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 Deep learning techniques are making significant contributions to the rapid advancements in fore-
casting. A standout algorithm known for its ability to produce accurate forecasts by recognizing 
temporal autocorrelation within the data is the Long Short-Term Memory (LSTM) algorithm, a 
component of Recurrent Neural Networks (RNN). The LSTM method employs both stateless and 
stateful architecture approaches, providing versatility in its application. This research aims to 
compare stateful and stateless algorithms in LSTM models, focusing on forecasting stock prices, 
such as those of Apple Inc. This comparative analysis is crucial, taking into account various char-
acteristics of time series data, including the benefits and drawbacks of temporal autocorrelation. 
The comparison results reveal that, despite the stateful algorithm requiring more computational 
time, it achieves greater accuracy than the stateless approach. The forecast indicates a potential 
upward trend in share prices for the period of January to December 2024, according to the pro-
jected outlook for Apple's stock value. However, it is essential to exercise prudence in interpreting 
these results, considering that share price fluctuations are influenced by a significant number of 
variables. 
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1. Introduction 
 
Forecasting is a complex field of statistical analysis that involves predicting future events, which is challenging due to the 
presence of uncertainties. The complexity arises from the intrinsic unpredictability of forthcoming occurrences. Forecasting 
methods frequently employ historical data to construct models that aim to produce precise predictions spanning numerous 
future time periods (Petropoulos, et al., 2022). The accuracy of forecasts depends on the quality of the data and the appropri-
ateness of the methodology (Brownlee, 2019). Forecasting finds application in diverse fields, including forecasting of the 
stock prices (Lee & Kim, 2020). Accurate stock price forecasting is crucial for effective business planning, making the selec-
tion of an appropriate forecasting method a critical aspect of financial analysis. Traditional forecasting methods, such as the 
autoregressive (AR) model, moving average (MA) model, autoregressive moving average (ARMA) model, and autoregressive 
conditional heteroscedasticity (GARCH) method, have been widely employed to predict stock prices (Ho, Darman, & Musa, 
2021). Nevertheless, the classical approach encounters limitations when forecasting data with irregular patterns. Stock price 
movements, influenced by a multitude of factors, pose a challenge for classical methods in effectively capturing complex 
temporal patterns (Wu, Xu, Chen, Li , & Zhao, 2022). The utilization of deep learning (DL) techniques, such as Recurrent 
Neural Networks (RNNs), became widely embraced for capturing complex temporal patterns (Moghar & Hamiche, 2020). 
RNNs stand as highly acclaimed deep learning algorithms that have gained immense popularity in recent years, finding broad 
applications across diverse fields, with a notable presence in forecasting. Rendered specifically for sequential processing, 
RNNs demonstrate exceptional performance by capturing the interconnections among elements in a sequence. When consid-
ering forecasting, the Long-Term Short-Term Memory (LSTM) technique becomes an increasingly common algorithm 
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(Moghar & Hamiche, 2020). LSTM models exhibit notable benefits in tasks related to predicting time series, especially in the 
presence of autocorrelation—the connection between a time series and its delayed versions. The effectiveness of these tech-
niques stems from their capability to retain state information and identify patterns throughout the duration of the time series 
(Gülmez, 2023). The recurrent architecture facilitates the persistence and communication of states across weight updates as 
the epoch progresses.  

Keras stands out as one of the most extensively used open-source packages, applicable to both Python and R environments.  
Keras supports both "stateful" and "stateless" operation modes for LSTMs.  'Stateful' architecture designates the final state of 
each sample in a batch as the initial state of the sample in the following batch. In contrast, during the normal or "stateless" 
mode, Keras performs a sample shuffle, resulting in the loss of dependencies between the lagged version of the time series 
and itself. Nevertheless, by leveraging the autocorrelations that are intrinsic to the time series, it is frequently possible to attain 
more precise outcomes when operating in "stateful" architecture (business-science.io, 2018); (Bismi, 2023). The decision to 
utilize an LSTM methodology is supported by two fundamental factors. To commence, the machine is provided with feedback 
on errors identified during the initial training phase to enhance the model. In addition, throughout the process, faults are 
continuously incorporated into the machine's gates. Additionally, LSTM networks demonstrate a significant lack of sensitivity 
to inter-event delays in time series data, which sets them apart from alternative artificial neural networks and forecasting 
methods (e.g., ARIMA) in the pursuit of an efficient unknown forecast model (Polyzo, Samitas, & Spyridou, 2021).  

