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 When operating in highly competitive business environments, contemporary manufacturing 
firms must persistently find ways to fulfill timely orders with quality ensured merchandise, 
manage the unanticipated fabrication disruptions, and minimize total operating expenses. To 
address the aforementioned concerns, this study explores the optimal runtime decision for a 
manufacturing system featuring an expedited fabrication rate, random equipment failures, and 
scrap. Specifically, the proposed study considers an expedited rate that is linked to higher setup 
and unit costs. The fabrication process is subject to random failure and scrap rates. The failure 
instance follows a Poisson distribution, is repaired right away, and the fabrication of interrupted 
batch resumes when the equipment is restored. The defective goods are identified and scrapped. 
Mathematical modeling and optimization method are used to find the total system cost and the 
optimal runtime of the problem. The applicability and sensitivity analyses of research outcome 
are illustrated through a numerical example. Diverse critical information regarding the 
individual/joint impacts of variations in stochastic time-to-failure, expedited rate, and random 
scrap on the optimal runtime decision, total system expenses, different cost components, and 
machine utilization, can now be revealed to assist in in-depth problem analyses and decision 
makings. 
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1. Introduction 

 
A manufacturing runtime problem with an expedited fabrication rate, random failures, and scrap is 
investigated in this study. Taft (1918) is believed to be the first who proposed a mathematical approach 
to calculate the most economical production lot (or called the economic production quantity (EPQ) 
model), by balancing costs of setup and holding to decide the lot size per cycle which minimizes total 
relevant expenses. A perfect manufacturing process with finite fabrication rate is assumed in the original 
EPQ model. But, in real production environments, due to varied unexpected situations, fabrication of 
defective/scrap goods and machine failure instances are inevitable. Literatures on production inventory 
systems with defective/scrap items are surveyed as follows: Schwaller (1988) examined three separate 
inventory models; namely, the basic economic order quantity (EOQ) model, EOQ with non-instantaneous 
replenishment, and EOQ with backlogging, by incorporating the product screening cost into total 
inventory relevant costs. Effects of defective proportion and inspection cost on these models were 
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investigated to obtain in-depth information on inventory policy making. Richter (1996) considered an 
EOQ model with the repairable and scrapped items using two preset variables n and m to control 
production and repair mode within a finite interval of time. The author started with the assumption of a 
constant scrap rate and cost minimum setup numbers to derive the minimum cost. Then, the author treated 
the optimal/ minimum cost as a function of scrap rate to explore the convex/concave relationships 
between the cost and the scrap rate, and further discussed the optimality on cost. Konstantaras et al. 
(2007) studied the imperfect EOQ/EPQ system with an in-house 100% product screening process. In the 
end of inspection, two options were proposed to handle the defective goods: (i) to sell them at a discount 
price to a secondary marketplace; and (ii) to repair them completely with an extra rework cost per item. 
For both cases, the perfect goods are transported to warehouse in equal-size shipments. Their objectives 
were to not only retain the product quality, but also to decide the optimal lot-size and frequency of 
shipments per order that kept the system cost at minimal. A numerical illustration with sensitivity analysis 
showed how their system works. Extra works (Porteus, 1986; So & Tang, 1995; Grosfeld-Nir & Gerchak, 
2002; Giri & Chakraborty, 2011; Abubakar et al., 2017; Chiu et al., 2017; Shakoor et al., 2017; Sher et 
al., 2017; Chiu et al., 2018a,b; Gan et al., 2018; Imbachi et al., 2018; Pearce et al., 2018) focused on 
fabrication/inventory systems with different features of nonconforming goods and their consequent 
treatments. 
 
