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 Three simple metaphor-less optimization algorithms are developed in this paper for solving the 
unconstrained and constrained optimization problems. These algorithms are based on the best 
and worst solutions obtained during the optimization process and the random interactions 
between the candidate solutions. These algorithms require only the common control parameters 
like population size and number of iterations and do not require any algorithm-specific control 
parameters. The performance of the proposed algorithms is investigated by implementing these 
on 23 benchmark functions comprising 7 unimodal, 6 multimodal and 10 fixed-dimension 
multimodal functions. Additional computational experiments are conducted on 25 unconstrained 
and 2 constrained optimization problems. The proposed simple algorithms have shown good 
performance and are quite competitive. The research community may take advantage of these 
algorithms by adapting the same for solving different unconstrained and constrained 
optimization problems. 
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1. Introduction 

 
In recent years the field of population based meta-heuristic algorithms is flooded with a number of ‘new’ 
algorithms based on metaphor of some natural phenomena or behavior of animals, fishes, insects, 
societies, cultures, planets, musical instruments, etc. Many new optimization algorithms are coming up 
every month and the authors claim that the proposed algorithms are ‘better’ than the other algorithms. 
Some of these newly proposed algorithms are dying naturally as there are no takers and some have 
received success to some extent. However, this type of research may be considered as a threat and may 
not contribute to advance the field of optimization (Sorensen, 2015). It would be better if the researchers 
focus on developing simple optimization techniques that can provide effective solutions to the complex 
problems instead of looking for developing metaphor based algorithms. Keeping this point in view, three 
simple metaphor-less and algorithm-specific parameter-less optimization algorithms are developed in 
this paper. The next section describes the proposed algorithms. 
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2. Proposed algorithms 
 
Let f(x) is the objective function to be minimized (or maximized). At any iteration i, assume that there 
are ‘m’ number of design variables, ‘n’ number of candidate solutions (i.e. population size, k=1,2,…,n). 
Let the best candidate best obtains the best value of f(x) (i.e. f(x)best) in the entire candidate solutions and 
the worst candidate worst obtains the worst value of f(x) (i.e. f(x)worst) in the entire candidate solutions. If 
Xj,k,i is the value of the jth variable for the kth candidate during the ith iteration, then this value is modified 
as per the following equations.   
 
X'j,k,i = Xj,k,i + r1,j,i (Xj,best,i - Xj,worst,i),  (1) 
X'j,k,i = Xj,k,i + r1,j,i (Xj,best,i - Xj,worst,i) + r2,j,i (│Xj,k,i or Xj,l,i│-  │Xj,l,i or Xj,k,i│), (2) 
X'j,k,i = Xj,k,i + r1,j,i (Xj,best,i - │Xj,worst,i│) + r2,j,i (│Xj,k,i or Xj,l,i│-  (Xj,l,i or Xj,k,i)), (3) 

 
where, Xj,best,i is the value of the variable j for the best candidate and Xj,worst,i is the value of the variable j 
for the worst candidate during the ith iteration. X'j,k,i is the updated value of Xj,k,i and r1,j,i and r2,j,i are the 
two random numbers for the jth variable during the ith iteration in the range [0, 1].  
 
In Eqs.(2) and (3), the term Xj,k,i or Xj,l,i indicates that the candidate solution k is compared with any 
randomly picked candidate solution l and the information is exchanged based on their fitness values. If 
the fitness value of kth solution is better than the fitness value of lth solution then the term “Xj,k,i or Xj,l,i” 
becomes Xj,k,i. On the other hand, if the fitness value of lth solution is better than the fitness value of kth 
solution then the term “Xj,k,i or Xj,l,i” becomes Xj,l,i. Similarly, if the fitness value of kth solution is better 
than the fitness value of lth solution then the term “Xj,l,i or Xj,k,i” becomes Xj,l,i. If the fitness value of lth 
solution is better than the fitness value of kth solution then the term “Xj,l,i or Xj,k,i” becomes Xj,k,i.    

 
      

Fig. 1. Flowchart of Rao-1 algorithm 
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These three algorithms are based on the best and worst solutions in the population and the random 
interactions between the candidate solutions. Just like TLBO algorithm (Rao, 2015) and Jaya algorithm 
(Rao, 2016; Rao, 2019), these algorithms do not require any algorithm-specific parameters and thus the 
designer’s burden to tune the algorithm-specific parameters to get the best results is eliminated. These 
algorithms are named as Rao-1, Rao-2 and Rao-3 respectively. Fig. 1 shows the flowchart of Rao-1 
algorithm. The flowchart will be same for Rao-2 and Rao-3 algorithms except that the Eq. (1) shown in 
the flowchart will be replaced by Eq. (2) and Eq. (3) respectively. The proposed algorithms are illustrated 
by means of an unconstrained benchmark function known as Sphere function. 
 
2.1   Demonstration of the working of proposed Rao-1 algorithm 
 
To demonstrate the working of proposed algorithms, an unconstrained benchmark function of Sphere is 
considered. The objective function is to find out the values of xi that minimize the value of the Sphere 
function.   
Benchmark function: Sphere 
 

2

1

min ( )
n

i i
i

f x x


  
 

Range of variables: -100≤ xi≤ 100 (4) 
 
The known solution to this benchmark function is 0 for all xi values of 0. Now to demonstrate the 
proposed algorithms, let us assume a population size of 5 (i.e. candidate solutions), two design variables 
x1 and x2 and two iterations as the termination criterion. The initial population is randomly generated 
within the ranges of the variables and the corresponding values of the objective function are shown in 
Table 1. As it is a minimization function, the lowest value of f(x) is considered as the best solution and 
the highest value of f(x) is considered as the worst solution.     
  
Table 1 
Initial population 

Candidate x1 x2 f(x) Status 
1 -5 18 349  
2 14 33 1285 Worst 
3 30 -6 936  
4 -8 7 113 best 
5 -12 -18 468  

 

From Table 1 it can be seen that the best solution is corresponding the 4th candidate and the worst solution 
is corresponding to the 2nd candidate. Using the initial solutions of Table 1 and assuming random number 
r1 = 0.10 for x1 and r2 = 0.50 for x2, the new values of the variables for x1 and x2 are calculated using 
Eq.(1) and placed in Table 2. For example, for the 1st candidate, the new values of x1 and x2 during the 
first iteration are calculated as shown below.  
 

X'1,1,1 = X1,1,1 + r1,1,1 (X1,4,1 -  X1,2,1) = -5 + 0.10 (-8-14) = -7.2, 
X'2,1,1 = X2,1,1 + r2,1,1 (X2,4,1 -  X2,2,1) = 18 + 0.50 (7-33) = 5. 
 

Similarly, the new values of x1 and x2 for the other candidates are calculated. Table 2 shows the new 
values of x1 and x2 and the corresponding values of the objective function.  
 

Table 2 
New values of the variables and the objective function during first iteration (Rao-1) 

Candidate x1 x2 f(x) 
1 -7.2 5 76.84 
2 11.8 20 539.24 
3 27.8 -19 1133.84 
4 -10.2 -6 140.04 
5 -14.2 -31 1162.64 
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Now, the values of f(x) of Table 1 and Table 2 are compared and the best values of f(x) are considered 
and placed in Table 3. This completes the first iteration of the Rao-1 algorithm.  
 
