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 The literature on flow shop scheduling has extensively analyzed two classes of problems: 
permutation and non-permutation ones (PFS and NPFS).  Most of the papers in this field have 
been just devoted on comparing the solutions obtained in both approaches. Our contribution 
consists of analyzing the structure of the critical paths determining the makespan of both kinds 
of schedules for the case of 2 jobs and m machines.  We introduce a new characterization of the 
critical paths of PFS solutions as well as a decomposition procedure, yielding a representation 
of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in 
which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a 
wider dispersion of processing times improves the chances of obtaining optimal non-permutation 
schedules, in particular when this dispersion affects only a few machines. 
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1. Introduction 

 
Flow Shop scheduling problems involve finding job schedules by optimizing some criteria. A flow shop 
system is such that all its jobs j, j = 1, 2,…, n, visit all the machines m, m = 1, 2,…, M, following the 
same technological order (all the jobs must visit the first machine, then the second machine and so on). 
Each job j performs an operation Oj,m on a machine m. Each such operation has a processing time, pj,m. 
The goal is to find a sequence of jobs, optimizing the objective function (here we consider only the most 
common objective, the makespan criterion Cmax). One way of dealing with this NP-hard problem (Garey 
et al., 1976), is by focusing on the permutation flow shop scheduling problem (PFS), where the order of 
jobs going through a machine is repeated on all machines (in Graham et al. (1979) notation, F|prmu|Cmax). 
This condition involves considering n! possible schedules, being n the number of jobs. This permutation 
condition ensures the optimality of the solutions of problems with up to 3 machines (Conway et al., 1967; 
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Pinedo, 2002; Błażewicz et al., 2013) since in an optimal flow shop schedule, the ordering of jobs on the 
first two machines (m1 and m2) and on the last two machines (mM-1 and mM) can be the same. This implies, 
in turn, that in larger instances the permutation condition can exclude the optimal solution. To ensure 
optimality we consider the variant known as non-permutation flow shop scheduling problem (NPFS) (in 
Graham’s notation, F||Cmax). The optimal solution of the NPFS is in fact the optimal solution for the 
entire problem. The main disadvantage of considering the NPFS problem is that the number of possible 
schedules grows as n!M, being n the number of jobs and M the number of machines. NPFS has thus a 
huge search space, even for medium size instances. So, for example, for 20 jobs and 5 machines the total 
number of possible schedules is 8.52 x 1091. This means that the problem becomes easily intractable. One 
of the implicit conditions for the feasibility of the NPFS schedules is the existence of intermediate storage 
steps between successive stages in the flow of activities. If the storage capacity or the number of storage 
steps is limited, the complexity of the problem increases (Li & Tang 2005). According to Rossi and 
Lanzetta (2014) “storage facilities for NPFS schedules can either be between, on board or shared among 
the machines”. They also point out that, in the NPFS case with sequence-dependent setups, allowing 
different jobs to share setups at some stages can reduce the impact of those setups. Potts et al. (1991) and 
Tandon et al. (1991) make, in the same sense, a stronger claim, namely that PFS yields lower quality 
solutions.  

In this paper, we present a contribution to further understanding of these problems. We restrict our 
attention to problems with 2 jobs and M machines, with makespan as the objective function. We focus 
on the internal structure of both kinds of schedules in order to analyze the transition from PFS solutions 
to NPFS ones. We introduce a novel characterization of their critical paths (i.e. the sequences of activities 
that support the makespans of the schedules), showing that in the case of 2 jobs the critical path of NPFS 
schedule can be seen as a sequence of PFS critical paths. This allows us to analyze the time length of the 
critical path, by identifying the processing times of their component operations.  Starting from these 
analyses we study the dominance relations between both types of schedules. We find some particular 
cases in which NPFS schedules are worse, in terms of their makespans, than PFS ones. Numerical 
explorations provide information about the impact of processing times in 2-job flow shop problems. As 
we will show, the critical paths of NPFS schedules tend to incorporate more operations than those of PFS 
schedules, but nevertheless may yield better makespans (Rossit et al., 2018). This indicates that the 
comparison among critical paths depends not only on the number of operations in them but also on their 
processing times. We design and run experiments to assess the dispersion of processing times. The results 
are evaluated in terms of the exact solutions of mixed-integer formulation of PFS and NPFS problems. 
Given the complexity of running this kind of experiments we consider a study case of a flow shop 
scheduling problem with 2 jobs and m-machines, which is known to be polynomially solvable (Akers, 
1956; Błażewicz et al., 2007).  

The plan of the paper is as follows. Section 2 reviews the literature on both NPFS and critical paths in 
PFS flow shop problems. Section 3 describes the critical paths of both PFS and NPFS solutions. Section 
4 evaluates critical paths and presents some hypotheses about their relation to parameters of the problem, 
which in Section 5 are experimentally tested. Finally, Section 6 concludes. 
 

2. Literature review 
 

This section reviews the state of the art in the research on NPFS and PFS problems, providing a 
framework for our own work.  

2.1. NPFS problems1 
 

In the last years, with the huge increases in computing power and the development of efficient algorithms, 
NPFS problems have gained the attention of the scientific community. Several variations have been 

 
1 Rossit et al. (2018a) presents a comprehensive discussion of all the relevant aspects of NPFS problems, covering some issues 
that are beyond the scope of this paper. 
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studied under the NPFS scheme. For instance, Ying et al. (2010) study a flow shop scheduling problem 
that is solved by simulated annealing, showing that NPFS schedules yield better results than PFS ones. 
Rudek (2011) shows that for the two-machine case if learning effect is considered, PFS is not optimal 
anymore, being necessary to analyze NPFS schedules. Vahedi-Nouri et al. (2013) solve NPFS problems 
with learning effects and availability constraints, solving them with a heuristic (VFR) developed by the 
authors. Ziaee (2013) addresses NPFS with sequence-dependent setup times through a two-phase 
heuristic. Rossi and Lanzetta (2013) deal with the NPFS problem with an ACO algorithm. A particular 
feature of the ACO algorithm is that from the beginning it explores non-permutation solutions. In Rossi 
& Lanzetta (2014) they use the benchmarks of Demirkol et al. (1998) for the same problem. For these 
instances, their ACO algorithm outperforms other variants also used to solve NPFS problems. These 
authors also outline a sequence of logical steps for the passage from a physical layout (the actual 
production assets) to a mathematical model and its algorithmic treatment. Splitting the lot of units of each 
product is considered under a NPFS scheme in Shen et al. (2014) where flow shop batching with 
sequence-dependent family setups is investigated and solved by means of a taboo search algorithm; and 
in Rossit et al. (2016) a lot streaming strategy is implemented for the optimization of a NPFS problem 
with the makespan objective.  Some preliminary results of this work were presented in Rossit et al. 
(2018b). 

The vast majority of papers dealing with NPFS problems as their main contribution, present algorithms 
(meta-heuristics, in general) capable of handling them (Liao et al., 2006; Ying & Lin, 2007; Ying, 
2008; Lin & Ying, 2009; Liao & Huang, 2010; Vahedi-Nouri et al., 2013; Ziaee, 2013; Rossi & Lanzetta, 
2014; Benavides & Ritt 2016). These algorithms generally address the NPFS problem after a first phase 
in which it produces a near-optimal PFS solution: different types of procedures are applied to improve 
this initial PFS solution. Alternatively, Kis and Pesch (2005) review exact solution methods for PFS and 
NPFS problems. Very few papers focus on the structure of the problem and its relation to the solution 
(Potts et al., 1991; Rebaine, 2005; Nagarajan & Sviridenko, 2009; Xiao et al., 2015). The main 
contribution of these papers involves the characterization of the difference between the theoretical 
makespans of NPFS and PFS schedules under different conditions.  