Due to different unpredicted reasons in real manufacturing process, random machine failure is inevitable. 
Groenevelt et al. (1992) explored the optimal fabrication lot-size problem considering equipment failures 
along with two distinct controlling disciplines on breakdown corrections; namely, the no-resumption 
(NR) and the abort-resume (AR) disciplines. According to the NR-discipline, the fabrication of 
interrupted lot is not resumed after a failure occurs. While under the AR-discipline, if the current stock 
level falls below a preset threshold point, fabrication of the interrupted lot is resumed right away, when 
the equipment is fixed. Analyses, solution procedures, outcomes, and impacts of these disciplines on the 
optimal lot-size were separately carried out, illustrated, and discussed. Kuhn (1997) examined a dynamic 
batch size problem featuring exponential breakdowns. Two distinct scenarios were investigated. The first 
scenario assumed the setup is completely lost after a machine failed, and the second scenario assumed 
that the resuming setup cost is significantly lower than the standard setup expense, when the fabrication 
of interrupted batch is resumed. The author showed that under scenario one, if the production planner 
ignors the factor of machine failures the cost penalty will be remarkably higher than that of the classic 
EPQ model. Besides, the author recommended a conditional resumption idea for scenario two and 
suggested an approach by using dynamic programming for finding optimal lot-size solutions for both 
decisions for both scenarios. Dehayem Nodem et al. (2009) considered the production rate and 
repair/replacement decision makings for a fabrication system featuring random breakdowns. Consequent 
actions/ policies immediately after a breakdown instance include (i) machine is under repair, or (ii) an 
identical spare machine is used. Their objective was to choose the optimal manufacturing rate and the 
repair/replacement policy that keep the long-run system expenses at minimum. A semi-Markov decision 
model (SMDM) was employed to help first decide the best repair/replacement policy, then, based on this 
policy the production rate was determined. By the use of numerical methods, the authors showed the 
optimality conditions, and revealed that as the number of machine failures rises, the on-hand stock level 
must be adjusted higher to avoid shortage. Chakraborty et al. (2013) studied an EMQ system which is 
subject to stochastic failure, repair, and stock threshold level (STL). The fabrication rate was considered 
as a decision variable and it links to the machine failure rate. The authors allocate additional capacity to 
hedge against random breakdowns. According to general distributions of breakdown and repair time, the 
basic model was built and two computational algorithms were proposed to help solve the optimal 
fabrication and STL that keep the long-run system expenses at minimal um. Extra works (Berg et al., 
1994; Giri & Dohi, 2005a; Dahane et al., 2012; Liu et al., 2017a; Muzamil et al., 2017; Vujosevic et al., 



S. W. Chiu et al.  / International Journal of Industrial Engineering Computations 11 (2020) 37

2017; Luong & Karim, 2017; Nobil et al., 2018; Mohammed et al., 2018; Zhang et al., 2018) were also 
carried out to study the effect of diverse aspects of failures and their corresponding actions on 
manufacturing systems. 
 