Table 3 
Updated values of the variables and the objective function based on fitness comparison at the end of first 
iteration (Rao-1) 

Candidate x1 x2 f(x) Status 
1 -7.2 5 76.84 best 
2 11.8 20 539.24  
3 30 -6 936 worst 
4 -8 7 113  
5 -12 -18 468  

 
From Table 3 it can be seen that the best solution is corresponding the 1st candidate and the worst solution 
is corresponding to the 3rd candidate. In the first iteration, the value of the objective function is improved 
from 113 to 76.84 and the worst value of the objective function is improved from 1285 to 936. Now, 
assuming random number r1 = 0.80 for x1 and r2 = 0.1 for x2, the new values of the variables for x1 and 
x2 are calculated using Eq.(1) and are placed in Table 4. Table 4 shows the corresponding values of the 
objective function also.  
 
Table 4 
New values of the variables and the objective function during second iteration (Rao-1) 

Candidate x1 x2 f(x) 
1 -36.96 6.1 1403.2516 
2 -17.96 21.1 767.7716 
3 0.24 -4.9 24.0676 
4 -37.76 8.1 1491.4276 
5 -41.76 -16.9 2029.5076 

 
Now, the values of f(x) of Tables 3 and 4 are compared and the best values of f(x) are considered and 
placed in Table 5. This completes the second iteration of the Rao-1 algorithm.  
 

Table 5 
Updated values of the variables and the objective function based on fitness comparison at the end of 
second iteration (Rao-1) 

Candidate x1 x2 f(x) Status 
1 -7.2 5 76.84  
2 11.8 20 539.24 worst 
3 0.24 -4.9 24.0676 best 
4 -8 7 113  
5 -12 -18 468  

 
It can be observed that at the end of second iteration, the value of the objective function is improved from 
113 to 24.0676 and the worst value of the objective function is improved from 1285 to 539.24. If we 
increase the number of iterations then the known value of the objective function (i.e. 0) can be obtained 
within next few iterations. Also, it is to be noted that in the case of maximization function problems, the 
best value means the maximum value of the objective function and the calculations are to be proceeded 
accordingly. Thus, the proposed method can deal with both minimization and maximization problems. 
This demonstration is for an unconstrained optimization problem. However, the similar steps can be 
followed in the case of constrained optimization problem. The main difference is that a penalty function 
is used for violation of each constraint and the penalty value is operated upon the objective function.  
 

2.2   Demonstration of the working of proposed Rao-2 algorithm 
 

Using the initial solutions of Table 1, and assuming random numbers r1 = 0.10 and r2 = 0.50 for x1 and 
r1 = 0.60 and r2 = 0.20 for x2, the new values of the variables for x1 and x2 are calculated using Eq.(2) and 
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placed in Table 6. For example, for the 1st candidate, the new values of x1 and x2 during the first iteration 
are calculated as shown below. Here the 1st candidate has interacted with the 2nd candidate. The fitness 
value of the 1st candidate is better than the fitness value of the 2nd candidate and hence the information 
exchange is from 1st candidate to 2nd candidate. 
 
X'1,1,1 = X1,1,1 + r1,1,1 (X1,4,1 -  X1,2,1) + r2,1,1 (│X1,1,1│ - │X1,2,1│)  

= -5 + 0.10 (-8-14) +  0.50 (5-14) = -11.7 
X'2,1,1 = X2,1,1 + r1,2,1 (X2,4,1 -  X2,2,1) + r2,2,1 (│X2,1,1│ -  │X2,2,1│)  

= 18 + 0.60 (7-33) + 0.20 (18-33) = -0.6 
 

Similarly, the new values of x1 and x2 for the other candidates are calculated. Here the random interactions 
are taken as 2 vs. 5, 3 vs. 1, 4 vs. 2 and 5 vs. 4. Table 6 shows the new values of x1 and x2 and the 
corresponding values of the objective function.  
 
Table 6 
New values of the variables and the objective function during first iteration (Rao-2) 

Candidate x1 x2 f(x) 
1 -11.7 -0.6 137.25 
2 10.8 14.4 324 
3 15.3 -19.2 602.73 
4 -13.2 -13.8 364.68 
5 -16.2 -35.8 1544.08 

 
Now, the values of f(x) of Table 1 and Table 6 are compared and the best values of f(x) are considered 
and placed in Table 7. This completes the first iteration of the Rao-2 algorithm.  
 
Table 7 
Updated values of the variables and the objective function based on fitness comparison at the end of first 
iteration (Rao-2) 

Candidate x1 x2 f(x) Status 
1 -11.7 -0.6 137.25  
2 10.8 14.4 324  
3 15.3 -19.2 602.73 worst 
4 -8 7 113 best 
5 -12 -18 468  

 
From Table 7 it can be seen that the best solution is corresponding the 4th candidate and the worst solution 
is corresponding to the 3rd candidate. Now, during the second iteration, assuming random numbers r1 = 
0.01 and r2 = 0.10 for x1 and r1 = 0.10 and r2 = 0.50 for x2, the new values of the variables for x1 and x2 
are calculated using Eq.(2). Here the random interactions are taken as 1 vs. 4, 2 vs. 3, 3 vs. 5, 4 vs. 2 and 
5 vs. 1. Table 8 shows the new values of x1 and x2 and the corresponding values of the objective function 
during the second iteration.  
 
Table 8 
New values of the variables and the objective function during second iteration (Rao-2) 

Candidate x1 x2 f(x) 
1 -12.303 5.22 178.612 
2 10.117 14.62 316.098 
3 14.737 -17.18 512.331 
4 -8.513 5.92 107.517 
5 -12.263 -24.08 730.227 

 
Now, the values of f(x) of Tables 7 and 8 are compared and the best values of f(x) are considered and 
placed in Table 9. This completes the second iteration of the Rao-2 algorithm.  
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Table 9 
Updated values of the variables and the objective function based on fitness comparison at the end of 
second iteration (Rao-2) 
Candidate x1 x2 f(x) Status 
1 -11.7 -0.6 137.25  
2 10.117 14.62 316.098  
3 14.737 -17.18 512.331 worst 
4 -8.513 5.92 107.517 best 
5 -12 -18 468  

 
From Table 9 it can be seen that the best solution is corresponding the 2nd candidate and the worst solution 
is corresponding to the 5nd candidate. It can be observed that the value of the objective function is 
improved from 113 to 107.517 in two iterations. Similarly, the worst value of the objective function is 
improved from 1285 to 512.331 in just two iterations. If we increase the number of iterations then the 
known value of the objective function (i.e. 0) can be obtained within next few iterations. Also, just like 
Rao-1, the proposed Rao-2 can deal with both unconstrained and constrained minimization as well as 
maximization problems.  
 
2.3   Demonstration of the working of proposed Rao-3 algorithm 
 
Now assuming random numbers r1 = 0.10 and r2 = 0.50 for x1 and r1 = 0.60 and r2 = 0.20 for x2, the new 
values of the variables for x1 and x2 are calculated using Eq.(3) and placed in Table 10. For example, for 
the 1st candidate, the new values of x1 and x2 during the first iteration are calculated as shown below. 
Here the 1st candidate has interacted with the 2nd candidate. The fitness value of the 1st candidate is better 
than the fitness value of the 2nd candidate and hence the information exchange is from 1st candidate to 
2nd candidate. 
 
