme in Shen et al. (2014) where flow shop batching with
sequence-dependent family setups is investigated and solved by means of a taboo search algorithm; and
in Rossit et al. (2016) a lot streaming strategy is implemented for the optimization of a NPFS problem
with the makespan objective. Some preliminary results of this work were presented in Rossit et al.
(2018b).

The vast majority of papers dealing with NPFS problems as their main contribution, present algorithms
(meta-heuristics, in general) capable of handling them (Liao et al., 2006; Ying & Lin, 2007; Ying,
2008; Lin & Ying, 2009; Liao & Huang, 2010; Vahedi-Nouri et al., 2013; Ziaee, 2013; Rossi & Lanzetta,
2014; Benavides & Ritt 2016). These algorithms generally address the NPFS problem after a first phase
in which it produces a near-optimal PFS solution: different types of procedures are applied to improve
this initial PFS solution. Alternatively, Kis and Pesch (2005) review exact solution methods for PFS and
NPFS problems. Very few papers focus on the structure of the problem and its relation to the solution
(Potts et al., 1991; Rebaine, 2005; Nagarajan & Sviridenko, 2009; Xiao et al., 2015). The main
contribution of these papers involves the characterization of the difference between the theoretical
makespans of NPFS and PFS schedules under different conditions.

2.2. Contributions on critical paths in flow shop problems

The concept of critical paths has been closely associated with the analysis of scheduling problems since
the inception of these studies, at the end of the 50’s (Kelley & Walker, 1959; Kelley, 1961). A critical
path is the class of activities that define the makespan of a schedule. This means that a delay in any of
those activities extends the makespan of the schedule. While this concept seems most relevant in
problems of project scheduling, it is widely used in all the field of scheduling in Operations Research.
Nevertheless, in flow shop scheduling the interpretation of “critical path” is not straightforward because
jobs, instead of operations, have to be scheduled. Furthermore, job schedules do not translate immediately
into operation schedules. For instance, the solution of a flow shop problem with three jobs (n = 3) and
six machines (M = 6) indicates that the jobs must be processed in the 1-2-3 order. But this does not
indicate which exact sequence of operations among from 18 (6*3) will be the one yielding the optimal
makespan. Nevertheless, there is a definite relation between the 8 operations defining the critical path (M
+ (n − 1), according to Nagarajan et al., 2009) and the schedule of jobs. A first attempt to addressing this
issue is due to Nip and Wang (2013), who combine the classical 2-machines flow shop problem with the
search for the shortest paths in undirected graphs. More precisely, they combine Johnson’s rule (Johnson,
1954) with Dijkstra’s shortest path procedure (Dijkstra, 1959) to generate an approximation algorithm
for a particular PFS problem. This algorithm implicitly uses the critical path. Nip et al. (2015) extend
Nip & Wang (2013) towards 3-machines flow shop problems, applying again a shortest path solution.
They describe the critical path structure for the corresponding PFS problems. Furthermore, they show
that their approach, when applied to 3 or more machines, is NP-hard and propose an approximation
algorithm to solve those cases. Shang et al. (2017) also use critical paths in the minimization of makespan
in flow shop problems. Here, the authors introduce a moderately exact exponential algorithm for PFS

284

problems with 3 machines. The motivation for introducing such variant of a dynamic programming
solution is that in many instances an exponential variant can be better than a polynomial one. For
example, it is faster for an O (1.1n) instance than for a O(n4) for every n < 224.2 This algorithm goes
through a sequence of partial critical schedules converging to the final schedule, where the former are
schedules in which operations start as soon as possible.

2.3. Comments on the literature

We have presented the main contributions in the area of NPFS problems with makespan as objective as
well as those on critical paths in flow shop problems. As indicated, the literature focuses on handling the
large computational requirements of NPFS problems, comparing in experiments the PFS and NPFS
solutions. On the other hand, the literature on critical paths in flow shop problems focuses only on PFS
problems. None of those works compares the structure of critical paths of both problems. This is exactly
what we aim to accomplish in this article. This allows us to generate PFS solutions similar to those in
Nip et al. (2015), but instead of being restricted to 3 machines, we extend them to m-machines. In turn,
unlike Nip et al. (2015), who add operations according to the jobs to which they belong, we index them
by the machines. This allows us to extend the description to NPFS problems.

3. Critical paths

In this section, we will present an analysis of the critical path structures of both PFS and NPFS (from
now on, critical path will be denoted CP). It is worth to mention that both structures are symmetric. The
optimal makespan obtained in a forward analysis is equal to the one obtained on a backward one
(inverting the routing of the jobs, i.e., jobs are processed first on the last machine mM, next on mM-1 and
so on). It is also interesting to recall the properties proposed by Conway et al. (1967). In this sense,
Blazewicz et al. (2007), provide direct and simple enunciations as well as their corresponding proofs.

Proposition 1. For 𝐹||𝐶max, there exists an optimal solution with the same processing ordering on the
first two machines.

Proof. To see this, consider any solution in which the orders differ on the first two machines. Then, there
must exist a pair of adjacent jobs, say 𝑎 and 𝑏, on the first machine permutation, appearing in reverse
order in the permutation on the second machine. But these two jobs can be reversed on the first machine
without increasing the starting time (and thus the completion time) of any job on the second machine.
Inductively, we can repeat this pairwise switching sequence until the permutation in the first machine
agrees with the (original) order on the second. □

An immediate consequence of Proposition 1 is that 𝐹2||𝐶max and 𝐹2|prmu|𝐶max are equivalent, where
“𝐹2||𝐶max” means a 2-machines flow shop problem in which makespan is minimized. That is, in the case
of a 2-machines flow shop, the optimal schedule is a permutation. Consequently, the 𝐹2||𝐶max is solvable
in polynomial time using Johnson’s algorithm (Johnson 1954). Moreover, due to the symmetry of the
𝐹||𝐶max, the following property holds:

Proposition 2. For 𝐹 ||𝐶max, there exists an optimal solution having the same processing ordering on the
last two machines.

Proof. Analogous to the proof of Proposition 1. □

Propositions 1 and 2 are well known in the literature on NPFS schedules (Rossit et al., 2018). They
basically correspond to Theorems 5.1 and 5.2 of Conway et al. (1967), which in turn extend and make
more precise Lemma 2 of (Johnson, 1954). Our contribution aims to find new results in the context of

2 For more on this, see Woeginger (2003) and Fomin & Kratsch (2010).

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 285

the classical Flow Shop problem. As a motivation, we present in Example 1, a numerical examination of
the smallest case in which Propositions 1 and 2 no longer ensure optimality. The analysis of this example
will yield new concepts that will be defined precisely in the rest of this paper jointly with novel results
involving them

Example 1. Let us consider a numerical example of 2 jobs and 4 machines. This is the smallest possible
case in which PFS is not optimal for makespan (M > 3). The instance selected is described in Table 1. 2
jobs (j1 and j2) have to be scheduled on 4 machines (m1, m2, m3 and m4) in order to minimize makespan.