This research paper utilizes monthly data spanning from 1981 to 2023 to forecast Apple's stock prices from January to De-
cember 2024 through the application of machine learning. In addition to their primary function of financial forecasting, precise 
stock price predictions assist investors in mitigating potential losses in financial markets and provide governmental financial 
institutions with an essential financial early warning system. The study presents four fundamental contributions. In the first 
place, a comparison is made between stateful and stateless architectures in order to ascertain which framework is more effi-
cient at forecasting stock prices, with a specific focus on those of Apple Inc. Additionally, it showcases the capability of 
LSTM networks to efficiently process arrival time series by utilizing their resilient autoregressive characteristics that have 
been calibrated using training data derived from analogous past occurrences. Furthermore, an illustration of backtesting, a 
widely utilized method in financial time series analysis, is provided in the paper as a means of validating the accuracy of stock 
price predictions. In conclusion, the research paper presents a projected valuation of Apple's stock for the period from January 
to December 2024. 

The structure of the sections that follow is maintained throughout this paper. Section 2 examines pertinent scholarly works 
pertaining to deep learning, placing particular emphasis on LSTM. A comparative analysis of stateful and stateless LSTM 
architectures is presented in Section 3, utilizing Apple Inc. stock price data. A discussion and conclusions are presented in 
Section 4. 

2. Deep Learning (DL) 

Deep learning, a potent branch of machine learning, tackles the issue of predicting nonlinear outputs. The prediction output 
denoted as 𝑌෠(𝑿), from a high-dimensional input matrix 𝑿 = ሾ𝑋ଵ, … ,𝑋௉ሿ, where 𝑃 represents the number of inputs, and an 
output 𝑌. Deep learning entails the investigation and development of a complex input-output mapping function (Dixon, Pol-
son, & Sokolov, 2018): 𝒀 = 𝐹(𝑿), for 𝑿 = ሾ𝑋ଵ, … ,𝑋௉ሿ (1) 

The output 𝒀, can be continuous, discrete or mixed. The predictor consist of a multivariate functions 𝐹(𝑋)  generated by 
superpositions of univariate semiaffine functions. A semiaffine function, denoted by 𝑓ௐ೗,௕೗௟  is defined as (Dixon, Polson, & 
Sokolov, 2018) 𝑓ௐ೗,௕೗௟ (𝑋) ≔ 𝑓௟(𝑊௟𝑋 + 𝑏௟) (2) 

where 𝑓௟ is univariate and continuous. A nonlinear predictor is contracted using a sequence of layers 𝐿 through a composite 
mapping: 𝑌෠(𝑋) ≔ 𝐹ௐ,௕(𝑋) = ቀ𝑓ௐಽ,௕ಽ௅ ∘ … ∘ 𝑓ௐభ,௕భଵ ቁ(𝑋) (3) 

where  𝑊 = (𝑊ଵ, … ,𝑊௅) represents weight matrices and 𝑏 = (𝑏ଵ, … , 𝑏௅) denotes offsets (Dixon et al. 2018).  Let 𝑍௅ denote 
the 𝑙 −th layer with 𝑍଴ = 𝑋. The configuration of DL rule can then be expressed as a hierarchy of 𝐿 − 1 unobserved layers, 
denoted as 𝑍௟ (Dixon, Polson, & Sokolov, 2018) 𝑌෠(𝑋) = 𝑓௅(𝑍௅ିଵ),      𝑍ଵ = 𝑓ଵ(𝑊ଵ𝑍଴ + 𝑏ଵ)      𝑍ଶ = 𝑓ଵ(𝑊ଶ𝑍ଵ + 𝑏ଶ) 

………………………….. 𝑍௅ିଵ = 𝑓௅ିଵ(𝑊௅ିଵ𝑍௅ିଶ + 𝑏௅ିଵ) 
 

 
 