To shorten manufacturing completion time to fulfill buyer’s timely orders, production managers often 
expedite the fabrication rate. Arcelus and Srinivasan (1987) studied an EOQ- based system with several 
optimizing measures and different demands and prices. With the aim of making profit, the authors 
established decision rules to manage inventories of finished stocks, defined price using a markup rate of 
cost, and assumed demand as price-dependent function. Both order quantity and markup rate are decision 
variables, and optimization of their system was determined by three broadly used performance 
evaluators, which include profits, return on investment, and residual income. Balkhi and Benkherouf 
(1996) examined an inventory system featuring deteriorating products, time-varying demand and 
fabrication rates. A precise method was presented to derive the optimal stock refilling schedule for the 
proposed inventory system and the method was illustrated via a numerical example. Gharbi et al. (2006) 
investigated an unreliable multiproduct multi-machine fabrication system with adjustable fabrication 
rates and setup actions. Different setup times and costs are linked to each switching process, no matter it 
is a product- or machine-type of switch. Their objective was to minimize the overall operating costs by 
deciding the best fabrication rates and the optimal sequence of setups. The authors used the following 
approaches to solve this complex problem: (i) the stochastic optimal control theory, (ii) experimental 
design, (iii) discrete event simulation, and (iv) response surface method. Two different cases were 
studied: case one considered single machine unreliable system featuring exponential breakdown and 
repair time distribution, and case two considered five machines system featuring non-exponential 
breakdown and repair time distributions. The experimental results revealed that an extended Hedging 
Corridor policy gave better performance on these two cases. Numerical examples were provided to 
illustrate contribution of the paper. Zanoni et al. (2014) considered energy reduction in a two-stage 
fabrication system with controllable fabrication rates, wherein, a single product is first fabricated on an 
equipment, and then transported in batch shipments to the subsequent fabrication stage. In each stage, 
the finite fabrication rate is assumed to be adjustable, and this rate is linked to specific energy 
consumption based on the type of process involved. The purpose of their work was to propose a model 
in the production planning phase, to analyze the system and minimize its overall costs, including 
production, inventory, and energy costs. The research result showed that significantly savings were 
realized as compared to a production plan without considering energy consumption. Additional works 
(Khouja & Mehrez, 1994; Giri & Dohi, 2005b; Sana, 2010; Liu et al., 2017b; Bottani, et al., 2017; Chiu 
et al., 2018c,d; Ameen et al., 2018) were also conducted to address various issues and influences of 
variable fabrication rates on manufacturing systems. As little attention has been paid to study the joint 
influences of stochastic failures, random scrap, and expedited fabrication rate on the manufacturing 
runtime decision, this work aims to link the gap. 
 
2. The proposed manufacturing runtime problem 
 
A manufacturing runtime problem with an expedited fabrication rate, random failures, and scrap is 
explored. Consider a manufacturing system is used to satisfy annual demand rate λ of a particular product. 
The production equipment is subject to stochastic failures which follows Poisson distribution with mean 
equal to β breakdowns per year. An abort/resume (A/R) stock control policy is used when a failure 
encounters. According to the A/R policy, malfunction equipment is under repair right away, and 
fabrication of the interrupted/unfinished lot will be resumed when repair task is successfully done. A 
constant repair time tr is assumed in this study. To reduce cycle length of the batch fabrication plan, this 
study adopts an expedited rate. Let α1 represent extra percentage of production rate and consequently, the 
speedy rate related parameters are defined as follows: 
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 1A 1 11P P   (1) 

 A 21K K   (2) 

 A 31C C   (3) 

where P1A is the speedy rate, KA and CA are speedy rate relevant setup and unit costs; and P1, K, C, α2, 
and α3 denote the standard rate, standard setup and unit costs, and connecting variables between KA and 
K, and between CA and C, respectively. For instance, for α1 = 0.3, it represents that speedy manufacturing 
rate is 30% higher than standard rate; and α3 = 0.15 means unit cost is 15% greater than standard unit 
cost due to the expedited rate. The manufacturing process randomly fabricate x portion of scrap goods at 
a rate d1A due to diverse unanticipated reasons. Shortages are not permitted, so (P1A – d1A – λ) > 0 must 
hold, where d1A is as follows: 

1A 1Ad xP
 

)4(
 

Appendix A includes other notation used in this study. The following two cases must be explored 
separately because of the random failures: 
 
2.1.  Case 1: A random failure taking place 
 
In case 1, time to failure t < t1A and the on-hand stock status in a cycle is illustrated in Fig. 1. It shows 
that the stock level at H0 when a random failure takes place. After the equipment is repaired and restored, 
the stock level keeps piling up and arrives at H when manufacturing uptime ends. Then, stock depletes 
to empty before next cycle starts. 
 