X'1,1,1 = X1,1,1 + r1,1,1 (X1,4,1 -  │X1,2,1│) + r2,1,1 (│X1,1,1│ -  X1,2,1)  

= -5 + 0.10 (-8-14) +  0.50 (5-14) = -11.7 
X'2,1,1 = X2,1,1 + r1,2,1 (X2,4,1 -  │X2,2,1│) + r2,2,1 (│X2,1,1│ -  X2,2,1)  

= 18 + 0.60 (7-33) + 0.20 (18-33) = -0.6 
 
Similarly, the new values of x1 and x2 for the other candidates are calculated. Here the random interactions 
are taken as 2 vs. 5, 3 vs. 1, 4 vs. 2 and 5 vs. 4. Table 10 shows the new values of x1 and x2 and the 
corresponding values of the objective function.  
  
Table 10 
New values of the variables and the objective function during first iteration (Rao-3) 
Candidate x1 x2 f(x) 
1 -11.7 -0.6 137.25 
2 10.8 14.4 324 
3 15.3 -16.8 516.33 
4 -13.2 -13.8 364.68 
5 -4.2 -28.6 835.6 

 
Now, the values of f(x) of Tables 1 and 10 are compared and the best values of f(x) are considered and 
placed in Table 11. This completes the first iteration of the Rao-3 algorithm. From Table 11 it can be 
seen that the best solution is corresponding the 4th candidate and the worst solution is corresponding to 
the 3rd candidate. Now, during the second iteration, assuming random numbers r1 = 0.01 and r2 = 0.10 
for x1 and r1 = 0.10 and r2 = 0.50 for x2, the new values of the variables for x1 and x2 are calculated using 
Eq.(3). Here the random interactions are taken as 1 vs. 4, 2 vs. 3, 3 vs. 5, 4 vs. 2 and 5 vs. 1. Table 12 
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shows the new values of x1 and x2 and the corresponding values of the objective function during the 
second iteration.  
 
Table 11 
Updated values of the variables and the objective function based on fitness comparison at the end of first 
iteration (Rao-3) 
Candidate x1 x2 f(x) Status 
1 -11.7 -0.6 137.25  
2 10.8 14.4 324  
3 15.3 -16.8 516.33 worst 
4 -8 7 113 best 
5 -12 -18 468  

 
Table 12 
New values of the variables and the objective function during second iteration (Rao-3) 
Candidate x1 x2 f(x) 
1 -9.963 2.22 104.189 
2 10.117 29.02 944.514 
3 14.737 -0.38 217.323 
4 -8.513 2.32 77.853 
5 -9.863 -9.68 190.981 

 
Now, the values of f(x) of Tables 11 and 12 are compared and the best values of f(x) are considered and 
placed in Table 13. This completes the second iteration of the Rao-3 algorithm.  
 
Table 13 
Updated values of the variables and the objective function based on fitness comparison at the end of 
second iteration (Rao-3) 
Candidate x1 x2 f(x) Status 
1 -9.963 2.22 104.189  
2 10.8 14.4 324 worst 
3 -14.737 -0.38 217.323  
4 -8.513 2.32 77.853 best 
5 -9.863 -9.68 190.981  

 
From Table 13 it can be seen that the best solution is corresponding the 2nd candidate and the worst 
solution is corresponding to the 5nd candidate. It can be observed that the value of the objective function 
is improved from 113 to 77.853 in just two iterations. Similarly, the worst value of the objective function 
is improved from 1285 to 324 in just two iterations. If we increase the number of iterations then the 
known value of the objective function (i.e. 0) can be obtained within next few iterations. Also, just like 
Rao-1 and Rao-2, the proposed Rao-3 can also deal with both unconstrained and constrained 
minimization as well as maximization problems. It may be noted that the above three demonstrations 
with random numbers are just to make the readers familiar with the working of the proposed algorithms. 
While executing the algorithms different random numbers will be generated during different iterations 
and the computations will be done accordingly. The next section deals with the experimentation of the 
proposed algorithms on the benchmark optimization problems. 

 
3. Computational experiments on unimodal, multi-modal and fixed-dimension multimodal 
optimization problems 
The computational experiments are first conducted on 23 benchmark functions including 7 unimodal, 6 
multimodal and 10 fixed-dimension multimodal functions. Table 14 shows these benchmark functions. 
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 Table 14 
Unimodal, multimodal and fixed-dimension multimodal functions (Mirjalili, 2014) 

Sr. 
No 
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1    


n

i ixxf
1

2
1 30 [-100,100] 0 
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8    i

n

i i xxxf sin∑ -
18 

 30 [-500,500] 
- 

418.9829 
×30 

9 
     


n

i ii xxxf
1

2
9 102cos10  

30 [-5.12,5.12] 0 

10     ex
n

x
n

xf
n

i i

n

i i 

























 202cos
1

exp-
1

2.0exp20 ∑
11

2
10  30 [-32,32] 0 

11   ∑
1 1

2
11 1cos

4000

1 n

i

in
ii

i

x
xxf

  







 30 [-600,600] 0 

12 

           
 







 





n

i i

n

n

i ii

xu

yyyy
n

xf

1

21

1 1
222

12

4,100,10,

1.sin1011.sin10 

 







 


4

1
1 i

i

x
y 

 

  































axaxk

axa

axaxk

mkaxu

i
m

i

i

i
m

i

i 0),.,( 

30 [-50,50] 0 

13 

        
    

 






























n

i i

n

i
nn

ii

xu

xx

xx
xxf

1

1

1 22

1
22

1
2

13

4,100,5,

2sin11

3sin11
3sin1.0






 

30 [-50,50] 0 

14 

 
 

1

25

1 2

1

614

1

500

1




















 

j

i iji axj
xf 2 [-65,65] 0.998 

15 

    2

11

1
43

2
2

2
1

15   















i

ii

ii
i xxbb

xbbx
axf 4 [-5,5] 0.0003 



R. Venkata Rao / International Journal of Industrial Engineering Computations 11 (2020) 115

 D: Dimensions (i.e., no. of design variables); fmin: Global optimum value     
 
The benchmark functions 1-7 are the unimodal functions (for checking the exploitation capability of the 
algorithms), 8-13 are the multimodal functions that have many local optima which increase with the 
increase in the number of dimensions (for checking the exploration capability of the algorithms) and 14-
23 are the fixed-dimension multimodal benchmark functions (for checking the exploration capability of 
the algorithms in the case of fixed dimension optimization problems). The global optimum values of the 
benchmark functions are also given in Table 15 to give an idea to the readers about the performances of 
the proposed algorithms. 
 