(4) 
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When 𝑌 is numeric, the output function 𝑓௅(𝑋) is given by the semiaffine function 𝑓௅(𝑋) ≔  𝑓ௐಽ,௕ಽ௅ (X). When Y is categori-
cal,  𝑓௅(𝑋) is a softmax function. The activation (or link) functions, i.e., 𝑓௟ , 1 ≤ 𝑙 < 𝐿, are prespecified, whereas the weight 
matrices 𝑊௟ ∈ 𝐑ே೗×ே೗షభ  and offset vectors 𝑏௟ ∈ 𝐑ே೗  have to be learned from a training data set ൫X(௜), Y(௜)൯௜ୀଵ் . Common 
choices of 𝑓௟ are hinge or rectified linear units, i.e, max(𝑥, 0) and sigmoidal (cosh(𝑥) , tanh(𝑥)) activation functions.  

2.2.1 Recurrent Neural Networks (RNNs) 

A recurrent neural network (RNN) is an artificial neural network type that can process sequence or time series data. RNNs 
work by passing data from one sequence step to the next via a loop. At each time step, the network takes an input vector and 
combines it with the hidden state vector from the previous time step to produce a new hidden state vector. This procedure is 
repeated until the entire sequence has been analyzed, at which point the final hidden state vector is obtained which can be 
utilized to make a prediction (Levin, 1990). RNNs employ recurrent layers to capture temporal dependencies with a modest 
number of parameters (West & Harrison, 1997). Using a recurrent layer and a feed-forward layer, they learn temporal dynam-
ics by mapping an input sequence to a hidden state sequence and outputs (Dixon, Polson, & Sokolov, 2018).  

Let 𝑌௧ represent the observed response and 𝑍௧ the hidden states, then the RNN model is given by: 

 

Response: 𝑌෠௧ = 𝑓ଶ(𝑊௭ଶ𝑍௧ + 𝑏ଶ) (5) 

Hidden state: 𝑍௧ = 𝑓ଵ(𝑊ଵሾ𝑍௧ିଵ,𝑋௧ሿ + 𝑏ଵ) 

where  𝑓ଵ denotes an activation function like 𝑡𝑎𝑛ℎ(𝑥), and 𝑓ଶ is either a softmax function or an identity map. The choice of 
the activation function depends on whether the response is categorical or continuous. The weight matrices 𝑊ଵ = ሾ𝑊௭ଵ,𝑊௫ଵሿ   
and 𝑊௭ଶare established during the network's training process and remain constant over time. 𝑋௧ represents the inputs that are 
at the extremes up to 𝑘 time lags. 𝑍௧ିଵ, where t is equal to 2, 3, and so on, denotes the hidden states from the previous time 
step. The hidden state is initialized at zero, meaning that 𝑍௧ି௞  is equal to 0 (Dixon, Polson, & Sokolov, 2018).  

The primary differentiating factor between recurrent neural networks (RNNs) and feed-forward deep learning (DL) is the 
incorporation of a hidden layer that includes an autoregressive component, specifically denoted as 𝑊௭ଵ𝑍௧ିଵ. The outcome is a 
network configuration in which each layer corresponds to a specific time interval, denoted as 𝑡, highlighting the temporal 
aspect (Fig. 2). 

 
Fig. 2. Hidden layer of an RRN Source: (Dixon, Polson, & Sokolov, 2018). 

2.2.2 Long Term Short Memory Neural Networks (LSTMNs) 

Recurrent Neural Networks (RNNs) face challenges in acquiring knowledge of long-term patterns primarily because of the 
occurrence of vanishing and exploding gradients. These issues arise when gradients are backpropagated through the numerous 
unfolded layers of the network. In order to tackle the problem of gradients that either vanish or explode, (Hochreiter & 
Schmidhuber, 1997) introduced a particular variant of recurrent neural network called LSTMN. An LSTM (Long Short-Term 
Memory) network incorporates a memory unit that allows the network to identify and disregard irrelevant previous states. To 
achieve this objective, the hidden state is produced by a hidden cell state 𝐶௧, which facilitates the retention of long-term 
dependencies from the preceding sequence data. (Dixon, Polson, & Sokolov (2018) suggests the following architecture for 
the purpose of forecasting:  

Output: 𝑍௧ = 𝑂௧ ∙ tanh(𝐶௧)  