   
Fig. 1. On-hand stock status in the 
proposed system with expedited rate, 
random failures, and scrap (in green) 
as compared to that of a fabrication 
system with scrap (in black) 

Fig. 2.The on-hand status of safety 
stocks in the proposed system with 
expedited rate, random failures, 
and scrap 

 

Fig. 3. The on-hand status of scraps in 
the proposed system with expedited 
rate, random failures, and scrap 

 
The on-hand status for safety stock is exhibited in Fig. 2. It shows that safety stock being used to satisfy 
demand during tr, right after a failure taking place. Fig. 3 depicts the on-hand status of scrap in the 
proposed system with expedited rate, random failures, and scrap. From problem statement and by 
observing Fig. 1 to Fig. 3, one can obtain the following basic relationships: 

1A
1A 1A 1A

Q H
t

P P d 
 

 
 

(5) 

2A'
H

t


  (6) 

'
A 1A 2Ar 'T t t t    (7) 

 0 1A 1AH P d t    (8) 

 1A 1A 1AH P d t    (9) 

1A1 1 1A A Ad t xP t xQ   (10) 
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In the case of a random failure taking place, total cost per cycle TC(t1A)1 comprises variable 
manufacturing, setup, and disposal costs, fixed equipment repair cost, safety stocks’ variable, holding, 
and delivery costs, and holding costs for perfect and scrap items during manufacturing uptime and 
depletion time. Hence, TC(t1A)1 is 
 

     
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           
      

 
 

(11) 

By applying E[x] to cope with random scrap rate and substituting Eq. (1) to Eq. (10) in Eq. (11), the 
following E[TC(t1A)]1 can be derived: 
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(12) 

 

The expected cycle time E[T'A], in the case of a random failure taking place, can be derived as follows: 
 

   
A

1A1A'
1 1

[ ]
Q E x E x

E T
t P

 
          (13) 

2.1.  Case 2: No random failures taking place 
 

In case 2, time to failure t > t1A and the on-hand stock status in a cycle is illustrated in Fig. 4. It shows 
that the stock level reaches H when manufacturing uptime finishes. Then, it depletes to empty before 
next cycle starts. 

 

 
 

 

 
Fig. 4. On-hand stock status in the 
proposed system with expedited rate 
and scrap, but without failures taking 
place (in green) as compared to that of 
a manufacturing system with scrap (in 
black) 

Fig. 5. The on-hand status of safety 
stocks in the proposed system with 
scrap and an expedited rate, but 
without failures taking place 

Fig. 6. The on-hand status of safety 
stocks in the proposed system with 
scrap and expedited rate, but without 
failures taking place 

 
Fig. 5 displays the on-hand status for safety stock. It shows that safety stocks have not been used because 
no machine failures take place. Fig. 6 illustrates the on-hand status of scrap in the proposed system with 
expedited rate and scrap, but without failures taking place. From problem statement and also by observing 
Fig. 4 to Fig. 6, one can obtain the following basic relationships: 
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 1A 1A 1AH P d t    (16) 

A 1A 2AT t t   (17) 
 

In the case of no machine failures, total cost per cycle TC(t1A)2 comprises variable manufacturing, setup, 
and disposal costs, safety stocks’ holding cost, and holding costs for perfect and scrap items during 
manufacturing uptime and depletion time. Hence, TC(t1A)2 is 
 

       1A 1A
1A A A S 3 A 1A 2A2 2 2r

H d t H
TC t C Q K C xQ h t T h t t         

 (18) 

 

By applying E[x] to handle with random scrap rate and substituting Eqs. (1-4) and Eqs. (14-17) in Eq. 
(18), the following E[TC(t1A)]2 can be derived: 
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(19) 

3. Solving the proposed runtime problem 
 
Because equipment failure is assumed to be a random variable which follows the Poisson distributed 
with mean equal to β per year, hence, time-to-failure t obeys an Exponential distribution with f(t) = βe–βt 
and F(t) = (1 – e–βt) as its density and cumulative density functions, respectively. Therefore, the expected 
annual system cost E[TCU(t1A)] can be determined as follows: 
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where E[TA] is 
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The following E[TCU(t1A)] can be gained by substituting Eq. (12), Eq. (19), and Eq. (21) in Eq. (20) (for 
detailed derivations please see Appendix B): 
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3.1 Convexity of E[TCU(t1A)] 
 