Table 1
Processing times of Example 1

 m1 m2 m3 m4
j1 4 1 1 4
j2 1 4 4 1

The possible PFS schedules are two: j1-j2 and j2 - j1, both schedules yielding a makespan of 14. For NPFS
schedules, we have other alternatives (remember that switching the sequence between the first and the
last two machines does not improve the PFS makespan): sequencing j1-j2 on machines m1 and m2, and j2
- j1 for m3 and m4; and j2 - j1 for m1 and m2, and j1-j2 for m3 and m4. The latter sequence (j2- j1; j1-j2) is the
optimal one, with a makespan of 12. The Gantt representation of the optimal NPFS schedule is illustrated
in Fig. 1, as follows:

Fig. 1. Optimal schedule, which is a NPFS solution Fig. 2. Best possible PFS solution

From Fig. 1, we can deduce that a switch in the sequence happens in the passage from m2 to m3, indicated
with a thick black horizontal line. m3 is considered a switching machine since it switches the job ordering
of the previous machine. Let us compare this with Fig. 2, which shows the best PFS schedule for the
problem. A simple inspection of both figures indicates that the NPFS solution has a smaller makespan
than the PFS one. In the sequences shown in Fig. 1 and Fig. 2 the critical paths are drawn in dashed lines.
It is of interest to notice that these critical paths exhibit indifferences between including or not some
activities. So, in Figure 1, the same makespan is obtained by including the second activity of j2 or the
first of j1, an indifference that can be arbitrarily resolved. If we enumerate the activities in the critical
paths of the NPFS schedule (Figure 1) we get the following: i) the first activity of j2, ii) the second activity
of j2, iii) the second activity of j1, iv) the third activity of j1, v) the fourth activity of j1 and vi) the fourth
activity of j2, a total of 6 activities. An analogous enumeration of the CP of the PFS schedule (Figure 2)
yields: i) the first activity of j2, ii) the second activity of j2, iii) the third activity of j2, iv) the fourth activity
of j2, v) the fourth activity of j1, a total of 5 activities. Comparing both CPs, we can see that the minimal
makespan is obtained at the longest CP in terms of activities, something that is not quite intuitive. The
processing times have a large impact on the characterization of the makespan and the CP of a schedule
since the entries in Table 1 are not homogeneous. We can deepen our analysis by considering the critical
paths of solutions to detect the processing times that determine the makespan.

3.1. Critical paths of PFS schedules

The PFS-CP described and illustrated in the previous section provides a first insight into a description of
CPs. For a more thorough characterization consider Fig. 3, which represents a generic schedule of 2 jobs

m 1
p 2,1

m 2
p 1,2

m 3
p 1,3

m 4
p 2,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p 2,2

p 2,3

p 1,1

p 1,4

m 1
p 2,1

m 2 p 1,2

m 3 p 1,3

m 4
p 2,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p 1,1

p 2,2

p 2,3

p 1,4

286

(j1 and j2) on 4 machines (m1, m2, m3 and m4) flow shop. The black bars marked with “x” indicate that
the beginning of a new activity depends on a disjunctive constraint, either the end of a job at the previous
machine or the release of the current machine from the previous job. For instance, considering "x1" in
Fig. 3, activity O2,2 will begin at the maximum between the completion of O2,1 and the completion of
O1,2. As an initial description of the structure of critical paths consider the following proposition:

Fig. 3 Generic case of PFS schedule with 2 jobs (j1 and j2) and 4 machines

Proposition 3. Each CP of Fig. 3:

a) always starts with the first operation of the first job in the schedule,
b) always finishes with the last operation of the last job in the sequence,
c) includes sequentially the operations from one job up to a stage, where it starts including the

operations of the other job,
d) at the aforementioned stage, it includes operations from both jobs (the previous and the next one),
e) the rest of the stages only include operations from one of the jobs.

Proof. The proof follows, without loss of generality, from the careful inspection of Fig. 3. We can see,
that O1,1 and O2,4 will be part of every possible CP (3.a and 3.b). To study all the possible CPs in Figure
3, let us run a backward analysis. O2,4 is the last activity included in the CP, at instant "x3". If O1,4 is
included in the CP, then O2,3 finishes before or at the same time as O1,4. This implies, that all the other
possible paths from O1,1 to "x3" that include O2,3 are shorter or equal (in terms of makespan) than the
ones which include O1,4. Furthermore, since the start of O1,4 does not depend at all on the activities of job
j2, "x2" will be defined by O1,3, and "x1" by O1,2, and finally O1,1. The CP will be: O1,1 - O1,2 - O1,3 - O1,4
- O2,4 (five activities). This first insight allows us to state that for the two jobs problem, once a tie (in
terms of makespan) at an "x" instant is broken by an activity of the first scheduled job, all the previous
ties at "x" instants are also broken by activities of the same job, supporting 3.c.

On the other hand, if “x3” is defined by O2,3, then “x2” must be defined by a new comparison. If “x2” is
defined by O1,3, since O1,3 does not depend on activities from the second job, the previous “x” instants
are defined by activities from the first job, and the final CP is: O1,1 - O1,2 - O1,3 - O2,3 -O2,4 (five activities)
(3.d and 3.e). The same analysis can be carried out for "x2" if it is defined by O2,2, as well as for "x1".
Notice that, if from all the points "x" the only one defined by an activity of j1 is the last one, the CP will
consist of all the activities of j1 and only includes the last activity of j2 (4.c). This can be verified by
considering a Gantt diagram where activity O1,4 finishes after the end of O2,3, and for the rest of the "x"
instants, activities of j1 finish before their counterparts in j2. □

Proposition 3 facilitates the identification of the operations (and thus their processing times) included in
the critical path. Nip et al. (2015) analyzed the F|prmu|Cmax problem with n jobs and 3 machines, finding
that its makespan is:

෍ 𝑝௝,ଵ

௝ୀ௨

௝ୀଵ

+ ෍ 𝑝௞,ଶ

௞ୀ௩

௞ୀ௨

+ ෍ 𝑝௟,ଷ

௟ୀ௃

௟ୀ௩

= 𝐶௠௔௫ for some u, v ϵ J (1)

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 287

The difference between theirs and our approach is that Nip and coauthors restrict the number of machines,
while we do the same with the number of jobs. That is why expression (1) applies in our framework only
for M ≤ 3. Then, up from Proposition 3 we can derive an alternative characterization of the makespan
under a similar structure:

Proposition 4. The makespan of a F|prmu|Cmax scheduling problem of two jobs obeys the following
specification:

෍ 𝑝ଵ,௜

௜ୀ௠ᇲ

௜ୀଵ

+ ෍ 𝑝ଶ,௜ᇲ

ெ

௜ᇲୀ௠ᇲ

= 𝐶௠௔௫ for some m′ ϵ M . (2)

Proof. If follows immediately from the proof of Proposition 3. □

Expression (2) indicates that the makespan is obtained as a sum of the processing times of the operations
in its critical path. It includes the operations of the first job up to a machine m'. After that, Eq. (2) adds
the sequence of operations of the second job. Machine m' satisfies Proposition 3.d, being an instance of
the following definition:

Definition 1 (Critical machine): a machine is critical if operations O1,m’ and O2,m’ belong to the critical
path.