(6)  𝐾௧ = tanh(𝑊௖் ሾ𝑍௧ିଵ,𝑋௧ሿ+ 𝑏௖) 

 𝐶௧ = 𝐹௧ ∙ 𝐶௧ିଵ + 𝐼௧ ∙ 𝐾௧ 
State equations: ൭ 𝐼௧𝐹௧𝑂௧൱ = 𝜎(𝑊்ሾ𝑍௧ିଵ,𝑋௧ሿ + 𝑏) 

where ∙ denotes the dot product. and 𝐼௧,𝐹௧,𝑂௧.  are the input, forget, and output states 𝐹௧ ∙ 𝐶௧ିଵ defines the long-range depend-
ence with the state (𝐼௧,𝐹௧,𝑂௧)  Fig. 3 is the graphical represntation of architecture (6)  

 

Zt-1

Xt

ft Zt
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Fig. 3. Hidden layer of a LSTM. Input (Zt − 1, Xt) and state output (Zt, Ct ) 

Source: Adapted from (Dixon, Polson, & Sokolov, 2018). 

The cell state 𝐶௧ is the characteristic that sets an LSTMN apart from an RNN. Gates, characterized by the activation function 
(𝑥) and dot product ∙, are employed to modify the memory state by either adding or removing data. The initial gate 𝐹௧ ∙ 𝐶௧ିଵ, 
commonly referred to as the "forget gate," selectively ignores certain portions of the preceding cell state's information. The 
gate𝐼௧ ∙ 𝐾௧, referred to as the "input gate," is responsible for determining the values that need to be updated. Subsequently, the 
updated cell state is obtained by adding the previous cell state to the components of the vector ሾ𝑍௧ିଵ,𝑋௧ሿ that were selected 
by the forget gate (Ruiz-Cárdenas et al., 2012). Therefore, the vector 𝐶௧ serves as a means to eliminate irrelevant data from 
previous time steps and incorporate relevant data from the current time step. The output is determined by the output gate 𝑍௧ =𝑂௧ ∙ tanh(𝐶௧), which is the result of multiplying the output gate 𝑂௧ with the hyperbolic tangent function applied to the state 
of the cell 𝐶௧, with certain entries removed. Hence, the forget gate plays a crucial role in addressing the issue of vanishing and 
exploding gradients. There are two algorithms within LSTM, namely stateless and stateful. The primary distinction between 
these two algorithms revolves around the management of hidden states and cell states across sequences during training and 
prediction. In a stateful LSTM, the hidden state and cell state persist throughout the entire sequence, maintaining continuity 
across multiple data points. Conversely, in a stateless LSTM, both the hidden state and cell state are reset at the commence-
ment of each sequence, leading to a fresh start for processing each new set of input data (Bernico, 2018). 

3. Application 

3.1 Apple Stock Price Data 

The stock price data for Apple Inc. has been obtained from finance.yahoo.com, covering monthly records from 1981 to 2023. 
We utilized the adjusted closing prices for the analysis. The R-code was modified from business-science.io, (2018). Table 1 
provides descriptive statistics for Apple Inc.'s stock price data, and Fig. 4 shows the monthly trend of Apple Inc.'s stock price 
from January 1981 to December 2023. 

Table 1  
Descriptive statistics of the Apple Inc’s stock price from January 1981 to December 2023 

Statistics Date Stock Price (USD) 
Min Jul-82 0.044 
Q1 Jan-96 0.242 
Median Apr-92 0.417 
Q3 Mar-14 16.795 
Max Dec-23 194.309 

Source: finance.yahoo.com 

  

 
Fig. 4. (a) Monthly Temporal Trend of Apple Inc. Stock Price from 1981 to 2023, and (b) zoomed in to show cycle from 2010 
to 2020 
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Fig. 4 (a) depicts a significant and consistent increase in the stock price of Apple Inc., with a particularly strong upward trend 
starting in 2020 and following an exponential growth pattern. To illustrate a more distinct cyclic pattern, data from 2010 to 
2020 is presented in Fig. 4(b). The visualization depicts a recurring circular pattern over a specific time interval. 