2.2. Contributions on critical paths in flow shop problems 

The concept of critical paths has been closely associated with the analysis of scheduling problems since 
the inception of these studies, at the end of the 50’s (Kelley & Walker, 1959; Kelley, 1961). A critical 
path is the class of activities that define the makespan of a schedule. This means that a delay in any of 
those activities extends the makespan of the schedule. While this concept seems most relevant in 
problems of project scheduling, it is widely used in all the field of scheduling in Operations Research. 
Nevertheless, in flow shop scheduling the interpretation of “critical path” is not straightforward because 
jobs, instead of operations, have to be scheduled. Furthermore, job schedules do not translate immediately 
into operation schedules. For instance, the solution of a flow shop problem with three jobs (n = 3) and 
six machines (M = 6) indicates that the jobs must be processed in the 1-2-3 order. But this does not 
indicate which exact sequence of operations among from 18 (6*3) will be the one yielding the optimal 
makespan. Nevertheless, there is a definite relation between the 8 operations defining the critical path (M 
+ (n − 1), according to Nagarajan et al., 2009) and the schedule of jobs. A first attempt to addressing this 
issue is due to Nip and Wang (2013), who combine the classical 2-machines flow shop problem with the 
search for the shortest paths in undirected graphs. More precisely, they combine Johnson’s rule (Johnson, 
1954) with Dijkstra’s shortest path procedure (Dijkstra, 1959) to generate an approximation algorithm 
for a particular PFS problem. This algorithm implicitly uses the critical path. Nip et al. (2015) extend 
Nip & Wang (2013) towards 3-machines flow shop problems, applying again a shortest path solution. 
They describe the critical path structure for the corresponding PFS problems. Furthermore, they show 
that their approach, when applied to 3 or more machines, is NP-hard and propose an approximation 
algorithm to solve those cases. Shang et al. (2017) also use critical paths in the minimization of makespan 
in flow shop problems. Here, the authors introduce a moderately exact exponential algorithm for PFS 
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problems with 3 machines. The motivation for introducing such variant of a dynamic programming 
solution is that in many instances an exponential variant can be better than a polynomial one. For 
example, it is faster for an O (1.1n) instance than for a O(n4) for every n < 224.2 This algorithm goes 
through a sequence of partial critical schedules converging to the final schedule, where the former are 
schedules in which operations start as soon as possible.  

2.3. Comments on the literature 
 

We have presented the main contributions in the area of NPFS problems with makespan as objective as 
well as those on critical paths in flow shop problems. As indicated, the literature focuses on handling the 
large computational requirements of NPFS problems, comparing in experiments the PFS and NPFS 
solutions. On the other hand, the literature on critical paths in flow shop problems focuses only on PFS 
problems. None of those works compares the structure of critical paths of both problems. This is exactly 
what we aim to accomplish in this article. This allows us to generate PFS solutions similar to those in 
Nip et al. (2015), but instead of being restricted to 3 machines, we extend them to m-machines. In turn, 
unlike Nip et al. (2015), who add operations according to the jobs to which they belong, we index them 
by the machines. This allows us to extend the description to NPFS problems. 
 
3. Critical paths 
 
In this section, we will present an analysis of the critical path structures of both PFS and NPFS (from 
now on, critical path will be denoted CP). It is worth to mention that both structures are symmetric. The 
optimal makespan obtained in a forward analysis is equal to the one obtained on a backward one 
(inverting the routing of the jobs, i.e., jobs are processed first on the last machine mM, next on mM-1 and 
so on). It is also interesting to recall the properties proposed by Conway et al. (1967). In this sense, 
Blazewicz et al. (2007), provide direct and simple enunciations as well as their corresponding proofs.  
 

Proposition 1. For 𝐹||𝐶max, there exists an optimal solution with the same processing ordering on the 
first two machines. 

Proof. To see this, consider any solution in which the orders differ on the first two machines. Then, there 
must exist a pair of adjacent jobs, say 𝑎 and 𝑏, on the first machine permutation, appearing in reverse 
order in the permutation on the second machine. But these two jobs can be reversed on the first machine 
without increasing the starting time (and thus the completion time) of any job on the second machine. 
Inductively, we can repeat this pairwise switching sequence until the permutation in the first machine 
agrees with the (original) order on the second. □ 

An immediate consequence of Proposition 1 is that 𝐹2||𝐶max and 𝐹2|prmu|𝐶max are equivalent, where 
“𝐹2||𝐶max” means a 2-machines flow shop problem in which makespan is minimized. That is, in the case 
of a 2-machines flow shop, the optimal schedule is a permutation. Consequently, the 𝐹2||𝐶max is solvable 
in polynomial time using Johnson’s algorithm (Johnson 1954). Moreover, due to the symmetry of the 
𝐹||𝐶max, the following property holds: 

Proposition 2. For 𝐹 ||𝐶max, there exists an optimal solution having the same processing ordering on the 
last two machines. 

Proof.  Analogous to the proof of Proposition 1.         □ 

Propositions 1 and 2 are well known in the literature on NPFS schedules (Rossit et al., 2018). They 
basically correspond to Theorems 5.1 and 5.2 of Conway et al. (1967), which in turn extend and make 
more precise Lemma 2 of (Johnson, 1954). Our contribution aims to find new results in the context of 

 
2 For more on this, see Woeginger (2003) and Fomin & Kratsch (2010). 



D. A. Rossit et al.  / International Journal of Industrial Engineering Computations 11 (2020) 285

the classical Flow Shop problem. As a motivation, we present in Example 1, a numerical examination of 
the smallest case in which Propositions 1 and 2 no longer ensure optimality. The analysis of this example 
will yield new concepts that will be defined precisely in the rest of this paper jointly with novel results 
involving them 

Example 1. Let us consider a numerical example of 2 jobs and 4 machines. This is the smallest possible 
case in which PFS is not optimal for makespan (M > 3). The instance selected is described in Table 1. 2 
jobs (j1 and j2) have to be scheduled on 4 machines (m1, m2, m3 and m4) in order to minimize makespan. 