Then, all the operations carried out on a critical machine will have a direct impact on F|prmu|Cmax in 2
jobs, while the rest of the machines will impact only on a single operation. Thus, the empirical expression
(2) represents all the possible CPs from a PFS schedule of 2 jobs j1 - j2. It yields, furthermore, the number
of operations expected by (Nagarajan & Sviridenko 2009) for a permutation CP, 𝑡 = 𝑀 + 𝑛 − 1, being
t: number of activities, m: number of machines and n: number of jobs. In our example of 4 machines and
2 jobs, t = 5 operations. Another important feature of expression (2) is that it can be extended to a larger
number of machines. It can be easily shown that, by adding to Figure 3 one machine, the correspondent
activities and another instant “x”, yielding a straightforward extension of (2). To represent the set of CPs
of schedule j2 - j1, it is enough to reorder the terms in (2): first add the activities of j2 up to m’, and then
those of j1 from m’ up to the last machine M.

3.2. Critical path of a NPFS schedule

We intend to find a description of the CP of a NPFS schedule, similar to the one of PFS, in order to
compare both. Considering again the numerical example at the beginning of Section 2, we can see that
the CPs of both the NPFS and the PFS solutions include activities from the two jobs. However, the
comparison of Figures 1 and 2 shows that there exist differences between the two cases. The main ones
are: the NPFS-CP has one activity more than the PFS-CP, and in the NPFS-CP, unlike the PFS-CP, the
activities from both jobs alternate. This suggests the following result:

 Proposition 5. A F||Cmax scheduling problem of two jobs and four machines can be decomposed into two
F|prmu|Cmax scheduling sub-problems of two jobs and two machines each. The makespan is obtained as
the sum of the makespans of the sub-problems. The set of CPs of a F||Cmax scheduling problem can be
described by the following expression:

ቌ ෍ 𝑝ଵ,௜

௜ୀ௠ᇲ

௜ୀଵ

+ ෍ 𝑝ଶ,௜ᇲ

௜ᇲୀ௠∗

௜ᇲୀ௠ᇲ

ቍ + ቌ ෍ 𝑝ଶ,௟

௟ୀ௠ᇲᇲ

௟ୀ௠∗

+ ෍ 𝑝ଵ,௟ᇲ

ெ

௟ᇲୀ௠ᇲᇲ

ቍ , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚ᇱ, 𝑚∗, 𝑚ᇱᇱ ∈ 𝑀|𝑚ᇱ < 𝑚∗ ≤ 𝑚ᇱᇱ (3)

where, m* represents the switching machine at which the jobs are switched, while m' and m'' are critical
machines.

288

Proof. Consider Figure 4. We can see a NPFS schedule of 2 jobs and 4 machines which switches the job
ordering from m2 to m3.

Fig. 4. Generic case of a NPFS schedule of 2 jobs (j1 and j2) and 4 machines.

The first feature in Fig. 4 that supports the claim is that O2,3 will not start before the completion of O2,2.
This indicates that the total completion time (makespan) can be decomposed into the sum of the time
elapsed up to the completion of O2,2 and the rest of the time up to the completion of O1,4. Furthermore, a
backward analysis shows that the NPFS schedule of Fig. 4, can be decomposed into two minor PFS
schedules: one of machines m1 and m2, and the other of machines m3 and m4. To assess the validity of
considering smaller PFS schedules, let us focus on the schedule of m3 and m4 in Figure 4, and run a
backward analysis. The operation O1,4 is included in every possible CP. Then comes instant “x2”, which
if defined by O2,4, indicating that the CP on machines m3 and m4 is O2,3 - O2,4 - O1,4. This CP has two
aspects that allow considering this smaller system as a PFS schedule: it has three operations, and can be
represented by expression (2). For machines m1 and m2 a similar analysis shows that a possible CP can
be O1,1 - O1,2 - O2,2. Again, the CP corresponds to a PFS-CP. Finally, the CP of the NPFS schedule can
be O1,1 - O1,2 - O2,2 - O2,3 - O2,4 - O1,4 , which has 6 operations (as in the numerical example of Fig. 1).
And it can be represented by expression (2), where m' and m'' are m2 and m4, respectively, and the
switching machine m* is m2. □

Let us note that the switching machine m* must satisfy Propositions 1 and 2. Consequently, for a 4-
machine flow shop configuration, m* can be only m2. This clarification raises two new questions: what
happens to expression (3) when the number of machines is larger than 4? What happens when m* can
have different or multiple values? Clearly, expression (3) depends on the size of the system and on the
type of NPFS schedule: when the number of machines increases, m* can take different and multiple
values (Propositions 1 and 2 restrict the schedules only for the first and the last two machines). An answer
is provided by Proposition 6 which considers an instance of Proposition 5, with M = 5 and two switching
machines. For the sake of clarity, from now on we will denote with S the number of switching machines.

Proposition 6. A F||Cmax scheduling problem of two jobs and five machines can be decomposed into two
F|prmu|Cmax scheduling sub-problems, for each switch in the job ordering. The makespan is obtained as
the sum of the makespans of the sub-problems.

Proof. Consider Fig. 5, as a new example of 2 jobs and 5 machines. Applying Propositions 1 and 2, we
know that there is no benefit in switching the job ordering from m1 to m2 and from m4 to m5, thus leaving
n!M-2 possible schedules. In this new example: 2!(5-2) = 8 possible schedules. From these 8 possible
schedules, 2 are PFS (j1 - j2 and j2 - j1), and the other 6 are NPFS schedules. Half of the 6 NPFS schedules
start with the sequence j1 - j2 and the other half with the reverse sequence. Now, consider only NPFS
schedules starting with j1 - j2, i.e. 3 different schedules. Remember that now m* can be m2 or m3 or both.
In the cases where m* takes a unique value, i.e. m2 or m3, expression (3) is valid according to the
decomposition procedure shown in Fig. 4. The resulting CPs of the decomposed flow shop subsystems
can be described as PFS-CPs, and expression (2) is valid for m machines. But when m* is both m2 and
m3, expression (2) is no longer valid.

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 289

m1 O11 O21 x

m2 O12 1 O22

m3 O23 O31

m4 O14 O24 x

m5 2 O25

Fig. 5. NPFS schedule of 2 jobs and 5 machines, with two switching machines (m2 and m3)

If expression (3) is applied to the schedule in Figure 5 the resulting CP will not represent the actual CP.
Expression (3) is valid only for a single switching machine m*. Consider the case in which the schedule
in Figure 5 is forced to pick only one of the switching machines, for instance if m2 is discarded as
switching machine and m3 becomes m*. Then, the CP obtained in expression (3) will have 7 activities,
unlike the actual optimal schedule. Running a backward analysis, we can see that the actual CP of Figure
5 ends with activity O2,5, starting at “x2”. Suppose O2,4 is included and successively also O1,4, O1,3, O2,3,
O2,2. Then we get to the switching instant “x1”. Assume that O1,2 is also included, as well as O1,1, yielding
O1,1 - O1,2 - O2,2 - O2,3 - O1,3 - O1,4 - O2,4 - O2,5 as CP, with a total of 8 activities. Consequently, we need a
new formulation, with an expression similar to (1) and (2). Based on the decomposition procedure we
have been applying, this schedule can be decomposed into a discrete number of flow shop independent
systems. More precisely, the schedule in Figure 5 can be decomposed into three smaller systems: i) m1
and m2, ii) m3 and iii) m4 and m5. Summing up their smaller-makespans we obtain the global makespan
(activity O2,3 will not start before the completion of O2,2, and O1,4 will not start before the completion of
O1,3). Subsequently, adding the CPs of the smaller systems we get the global CP. This is represented by
expression (4), where m* and m** are the switching machines:

ቌ ෍ 𝑝1,𝑖

௜ୀ௠ᇲ

௜ୀଵ

+ ෍ 𝑝2,𝑖′

௜ᇲୀ௠∗

௜ᇲୀ௠ᇲ

ቍ + ቌ ෍ 𝑝2,𝑙

௟ୀ௠ᇲᇲ

௟ୀ௠∗

+ ෍ 𝑝1,𝑙′

௠∗∗

௟ᇲୀ௠ᇲᇲ

ቍ + ቌ ෍ 𝑝1,𝑘

௞ୀ௠ᇲᇲᇲ

௞ୀ௠∗∗

+ ෍ 𝑝2,𝑘′

ெ

௞ᇲୀ௠ᇲᇲᇲ

ቍ ,

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚ᇱ, 𝑚∗, 𝑚ᇱᇱ, 𝑚∗∗, 𝑚ᇱᇱᇱ ∈ 𝑀|𝑚ᇱ < 𝑚∗ ≤ 𝑚ᇱᇱ < 𝑚∗∗ ≤ 𝑚ᇱᇱᇱ

(4)

In Fig. 5, m2 and m3 are the switching machines. A particular feature of the CP model presented here is
that it also applies to the single machine case. The middle summand of expression (4) represents the
portion of CP captured by m3 in Fig. 5.

From the comparison of expressions (3) and (4), we can further specify the decomposition procedure:

Decomposition method. A F||Cmax scheduling problem of two jobs can be decomposed into as many
F|prmu|Cmax scheduling sub-problems as the number of switches in the job ordering plus one. The
makespan is obtained as the sum of the makespans of the sub-problems. The set of the CPs of the sub-
problems can be described by expression (2).

This enunciation leads to some interesting results for the 2 jobs case. Whenever a switch is present, the
decomposition procedure can be applied, and a new activity is added to the CP. Then, expression (2) and
its expansions in (3) and (4) can be conceived as a recursive formulation in an algorithm intended to
generate flow shop critical paths.

4. Comparing the critical paths of NPFS and PFS for 2 jobs and m machines

As mentioned before, we intend to compare NPFS and PFS schedules. Expression (2) and the
decomposition method allow the generation of the entire set of possible CPs for each possible schedule.
With this set of CPs available, it becomes possible to run comparisons. The idea is to determine the
degree of similarity between the CPs. Initially, we know that NPFS-CPs are longer than PFS-CPs for the

290

same instance. Even more, NPFS-CPs can be much longer than PFS-CPs, since every switch adds extra
activities to the CP. Consequently, the length of NPFS-CPs, measured by the number of operations, is
longer than that of PFS-CPs. We can hint that NPFS-CPs will yield worse makespans than PFS-CPs for
a certain number of operations. The corresponding concept of dominance is expressed as follows:

Definition 2. If for some NPFS Schedule we have that:

෍ 𝑝௝,௜

௣ೕ,೔ ∈ ே௉ிௌି஼௉

≥ ෍ 𝑝௝,௜

௣ೕ,೔∈ ௉ிௌି஼௉

 , (4)

the schedule will be dominated by a PFS schedule.

This definition establishes that, if the sum of the processing times of the operations in the NPFS-CP is as
large as that of the operations in the PFS-CP, the former will be dominated by the PFS-CP. Since the
critical paths yield the makespans of the schedules, a shorter PFS-CP will indicate that the PFS schedule
has a better makespan than NPFS. A particular case of dominance arises when NPFS-CP contains all the
operations of the PFS-CP and thus the latter schedule dominates the former one. Figure 6, illustrates this
particular dominance case in the case of two jobs and five machines. The CP at the top is a PFS-CP while
the CP at the bottom is a NPFS-CP. It is easy to see that the PFS-CP operations are all captured by the
NPFS-CP, and that there are two extra activities in the NPFS-CP, indicated by circles. Then, the NPFS-
CP is dominated by the PFS-CP.

Fig. 6 Critical path dominance

We now present other, less immediate, cases in which Definition 2 applies. Recall that the number of
switching machines is denoted S, and that according to Propositions 1 and 2, S ≤ M – 3.

Proposition 7. Consider an instance of two jobs and m machines (M > 4). If M is odd, the number of
switching machines in the NPFS schedule is M – 3, and the operations are such that p1,2 > p2,1 and p1, M
> p2, M – 1. Then, the NPFS schedule is dominated by the PFS schedule.

Proof. We prove this result by induction. As the base case consider M = 5 (the smallest case to which
the claim applies) and an NPFS schedule with S = M – 3 = 2 switches (illustrated in Figure 3) and a PFS
schedule starting with the same operation as the NPFS one. We will show that the PFS solution dominates
the NPFS schedule.

By a straightforward application of the decomposition method we know that the makespan of the NPFS
schedule with S switches can be rewritten as the sum of the makespans of S + 1 PFS sub-problems. These
involve: i) operations on m1 and m2, ii) operations on m3 and iii) operations executed in m4 and m5, as
shown in Figure 3. Each “sub-makespan” can be obtained in terms of expression (2). Since ii) includes
operations of the two jobs in m3, Definition 1 indicates that it is a critical machine and thus the makespan
in that case is just the sum of the processing times on those operations.

Since M is an odd number, S is even and thus the schedules for subproblems i) and iii) coincide. In i), the
operations O1,1 and O2,2 are necessarily part of its critical path (Proposition 3, a and b), while only one
from O1,2 or O2,1 will be included. Since, by definition, p1,2 > p2,1, O2,2 can start only after O1,2 has finished.
Then, the makespan of i) is: p1,1 + p1,2 + p2,2.

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 291

For iii) the analysis is similar: O1,4 and O2,5 are included in the critical path (again according to
Proposition 3.a,b) and from the other two, only O1,5 belongs to the critical path (by definition p1,M > p2,M

– 1). Then, the makespan of iii) is p1,4 + p1,5 + p2,5.

Therefore, the total makespan of the NPFS schedule is: p1,1 + p1,2 + p2,2 + p2,3 + p1,3 + p1,4 + p1,5 + p2,5.

We can now turn to the PFS schedules and the possible critical paths describing its makespan. We resort
to Definition 1, noting that the simplest case is when the PFS-CP has m5 as its critical machine. The
ensuing makespan would be p1,1 + p1,2 + p1,3 + p1,4 + p1,5 + p2,5, implying that the corresponding operations
would be included in the NPFS-CP, and thus that the makespan of NPFS-CP would be longer by adding
the processing times of operations O2,2 and O2,3.

With respect to the rest of the PFS-CP, we know that they cannot have m1 as critical machine since it
would have to include O2,1, not triggering the start of O2,2 (which, as said, depends on O1,2) and thus
would not yield the makespan of a PFS solution. The same would happen if m4 were a critical machine.