3.2 Spatiotemporal autocorrelation  

Next, we will perform an autocorrelation test, which will serve as the basis for using time series models, such as LSTM. Time 
series models utilize autocorrelation to produce accurate predictions for multiple future time periods. Our goal is to produce 
short term forecasts for a 1-year or twelve-month timeframe using batch forecasting, a method that entails generating a con-
solidated set of forecasts for a specific period, rather than repeatedly making a single prediction for one or more future time 
periods. Batch predictions are only effective if the autocorrelation extends beyond a period of twelve months. Firstly, it is 
essential to review the Autocorrelation Function (ACF), which measures the correlation between a time series and its lagged 
versions. 

 

 
Fig. 5. Autocorrelation function 

 

We computed 516 autocorrelation values (one for the time series and its 516 lags), and the results appear promising. A sub-
stantial number of lags show statistically significant autocorrelations. The news is indeed encouraging. Autocorrelation re-
mains greater than 0.5 even after lag 12, which is equivalent to one year. Theoretically, one of the high-autocorrelation lags 
could be utilized to construct a Bayesian dynamic model in addition to an LSTM model.  

However, there's a possibility that autocorrelations at lags 2 and beyond are primarily influenced by the propagation of auto-
correlation at lag 1. This suspicion is corroborated by the Partial Autocorrelation Function (PACF) plot. The PACF plot clearly 
shows a prominent peak at lag 1, suggesting that the autocorrelations beyond this lag can be well explained by the autocorre-
lation at lag 1 (Fig. 5). 

 

  
Fig. 6. Partial autocorrelation function Fig. 7. ACF for 12 Months 
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After careful examination, the optimal lag appears to be at lag 1. However, this may not be the definitive choice, as there are 
additional considerations for batch forecasting with a LSTM and Bayesian dynamic model. 

3.3 Backtesting: Time Series Cross Validation 

Cross-validation involves constructing models on subsets of data and assessing them against a validation set to determine an 
anticipated accuracy level and error range. In the context of time series, the approach differs from non-sequential data, as it 
necessitates preserving the time dependency on previous samples when devising a sampling plan. To address this, a cross-
validation sampling plan can be established by adjusting the window used to select sequential sub-samples. In finance, a 
similar analysis is often referred to as “Backtesting”, where a time series is divided into multiple uninterrupted sequences 
offset at various windows, allowing testing of strategies on both current and past observations (business-science.io, 2018). In 
order to facilitate cross-validation, the proposed sampling scheme employs a training set consisting of 12 × 1 samples, which 
corresponds to a year of study. The validation set, on the other hand, covers ten years and is assessed at 12 × 1. In order to 
ensure that the samples are distributed uniformly across four sets that encompass the complete 43-year history of sunspots, a 
twenty-year skip span (skip = 12 × 1) is selected. 

     

 
 

 
 

Fig. 8. Backtesting strategy 

The four slices rolling the original sampling plan are depicted in Fig. 8.   By employing multiple train-test splits, a greater 
number of models will be trained, leading to a more precise estimation of the models' performance on unobserved data.  
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Fig. 9. Keras Stateful LSTM Backtested Prediction 

3.4 Stateless and stateful architectures comparison 

To assess the accuracy of both stateless and stateful LSTM models in predicting Apple's stock prices, we partitioned the 
dataset into training and testing sets. The testing data comprises only the twelve months of data from 2023, accounting for 
approximately 2.3% of the entire dataset. This selection aligns with the common practice of focusing stock price forecasting 
models on the short term. Fig. 10 provides a visual comparison of the forecasting results between the stateless and stateful 
LSTM methods. 

 

 
Fig. 10. Comparison between Stateless and Stateful LSTM Models 
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Fig. 10 clearly demonstrates that the stateful algorithm produces more precise predictions for the testing data in comparison 
to the stateless algorithm. The results obtained from the stateful algorithm's predictions demonstrate a noticeable trend pattern 
that closely resembles the actual data, indicating a positive trend. Conversely, the stateless predictions exhibit a more con-
sistent pattern. In order to obtain a more accurate assessment of the precision of the two methods, we compare them using the 
mean absolute error (MAE) and mean absolute prediction error (MAPE) criteria, which are explained in detail in Table 2.  