We first apply the first- and second-derivatives of E[TCU(t1A)] and gain the following: 
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and 
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From Eq. (24), because the first term λ /(1–E[x]) on RHS (right-hand side) is positive, it follows that 
E[TCU(t1A)] is convex if the second term on RHS of Eq. (24) is also positive. That is if Eq. (25) holds. 
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3.2  Searching for t1A* 
 
We set the first-derivative of E[TCU(t1A)] equal to zero to search for optimal runtime t1A* under the 
condition that Eq. (25) holds. 
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Let r2, r1, and r0 stand for the following: 
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Eq. (28) becomes 

   2

2 1A 1 1A 0 0r t r t r   (29)

                         
We can now apply Eq. (30) (i.e., the square roots solution procedure) to search for t1A*: 
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3.2.1 Recursive algorithm for locating t1A* 
 
The cumulative density function of Exponential distribution F(t1A) = (1 – e–βt1A) and it is over the interval 
of [0, 1], so does its complement e–βt1A. Furthermore, one can rearrange Eq. (27) as follows: 
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(32) 

The proposed recursive algorithm is as follows: Step (1): first set e–βt1A = 0 and e–βt1A = 1, use Eq. (32) to 
compute the upper and lower bounds for uptime t1A (i.e., t1AU and t1AL). Step (2): use current t1AU and t1AL 
to calculate and update e–βt1AU and e–βt1AL. Step (3): use current e–βt1AU and e–βt1AL to compute Eq. (29) 
again and update t1AU and t1AL for uptime t1A. Step (4): verify whether or not (t1AU – t1AL) = 0, if it is true, 
then go to Step (5); otherwise, go to Step (2). Step (5): t1A* is located (it is either t1AU or t1AL). 
 

4.  Numerical demonstration 
 

To demonstrate applicability of the proposed manufacturing runtime problem, an example with the 
following assumption of system parameters (see Table 1) is considered: 

 

Table 1  
Assumptions of system parameters in the numerical demonstration 

 

Parameters λ x 1 P1A P1 2 KA K 3  
 4000 20% 0.5 15000 10000 0.1 495 450 0.25 1 
Parameters CA C CS M g h h3 CT C1  
 2.5 2.0 0.3 2500 0.018 0.8 0.8 0.01 2.0  

 

Prior to solving t1A* for the problem, the convexity of E[TCU(t1A)] must be verified first. That is, to test 
whether γ(t1A) > t1A > 0 (i.e., Eq. (25)). We start with setting e–βt1A = 0 and e–βt1A = 1, then applying Eq. 
(31) to obtain t1AU = 0.5000 and t1AL = 0.1130. Finally, by computing Eq. (25) using these t1AU and t1AL 
values, we confirmed γ(t1AU) = 0.7466 > t1AU > 0 and γ(t1AL) = 0.2966 > t1AL > 0. So, the convexity of 
E[TCU(t1A)] is proved. Furthermore, to demonstrate the proposed study is applicable for broader range 
of mean machine failure rates, extra convexity tests were carried out and results are exhibited in Table 
C-1 (Appendix C). A recursive algorithm (see subsection 3.2.1) is utilized to locate t1A*. The detailed 
solution processes are shown in Table 2, where t1A* = 0.2015 and E[TCU(t1A*)] = $13,536 are obtained. 
 
The impact of differences in t1A on diverse cost elements in E[TCU(t1A)] are depicted in  Fig. 7. It indicates 
that as uptime t1A deviates from its optimal position (i.e., 0.2015), E[TCU(t1A)] begins to boost; and as 
t1A increases, holding cost goes up significantly and quality relevant cost raises accordingly; but the setup 
cost declines drastically. Fig. 8 exhibits the effect of variations in random scrap rate x on optimal 
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manufacturing uptime t1A*. It shows that optimal uptime t1A* increases notably, as scrap rate x raises; 
and at x = 0.2 (as assumed in the example), t1A* = 0.2015 years. The influence of variations in mean-
time-to-failure 1/β together with various defective rates x on E[TCU(t1A*)] is illustrated in Fig. 9. 
Table 2  
Solution processes of the proposed manufacturing runtime problem 