The performance of the proposed algorithms is tested on the 23 benchmark functions listed in Table 14. 
To evaluate the performance of the proposed algorithms, a common experimental platform is provided 
by setting the maximum number of function evaluations as 30000 for each benchmark function with 30 
runs for each benchmark function. The results of each benchmark function are presented in Table 15 in 
the form of best solution, worst solution, mean solution, standard deviation obtained in 30 independent 
runs, mean function evaluations, and the population size used for each benchmark function. The results 
of the proposed algorithms are compared with the already established Grey Wolf Optimization (GWO) 
algorithm (Mirjalili, 2014) and Ant Lion Optimization (ALO) algorithm (Mirjalili, 2015).  
 
It may be mentioned here that the GWO algorithm was already shown competitive to the other advanced 
optimization algorithms like particle swarm optimization (PSO), gravitational search algorithm (GSA), 
differential evolution (DE) and fast evolutionary programming (FEP) (Mirjalili, 2014). The ALO 
algorithm was also shown competitive to PSO, states of matter search (SMS), bat algorithm (BA), flower 
pollination algorithm (FPA), cuckoo search (CS) and firefly algorithm (FA) (Mirjalili, 2015). Hence in 
this paper the results of other advanced optimization algorithms are not shown. The GWO algorithm was 
used for solving 23 benchmark functions (Mirjalili, 2014) and ALO was used for solving 13 benchmark 
functions (Mirjalili, 2014). The results of application of the proposed algorithms are shown in Table 15. 
Mirjalili (2014, 2015) had shown the results of only mean solutions and standard deviations. However, 
the results of the proposed algorithms are presented in Table 15 in terms of the best (B), worst (W), mean 
(M), standard deviation (SD), mean function evaluations (MFE) and the population size (P) used for 
obtaining the results within the maximum function evaluations of 30000. The values shown in bold in 
Table 15 indicate the comparatively better mean results of the respective algorithms.     
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 Table 15 
Results of the proposed algorithms for 23 benchmark functions considered (30000 function evaluations) 

Func. fmin   
GWO  

(Mirjalili, 2014) 
ALO 

(Mirjalili, 2015) Rao-1 Rao-2 Rao-3 
1 0 B     4.84E-25 1.40E-15 1.58E-50 

W     3.28E-21 3.47E-11 6.29E-41 

M 6.59E-28 2.59E-10 3.59E-22 3.57E-12 6.71E-42 

SD 6.34E-05 1.65E-10 7.33E-22 7.95E-12 1.56E-41 

MFE     29998 29953 29991 

P     10 10 10 
2 0 B     2.04E-15 0.000121792 6.32E-24 

W     7.60E-11 10.00121716 2.10E-19 

M 7.18E-17 1.84E-06 4.07E-12 0.678178098 9.33E-21 

SD 0.029014 6.58E-07 1.40E-11 2.534459078 3.84E-20 

MFE     29994 29882 29983 

P     10 20 20 
3 0 B     5.31E-45 7.92E-29 4.93E-64 

W     1.35E-38 3.79E-15 5.00E-52 

M 3.29E-06 6.07E-10 8.34E-40 1.27E-16 1.68E-53 

SD 79.14958 6.34E-10 2.90E-39 6.93E-16 9.12E-53 

MFE     29993 29975 29959 

P     10 10 20 
4 0 B     0.494772 5.742890 0.001209 

W     5.572192 29.514839 0.285619 

M 5.61E-07 1.36E-08 2.119522 16.563950 0.081469 

SD 1.315088 1.81E-09 1.150517 5.632224 0.078402 

MFE     29882 28845 29899 

P     30 20 20 
5 0 B     0.403869 0.002873 0.006485 

W     108.778761 85.487340 88.373496 

M 26.81258 0.346772 31.604357 11.474080 29.206289 

SD 69.90499 0.109584 28.406665 16.683870 29.093295 

MFE     29609 28925 28922 

P     20 10 20 
6 0 B     4.70E-25 3.27E-12 2.196020 

W     4.22E-20 1.41E-06 3.680173 

M 0.816579 2.56E-10 2.63E-21 1.09E-07 2.919904 

SD 0.000126 1.09E-10 7.87E-21 3.09E-07 0.399770 

MFE     29993 29945 20023 

P     10 10 30 
7 0 B     0.029805 0.018737 0.004610 

W     0.132753 0.234932 0.038987 

M 0.002213 0.004292 0.058328 0.087804 0.015770 

SD 0.100286 0.005089 0.027453 0.044495 0.008669 

MFE     26785 25354.66667 24044 

P     20 20 30 
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Table 15 
Results of the proposed algorithms for 23 benchmark functions considered (30000 function evaluations) 

Func. fmin   
GWO  

(Mirjalili, 2014) 
ALO 

(Mirjalili, 2015) Rao-1 Rao-2 Rao-3 
8 -12569 B     -10250.82586 -12352.34695 -12135.20714 

W     -3879.49856 -5960.01496 -5751.10732 

M -6123.1 -1606.276 -8685.17016 -8757.58136 -9664.70182 

SD -4087.44* 314.4302 1690.54881 1896.34347 1544.65568 

MFE     21166 22377 28385 

P     10 10 20 
9 0 B     25.868920 68.121702 29.889988 

W     183.605714 232.791997 197.125802 

M 0.310521 7.71E-06 87.013555 148.949496 84.122877 

SD 47.35612 8.45E-06 32.317490 41.526656 38.179200 

MFE     26015 24754 27934 

P     10 10 10 
10 0 B     4.41E-07 1.43E-02 7.57E-10 

W     2.131898 1.350810 3.24E-07 

M 1.06E-13 3.73E-15 0.619739 0.170688 7.97E-08 

SD 0.077835 1.50E-15 0.695792 0.318320 8.69E-08 

MFE     29929 29881 29919 

P     40 20 50 
11 0 B     3.90E-13 4.44E-15 0 

W     0.063900 0.243692 0.162637 

M 0.004485 0.018604 0.011455 0.044885 0.028906 

SD 0.006659 0.009545 0.014397 0.066572 0.042806 

MFE     29971 29406 21654 

P     20 10 20 
12 0 B     1.48E-14 0.000165 0.314068 

W     6.639524 27.399757 1.820371 

M 0.053438 9.75E-12*** 1.549523 6.222186 0.791997 

SD 0.020734 9.33E-12 1.497920 7.075035 0.372832 

MFE     29957 28537 26432 

P     20 20 50 
13 0 B     1.48E-06 3.12E-10 6.31E-13 

W     0.408911 2.301389 0.108359 

M 0.654464 2.00E-11*** 0.024281 0.458132 0.009724 

SD 0.004474 1.13E-11 0.078964 0.638728 0.026098 

MFE     29927 29996.33333 29947 

P     30 10 50 
14 0.998 B     0.998004 0.998004 0.998004 

W     0.998004 0.998004 0.999089 

M 4.042493   0.998004 0.998004 0.998116 

SD 4.252799   8.25E-17 2.43E-08 2.51E-04 

MFE     12013 24069 14583 

P     20 20 50 
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Table 15 
Results of the proposed algorithms for 23 benchmark functions considered (30000 function evaluations) 