In the case that the critical machine of the PFS-CP is m2, this critical path would include O1,1, O1,2, O2,2,
O2,3, O2,4 and O2,5 as follows from equation (2). Other than O2,4 all the rest of the operations are in NPFS-
CP, contributing to the makespan of both the PFS-CP and the NPFS-CP. Since p2,4 < p1,5, corresponding
to O1,5, which belongs to NPFS-CP, it follows that the makespan of NPFS-CP is longer than that of PFS-
CP. A similar analysis can be carried out in the case that the critical machine of PFS-CP is m3.

The inductive step involves the cases in which M > 5. It follows from Propositions 1 and 2 that, since S
= M – 3, the switches will be consecutive. Accordingly, a NPFS-CP can be decomposed in as many as S
+ 1 PFS problems, with as many one-machine PFS problems as S – 2. □

Proposition 8. Given an instance of two jobs and M machines, if M is even, S of the NPFS schedule is M
– 3, and p1,2 > p2,1, the NPFS schedule is dominated by the PFS schedule.

Proof. We will prove this claim by induction. As base case consider an instance with M = 6 and a NPFS
schedule with S = M – 3 = 3 switches. We will compare it to a PFS schedule starting with the same
operation as the NPFS schedule. We will show that this PFS schedule dominates the NPFS one.

The decomposition method indicates that the makespan of the NPFS schedule with S switches can be
rewritten as the sum of the makespans of S + 1 PFS sub-problems. These involve: i) the operations
executed on m1 and m2, ii) the operations on m3, iii) the operations on m4 and iv) the operations carried
out on m5 and m6. Each of them yields a PFS sub-problem in which the makespan can be obtained from
Eq. (2). Each one of problems ii) and iii) involves a single machine that, according to Definition 1, is a
critical machine. Then, the makespan of each of these two sub-problems obtains as the sum of the
processing times of the two operations executed on the corresponding single machine.

Since M is even, S is odd, and thus the schedules for sub-problems i) and iv) do not coincide. In i)
operations O1,1 and O2,2 are necessarily part of the critical path, while only one of O1,2 and O2,1 belongs
to it. Since p1,2 > p2,1, O2,2 can start only after O1,2 has finished its execution. Then, the makespan of i) is:
p1,1 + p1,2 + p2,2.

For iv), O2,5 and O1,6 must both be in the critical path, together with a third operation, the one that takes
longer from O1,5 and O2,6. For example, if p1,5 > p2,6, the makespan of iv) is p2,5 + p1,5 + p1,6.

Then, the resulting NPFS schedule has makespan: p1,1 + p1,2 + p2,2 + p2,3 + p1,3 + p1,4 + p2,4 + p2,5 + p1,5
(or p2,6) + p1,6.

Now we turn to the analysis of the PFS schedule and the possible critical paths supporting its makespan.
For this we will use again Definition 1. The easiest case is when machine m6 is critical for the PFS
problem, since then the makespan will be given by p1,1 + p1,2 + p1,3 + p1,4 + p1,5 + p1,6 + p2,6, implying that

292

only one of the corresponding operations does not correspond in the NPFS-CP, namely O2,6. But this is
so because we assumed that p1,5 > p2,6, i.e. the critical path includes an operation that takes longer than
O2,6 making the makespan corresponding to the NPFS-CP longer than that of the PFS-CP. Notice that if
in problem iv) we had assumed that p1,5 < p2,6, O2,6 would be included in the NPFS-CP excluding O1,5,
yielding again that the makespan of the NPFS-CP must be longer than that of the PFS-CP.

We have to consider other possible positions for the critical machine in the PFS schedule. There are
three possible cases: the critical machine appears before M – 1, it is precisely the M – 1 machine or it is
the last machine, M. In the first case, 1 < m* < M – 1, the operations in the PFS-CP up to the M – 1
machine will belong also to the NPFS-CP since the NPFS schedule switches jobs consecutively
contemplating all the operations executed between machines m2 and mM – 2. With respect to machines mM

– 1 and mM, the PFS-CP will include operations O2,5 and O2,6. The NPFS-CP, instead, includes only one
of these two operations. O2,5 is necessarily included (the first operation of the last sub-problem), but O2,6
can or cannot be included. In the case that it is not included, it must be because another one was, with
longer processing time (O1,5 in the previous case), making again the makespan of the NPFS-CP longer
than that of the PFS-CP. In case that p1,5 < p2,6, O2,6 becomes included in the NPFS-CP as well as in the
PFS-CP. Since the NPFS-CP incorporates more operations than the PFS-CP, the makespan of the NPFS-
CP will be again longer than that of the PFS-CP.

As said, another case arises in the PFS-CP when m* = M – 1. Then, the operations in the PFS-CP on the
last two machines are O1,5, O2,5, and O2,6. At most only one of O1,5 or O2,6 might not be present in the
NPFS-CP. The same happens when m* = M. In these two cases the result is similar to the one for m* <
M – 1, since the NPFS-CP will include either all the operations of the PFS-CP or only one different but
with longer processing time, making the makespan of the former longer than that of the latter.

The claim is also valid in the inductive step, when M > 6, since, again as in the proof of Proposition 7,
the switches must be consecutive since S = M – 3. □

5. Experimental evaluation

In this section we run an experimental analysis of the impact of the distribution of processing times on
the optimal solutions of the PFS and NPFS problems. We first present MIP (Mixed-Integer
Programming) versions of the permutation and non-permutation formulations of problems. Then, we
generate different classes of scenarios for which we will obtain the solutions. Finally, we compare the
ensuing schedules.

5.1. MIP formulations

We first present the PFS formulation, which is simpler. Then we will present the NPFS formulation,
given in terms of its differences with the PFS one.

PFS model.

 Sets
Jobs {j}
Machines {m}
 Parameters
𝑝௝,௠ Processing time of product j on machine m
Ω large positive number

 Variables
𝐶௝,௠ Completion time of job j on machine m
𝑥௝ᇲ,௝ Binary variable: 1 if job j’ is processed before job j

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 293

min 𝐶௠௔௫

subject to:
𝐶௝,௠ ≥ 𝐶௝,௠ିଵ + 𝑝௝,௠ , ∀𝑗, 𝑚 > 1 (5)

𝐶௝,௠ ≥ 𝐶௝ᇲ,௠ + 𝑝௝,௠ − ൫1 − 𝑥௝ᇲ ,௝൯ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (6)

𝐶௝ᇲ,௠ ≥ 𝐶௝,௠ + 𝑝௝ᇲ,௠ − 𝑥௝ᇲ,௝ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (7)

𝑥௝ᇲ,௝ + 𝑥௝,௝ᇲ = 1 , 𝑗 ≠ 𝑗′ (8)

𝐶௠௔௫ ≥ 𝐶௝,௠ , ∀𝑗, ∀𝑚 (9)

𝐶௝,௠ > 0; 𝑥௝,௝ᇲ {0,1} (10)

The objective function to be minimized is the makespan. Constraint (5) indicates the precedence of
activities, i.e. a job must stop being processed on a machine before passing to the next one. Constraints
(6) and (7) work together indicating the ordering of jobs. If job j’ is processed before job j, then xj’,j
becomes 1 and constraint (6) becomes active, while constraint (7) turns redundant. In expression (8) the
logical order is respected: if job j’ is processed before job j, the converse cannot be valid. The makespan
is defined by inequality (9) while (10) expresses the condition of feasibility.