Step 
no. 

t1AU  e–βt
1AU t1AL e–βt

1AL 
Difference 

between       t1AU 
and t1AL 

E[TCU(t1AU)] E[TCU(t1AL)] 

- - 0 - 1 - - - 
1 0.5000 0.6065 0.1130 0.8932 0.3870 $14,189.93 $13,787.81 
2 0.2887 0.7493 0.1669 0.8463 0.1218 $13,632.38 $13,562.57 
3 0.2310 0.7937 0.1886 0.8281 0.0424 $13,550.13 $13,539.65 
4 0.2119 0.8090 0.1968 0.8214 0.0151 $13,538.30 $13,536.84 
5 0.2053 0.8144 0.1998 0.8189 0.0055 $13,536.68 $13,536.48 
6 0.2029 0.8164 0.2009 0.8180 0.0020 $13,536.46 $13,536.44 
7 0.2020 0.8171 0.2013 0.8177 0.0007 $13,536.43 $13,536.43 
8 0.2017 0.8173 0.2014 0.8176 0.0003 $13,536.43 $13,536.43 
9 0.2016 0.8174 0.2015 0.8175 0.0001 $13,536.43 $13,536.43 
10 0.2015 0.8175 0.2015 0.8175 0.0000 $13,536.43 $13,536.43 

 

It specifies that as 1/β increases (which implies the occurrence of a machine failure is less likely), 
E[TCU(t1A*)] declines significantly, especially when 1/β  0.25. It also shows that as scrap rate x goes 
up, E[TCU(t1A*)] increases notably. 
 

   
Fig. 7.  The impact of differences in t1A 

on diverse cost elements in E[TCU(t1A)] 
 

Fig. 8. The effect of variations in 
random scrap rate x on optimal 
manufacturing uptime t1A* 

Fig. 9. The influence of variations in 
mean-time-to-failure 1/β together 
with various x on E[TCU(t1A*)] 

 
 

Analytical results on cost elements in E[TCU(t1A*)] is exhibited in Fig. 10. It reveals that 16.9% of 
E[TCU(t1A*)] is related to the expedited rate option, 8.1% of system cost is concerned with product 
quality matters, and 5.6% is regarding the machine failure matter, etc. The impact of changes in expedited 
ratio P1A/P1 on E[TCU(t1A*)] is shown in Fig. 11. It indicates that as P1A/P1 increases, E[TCU(t1A*)] goes 
up significantly; and it reconfirms that when P1A/P1 = 1.5, E[TCU(t1A*)] = $13,536 (as assumed in our 
example). 
 

  
Fig. 10.  Analytical results on cost elements in 
E[TCU(t1A*)] 

Fig. 11. The impact of changes in expedited ratio P1A/P1 on 
E[TCU(t1A*)] 
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Fig. 12 displays the combined effect of differences in factor of expedited rate α1 and mean-time-to-failure 
1/β on t1A*. It points out that as 1/β raises, t1A* decreases considerably; and as the factor of expedited 
rate α1 increases, the optimal uptime t1A* decreases significantly (this reconfirms that manufacturing 
uptime reduced extensively as expedited rate boosts). Fig. 13 illustrates the influence of variations in 
expedited rate P1A /P1 on utilization (i.e., t1A / E[TA]). It shows that as P1A /P1 increases, machine 
utilization decreases notably; and at P1A /P1 = 1.5 (as assumed in our example), utilization declines to 
0.2963 from 0.4444 (see Table 3 for details). 
 

  
Fig. 12. Combined effect of differences in expedited 
rate factor α1 and mean-time-to-failure 1/β on t1A* 

Fig. 13. The influence of variations in expedited ratio 
P1A/P1 on machine utilization 

 
Fig. 14. exhibits the impact of changes in random scrap rate x on different cost elements in E[TCU(t1A*)]. 
It specifies that as x increases, product quality cost boosts extensively.  
 