15 0.0003 B     0.00037651 0.000307486 0.000307489 

W     0.02036792 0.001667376 0.001656898 

M 0.000337   0.001429471 0.000665627 0.000485752 

SD 0.000625   0.003589047 0.000514761 0.000326366 

MFE     21826.66667 23386 21737 

P     100 20 30 
16 -1.0316 B     -1.031628 -1.031628 -1.031628 

W     -1.031605 -1.031594 -1.031628 

M -1.03163   -1.031627 -1.031626 -1.031628 

SD -1.03163*   4.36E-06 7.39E-06 8.39E-08 

MFE     2577 4612 20283 

P     10 5 5 
17 0.397887 B     0.397887 0.397887 0.397887 

W     0.397887 0.397887 0.397887 

M 0.397889   0.397887 0.397887 0.397887 

SD 0.397887   0 0 0 

MFE     995 695 692 

P     10 10 10 
18 3 B     3 3 3 

W     3 3 3.000160 

M 3.000028   3 3 3.000021 

SD 3   9.00E-16 6.06E-16 3.30E-05 

MFE     10031 18098 22145.6 

P     10 20 10 
19 -3.86 B     -3.86278 -3.86278 -3.86278 

W     -3.86278 -3.86278 -3.86278 

M -3.86263   -3.86278 -3.86278 -3.86278 

SD -3.86278*   1.56E-15 3.11E-15 3.06E-15 

MFE     575 4093 6680 

P     5 20 30 
20 -3.32 B     -3.322368 -3.322368 -3.322368 

W     -3.140792 -3.132710 -3.203162 

M -3.28654   -3.286657 -3.297920 -3.278659 

SD -3.25056*   0.056640 0.057190 0.058427 

MFE     8003 2799 6916 

P     20 10 30 
21 -10.1532 B     -10.153200 -10.153200 -10.153200 

W     -2.626968 -5.055198 -2.630472 

M -10.1514**   -7.566177 -8.405803 -8.168698 

SD -9.14015*   2.413688 2.391694 2.693478 

MFE     11371 11016 13321 

P     20 20 30 
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Table 15 
Results of the proposed algorithms for 23 benchmark functions considered (30000 function evaluations) 

22 -10.4029 B     -10.402941 -10.402941 -10.402941 

W     -2.765897 -5.128823 -7.863835 

M -10.4015**   -8.760775 -10.108301 -9.976039 

SD -8.58441*   2.146664 1.004131 0.626313 

MFE     13592 17633 22713 

P     20 50 100 
23 -10.5364 B     -10.536410 -10.536410 -10.536410 

W     -5.175647 -9.647597 -9.025835 

M -10.5343**   -9.570118 -10.470286 -10.486057 

SD -8.55899*   1.598056 0.212811 0.275792 

MFE     16652 26983 18602 

P     20 100 50 
 
Func.: Function; fmin: Global optimum value; *: This may be the W value of GWO (as the standard deviation can not be 
negative);; **:This may be the B value of GWO; ***:This may be the B value of ALO; The results of ALO are available only 
for 1-13 benchmark functions. 

 
It may be observed from Table 15 that the proposed algorithms are not origin-biased as it can be seen 
that these algorithms have obtained the global optimum solutions in the case of benchmark functions 8 
and 14-23 whose optima are not at origin.  The performance of the proposed algorithms is appreciable 
on the benchmark functions considered. It may also be observed that the standard deviation results of 
GWO for objective functions 8,16,19-23 (Mirjalili, 2014) are incorrect as the standard deviation value 
can not be negative. Furthermore, it seems that the values given by GWO as mean solutions for 
benchmark functions 21-23 may not be corresponding to the mean solutions and these may be 
corresponding to the best solutions of GWO. That is why, even though the “mean solutions” of GWO 
are shown in bold for the functions 21-23, the mean solutions of functions 21 and 22 given by Rao-2 
algorithm, and the mean solution of function 23 by given by Rao-3 algorithm are also shown in bold.  
 
In terms of the mean solutions, GWO algorithm has performed better (compared to ALO, Rao-1, Rao-2 
and Rao-3 algorithms) on functions 7,11,15, 16 (and 21-23?). The results corresponding to functions 21-
23 may be corresponding to the “best (B)” solutions of GWO algorithm. The mean results of ALO 
algorithm are comparatively better for functions 4,5,9,10 (and 12 and 13?). The mean results of Rao-1 
algorithm are better for functions 6,14,17,18 and 19. The mean results of Rao-2 algorithm are better for 
functions 14,17,18,19,20 (and 21 and 22?). The mean results of Rao-3 algorithm are better for functions 
1-3, 8,17,19,(and 23?). Thus, the proposed three algorithms can be said competitive to the existing 
advanced optimization algorithms in terms of better results for solving the unimodal, multimodal and 
fixed-dimension multimodal optimization problems with better exploitation and exploration potential. 
 
If an intra-comparison is made among the proposed three algorithms in terms of the “best (B)” solutions 
obtained, Rao-3 algorithm has obtained the best solutions in 17 functions; Rao-2 has obtained the best 
solutions in 9 functions and Rao-1 in 9 functions.  In terms of the ‘worst (W)” solutions obtained, Rao-
3 performs better in 14 functions, Rao-2 in 8 functions and Rao-1 in 7 functions.  
 
The MATLAB codes of Rao-1, Rao-2 and Rao-3 algorithms are given in Appendix-1, Appendix-2 and 
Appendix-3 respectively. The code is developed for the objection function “Sphere function”. The user 
may copy and paste this code in a MATLAB file and run the program. The user may replace the portion 
of the code corresponding to the Sphere function with the objective function of the optimization problem 
considered by him/her to get the results.  
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4. Additional experiments on unconstrained optimization problems 
 
The performance of the proposed three algorithms is tested further on 25 unconstrained benchmark 
functions well documented in the optimization literature. These unconstrained functions have different 
characteristics like unimodality, multimodality, separability, non-separability, regularity, non-regularity, 
etc. The number of design variables and their ranges are different for each problem. Table 16 shows the 
details of 25 unconstrained benchmark functions. 
 

 Table 16 
 Unconstrained benchmark functions considered  

No. Function Formulation D Search range C 

1 Sphere 2
min

1

D

i
i

F x


  30 [-100, 100] US 

2 SumSquares 2
min

1

D

i
i

F ix


  30 [-10, 10] US 

3 Beale      2 22 2 3
min 1 1 2 1 1 2 1 1 2

1

1.5 2.25 2.625
D

i

F x x x x x x x x x


          5 [-4.5, 4.5] UN 

4 Easom         2 2
min 1 2 1 2cos cos expF x x x x        2 [-100, 100] UN 

5 Matyas  2 2
min 1 2 1 20.26 0.48F x x x x    2 [-10, 10] UN 

6 Colville 
       

       

2 222 2
min 1 2 1 3 3 4

2 2
2 4 1 2 2 4

100 1 1 90

10.1 1 1 0.48 19.8 1 1

F x x x x x x

x x x x x x

        

      

 
4 [-10, 10] UN 

7 Trid 6  2
min 1

1 2

1
D D

i i i
i i

F x x x 
 

     6 [-D2, D2] UN 

8 Trid 10  2
min 1

1 2

1
D D

i i i
i i

F x x x 
 

     10 [-D2, D2] UN 

9 Zakharov 
2 4

2
min

1 1 1

0.5 0.5
D D D

i i i
i i i

F x ix ix
  

   
     

   
    10 [-5, 10] UN 

10 Schwefel 1.2 
2

2
min

1 1

D i

j
i j

F x
 

 
   