NPFS model

The NPFS model is similar to the PFS model, being the main difference that the job ordering among
machines can change. For this, the variable x becomes now indexed by the set m of machines, as follows:

𝑥௝ᇲ,௝,௠: Binary variable: 1 if job j’ is processed before job j on machine m.

Then the equations that are modified are Eq. (6), Eq. (7) and Eq. (8) and we get,

𝐶௝,௠ ≥ 𝐶௝ᇲ,௠ + 𝑝௝,௠ − ൫1 − 𝑥௝ᇲ ,௝,௠൯ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (11)

𝐶௝ᇲ,௠ ≥ 𝐶௝,௠ + 𝑝௝ᇲ,௠ − 𝑥௝ᇲ,௝ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (12)

𝑥௝ᇲ,௝,௠ + 𝑥௝,௝ᇲ,௠ = 1 , 𝑗 ≠ 𝑗ᇱ, ∀𝑚 (13)

Here constraints (11) and (12) are analogous to (6) and (7), but now the order among machines can
change. Constraint (13) is a similar logical condition as (8) but evaluated on every machine.

5.2. Test Scenarios

We intend to evaluate the claims proven in the previous sections. We proceed by generating alternative
scenarios, such that one scenario differs from another in the dispersion of values of the processing times
pj,m. The processing times of the different scenarios are generated by means of the following formula:

𝑝௝,௠ = 2ே(଴,ఙ) (14)

The exponent here corresponds to a Gaussian distribution with mean 0 and standard deviation σ. We can
thus use σ to vary the range of values of pj,m. (Microsoft Excel was used to generate the random samples
of the distribution). We designed three experiments. In the first one the processing times of all the
operations are generated with the same dispersion: each pj,m obeys Eq. (14). Four different values of σ
where considered for each number of machines in the range [4;20]. This range was chosen because M =
4 is the minimal number of machines for which NPFS can be defined, while M = 20 is the largest number

294

of instances enumerated in Taillard (1993). The four values of σ were 0.5, 1, 1.5 and 2. For each pair σ
and M, we run 30 different scenarios.

In the second experiment the settings are the same as in the previous one, except that different standard
deviations were considered for the two jobs. For instance, for one job σ was set at 0.5, while for the other
job σ was chosen to be 1, 1.5 and 2. M is drawn again from the same range, [4;20]. Again, 30 scenarios
were generated for each pair M and σ. Finally, the third experiment made the standard deviation vary
among the machines. In this case we considered M to be 10, 15 or 20. Almost all the machines were
assigned pj,m values distributed according to σ = 0.5, except for some machines. In the case M = 10, the
exceptions were m4, m5, and m6, with processing times drawn from distributions with σ =1, 1.5 and 2. In
the case that M = 15, for pj,6...9 we assumed again the same three values of σ. For M = 20 we assumed the
same for pj,8...12 with, again, σ =1, 1.5 and 2. As in the previous experimental designs we ran 30 scenarios.
All these experiments were performed in an Intel Core i5 with 8 GB of main memory using CPLEX 12.5
as MIP solver.

5.3. Results

Tables 2, 3 and 4, summarize the results for the three experimental designs. Each table represents one
of those designs, but in all of them the rows present the instances defined by the values of M. The column
NPFS indicates the percentage of scenarios in which NPFS schedules solved optimally the problem (over
a total of 30 scenarios). Column GAP indicates the average difference between the optimal NPFS solution
and that of the best PFS schedule (reported only in the cases that NPFS yields the optimal solutions).
Column “Row Avg.” presents the average values of the NPFS solution and the GAP for each row. In
turn, “Col. Avg.” presents the averages per column. The lower right entries of the table report the
averages for the entire experiment.

Table 2
Average results of the first experiment: the processing times of all the operations are drawn from the
same distribution, and thus have the same dispersion

M σ = 0.5 σ = 1 σ = 1.5 σ = 2 Row Avg.
NPFS GAP NPFS GAP NPFS GAP NPFS GAP NPFS GAP

4 0,0% - 0,0% - 0,0% - 3,3% 0,3% 0,8% 0,3%
5 0,0% - 6,7% 4,2% 0,0% - 0,0% - 1,7% 4,2%
6 0,0% - 10,0% 3,5% 0,0% - 3,3% 1,6% 3,3% 2,6%
7 0,0% - 13,3% 5,2% 6,7% 1,0% 13,3% 1,9% 8,3% 2,7%
8 0,0% - 16,7% 3,1% 0,0% - 6,7% 1,3% 5,8% 2,2%
9 0,0% - 16,7% 3,4% 10,0% 3,0% 16,7% 3,6% 10,8% 3,3%

10 0,0% - 3,3% 4,8% 10,0% 2,8% 20,0% 2,9% 8,3% 3,5%
11 3,3% 0,3% 13,3% 1,5% 16,7% 3,0% 26,7% 2,7% 15,0% 1,9%
12 6,7% 2,8% 16,7% 1,0% 26,7% 4,0% 23,3% 4,8% 18,3% 3,2%
13 3,3% 0,1% 16,7% 2,4% 23,3% 5,3% 23,3% 1,2% 16,7% 2,3%
14 0,0% - 20,0% 1,2% 30,0% 3,6% 26,7% 0,9% 19,2% 1,9%
15 3,3% 0,7% 10,0% 1,8% 33,3% 3,1% 40,0% 1,7% 21,7% 1,8%
16 10,0% 0,4% 13,3% 3,2% 26,7% 3,7% 23,3% 3,5% 18,3% 2,7%
17 10,0% 0,7% 20,0% 2,0% 23,3% 2,4% 30,0% 3,5% 20,8% 2,2%
18 6,7% 0,7% 16,7% 1,0% 20,0% 5,1% 33,3% 2,6% 19,2% 2,3%
19 13,3% 0,4% 10,0% 1,9% 30,0% 5,5% 30,0% 2,2% 20,8% 2,5%
20 0,0% 0,8% 20,0% 1,8% 43,3% 3,0% 26,7% 2,7% 22,5% 2,1%

Col. Avg. 3,3% 0,8% 13,1% 2,6% 17,6% 3,5% 20,4% 2,3% 13,6% 2,5%

Table 2 summarizes the results of the first experimental design, in which processing times were drawn
from a common distribution. The last row shows that with a larger σ the percentage of cases in which
NPFS schedules are optimal increases: it goes from 3% of the scenarios for σ = 0.5 to 20 % for σ = 2.
This can be explained by considering that NPFS schedules incorporate S more operations than PFS ones.
Thus, with a low σ the processing times tend to be more similar and any extra operation adds a significant
length to the makespan. In the extreme case in which all processing times are the same, NPFS schedules
will never support the shortest makespan.