Table 1  
Processing times of Example 1 

 m1 m2 m3 m4 
j1 4 1 1 4 
j2 1 4 4 1 

 

The possible PFS schedules are two: j1-j2 and j2 - j1, both schedules yielding a makespan of 14. For NPFS 
schedules, we have other alternatives (remember that switching the sequence between the first and the 
last two machines does not improve the PFS makespan): sequencing j1-j2 on machines m1 and m2, and j2 
- j1 for m3 and m4; and j2 - j1 for m1 and m2, and j1-j2 for m3 and m4. The latter sequence (j2- j1; j1-j2) is the 
optimal one, with a makespan of 12. The Gantt representation of the optimal NPFS schedule is illustrated 
in Fig. 1, as follows: 

  

Fig. 1. Optimal schedule, which is a NPFS solution Fig. 2. Best possible PFS solution 

From Fig. 1, we can deduce that a switch in the sequence happens in the passage from m2 to m3, indicated 
with a thick black horizontal line. m3 is considered a switching machine since it switches the job ordering 
of the previous machine. Let us compare this with Fig. 2, which shows the best PFS schedule for the 
problem. A simple inspection of both figures indicates that the NPFS solution has a smaller makespan 
than the PFS one. In the sequences shown in Fig. 1 and Fig. 2 the critical paths are drawn in dashed lines. 
It is of interest to notice that these critical paths exhibit indifferences between including or not some 
activities. So, in Figure 1, the same makespan is obtained by including the second activity of j2 or the 
first of j1, an indifference that can be arbitrarily resolved. If we enumerate the activities in the critical 
paths of the NPFS schedule (Figure 1) we get the following: i) the first activity of j2, ii) the second activity 
of j2, iii) the second activity of j1, iv) the third activity of j1, v) the fourth activity of j1 and vi) the fourth 
activity of j2, a total of 6 activities. An analogous enumeration of the CP of the PFS schedule (Figure 2) 
yields: i) the first activity of j2, ii) the second activity of j2, iii) the third activity of j2, iv) the fourth activity 
of j2, v) the fourth activity of j1, a total of 5 activities. Comparing both CPs, we can see that the minimal 
makespan is obtained at the longest CP in terms of activities, something that is not quite intuitive. The 
processing times have a large impact on the characterization of the makespan and the CP of a schedule 
since the entries in Table 1 are not homogeneous. We can deepen our analysis by considering the critical 
paths of solutions to detect the processing times that determine the makespan. 

3.1. Critical paths of PFS schedules 
 

The PFS-CP described and illustrated in the previous section provides a first insight into a description of 
CPs. For a more thorough characterization consider Fig. 3, which represents a generic schedule of 2 jobs 
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(j1 and j2) on 4 machines (m1, m2, m3 and m4) flow shop. The black bars marked with “x” indicate that 
the beginning of a new activity depends on a disjunctive constraint, either the end of a job at the previous 
machine or the release of the current machine from the previous job. For instance, considering "x1" in 
Fig. 3, activity O2,2 will begin at the maximum between the completion of O2,1 and the completion of 
O1,2. As an initial description of the structure of critical paths consider the following proposition:   

 

Fig. 3 Generic case of PFS schedule with 2 jobs (j1 and j2) and 4 machines 

Proposition 3. Each CP of Fig. 3: 
 

a) always starts with the first operation of the first job in the schedule, 
b) always finishes with the last operation of the last job in the sequence, 
c) includes sequentially the operations from one job up to a stage, where it starts including the 

operations of the other job, 
d) at the aforementioned stage, it includes operations from both jobs (the previous and the next one), 
e) the rest of the stages only include operations from one of the jobs. 

 

Proof. The proof follows, without loss of generality, from the careful inspection of Fig. 3. We can see, 
that O1,1 and O2,4 will be part of every possible CP (3.a and 3.b). To study all the possible CPs in Figure 
3, let us run a backward analysis. O2,4 is the last activity included in the CP, at instant "x3". If O1,4 is 
included in the CP, then O2,3 finishes before or at the same time as O1,4. This implies, that all the other 
possible paths from O1,1 to "x3" that include O2,3 are shorter or equal (in terms of makespan) than the 
ones which include O1,4. Furthermore, since the start of O1,4 does not depend at all on the activities of job 
j2, "x2" will be defined by O1,3, and "x1" by O1,2, and finally O1,1. The CP will be: O1,1 - O1,2 - O1,3 - O1,4 
- O2,4 (five activities). This first insight allows us to state that for the two jobs problem, once a tie (in 
terms of makespan) at an "x" instant is broken by an activity of the first scheduled job, all the previous 
ties at "x" instants are also broken by activities of the same job, supporting 3.c. 

On the other hand, if “x3” is defined by O2,3, then “x2” must be defined by a new comparison. If “x2” is 
defined by O1,3, since O1,3 does not depend on activities from the second job, the previous “x” instants 
are defined by activities from the first job, and the final CP is: O1,1 - O1,2 - O1,3 - O2,3 -O2,4 (five activities) 
(3.d and 3.e). The same analysis can be carried out for "x2" if it is defined by O2,2, as well as for "x1". 
Notice that, if from all the points "x" the only one defined by an activity of j1 is the last one, the CP will 
consist of all the activities of j1 and only includes the last activity of j2 (4.c). This can be verified by 
considering a Gantt diagram where activity O1,4 finishes after the end of O2,3, and for the rest of the "x" 
instants, activities of j1 finish before their counterparts in j2.      □ 

Proposition 3 facilitates the identification of the operations (and thus their processing times) included in 
the critical path. Nip et al. (2015) analyzed the F|prmu|Cmax problem with n jobs and 3 machines, finding 
that its makespan is:  

෍ 𝑝௝,ଵ

௝ୀ௨

௝ୀଵ

+ ෍ 𝑝௞,ଶ

௞ୀ௩

௞ୀ௨

+ ෍ 𝑝௟,ଷ

௟ୀ௃

௟ୀ௩

= 𝐶௠௔௫   for some u, v ϵ J (1) 
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The difference between theirs and our approach is that Nip and coauthors restrict the number of machines, 
while we do the same with the number of jobs. That is why expression (1) applies in our framework only 
for M ≤ 3. Then, up from Proposition 3 we can derive an alternative characterization of the makespan 
under a similar structure: 

Proposition 4. The makespan of a F|prmu|Cmax scheduling problem of two jobs obeys the following 
specification: 

෍ 𝑝ଵ,௜

௜ୀ௠ᇲ

௜ୀଵ

+ ෍ 𝑝ଶ,௜ᇲ

ெ

௜ᇲୀ௠ᇲ

= 𝐶௠௔௫   for some m′ ϵ M . (2) 

 

Proof. If follows immediately from the proof of Proposition 3.                                   □ 

Expression (2) indicates that the makespan is obtained as a sum of the processing times of the operations 
in its critical path. It includes the operations of the first job up to a machine m'. After that, Eq. (2) adds 
the sequence of operations of the second job. Machine m' satisfies Proposition 3.d, being an instance of 
the following definition: 

Definition 1 (Critical machine): a machine is critical if operations O1,m’ and O2,m’  belong to the critical 
path. 

Then, all the operations carried out on a critical machine will have a direct impact on F|prmu|Cmax in 2 
jobs, while the rest of the machines will impact only on a single operation. Thus, the empirical expression 
(2) represents all the possible CPs from a PFS schedule of 2 jobs j1 - j2. It yields, furthermore, the number 
of operations expected by (Nagarajan & Sviridenko 2009) for a permutation CP, 𝑡 = 𝑀 + 𝑛 − 1, being 
t: number of activities, m: number of machines and n: number of jobs. In our example of 4 machines and 
2 jobs, t = 5 operations. Another important feature of expression (2) is that it can be extended to a larger 
number of machines. It can be easily shown that, by adding to Figure 3 one machine, the correspondent 
activities and another instant “x”, yielding a straightforward extension of (2). To represent the set of CPs 
of schedule j2 - j1, it is enough to reorder the terms in (2): first add the activities of j2 up to m’, and then 
those of j1 from m’ up to the last machine M. 