 
   30 [-100, 100] UN 

11 Rosenbrock 2 2 2
min 1

1

[100( ) (1 ) ]
D

i i i
i

F x x x


     30 [-30, 30] UN 

12 Dixon-Price    22 2
min 1 1

2

1 2
D

i i
i

F x i x x 


     30 [-10, 10] UN 

13 Branin 
2

2
min 2 1 1 12

5.1 5 1
6 10 1 cos 10

84
F x x x x

 
            
   

 2 [-5, 10] [0, 15] MS 

14 Bohachevsky 1    2 2
min 1 2 1 22 0.3 cos 3 0.4 cos 4 0.7F x x x x       2 [-100, 100] MS 

15 Bohachevsky 2   2 2
min 1 2 1 22 0.3 cos 3 4 0.3F x x x x      2 [-100, 100] MN 

16 Bohachevsky 3  2 2
min 1 2 1 22 0.3cos 3 4 0.3F x x x x       2 [-100, 100] MN 

17 Booth    2 2
min 1 2 1 22 7 2 5F x x x x       2 [-10, 10] MS 

18 Michalewicz 2 
20

2

min 1
1

sin sin
D

i

i

ixF x 


  
    

  
  2 [0, π] MS 

19 Michalewicz 5 
20

2

min 1
1

sin sin
D

i

i

ixF x 


  
    

  
  5 [0, π] MS 

20 GoldStein-Price 
   
   

2 2 2
min 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

F x x x x x x x x

x x x x x x x x

          
        

 
2 [-2, 2] MN 

21 Perm  
2

min
1 1

1
kD D

k i

k i

xF i i
 

             
   4 [-D, D] MN 

22 Ackley 2
min

1 1

1 1
20exp 0.2 exp cos2 20

D D

i i
i i

F x x e
D D


 

   
           

   30 [-32, 32] MN 
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Table 16 

 Unconstrained benchmark functions considered (Continued) 
No. Function Formulation D Search range C 

23 Foxholes 
 

1

25

min 2 61

1

1 1

500 j
i ij

i

F

j x a







 
 
  
 

  
 




 
2 [-65.536, 65.536]                      MS 

24 Hartman 3  
4 3 2

min
1 1

expi ij j ij
i j

F c a x p
 

 
    

  
   

3 [0, 1] MN 

25 Penalized 2 

 
 

2 2 2
1 12

min 1 2
1

1

( 1) 1 sin (3 ) ( 1)
0.1 sin ( )

1 sin (2 )

( ) ,

( ,5,100,4), ( , , , ) 0, ,

( ) ,

D i i D

i D

m
i iD

i i i
i m

i i

x x x
F x

x

k x a x a

u x u x a k m a x a

k x a x a






 





    
  
   

  


    
    





 

30 [-50, 50] MN 

          D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-separable 
 

To evaluate the performance of the proposed algorithms, a common experimental platform is provided 
by setting the maximum number of function evaluations as 500000 for each benchmark function with 30 
runs for each benchmark function. The results of each benchmark function are presented in Table 17 in 
the form of best solution, worst solution, mean solution, standard deviation obtained in 30 independent 
runs and the mean function evaluations on each benchmark function. The global optimum values of the 
benchmark functions are also given in Table 17 to give an idea to the readers about the performances of 
the proposed algorithms. 
 

 Table 17 
 Results of the proposed algorithms for the unconstrained benchmark functions 

S. No. Function Optimum  Rao-1 Rao-2 Rao-3 
1 Sphere 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 499976 499791 277522 
2 SumSquares 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 499975 499851 276556 
3 Beale 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 9805 7612 7325 
4 Easom -1 B -1 -1 -1 

W 0 -1 -1 
M -0.5667 -1 -1 
SD 0.5040 0 0 

MFE 3010 11187 14025 
5 Matyas 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 77023 110544 143088 
6 Colville 0 B 0 0 0 

W 0 5.35E-23 1.32E-25 
M 0 1.80E-24 7.87E-27 
SD 0 9.76E-24 2.61E-26 

MFE 385066 477753 488127 
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Table 17 
 Results of the proposed algorithms for the unconstrained benchmark functions (Continued) 

S. No. Function Optimum  Rao-1 Rao-2 Rao-3 
7 Trid 6 -50 B -50 -50 -50 

W -50 -50 -50 
M -50 -50 -50 
SD 0 0 0 

MFE 17485 37209 34796 
8 Trid 10 -210 B -210 -210 -210 

W -210 1171 -210 
M -210 -30.8587 -210 
SD 0 4.13E+02 0 

MFE 48231 144156 142253 
9 Zakharov 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 345615 499767 258451 
10 Schwefel 1.2 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 301513 499849 144367 
11 Rosenbrock 0 B 8.95E-26 1.86E-16 1.40E-14 

W 3.9866 22.191719 22.191719 
M 0.6644 0.739724 0.739728 
SD 1.51E+00 4.05E+00 4.05E+00 

MFE 489811 478410 478420 
12 Dixon-Price 0 B 0.666667 2.81E-30 0.666667 

W 0.666667 0.666667 0.667019 
M 0.666667 0.288889 0.666686 
SD 0 3.36E-01 7.39E-05 

MFE 75427 113638 159231 
13 Branin 0.397887 B 0.397887 0.397887 0.397887 

W 0.397931 0.397933 0.397888 
M 0.397892 0.397891 0.397887 
SD 1.05E-05 1.03E-05 1.44E-07 

MFE 102785 41263 80683 
14 Bohachevsky 1 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 3129 4751 3435 
15 Bohachevsky 2 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 2963 4272 3191 
16 Bohachevsky 3 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 4725 12337 6821 
17 Booth 0 B 0 0 0 

W 0 0 0 
M 0 0 0 
SD 0 0 0 

MFE 5583 4485 4312 
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Table 17 
 Results of the proposed algorithms for the unconstrained benchmark functions (Continued) 

S. No. Function Optimum  Rao-1 Rao-2 Rao-3 
18 Michalewicz 2 -1.8013 B -1.801303 -1.801303 -1.801303 

W -1.801303 -1.801303 -1.801303 
M -1.801303 -1.801303 -1.801303 
SD 0 0 0 

MFE 3863 2694 2751 
19 Michalewicz 5 -4.6877 B -4.687658 -4.687658 -4.687658 

W -4.537656 -3.116841 -3.495893 
M -4.674306 -4.429948 -4.492183 
SD 3.09E-02 3.60E-01 2.79E-01 

MFE 39710 67252 58401 
20 GoldStein-Price 3 B 3 3 3 

W 3 84 3 
M 3 5.7 3 
SD 0 1.48E+01 0 

MFE 180121 176933 353893 
21 Perm 0 B 0 0 0 

W 3.71E-09 0 0 
M 1.45E-10 0 0 
SD 6.78E-10 0 0 

MFE 82792 3139 4453 
22 Ackley 0 B 1.51E-14 7.99E-15 4.44E-15 

W 2.220970 1.51E-14 1.51E-14 
M 0.566540 1.04E-14 6.69E-15 
SD 7.41E-01 3.14E-15 2.38E-15 

MFE 129392 417741 76352 
23 Shekel's Foxholes 0.998004 B 0.998004 0.998004 0.998004 

W 0.998004 0.998004 0.998004 
M 0.998004 0.998004 0.998004 
SD 0 0 0 

MFE 18839 95983 243748 
24 Hartmann 3 -3.86278 B -3.86278 -3.86278 -3.86278 

W -3.86278 -3.86278 -3.86278 
M -3.86278 -3.86278 -3.86278 
SD 0 0 0 

MFE 4459 3022 3271 
25 Penalized 2 0 B 1.35E-32 1.35E-32 1.35E-32 

W 0.010987 1.597462 0.141320 
M 0.001465 0.057915 0.016008 
SD 3.80E-03 2.91E-01 3.50E-02 

MFE 173661 115593 55637 
         B: Best Solution; W: Worst Solution; M: Mean Solution; SD: Standard Deviation; MFE: Mean Function Evaluations. 