  
Fig. 14. The impact of variations in random scrap rate x on 
different cost contributors of E[TCU(t1A*)] 

Fig. 15.  Combined influence of variations in 1/β and factor 
of expedited rate α1 on E[TCU(t1A*)] 

 

Table 3  
Analytical results of influence of changes in (P1A/P1) on t1A, utilization, and E[TCU(TA

*)] 
 

P1A / P1    t1A 
Increase 

% 
Utilization 

(t1A/TA) 
Decline 

% 
E[TCU(TA

*)] 
Increase 

% 
1.00 0.3442 - 0.4444 - $11,397  - 
1.10 0.2988 -13.20% 0.4040 -9.09% $11,820  3.71% 
1.20 0.2652 -22.96% 0.3704 -16.67% $12,245  7.44% 
1.30 0.2392 -30.50% 0.3419 -23.08% $12,673  11.19% 
1.40 0.2185 -36.52% 0.3175 -28.57% $13,103  14.97% 
1.50 0.2015 -41.46% 0.2963 -33.33% $13,536  18.77% 
1.60 0.1873 -45.58% 0.2778 -37.50% $13,972  22.59% 
1.70 0.1753 -49.09% 0.2614 -41.18% $14,410  26.43% 
1.80 0.1649 -52.10% 0.2469 -44.44% $14,849  30.29% 
1.90 0.1558 -54.73% 0.2339 -47.37% $15,290  34.16% 
2.00 0.1479 -57.04% 0.2222 -50.00% $15,733  38.04% 
2.10 0.1408 -59.09% 0.2116 -52.38% $16,177  41.94% 
2.20 0.1345 -60.92% 0.2020 -54.55% $16,622  45.84% 
2.30 0.1289 -62.57% 0.1932 -56.52% $17,068  49.76% 
2.40 0.1237 -64.06% 0.1852 -58.33% $17,515  53.68% 
2.50 0.1191 -65.41% 0.1778 -60.00% $17,963  57.61% 
2.60 0.1148 -66.65% 0.1709 -61.54% $18,411  61.54% 
2.70 0.1109 -67.78% 0.1646 -62.96% $18,860  65.48% 
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2.80 0.1073 -68.83% 0.1587 -64.29% $19,310  69.42% 
2.90 0.1040 -69.80% 0.1533 -65.52% $19,760  73.37% 
3.00 0.1009 -70.69% 0.1481 -66.67% $20,210  77.33% 

 
 

Combined influence of variations in mean-time-to-failure 1/β and the factor of expedited rate α1 on 
E[TCU(t1A*)] is depicted in Fig. 15. It indicates that as the mean-time-to-failure 1/β increases, 
E[TCU(t1A*)] declines noticeably; and as the factor of expedited rate α1 increases, E[TCU(t1A*)] boosts 
drastically. Fig. 16 illustrates the joint effect of differences in manufacturing uptime t1A and random scrap 
rate x on E[TCU(t1A*)]. It points out the effect of t1A and convexity on cost function, and as random scrap 
rate x goes up, E[TCU(t1A*)] increases radically. 
 

  
Fig. 16.  The joint effect of differences in uptime t1A and 

random scrap rate x on E[TCU(t1A*)] 
Fig. 17. Behavior of “system cost increase percentage” 
versus “machine utilization decline percentage” 

 
 

Fig. 17 demonstrates the behavior of “system cost increase percentage” versus “machine utilization 
decline percentage.” It reveals that the linear breakeven point of cost/benefit is at P1A/P1 = 2.60, where 
the percentage of cost increase is equal to the percentage of utilization decline (refer to Table 3 for 
details). 

 

 

5.  Concluding Remarks 
 

This study explores the optimal runtime solution for a manufacturing system featuring an expedited 
fabrication rate, random equipment failures, and scrap. In order to explicitly represent realistic features 
of the studied problem, an accurate model comprising two separate situations is constructed (refer to the 
cases 1 and 2 in subsections 2.1 and 2.2, respectively.) Mathematical derivation and optimization 
approaches (including a proposed algorithm) are used to find the system cost and optimal runtime 
solution for the problem (see section 3). Finally, the applicability and sensitivity analyses of research 
outcome are illustrated via a numerical example (refer to section 4). 
 