3.2. Critical path of a NPFS schedule 
 

We intend to find a description of the CP of a NPFS schedule, similar to the one of PFS, in order to 
compare both. Considering again the numerical example at the beginning of Section 2, we can see that 
the CPs of both the NPFS and the PFS solutions include activities from the two jobs. However, the 
comparison of Figures 1 and 2 shows that there exist differences between the two cases. The main ones 
are: the NPFS-CP has one activity more than the PFS-CP, and in the NPFS-CP, unlike the PFS-CP, the 
activities from both jobs alternate. This suggests the following result: 

 Proposition 5. A F||Cmax scheduling problem of two jobs and four machines can be decomposed into two 
F|prmu|Cmax scheduling sub-problems of two jobs and two machines each. The makespan is obtained as 
the sum of the makespans of the sub-problems. The set of CPs of a F||Cmax scheduling problem can be 
described by the following expression: 

ቌ ෍ 𝑝ଵ,௜

௜ୀ௠ᇲ

௜ୀଵ

+ ෍ 𝑝ଶ,௜ᇲ

௜ᇲୀ௠∗

௜ᇲୀ௠ᇲ

ቍ + ቌ ෍ 𝑝ଶ,௟

௟ୀ௠ᇲᇲ

௟ୀ௠∗

+ ෍ 𝑝ଵ,௟ᇲ

ெ

௟ᇲୀ௠ᇲᇲ

ቍ , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚ᇱ, 𝑚∗, 𝑚ᇱᇱ ∈ 𝑀|𝑚ᇱ < 𝑚∗ ≤ 𝑚ᇱᇱ (3) 

where, m* represents the switching machine at which the jobs are switched, while m' and m'' are critical 
machines. 
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Proof. Consider Figure 4. We can see a NPFS schedule of 2 jobs and 4 machines which switches the job 
ordering from m2 to m3. 

 

Fig. 4. Generic case of a NPFS schedule of 2 jobs (j1 and j2) and 4 machines. 

The first feature in Fig. 4 that supports the claim is that O2,3 will not start before the completion of O2,2. 
This indicates that the total completion time (makespan) can be decomposed into the sum of the time 
elapsed up to the completion of O2,2 and the rest of the time up to the completion of O1,4. Furthermore, a 
backward analysis shows that the NPFS schedule of Fig. 4, can be decomposed into two minor PFS 
schedules: one of machines m1 and m2, and the other of machines m3 and m4. To assess the validity of 
considering smaller PFS schedules, let us focus on the schedule of m3 and m4 in Figure 4, and run a 
backward analysis. The operation O1,4 is included in every possible CP. Then comes instant “x2”, which 
if defined by O2,4, indicating that the CP on machines m3 and m4 is O2,3 - O2,4 - O1,4. This CP has two 
aspects that allow considering this smaller system as a PFS schedule: it has three operations, and can be 
represented by expression (2). For machines m1 and m2 a similar analysis shows that a possible CP can 
be O1,1 - O1,2 - O2,2. Again, the CP corresponds to a PFS-CP. Finally, the CP of the NPFS schedule can 
be O1,1 - O1,2 - O2,2 - O2,3 - O2,4 - O1,4 , which has 6 operations (as in the numerical example of Fig. 1). 
And it can be represented by expression (2), where m' and m'' are m2 and m4, respectively, and the 
switching machine m* is m2.  □ 

Let us note that the switching machine m* must satisfy Propositions 1 and 2. Consequently, for a 4-
machine flow shop configuration, m* can be only m2. This clarification raises two new questions: what 
happens to expression (3) when the number of machines is larger than 4? What happens when m* can 
have different or multiple values? Clearly, expression (3) depends on the size of the system and on the 
type of NPFS schedule: when the number of machines increases, m* can take different and multiple 
values (Propositions 1 and 2 restrict the schedules only for the first and the last two machines). An answer 
is provided by Proposition 6 which considers an instance of Proposition 5, with M = 5 and two switching 
machines. For the sake of clarity, from now on we will denote with S the number of switching machines. 

Proposition 6. A F||Cmax scheduling problem of two jobs and five machines can be decomposed into two 
F|prmu|Cmax scheduling sub-problems, for each switch in the job ordering. The makespan is obtained as 
the sum of the makespans of the sub-problems. 

Proof. Consider Fig. 5, as a new example of 2 jobs and 5 machines. Applying Propositions 1 and 2, we 
know that there is no benefit in switching the job ordering from m1 to m2 and from m4 to m5, thus leaving 
n!M-2 possible schedules. In this new example: 2!(5-2) = 8 possible schedules. From these 8 possible 
schedules, 2 are PFS (j1 - j2 and j2 - j1), and the other 6 are NPFS schedules. Half of the 6 NPFS schedules 
start with the sequence j1 - j2 and the other half with the reverse sequence. Now, consider only NPFS 
schedules starting with j1 - j2, i.e. 3 different schedules. Remember that now m* can be m2 or m3 or both. 
In the cases where m* takes a unique value, i.e. m2 or m3, expression (3) is valid according to the 
decomposition procedure shown in Fig. 4. The resulting CPs of the decomposed flow shop subsystems 
can be described as PFS-CPs, and expression (2) is valid for m machines. But when m* is both m2 and 
m3, expression (2) is no longer valid.  
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m1 O11 O21 x        

m2  O12 1 O22       

m3     O23 O31     

m4       O14 O24 x  

m5         2 O25 

           
 

Fig. 5. NPFS schedule of 2 jobs and 5 machines, with two switching machines (m2 and m3) 

If expression (3) is applied to the schedule in Figure 5 the resulting CP will not represent the actual CP. 
Expression (3) is valid only for a single switching machine m*. Consider the case in which the schedule 
in Figure 5 is forced to pick only one of the switching machines, for instance if m2 is discarded as 
switching machine and m3 becomes m*. Then, the CP obtained in expression (3) will have 7 activities, 
unlike the actual optimal schedule.   Running a backward analysis, we can see that the actual CP of Figure 
5 ends with activity O2,5, starting at “x2”. Suppose O2,4 is included and successively also O1,4, O1,3, O2,3, 
O2,2. Then we get to the switching instant “x1”. Assume that O1,2 is also included, as well as O1,1, yielding 
O1,1 - O1,2 - O2,2 - O2,3 - O1,3 - O1,4 - O2,4 - O2,5 as CP, with a total of 8 activities. Consequently, we need a 
new formulation, with an expression similar to (1) and (2). Based on the decomposition procedure we 
have been applying, this schedule can be decomposed into a discrete number of flow shop independent 
systems. More precisely, the schedule in Figure 5 can be decomposed into three smaller systems: i) m1 
and m2, ii) m3 and iii) m4 and m5. Summing up their smaller-makespans we obtain the global makespan 
(activity O2,3 will not start before the completion of O2,2, and O1,4 will not start before the completion of 
O1,3). Subsequently, adding the CPs of the smaller systems we get the global CP. This is represented by 
expression (4), where m* and m** are the switching machines: 

ቌ ෍ 𝑝1,𝑖
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+ ෍ 𝑝1,𝑙′

௠∗∗

௟ᇲୀ௠ᇲᇲ

ቍ + ቌ ෍ 𝑝1,𝑘

௞ୀ௠ᇲᇲᇲ

௞ୀ௠∗∗

+ ෍ 𝑝2,𝑘′

ெ

௞ᇲୀ௠ᇲᇲᇲ

ቍ ,  

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚ᇱ, 𝑚∗, 𝑚ᇱᇱ, 𝑚∗∗, 𝑚ᇱᇱᇱ ∈ 𝑀|𝑚ᇱ < 𝑚∗ ≤ 𝑚ᇱᇱ < 𝑚∗∗ ≤ 𝑚ᇱᇱᇱ 

(4) 

In Fig. 5, m2 and m3 are the switching machines. A particular feature of the CP model presented here is 
that it also applies to the single machine case. The middle summand of expression (4) represents the 
portion of CP captured by m3 in Fig. 5. 