 
Table 18 shows the number of instances the results of each algorithm are either better or equal to the 
performance other algorithms in terms of best solution (B), worst solution (W), mean solution (M), 
standard deviation (SD) and mean function evaluations (MFE). 
 

 Table 18 
Comparison of the results in terms of number of instances a particular algorithm is better than or  
equal in performance to other algorithms 
 Rao-1 Rao-2 Rao-3 
B 24 22 24 
W 21 18 20 
M 20 17 20 
SD 21 16 20 
MFE 13 4 10 
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It can be observed from Tables 17 and 18 that the algorithms are not origin-biased as it can be seen that 
these algorithms have obtained the global optimum solutions in the case of benchmark functions 4, 7, 8, 
13, 18, 19, 20, 23 and 24 whose optima are not at origin.  The performance of the proposed algorithms 
is appreciable on 25 unconstrained benchmark functions considered. Out of the 25 unconstrained 
benchmark functions, the proposed algorithms have obtained the same results in 14 functions (i.e., in 
terms of best solution, worst solution, mean solution, standard deviation and mean function evaluations). 
Even though Rao-2 has obtained the best solution in the case of function nos. 8 and 20 but the worst 
solutions obtained are not good and hence the mean solution values are increased. In the case of function 
no. 12, Rao-1 and Rao-3 have not obtained the best solution but the best solution obtained by Rao-2 is 
comparatively better.  
 
5. Experiments on constrained optimization problems 
 
The performance of the proposed three algorithms is tested further on 2 constrained benchmark functions 
as part of the investigations. The details of the functions are given below. 
 

1. Himmelblau function: It is a continuous and non-convex multi-modal function. 
Min. f(x,y) = (x2 + y -11) 2 + (x +y2 -7)2 
Subjected to the constraints of: 
26 - (x-5)2 - y2 ≥ 0 
20 - 4x - y ≥ 0 
x ε [-5, 5]; y ε [-5, 5] 
 

2. Min. f (x,y) = (x - 10)3 + (y - 20)3   
Subjected to the constraints of: 
100 - (x - 5)2 - (y - 5)2 ≥ 0 
(x - 6)2 + (y - 5)2 - 82.81≥ 0 
x ε [13, 100]; y ε [0, 100] 

 
The results of application of the proposed algorithms on the above two benchmark functions are given 
in Table 19. The number of runs is 30 and the maximum function evaluations are 500000.  
 
Table 19 
Results of constrained benchmark functions 
Function Optimum  Rao-1 Rao-2 Rao-3 
1 0 B 0 0 0 

W 0.000012 0 0 
M 0.000002 0 0 
SD 0.000003 0 0 
MFE 74980 9881 118858 

2 -6961.814 B -6961.813876 -6961.81388917 -6961.81388947 
W -6961.813876 -6961.81388914 -6961.81388914 
M -6961.813876 -6961.81388915 -6961.81388916 
SD 1.734E-10 6.69E-09 5.75E-08 
MFE 217739 487953 484997 

         B: Best Solution; W: Worst Solution; M: Mean Solution; SD: Standard Deviation; MFE: Mean Function Evaluations. 

 
In the case of constrained benchmark functions, it can be observed from Table 19 that Rao-2 and Rao-3 
have obtained comparatively better results than Rao-1. It may be noted that Rao-1 algorithm, given by 
Eq. (1), is a very simple algorithm and is based only on the difference between the best and worst 
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solutions. Even then, it can be observed that its performance is appreciable in quite a good number of 
unconstrained and constrained functions. 
 
6. Conclusions 
 
It is proved in this paper that it is possible to develop potential optimization algorithms without the need 
of using metaphors related to the behavior of animals, birds, insects, societies, cultures, planets, musical 
instruments, chemical reactions, physical reactions, etc. The proposed three optimization algorithms are 
not based on any metaphor or algorithm-specific parameters. These require only the tuning of the 
common controlling parameters of the algorithm for working (e.g., population size and the number of 
iterations). The proposed algorithms are implemented first on 23 unconstrained optimization problems 
including 6 unimodal, 7 multimodal and 10 fixed-dimension multimodal problems. Additional 
computational experiments are carried out on 25 well defined unconstrained optimization problems 
having different characteristics and 2 standard constrained optimization problems. The proposed three 
simple algorithms have given satisfactory performance and are believed to have potential to solve the 
complex optimization problems as well. 
 
The results of the proposed algorithms presented in this paper are based on the preliminary investigations. 
Detailed investigations are planned to be carried out in the coming days. These investigations will include 
testing the performance of the proposed algorithms on various complex and computationally expensive 
benchmark functions involving a large number of dimensions. The results of detailed experimentation 
will be compared with the results of other existing well established optimization algorithms and the 
statistical tests will also be conducted. The researchers working in the field of optimization are requested 
to make improvements to these three algorithms so that these algorithms will become much more 
powerful. If these algorithms are found having certain limitations then the researchers may suggest the 
ways to overcome the limitations, instead of making destructive criticism, to further strengthen the 
algorithms.   
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Appendix-1: MATLAB code for Rao-1 algorithm 
 
%% MATLAB code of Rao-1 algorithm 
%% Unconstrained optimization 
%% Sphere function 
function Rao-1 () 
clc 
clear all 

 pop = 10;                                % Population size 
                       var = 30;    % Number of design variables 

 maxFes = 30000;                 % Maximum functions evaluation 
maxGen = floor(maxFes/pop);     % Maximum number of iterations 
mini = -100*ones(1,var); 
maxi = 100*ones(1,var); 
[row,var] = size(mini); 
x = zeros(pop,var); 
for i=1:var 
    x(:,i) = mini(i)+(maxi(i)-mini(i))*rand(pop,1); 
end 
f = objective(x); 
gen=1; 
while(gen <= maxGen) 
    xnew = updatepopulation(x,f); 
    xnew = trimr(mini,maxi,xnew); 
    fnew = objective(xnew); 
    for i=1:pop 
        if(fnew(i)<f(i)) 
            x(i,:) = xnew(i,:); 
            f(i) = fnew(i); 
        end 
    end 
    disp(['Iteration No. = ',num2str(gen)]) 
    disp('%%%%%%%% Final population %%%%%%%%%') 
    disp([x,f]) 
    fnew = []; xnew = []; 
    [fopt(gen),ind] = min(f); 
    xopt(gen,:)= x(ind,:); 
    gen = gen+1; 
end 
[val,ind] = min(fopt); 
Fes = pop*ind; 
disp(['Optimum value = ',num2str(val,10)]) 
end 
  