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 295

In the same row we can see that the average value of GAP also increases with σ. But the direction of
change is not constant: for σ = 2, the gap is 2.3%, being lower than in the case of σ =1.5, which is 3.5%.
An interesting fact is that when σ > 0.5 the gap is larger than 2%. This is particularly relevant, considering
that in other contributions to the literature (albeit non-comparable in terms of the size of the problem) as
for instance Benavides & Ritt (2016), the values of the gap were around 1 %. With respect to the values
of M in Table 2, we can see that for low values of M (M ≤ 10) the percentage of cases in which a NPFS
schedule is optimal never surpasses 10%. In the case of σ = 0.5, there is no scenario in which NPFS
yields the optimal solution. The main reason is again the number of extra operations in NPFS schedules,
which have an impact on the makespan. But considering the GAP for M ≤ 10, we can see that it does not
differ by much from the other cases. When M > 10, the cases in which NPFS yields the optimal solution
tend to increase with M, going from 15 % for M = 11 to over 22% when M = 20. The GAP oscillates
between 2% and 3%.

Table 3
Average results of the second experiment: the processing times of one of the jobs are distributed
according a fixed σ = 0.5, while those of the other job have a variable σ as detailed on the top of the
columns.

M
σ_2 = 1,0 σ_2 = 1,5 σ = 2 Row Avg.

NPFS GAP NPFS GAP NPFS GAP NPFS GAP
4 3,3% 1,0% 0,0% - 0,0% - 1,1% 1,0%
5 0,0% - 3,3% 1,2% 0,0% - 1,1% 1,2%
6 6,7% 2,8% 0,0% - 0,0% - 2,2% 2,8%
7 10,0% 3,0% 6,7% 2,0% 0,0% - 5,6% 2,5%
8 3,3% 3,7% 10,0% 1,5% 3,3% 0,2% 5,6% 1,8%
9 6,7% 1,8% 6,7% 4,3% 13,3% 2,7% 8,9% 3,0%

10 10,0% 2,4% 6,7% 6,3% 10,0% 6,6% 8,9% 5,1%
11 10,0% 3,1% 13,3% 2,6% 23,3% 2,9% 15,6% 2,9%
12 16,7% 2,0% 10,0% 2,8% 16,7% 2,4% 14,4% 2,4%
13 20,0% 3,1% 6,7% 1,1% 13,3% 2,1% 13,3% 2,1%
14 16,7% 3,5% 6,7% 3,0% 20,0% 1,5% 14,4% 2,7%
15 16,7% 2,1% 13,3% 1,2% 30,0% 1,4% 20,0% 1,6%
16 16,7% 2,4% 16,7% 2,1% 16,7% 1,1% 16,7% 1,9%
17 16,7% 2,8% 16,7% 2,2% 16,7% 1,3% 16,7% 2,1%
18 10,0% 2,6% 16,7% 1,5% 20,0% 0,9% 15,6% 1,7%
19 6,7% 5,5% 16,7% 3,0% 20,0% 1,4% 14,4% 3,3%
20 16,7% 1,4% 23,3% 1,9% 26,7% 0,6% 22,2% 1,3%

Col. Avg. 11,0% 2,7% 10,2% 2,4% 13,5% 1,9% 11,6% 2,3%

Table 3 presents the results for the second experiment. The last row indicates that, in rough terms, the
percentage of scenarios in which NPFS yield the optimal solution is similar, for σ = 1, σ = 1.5 and σ = 2,
namely 11 %, 10.2% and 13.5% respectively. With respect to the GAP, it decreases with increases in the
dispersion of processing times: it goes down from 2.7% for σ = 1 to 1.9% for σ = 2. With respect to the
impact of M, the results are similar as in the case of similar dispersion: with larger M the number of
scenarios in which NPFS yields the optimal solution increases. The GAP in cases that NPFS schedules
are optimal remains, again, stable for different values of M.

Table 4
Average results of the third experiment: the processing times of most of the operations are distributed
according a fixed σ = 0.5 while the processing times of the middle machines operations have a variable
σ as detailed on the columns

M σ = 0,5 σ = 1 σ = 0,5 σ = 1,5 σ = 0,5 σ = 2 Row Avg.
NPFS GAP NPFS GAP NPFS GAP NPFS GAP

10 20,0% 1,7% 20,0% 0,6% 16,7% 3,8% 18,9% 2,0%
15 13,3% 2,3% 33,3% 0,9% 30,0% 2,2% 25,6% 1,8%
20 13,3% 1,8% 20,0% 3,0% 30,0% 2,3% 21,1% 2,3%

Col. Avg. 15,6% 1,9% 24,4% 1,5% 25,6% 2,8% 21,9% 2,1%

Finally, Table 4 presents the results of experiments in which σ = 0.5 except for machines near M / 2,
which have processing times drawn from distributions with a larger deviation. We see that with larger

296

dispersion in those machines, the number of cases in which NPFS yields optimality increases markedly
from 15.6%, for σ = 1, to 25.6%, for σ = 2. We can also see that the GAP for σ = 2 is considerably larger
than in the other cases. In turn, M does not show such a linear trend: the number of cases in which NPFS
is optimal grows with the number of machines, until at M = 15 it reaches 25.6% and afterwards it drops
to 21.1%, for M = 20. The GAP, again, is stable for different values of M.

In order to compare the first and the second experiments, we have to look at the lower right cells of Table
2 and Table 3. The global percentages of success of NPFS schedules are very similar: 13.6% in the first
and 11.6% in the second experiment. But notice that the first experiment generated 2040 results (17
values of M, 4 of σ and 30 scenarios) while the second 1530 results (only 3 values of σ). If in the first
experiment we drop the results for σ = 0.5, the global percentage (for the remaining 1530 results) of
optimality of NPFS schedules is 17.1%, significantly higher than 11.6% of experiment 2. We can thus
conclude that when the operations of both jobs have processing times with high dispersion (instead of
just one of them) the optimality of NPFS schedules is more probable.

The comparison of the three experiments requires considering the same number of results for each of
them. Table 5 puts together the last two columns of Tables (2-4) for M = 10, 15 and 20. We can see that,
in average, the NPFS schedule is optimal at a higher rate in experiment 3: 21.9% against 17.5% for the
other two. Nevertheless, the values of GAP are the lowest in the same experiment. That is, it seems that
in scenarios in which processing times of a few machines are very dispersed, the non-permutation
approach has higher chances of yield optimal results, albeit with a relatively small difference with respect
to PFS schedules.

Table 4
Summary of the results of the three experiments for M ϵ {10, 15, 20}.

M
1° Experiment 2° Experiment 3° Experiment

NPFS GAP NPFS GAP NPFS GAP
10 8,3% 3,5% 8,9% 5,1% 18,9% 2,0%
15 21,7% 1,8% 20,0% 1,6% 25,6% 1,8%
20 22,5% 2,1% 22,2% 1,3% 21,1% 2,3%

Avg. 17,5% 2,5% 17,5% 2,7% 21,9% 2,1%

6. Conclusions

In this work we studied the structure of the critical paths of both PFS and NPFS schedules. Besides
introducing novel characterizations of critical PFS and NPFS paths, we presented expressions
summarizing the critical paths of PFS schedules. In the case of the NPFS schedules we have shown that
their makespans can be obtained in terms of a decomposition of the NPFS schedules as sequences of PFS
sub-schedules. The sum of the makespans of these sub-schedules yields the makespan of the NPFS
schedule. We compared the NPFS and PFS schedules, both structurally and numerically. In the former
case we found cases in which NPFS schedules are dominated by PFS ones. The numerical analysis shows
that with a higher dispersion of processing times (in particular on a few machines) the chances of finding
optimal NPFS schedules are higher. The same happens with a larger number of machines.