Table 2  
Comparative Criteria for Stateless and Stateful LSTM Models 

Month Actual Prediction MAE MAPE 
Stateless Stateful Stateless Stateful Stateless Stateful 

Jan 135.02 152.52 166.00 17.49 30.98 12.95 8.84 
Feb 150.27 153.42 166.00 3.15 15.73 2.09 8.20 
Mar 154.34 153.12 165.00 1.22 10.66 0.79 7.76 
Apr 164.38 153.16 165.00 11.22 0.62 6.83 7.73 
May 172.07 152.07 151.00 20.00 21.07 11.62 0.70 
Jun 183.79 151.10 148.00 32.70 35.79 17.79 2.05 
Jul 191.90 151.89 151.00 40.01 40.90 20.85 0.59 
Aug 180.76 152.82 156.00 27.94 24.76 15.46 2.08 
Sep 176.77 152.57 182.00 24.20 5.23 13.69 19.29 
Oct 174.44 151.70 178.00 22.74 3.56 13.04 17.34 
Nov 185.80 151.69 180.00 34.11 5.80 18.36 18.66 
Dec 194.31 150.87 180.00 43.44 14.31 22.36 19.31 
Overall mean 23.18 17.45 12.99 9.38 

 

Table 2 shows the real values, forecasts produced by stateless and stateful algorithms, along with the calculations of MAE 
and MAPE values. The stateful algorithm demonstrates significantly lower MAE and MAPE values in comparison to the 
stateless algorithm. This observation implies that, when using the same set of Apple stock price data, the stateful algorithm 
produces more precise outcomes. This difference can be partially attributed to the inherent characteristics of stock prices, 
which are characterized by strong temporal autocorrelation.  

3.5 Forecasting Apple Inc’s stock price  

Based on the comparison between stateless and stateful LSTM algorithms, the application of the stateful LSTM algorithm 
resulted in a forecast for Apple's stock prices spanning January to December 2024, as depicted in Figure 8. The forecast was 
trained for more than 50 epochs using a stateful architecture with the following parameters: lag = 12, batch size = 12, train 
length = 12, time steps = 1, and train length = 12. The forecasted results indicated a positive trend in Apple's stock prices 
throughout 2024. Nevertheless, it is crucial to emphasize, particularly for investors, that these forecast outcomes are solely 
derived from historical data. Real estate stock prices are intricately influenced by various factors, underscoring the need for 
caution in interpreting the insights gleaned from this forecast. 

 

 
Fig. 11. Forecast of Apple Stock Prices for January to December 2024 
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4. Conclusion 

The objective of this study is to perform a comparative analysis of stateless and stateful algorithms in LSTM models. This 
specific topic is often neglected when it comes to forecasting, especially in the domain of predicting stock prices. Although 
LSTM models are commonly used for forecasting, there is limited discussion on the subtle distinctions between stateless and 
stateful algorithms. This comparative analysis is essential for determining the most appropriate LSTM algorithm, considering 
the distinct attributes of time series data, such as the advantages and disadvantages of temporal autocorrelation. To accomplish 
this, we gathered empirical data from https://finance.yahoo.com/ that includes the closing stock prices of Apple Inc. for a 
monthly period of 43 years, starting from January 1981 and ending in December 2023. Exploratory data analysis uncovered 
a strong temporal autocorrelation among observation periods, indicating the potential effectiveness of the stateful algorithm 
approach. This hypothesis was supported by empirical comparisons. The evaluation entailed utilizing data from January to 
December 2023 as the testing dataset, while the remaining dataset was employed as the training dataset. The choice to exclu-
sively employ a 12-month testing period is in accordance with the prevailing convention of predicting short-term fluctuations 
in stock prices. The analytical findings revealed that, although the stateful algorithm approach required more time for com-
putation, it surpassed the stateless approach in terms of accuracy. Expanding upon the algorithm that maintains a memory of 
previous states, predictions for the value of Apple's stocks were generated for the time frame spanning from January to De-
cember 2024. Although the predictions suggest a possible rise in Apple's stock price in 2024, it is important to acknowledge 
that these projections rely on past data and that unforeseen changes can greatly affect the actual value of the shares. Therefore, 
investors should remain vigilant and monitor the situation closely. 
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