From the comparison of expressions (3) and (4), we can further specify the decomposition procedure: 

Decomposition method. A F||Cmax scheduling problem of two jobs can be decomposed into as many 
F|prmu|Cmax scheduling sub-problems as the number of switches in the job ordering plus one. The 
makespan is obtained as the sum of the makespans of the sub-problems. The set of the CPs of the sub-
problems can be described by expression (2). 

This enunciation leads to some interesting results for the 2 jobs case. Whenever a switch is present, the 
decomposition procedure can be applied, and a new activity is added to the CP. Then, expression (2) and 
its expansions in (3) and (4) can be conceived as a recursive formulation in an algorithm intended to 
generate flow shop critical paths. 
 
4. Comparing the critical paths of NPFS and PFS for 2 jobs and m machines 
 

As mentioned before, we intend to compare NPFS and PFS schedules. Expression (2) and the 
decomposition method allow the generation of the entire set of possible CPs for each possible schedule. 
With this set of CPs available, it becomes possible to run comparisons. The idea is to determine the 
degree of similarity between the CPs. Initially, we know that NPFS-CPs are longer than PFS-CPs for the 
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same instance. Even more, NPFS-CPs can be much longer than PFS-CPs, since every switch adds extra 
activities to the CP. Consequently, the length of NPFS-CPs, measured by the number of operations, is 
longer than that of PFS-CPs. We can hint that NPFS-CPs will yield worse makespans than PFS-CPs for 
a certain number of operations. The corresponding concept of dominance is expressed as follows: 

Definition 2. If for some NPFS Schedule we have that:  

෍ 𝑝௝,௜

௣ೕ,೔ ∈ ே௉ிௌି஼௉

≥ ෍ 𝑝௝,௜

௣ೕ,೔∈ ௉ிௌି஼௉

 , (4) 

the schedule will be dominated by a PFS schedule. 

This definition establishes that, if the sum of the processing times of the operations in the NPFS-CP is as 
large as that of the operations in the PFS-CP, the former will be dominated by the PFS-CP. Since the 
critical paths yield the makespans of the schedules, a shorter PFS-CP will indicate that the PFS schedule 
has a better makespan than NPFS. A particular case of dominance arises when NPFS-CP contains all the 
operations of the PFS-CP and thus the latter schedule dominates the former one. Figure 6, illustrates this 
particular dominance case in the case of two jobs and five machines. The CP at the top is a PFS-CP while 
the CP at the bottom is a NPFS-CP. It is easy to see that the PFS-CP operations are all captured by the 
NPFS-CP, and that there are two extra activities in the NPFS-CP, indicated by circles. Then, the NPFS-
CP is dominated by the PFS-CP. 

 

Fig. 6  Critical path dominance 

We now present other, less immediate, cases in which Definition 2 applies.  Recall that the number of 
switching machines is denoted S, and that according to Propositions 1 and 2, S ≤ M – 3. 

Proposition 7. Consider an instance of two jobs and m machines (M > 4). If M is odd, the number of 
switching machines in the NPFS schedule is M – 3, and the operations are such that p1,2 > p2,1 and p1, M 
> p2, M – 1. Then, the NPFS schedule is dominated by the PFS schedule. 

Proof. We prove this result by induction. As the base case consider M = 5 (the smallest case to which 
the claim applies) and an NPFS schedule with S = M – 3 = 2 switches (illustrated in Figure 3) and a PFS 
schedule starting with the same operation as the NPFS one. We will show that the PFS solution dominates 
the NPFS schedule. 

By a straightforward application of the decomposition method we know that the makespan of the NPFS 
schedule with S switches can be rewritten as the sum of the makespans of S + 1 PFS sub-problems. These 
involve: i) operations on m1 and m2, ii) operations on m3 and iii) operations executed in m4 and m5, as 
shown in Figure 3. Each “sub-makespan” can be obtained in terms of expression (2). Since ii) includes 
operations of the two jobs in m3, Definition 1 indicates that it is a critical machine and thus the makespan 
in that case is just the sum of the processing times on those operations.  

Since M is an odd number, S is even and thus the schedules for subproblems i) and iii) coincide. In i), the 
operations O1,1 and O2,2 are necessarily part of its critical path (Proposition 3, a and b), while only one 
from O1,2 or O2,1 will be included. Since, by definition, p1,2 > p2,1, O2,2 can start only after O1,2 has finished. 
Then, the makespan of i) is: p1,1 + p1,2 + p2,2. 
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For iii) the analysis is similar: O1,4 and O2,5 are included in the critical path (again according to 
Proposition 3.a,b) and from the other two, only O1,5 belongs to the critical path (by definition p1,M > p2,M 

– 1). Then, the makespan of iii) is p1,4 + p1,5 + p2,5. 

Therefore, the total makespan of the NPFS schedule is: p1,1 + p1,2 + p2,2 + p2,3 + p1,3 + p1,4 + p1,5 + p2,5.  

We can now turn to the PFS schedules and the possible critical paths describing its makespan. We resort 
to Definition 1, noting that the simplest case is when the PFS-CP has m5 as its critical machine. The 
ensuing makespan would be p1,1 + p1,2 + p1,3 + p1,4 + p1,5 + p2,5, implying that the corresponding operations 
would be included in the NPFS-CP, and thus that the makespan of NPFS-CP would be longer by adding 
the processing times of operations O2,2 and O2,3. 

With respect to the rest of the PFS-CP, we know that they cannot have m1 as critical machine since it 
would have to include O2,1, not triggering the start of O2,2 (which, as said, depends on O1,2) and thus 
would not yield the makespan of a PFS solution. The same would happen if m4 were a critical machine. 

In the case that the critical machine of the PFS-CP is m2, this critical path would include O1,1, O1,2, O2,2, 
O2,3, O2,4 and O2,5 as follows from equation (2).  Other than O2,4 all the rest of the operations are in NPFS-
CP, contributing to the makespan of both the PFS-CP and the NPFS-CP. Since p2,4 < p1,5, corresponding 
to O1,5, which belongs to NPFS-CP, it follows that the makespan of NPFS-CP is longer than that of PFS-
CP. A similar analysis can be carried out in the case that the critical machine of PFS-CP is m3. 

The inductive step involves the cases in which M > 5. It follows from Propositions 1 and 2 that, since S 
= M – 3, the switches will be consecutive. Accordingly, a NPFS-CP can be decomposed in as many as S 
+ 1 PFS problems, with as many one-machine PFS problems as S – 2.                                       □ 

Proposition 8. Given an instance of two jobs and M machines, if M is even, S of the NPFS schedule is M 
– 3, and p1,2 > p2,1, the NPFS schedule is dominated by the PFS schedule. 