Acknowledgments

The authors are grateful for partial support from the following sources: Proyecto DICYT 061817VP,
Universidad de Santiago de Chile (Ó. C. Vasquez), ´ CYTED Ciencia y Tecnología para el Desarrollo
[P318RT0165]; Consejo Nacional de Investigaciones Científicas y Técnicas [PIP: 11220150100777];
Universidad Nacional del Sur [PGI: 24/ZJ35] (D. Rossit, F. Tohmé, Mariano Frutos); M.D. Safe
acknowledges partial support from ANPCyT Grant PICT-2017-1315 and Universidad Nacional del Sur
Grants PGI 24/L103 and 24/L115

D. A. Rossit et al. / International Journal of Industrial Engineering Computations 11 (2020) 297

References

Akers Jr, S. B. (1956). Letter to the editor—A graphical approach to production scheduling
problems. Operations Research, 4(2), 244-245.

Benavides, A. J., & Ritt, M. (2016). Two simple and effective heuristics for minimizing the makespan in
non-permutation flow shops. Computers & Operations Research, 66, 160-169.

Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: from
theory to applications. Springer Science & Business Media.

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2013). Scheduling computer and
manufacturing processes. springer science & Business media.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (2003). Theory of scheduling. Courier Corporation.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1),

269-271.
Fomin, F. V., & Kratsch, D. (2010). Exact exponential algorithms. Springer Science & Business Media.
Garey, M. R., Johnson, D. S., & Sethi. R. (1976). The complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research. 1(2). 117-129.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in

deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287-326.
Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times

included. Naval Research Logistics (NRL), 1(1), 61-68.
Kelley Jr, J. E., & Walker, M. R. (1959, December). Critical-path planning and scheduling. In Papers

presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference (pp. 160-
173). ACM.

Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations
Research, 9(3), 296-320.

Kis, T., & Pesch, E. (2005). A review of exact solution methods for the non-preemptive multiprocessor
flowshop problem. European Journal of Operational Research, 164(3), 592-608.

Li, S., & Tang, L. (2005). A tabu search algorithm based on new block properties and speed-up method
for permutation flow-shop with finite intermediate storage. Journal of Intelligent
Manufacturing, 16(4-5), 463-477.

Liao, C. J., Liao, L. M., & Tseng. C. T. (2006). A performance evaluation of permutation vs. non-
permutation schedules in a flowshop. International Journal of Production Research. 44(20). 4297-
4309.

Liao, L. M.. & Huang, C. J. (2010). Tabu search for non-permutation flowshop scheduling problem with
minimizing total tardiness. Applied Mathematics and Computation, 217(2). 557-567.

Lin, S. W.. & Ying, K. C. (2009). Applying a hybrid simulated annealing and tabu search approach to
non-permutation flowshop scheduling problems. International Journal of Production
Research, 47(5). 1411-1424.

Nagarajan, V.. & Sviridenko, M. (2009). Tight bounds for permutation flow shop
scheduling. Mathematics of Operations Research. 34(2). 417-427.

Nip, K., & Wang, Z. (2013, June). Combination of Two-Machine Flow Shop Scheduling and Shortest
Path Problems. In COCOON (pp. 680-687).

Nip, K., Wang, Z., Nobibon, F. T., & Leus, R. (2015). A combination of flow shop scheduling and the
shortest path problem. Journal of Combinatorial Optimization, 29(1), 36-52.

Pinedo, M. L. (2002). Scheduling: theory. algorithms. and systems. Springer Science & Business Media.
Potts, C. N., Shmoys, D. B., & Williamson, D. P. (1991). Permutation vs. non-permutation flow shop

schedules. Operations Research Letters. 10(5). 281-284.
Rebaine, D. (2005). Flow shop vs. permutation shop with time delays. Computers & Industrial

Engineering. 48(2). 357-362.
Rossi, A., & Lanzetta, M. (2013). Scheduling flow lines with buffers by ant colony digraph. Expert

Systems with Applications, 40(9), 3328-3340.

298

Rossi, A., & Lanzetta, M. (2014). Native metaheuristics for non-permutation flowshop
scheduling. Journal of Intelligent Manufacturing, 25(6), 1221-1233.

Rossit, D., Tohmé, F., Frutos, M., Bard, J., & Broz, D. (2016). A non-permutation flowshop scheduling
problem with lot streaming: A Mathematical model. International Journal of Industrial Engineering
Computations, 7(3), 507-516.

Rossit, D. A., Tohmé, F., & Frutos, M. (2018a). The non-permutation flow-shop scheduling problem: a
literature review. Omega. 77, 143-153.

Rossit, D. A., Vásquez, Ó. C., Tohmé, F., Frutos, M., & Safe, M. D. (2018b). The dominance flow shop
scheduling problem. Electronic Notes in Discrete Mathematics, 69, 21-28.

Rudek, R. (2011). Computational complexity and solution algorithms for flowshop scheduling problems
with the learning effect. Computers & Industrial Engineering, 61(1), 20-31.

Shen, L., Gupta, J. N., & Buscher. U. (2014). Flow shop batching and scheduling with sequence-
dependent setup times. Journal of Scheduling, 17(4), 353-370.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European journal of operational
research, 64(2), 278-285.

Tandon, M., Cummings, P. T., & LeVan, M. D. (1991). Flowshop sequencing with non-permutation
schedules. Computers & chemical engineering, 15(8), 601-607.

Vahedi-Nouri, B., Fattahi, P., & Ramezanian, R. (2013). Minimizing total flow time for the non-
permutation flow shop scheduling problem with learning effects and availability constraints. Journal
of Manufacturing Systems, 32(1), 167-173.

Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. Lecture Notes in Computer
Science, 2570(2003), 185-207.

Xiao, Y., Yuan, Y., Zhang, R. Q., & Konak. A. (2015). Non-permutation flow shop scheduling with
order acceptance and weighted tardiness. Applied Mathematics and Computation, 270, 312-333.

Ying, K. C., & Lin, S. W. (2007). Multi-heuristic desirability ant colony system heuristic for non-
permutation flowshop scheduling problems. The International Journal of Advanced Manufacturing
Technology, 33(7-8), 793-802.

Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems by an effective iterated
greedy heuristic. The International Journal of Advanced Manufacturing Technology, 38(3-4), 348-
354.

Ying, K. C.. Gupta, J. N., Lin. S. W., & Lee, Z. J. (2010). Permutation and non-permutation schedules
for the flowline manufacturing cell with sequence dependent family setups. International Journal of
Production Research, 48(8), 2169-2184.

Ziaee, M. (2013). General flowshop scheduling problem with the sequence dependent setup times: A
heuristic approach. Information Sciences, 251, 126-135.

© 2020 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