In addition to deriving the optimal runtime policy for the problem, the major contribution of the present 
work includes to reveal diverse critical information regarding the individual/joint influences of 
variations in the expedited rate, random scrap rate, and stochastic time-to-failure on the optimal runtime 
decision (see Figures 8 and 12), on total system expenses (refer to Figures 7, 9, 11, 15, and 16), on 
different cost components (see Figures 10 and 14), and on machine utilization (see Figures 13 and 17). 
In summary, the research outcomes not only enable the in-depth problem analyses, but also facilitate 
managerial decision makings. For future study, consideration of a random demand in the context of the 
same problem will be an interesting direction. 
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Appendix – A 
 

The following are other notation used by this study: 
t = manufacturing time (in years) before a random failure taking place, 
M = fixed cost to repair the machine failure, 
Q = lot size, 
T'A = cycle time of the studied system, 
E[x]= the expected random scrap rate, 
H0 = level of perfect stock when a random failure takes place, 
H = level of perfect stock when manufacturing uptime ends, 
h = unit holding cost, 
C1 = unit cost for safety stock, 
h3 = unit holding cost for safety stock, 
t1A = uptime – the decision variable of the proposed manufacturing runtime problem, 
t'2A = stock depletion time of the proposed system with a random failure taking place, 
g = fixed machine repair time, thus, g = tr, 
I(t) = on-hand stock status at time t, 
Is(t)= on-hand status of scraps at time t, 
IF(t)= on-hand status of safety stocks at time t, 
E[T'A] = expected cycle length in the case of a random failure taking place, 
TC(t1A)1 = total cost per cycle in the case of a random failure taking place, 
E[TC(t1A)]1 = expected total cost per cycle in the case of a random failure taking place, 
t2A =  stock depletion time in the case of no machine failure taking place, 
TA =  cycle time in the case of no machine failure taking place, 
E[TA] = expected cycle time in the case of no machine failure taking place, 
TC(t1A)2 = total cost per cycle in the case of no machine failure taking place, 
E[TC(t1A)]2 = expected total cost per cycle in the case of no machine failure taking place, 
t1 = uptime for a manufacturing system with scrap only, 
t2 = stock depletion time for a manufacturing system with scrap, 
T =  cycle time for a manufacturing system with scrap, 
TA = cycle time for the proposed system with expedited rate, random failures, and scrap, 
E[TA] = expected cycle time for the proposed system with expedited rate, random failures, and 

scrap, 
E[TCU(t1A)] = expected annual system cost for the proposed system with expedited rate, random 

failures, and scrap. 
 
 
Appendix – B 
 
The following are detailed derivations for E[TCU(t1A)] (i.e., Eq. (20)): 

Let u1 and u2 be the following: 
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(B-2) 

then E[TC(t1A)]1 (Eq. (10)) and E[TC(t1A)]2 (Eq. (17)) become the following: 
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Applying the following Eq. (18) and substituting Eqs. (B-3), (B-4) and (19) in Eq. (18), Eq. (B-5) can be 
gained after extra derivation efforts. 
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Appendix – C 
 
Table C-1  

Results of extra convexity tests with broader range of β values 

β t1AU γ(t1AU) t1AL γ(t1AL) 

10 0.4853 4.3920 0.0184 0.0389 
7 0.4860 1.8245 0.0259 0.0551 

4 0.4878 0.9254 0.0435 0.0939 
3 0.4892 0.7925 0.0556 0.1221 

2 0.4919 0.7215 0.0758 0.1733 

1 0.5000 0.7466 0.1130 0.2966 

0.5 0.5158 0.8897 0.1430 0.4768 
0.01 1.3575 3.4131 0.1832 2.2267 
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