Proof. We will prove this claim by induction. As base case consider an instance with M = 6 and a NPFS 
schedule with S = M – 3 = 3 switches. We will compare it to a PFS schedule starting with the same 
operation as the NPFS schedule. We will show that this PFS schedule dominates the NPFS one. 

The decomposition method indicates that the makespan of the NPFS schedule with S switches can be 
rewritten as the sum of the makespans of S + 1 PFS sub-problems. These involve: i) the operations 
executed on m1 and m2, ii) the operations on m3, iii) the operations on m4 and iv) the operations carried 
out on m5 and m6. Each of them yields a PFS sub-problem in which the makespan can be obtained from 
Eq. (2). Each one of problems ii) and iii) involves a single machine that, according to Definition 1, is a 
critical machine. Then, the makespan of each of these two sub-problems obtains as the sum of the 
processing times of the two operations executed on the corresponding single machine.  

Since M is even, S is odd, and thus the schedules for sub-problems i) and iv) do not coincide. In i) 
operations O1,1 and O2,2 are necessarily part of the critical path, while only one of O1,2 and O2,1 belongs 
to it. Since p1,2 > p2,1, O2,2 can start only after O1,2 has finished its execution. Then, the makespan of i) is: 
p1,1 + p1,2 + p2,2. 

For iv), O2,5 and O1,6 must both be in the critical path, together with a third operation, the one that takes 
longer from O1,5 and O2,6. For example, if p1,5 > p2,6, the makespan of iv) is p2,5 + p1,5 + p1,6. 

Then, the resulting NPFS schedule has makespan: p1,1 + p1,2 + p2,2 + p2,3 + p1,3 + p1,4 + p2,4 + p2,5 + p1,5 
(or p2,6) + p1,6.    

Now we turn to the analysis of the PFS schedule and the possible critical paths supporting its makespan. 
For this we will use again Definition 1. The easiest case is when machine m6 is critical for the PFS 
problem, since then the makespan will be given by p1,1 + p1,2 + p1,3 + p1,4 + p1,5 + p1,6 + p2,6, implying that 
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only one of the corresponding operations does not correspond in the NPFS-CP, namely O2,6. But this is 
so because we assumed that p1,5 > p2,6, i.e. the critical path includes an operation that takes longer than 
O2,6 making the makespan corresponding to the NPFS-CP longer than that of the PFS-CP. Notice that if 
in problem iv) we had assumed that p1,5 < p2,6, O2,6 would be included in the NPFS-CP excluding O1,5, 
yielding again that the makespan of the NPFS-CP must be longer than that of the PFS-CP. 

We have to consider other possible positions for the critical machine in the PFS schedule.  There are 
three possible cases: the critical machine appears before M – 1, it is precisely the M – 1 machine or it is 
the last machine, M. In the first case, 1 < m* < M – 1, the operations in the PFS-CP up to the M – 1 
machine will belong also to the NPFS-CP since the NPFS schedule switches jobs consecutively 
contemplating all the operations executed between machines m2 and mM – 2. With respect to machines mM 

– 1 and mM, the PFS-CP will include operations O2,5 and O2,6. The NPFS-CP, instead, includes only one 
of these two operations. O2,5 is necessarily included (the first operation of the last sub-problem), but O2,6 
can or cannot be included. In the case that it is not included, it must be because another one was, with 
longer processing time (O1,5 in the previous case), making again the makespan of the NPFS-CP longer 
than that of the PFS-CP. In case that p1,5 < p2,6, O2,6 becomes included in the NPFS-CP as well as in the 
PFS-CP. Since the NPFS-CP incorporates more operations than the PFS-CP, the makespan of the NPFS-
CP will be again longer than that of the PFS-CP.   

As said, another case arises in the PFS-CP when m* = M – 1. Then, the operations in the PFS-CP on the 
last two machines are O1,5, O2,5, and O2,6. At most only one of O1,5 or O2,6 might not be present in the 
NPFS-CP. The same happens when m* = M. In these two cases the result is similar to the one for m* < 
M – 1, since the NPFS-CP will include either all the operations of the PFS-CP or only one different but 
with longer processing time, making the makespan of the former longer than that of the latter.  

The claim is also valid in the inductive step, when M > 6, since, again as in the proof of Proposition 7, 
the switches must be consecutive since S = M – 3.                                  □ 

5. Experimental evaluation 
 

In this section we run an experimental analysis of the impact of the distribution of processing times on 
the optimal solutions of the PFS and NPFS problems. We first present MIP (Mixed-Integer 
Programming) versions of the permutation and non-permutation formulations of problems. Then, we 
generate different classes of scenarios for which we will obtain the solutions. Finally, we compare the 
ensuing schedules. 

5.1.  MIP formulations 
 

We first present the PFS formulation, which is simpler. Then we will present the NPFS formulation, 
given in terms of its differences with the PFS one. 

PFS model. 

 Sets 
Jobs {j} 
Machines {m} 
 Parameters 
𝑝௝,௠ Processing time of product j on machine m 
Ω large positive number 
 
 Variables 
𝐶௝,௠ Completion time of job j on machine m 
𝑥௝ᇲ,௝ Binary variable: 1 if job j’ is processed before job j 
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min  𝐶௠௔௫ 

subject to: 
𝐶௝,௠ ≥ 𝐶௝,௠ିଵ + 𝑝௝,௠ , ∀𝑗, 𝑚 > 1 (5) 

 

𝐶௝,௠ ≥ 𝐶௝ᇲ,௠ + 𝑝௝,௠ − ൫1 − 𝑥௝ᇲ ,௝൯ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (6) 
 

𝐶௝ᇲ,௠ ≥ 𝐶௝,௠ + 𝑝௝ᇲ,௠ − 𝑥௝ᇲ,௝ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (7) 
 

𝑥௝ᇲ,௝ + 𝑥௝,௝ᇲ = 1 , 𝑗 ≠ 𝑗′ (8) 
 

𝐶௠௔௫ ≥ 𝐶௝,௠ , ∀𝑗, ∀𝑚 (9) 
 

𝐶௝,௠ > 0; 𝑥௝,௝ᇲ  {0,1} (10) 
 

The objective function to be minimized is the makespan. Constraint (5) indicates the precedence of 
activities, i.e. a job must stop being processed on a machine before passing to the next one. Constraints 
(6) and (7) work together indicating the ordering of jobs. If job j’ is processed before job j, then xj’,j 
becomes 1 and constraint (6) becomes active, while constraint (7) turns redundant. In expression (8) the 
logical order is respected: if job j’ is processed before job j, the converse cannot be valid. The makespan 
is defined by inequality (9) while (10) expresses the condition of feasibility. 

NPFS model 

The NPFS model is similar to the PFS model, being the main difference that the job ordering among 
machines can change. For this, the variable x becomes now indexed by the set m of machines, as follows:  

𝑥௝ᇲ,௝,௠: Binary variable: 1 if job j’ is processed before job j on machine m. 
 