%%The objective function is given below. 
function [f] = objective(x) 
[r,c]=size(x); 
for i=1:r 
    y=0; 
    for j=1:c 
        y=y+(x(i,j))^2;         % Sphere function 
    end 
    z(i)=y; 
end 
f=z'; 
end 
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function [xnew] = updatepopulation(x,f) 
[row,col]=size(x); 
[t,tindex]=min(f); 
Best=x(tindex,:); 
[w,windex]=max(f); 
worst=x(windex,:); 
xnew=zeros(row,col); 
for i=1:row 
    for j=1:col 
        xnew(i,j)=(x(i,j))+rand*(Best(j)-worst(j)); 
    end 
end 
end 
  
function [z] = trimr(mini,maxi,x) 
[row,col]=size(x); 
for i=1:col 
    x(x(:,i)<mini(i),i)=mini(i); 
    x(x(:,i)>maxi(i),i)=maxi(i); 
end 
z=x; 
end 
 
Appendix-2: MATLAB code for Rao-2 algorithm 

 
%% MATLAB code of Rao-2 algorithm 
%% Unconstrained optimization 
%% Sphere function 
function Rao-2 () 
clc 
clear all 

  pop = 10;                       % Population size 
                    var = 30;       % Number of design variables 

              maxFes = 30000;    % Maximum functions evaluation 
maxGen = floor(maxFes/pop);      % Maximum number of iterations 
mini = -100*ones(1,var); 
maxi = 100*ones(1,var); 
[row,var] = size(mini); 
x = zeros(pop,var); 
for i=1:var 
    x(:,i) = mini(i)+(maxi(i)-mini(i))*rand(pop,1); 
end 
f = objective(x); 
gen=1; 
while(gen <= maxGen) 
    xnew = updatepopulation(x,f); 
    xnew = trimr(mini,maxi,xnew); 
    fnew = objective(xnew); 
    for i=1:pop 
        if(fnew(i)<f(i)) 
            x(i,:) = xnew(i,:); 
            f(i) = fnew(i); 
        end 
    end 
    disp(['Iteration No. = ',num2str(gen)]) 
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    disp('%%%%%%%% Final population %%%%%%%%%') 
    disp([x,f]) 
    fnew = []; xnew = []; 
    [fopt(gen),ind] = min(f); 
    xopt(gen,:)= x(ind,:); 
    gen = gen+1; 
end 
[val,ind] = min(fopt); 
Fes = pop*ind; 
disp(['Optimum value = ',num2str(val,10)]) 
end 

  
 
%%The objective function is given below. 
function [f] = objective(x) 
[r,c]=size(x); 
for i=1:r 
    y=0; 
    for j=1:c 
        y=y+(x(i,j))^2;           % Sphere function 
    end 
    z(i)=y; 
end 
f=z'; 
end 
  
function [xnew]=updatepopulation(x,f) 
[row,col]=size(x); 
[t,tindex]=min(f); 
Best=x(tindex,:); 
[w,windex]=max(f); 
worst=x(windex,:); 
xnew=zeros(row,col); 
for i=1:row 
    k=randi(row); 
    while (k==i) 
        k=randi(row); 
    end 
    if (f(i)<f(k)) 
        for j=1:col 
            r=rand(1,2); 
            xnew(i,j)=x(i,j)+r(1)*(Best(j)-worst(j))+r(2)*(abs(x(i,j))-abs(x(k,j))); 
        end 
    else 
        for j=1:col 
            r=rand(1,2); 
            xnew(i,j)=x(i,j)+r(1)*(Best(j)-worst(j))+r(2)*(abs(x(k,j))-abs(x(i,j))); 
        end 
    end 
end 
end 
  
function [z] = trimr(mini,maxi,x) 
[row,col]=size(x); 
for i=1:col 
    x(x(:,i)<mini(i),i)=mini(i); 



R. Venkata Rao / International Journal of Industrial Engineering Computations 11 (2020) 129

    x(x(:,i)>maxi(i),i)=maxi(i); 
end 
z=x; 
end 
 
Appendix-3: MATLAB code for Rao-3 algorithm 

 
%% MATLAB code of Rao-3 algorithm 
%% Unconstrained optimization 
%% Sphere function 
function Rao-3 () 
clc 
clear all 

                       pop = 10;      % Population size 
  var = 30;                          % Number of design variables  

 maxFes = 30000;                 % Maximum functions evaluation 
maxGen = floor(maxFes/pop);       % Maximum number of iterations 
mini = -100*ones(1,var); 
maxi = 100*ones(1,var); 
[row,var] = size(mini); 
x = zeros(pop,var); 
for i=1:var 
    x(:,i) = mini(i)+(maxi(i)-mini(i))*rand(pop,1); 
end 
f = objective(x); 
gen=1; 
while(gen <= maxGen) 
    xnew = updatepopulation(x,f); 
    xnew = trimr(mini,maxi,xnew); 
    fnew = objective(xnew); 
    for i=1:pop 
        if(fnew(i)<f(i)) 
            x(i,:) = xnew(i,:); 
            f(i) = fnew(i); 
        end 
    end 
    disp(['Iteration No. = ',num2str(gen)]) 
    disp('%%%%%%%% Final population %%%%%%%%%') 
    disp([x,f]) 
    fnew = []; xnew = []; 
    [fopt(gen),ind] = min(f); 
    xopt(gen,:)= x(ind,:); 
    gen = gen+1; 
end 
[val,ind] = min(fopt); 
Fes = pop*ind; 
disp(['Optimum value = ',num2str(val,10)]) 
end 
  
%%The objective function is given below. 
function [f] = objective(x) 
[r,c]=size(x); 
for i=1:r 
    y=0; 
    for j=1:c 
        y=y+(x(i,j))^2;          % Sphere function 
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    end 
    z(i)=y; 
end 
f=z'; 
end 
  
function [xnew]=updatepopulation(x,f) 
[row,col]=size(x); 
[t,tindex]=min(f); 
Best=x(tindex,:); 
[w,windex]=max(f); 
worst=x(windex,:); 
xnew=zeros(row,col); 
for i=1:row 
    k=randi(row); 
    while (k==i) 
        k=randi(row); 
    end 
    if (f(i)<f(k)) 
        for j=1:col 
            r=rand(1,2); 
            xnew(i,j)=x(i,j)+r(1)*(Best(j)-abs(worst(j)))+r(2)*(abs(x(i,j))-x(k,j)); 
        end 
    else 
        for j=1:col 
            r=rand(1,2); 
            xnew(i,j)=x(i,j)+r(1)*(Best(j)-abs(worst(j)))+r(2)*(abs(x(k,j))-x(i,j)); 
        end 
    end 
end 
end 
  
function [z] = trimr(mini,maxi,x) 
[row,col]=size(x); 
for i=1:col 
    x(x(:,i)<mini(i),i)=mini(i); 
    x(x(:,i)>maxi(i),i)=maxi(i); 
end 
z=x; 
end 
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