Then the equations that are modified are Eq. (6), Eq. (7) and Eq. (8) and we get, 

𝐶௝,௠ ≥ 𝐶௝ᇲ,௠ + 𝑝௝,௠ − ൫1 − 𝑥௝ᇲ ,௝,௠൯ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (11) 
 

𝐶௝ᇲ,௠ ≥ 𝐶௝,௠ + 𝑝௝ᇲ,௠ − 𝑥௝ᇲ,௝ ∙ Ω , ∀𝑚, 𝑗′ ≠ 𝑗 (12) 
 

𝑥௝ᇲ,௝,௠ + 𝑥௝,௝ᇲ,௠ = 1 , 𝑗 ≠ 𝑗ᇱ, ∀𝑚 (13) 
 

Here constraints (11) and (12) are analogous to (6) and (7), but now the order among machines can 
change. Constraint (13) is a similar logical condition as (8) but evaluated on every machine. 

5.2. Test Scenarios 
 

We intend to evaluate the claims proven in the previous sections. We proceed by generating alternative 
scenarios, such that one scenario differs from another in the dispersion of values of the processing times 
pj,m. The processing times of the different scenarios are generated by means of the following formula:  

𝑝௝,௠ = 2ே(଴,ఙ) (14) 

The exponent here corresponds to a Gaussian distribution with mean 0 and standard deviation σ. We can 
thus use σ to vary the range of values of pj,m. (Microsoft Excel was used to generate the random samples 
of the distribution). We designed three experiments. In the first one the processing times of all the 
operations are generated with the same dispersion: each pj,m obeys Eq. (14). Four different values of σ 
where considered for each number of machines in the range [4;20]. This range was chosen because M = 
4 is the minimal number of machines for which NPFS can be defined, while M = 20 is the largest number 
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of instances enumerated in Taillard (1993). The four values of σ were 0.5, 1, 1.5 and 2. For each pair σ 
and M, we run 30 different scenarios. 

In the second experiment the settings are the same as in the previous one, except that different standard 
deviations were considered for the two jobs. For instance, for one job σ was set at 0.5, while for the other 
job σ was chosen to be 1, 1.5 and 2. M is drawn again from the same range, [4;20]. Again, 30 scenarios 
were generated for each pair M and σ. Finally, the third experiment made the standard deviation vary 
among the machines. In this case we considered M to be 10, 15 or 20. Almost all the machines were 
assigned pj,m values distributed according to σ = 0.5, except for some machines. In the case M = 10, the 
exceptions were m4, m5, and m6, with processing times drawn from distributions with σ =1, 1.5 and 2. In 
the case that M = 15, for pj,6...9 we assumed again the same three values of  σ. For M = 20 we assumed the 
same for pj,8...12  with, again, σ =1, 1.5 and 2. As in the previous experimental designs we ran 30 scenarios. 
All these experiments were performed in an Intel Core i5 with 8 GB of main memory using CPLEX 12.5 
as MIP solver. 

5.3. Results 
 

Tables 2, 3 and 4, summarize the results for the three experimental designs.  Each table represents one 
of those designs, but in all of them the rows present the instances defined by the values of M. The column 
NPFS indicates the percentage of scenarios in which NPFS schedules solved optimally the problem (over 
a total of 30 scenarios). Column GAP indicates the average difference between the optimal NPFS solution 
and that of the best PFS schedule (reported only in the cases that NPFS yields the optimal solutions). 
Column “Row Avg.” presents the average values of the NPFS solution and the GAP for each row. In 
turn, “Col. Avg.” presents the averages per column. The lower right entries of the table report the 
averages for the entire experiment. 

Table 2  
Average results of the first experiment: the processing times of all the operations are drawn from the 
same distribution, and thus have the same dispersion 

M σ = 0.5 σ = 1 σ = 1.5 σ = 2 Row Avg. 
NPFS GAP NPFS GAP NPFS GAP NPFS GAP NPFS GAP 

4 0,0% - 0,0% - 0,0% - 3,3% 0,3% 0,8% 0,3% 
5 0,0% - 6,7% 4,2% 0,0% - 0,0% - 1,7% 4,2% 
6 0,0% - 10,0% 3,5% 0,0% - 3,3% 1,6% 3,3% 2,6% 
7 0,0% - 13,3% 5,2% 6,7% 1,0% 13,3% 1,9% 8,3% 2,7% 
8 0,0% - 16,7% 3,1% 0,0% - 6,7% 1,3% 5,8% 2,2% 
9 0,0% - 16,7% 3,4% 10,0% 3,0% 16,7% 3,6% 10,8% 3,3% 

10 0,0% - 3,3% 4,8% 10,0% 2,8% 20,0% 2,9% 8,3% 3,5% 
11 3,3% 0,3% 13,3% 1,5% 16,7% 3,0% 26,7% 2,7% 15,0% 1,9% 
12 6,7% 2,8% 16,7% 1,0% 26,7% 4,0% 23,3% 4,8% 18,3% 3,2% 
13 3,3% 0,1% 16,7% 2,4% 23,3% 5,3% 23,3% 1,2% 16,7% 2,3% 
14 0,0% - 20,0% 1,2% 30,0% 3,6% 26,7% 0,9% 19,2% 1,9% 
15 3,3% 0,7% 10,0% 1,8% 33,3% 3,1% 40,0% 1,7% 21,7% 1,8% 
16 10,0% 0,4% 13,3% 3,2% 26,7% 3,7% 23,3% 3,5% 18,3% 2,7% 
17 10,0% 0,7% 20,0% 2,0% 23,3% 2,4% 30,0% 3,5% 20,8% 2,2% 
18 6,7% 0,7% 16,7% 1,0% 20,0% 5,1% 33,3% 2,6% 19,2% 2,3% 
19 13,3% 0,4% 10,0% 1,9% 30,0% 5,5% 30,0% 2,2% 20,8% 2,5% 
20 0,0% 0,8% 20,0% 1,8% 43,3% 3,0% 26,7% 2,7% 22,5% 2,1% 

Col. Avg. 3,3% 0,8% 13,1% 2,6% 17,6% 3,5% 20,4% 2,3% 13,6% 2,5% 

 

Table 2 summarizes the results of the first experimental design, in which processing times were drawn 
from a common distribution. The last row shows that with a larger σ the percentage of cases in which 
NPFS schedules are optimal increases: it goes from 3% of the scenarios for σ = 0.5 to 20 % for σ = 2. 
This can be explained by considering that NPFS schedules incorporate S more operations than PFS ones. 
Thus, with a low σ the processing times tend to be more similar and any extra operation adds a significant 
length to the makespan. In the extreme case in which all processing times are the same, NPFS schedules 
will never support the shortest makespan.  
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In the same row we can see that the average value of GAP also increases with σ. But the direction of 
change is not constant: for σ = 2, the gap is 2.3%, being lower than in the case of σ =1.5, which is 3.5%. 
An interesting fact is that when σ > 0.5 the gap is larger than 2%. This is particularly relevant, considering 
that in other contributions to the literature (albeit non-comparable in terms of the size of the problem) as 
for instance Benavides & Ritt (2016), the values of the gap were around 1 %.  With respect to the values 
of M in Table 2, we can see that for low values of M (M ≤ 10) the percentage of cases in which a NPFS 
schedule is optimal never surpasses 10%.  In the case of σ = 0.5, there is no scenario in which NPFS 
yields the optimal solution. The main reason is again the number of extra operations in NPFS schedules, 
which have an impact on the makespan. But considering the GAP for M ≤ 10, we can see that it does not 
differ by much from the other cases. When M > 10, the cases in which NPFS yields the optimal solution 
tend to increase with M, going from 15 % for M = 11 to over 22% when M = 20. The GAP oscillates 
between 2% and 3%. 

Table 3  
Average results of the second experiment: the processing times of one of the jobs are distributed 
according a fixed σ = 0.5, while those of the other job have a variable σ as detailed on the top of the 
columns. 

M 
σ_2 = 1,0 σ_2 = 1,5 σ = 2 Row Avg. 

NPFS GAP NPFS GAP NPFS GAP NPFS GAP 
4 3,3% 1,0% 0,0% - 0,0% - 1,1% 1,0% 
5 0,0% - 3,3% 1,2% 0,0% - 1,1% 1,2% 
6 6,7% 2,8% 0,0% - 0,0% - 2,2% 2,8% 
7 10,0% 3,0% 6,7% 2,0% 0,0% - 5,6% 2,5% 
8 3,3% 3,7% 10,0% 1,5% 3,3% 0,2% 5,6% 1,8% 
9 6,7% 1,8% 6,7% 4,3% 13,3% 2,7% 8,9% 3,0% 

10 10,0% 2,4% 6,7% 6,3% 10,0% 6,6% 8,9% 5,1% 
11 10,0% 3,1% 13,3% 2,6% 23,3% 2,9% 15,6% 2,9% 
12 16,7% 2,0% 10,0% 2,8% 16,7% 2,4% 14,4% 2,4% 
13 20,0% 3,1% 6,7% 1,1% 13,3% 2,1% 13,3% 2,1% 
14 16,7% 3,5% 6,7% 3,0% 20,0% 1,5% 14,4% 2,7% 
15 16,7% 2,1% 13,3% 1,2% 30,0% 1,4% 20,0% 1,6% 
16 16,7% 2,4% 16,7% 2,1% 16,7% 1,1% 16,7% 1,9% 
17 16,7% 2,8% 16,7% 2,2% 16,7% 1,3% 16,7% 2,1% 
18 10,0% 2,6% 16,7% 1,5% 20,0% 0,9% 15,6% 1,7% 
19 6,7% 5,5% 16,7% 3,0% 20,0% 1,4% 14,4% 3,3% 
20 16,7% 1,4% 23,3% 1,9% 26,7% 0,6% 22,2% 1,3% 

Col. Avg. 11,0% 2,7% 10,2% 2,4% 13,5% 1,9% 11,6% 2,3% 
 

Table 3 presents the results for the second experiment. The last row indicates that, in rough terms, the 
percentage of scenarios in which NPFS yield the optimal solution is similar, for σ = 1, σ = 1.5 and σ = 2, 
namely 11 %, 10.2% and 13.5% respectively. With respect to the GAP, it decreases with increases in the 
dispersion of processing times: it goes down from 2.7% for σ = 1 to 1.9% for σ = 2. With respect to the 
impact of M, the results are similar as in the case of similar dispersion: with larger M the number of 
scenarios in which NPFS yields the optimal solution increases. The GAP in cases that NPFS schedules 
are optimal remains, again, stable for different values of M.  

Table 4  
Average results of the third experiment: the processing times of most of the operations are distributed 
according a fixed σ = 0.5 while the processing times of the middle machines operations have a variable 
σ as detailed on the columns 

M σ = 0,5  σ = 1 σ = 0,5  σ = 1,5 σ = 0,5  σ = 2 Row Avg. 
NPFS GAP NPFS GAP NPFS GAP NPFS GAP 

10 20,0% 1,7% 20,0% 0,6% 16,7% 3,8% 18,9% 2,0% 
15 13,3% 2,3% 33,3% 0,9% 30,0% 2,2% 25,6% 1,8% 
20 13,3% 1,8% 20,0% 3,0% 30,0% 2,3% 21,1% 2,3% 

Col. Avg. 15,6% 1,9% 24,4% 1,5% 25,6% 2,8% 21,9% 2,1% 

 

Finally, Table 4 presents the results of experiments in which σ = 0.5 except for machines near M / 2, 
which have processing times drawn from distributions with a larger deviation. We see that with larger 



  

 

296 

dispersion in those machines, the number of cases in which NPFS yields optimality increases markedly 
from 15.6%, for σ = 1, to 25.6%, for σ = 2. We can also see that the GAP for σ = 2 is considerably larger 
than in the other cases. In turn, M does not show such a linear trend: the number of cases in which NPFS 
is optimal grows with the number of machines, until at M = 15 it reaches 25.6% and afterwards it drops 
to 21.1%, for M = 20. The GAP, again, is stable for different values of M.   

In order to compare the first and the second experiments, we have to look at the lower right cells of Table 
2 and Table 3. The global percentages of success of NPFS schedules are very similar: 13.6% in the first 
and 11.6% in the second experiment. But notice that the first experiment generated 2040 results (17 
values of M, 4 of σ and 30 scenarios) while the second 1530 results (only 3 values of σ).  If in the first 
experiment we drop the results for σ = 0.5, the global percentage (for the remaining 1530 results) of 
optimality of NPFS schedules is 17.1%, significantly higher than 11.6% of experiment 2. We can thus 
conclude that when the operations of both jobs have processing times with high dispersion (instead of 
just one of them) the optimality of NPFS schedules is more probable.  

The comparison of the three experiments requires considering the same number of results for each of 
them. Table 5 puts together the last two columns of Tables (2-4) for M = 10, 15 and 20. We can see that, 
in average, the NPFS schedule is optimal at a higher rate in experiment 3:  21.9% against 17.5% for the 
other two. Nevertheless, the values of GAP are the lowest in the same experiment. That is, it seems that 
in scenarios in which processing times of a few machines are very dispersed, the non-permutation 
approach has higher chances of yield optimal results, albeit with a relatively small difference with respect 
to PFS schedules. 

Table 4 
Summary of the results of the three experiments for M ϵ {10, 15, 20}. 

M 
1° Experiment 2° Experiment 3° Experiment 

NPFS GAP NPFS GAP NPFS GAP 
10 8,3% 3,5% 8,9% 5,1% 18,9% 2,0% 
15 21,7% 1,8% 20,0% 1,6% 25,6% 1,8% 
20 22,5% 2,1% 22,2% 1,3% 21,1% 2,3% 

Avg. 17,5% 2,5% 17,5% 2,7% 21,9% 2,1% 

6. Conclusions 
 

In this work we studied the structure of the critical paths of both PFS and NPFS schedules. Besides 
introducing novel characterizations of critical PFS and NPFS paths, we presented expressions 
summarizing the critical paths of PFS schedules.  In the case of the NPFS schedules we have shown that 
their makespans can be obtained in terms of a decomposition of the NPFS schedules as sequences of PFS 
sub-schedules. The sum of the makespans of these sub-schedules yields the makespan of the NPFS 
schedule. We compared the NPFS and PFS schedules, both structurally and numerically. In the former 
case we found cases in which NPFS schedules are dominated by PFS ones. The numerical analysis shows 
that with a higher dispersion of processing times (in particular on a few machines) the chances of finding 
optimal NPFS schedules are higher. The same happens with a larger number of machines. 
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