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 Smart contracts offer automation for various decentralized applications but suffer from vulnera-
bilities that cause financial losses. Detecting vulnerabilities is critical to safeguarding decentral-
ized applications before deployment. Automatic detection is more efficient than manual auditing 
of large codebases. Machine learning (ML) has emerged as a suitable technique for vulnerability 
detection. However, a systematic literature review (SLR) of ML models is lacking, making it 
difficult to identify research gaps. No published systematic review exists for ML approaches to 
smart contract vulnerability detection. This research focuses on ML-driven detection mechanisms 
from various databases. 46 studies were selected and reviewed based on keywords. The contribu-
tions address three research questions: vulnerability identification, machine learning model ap-
proaches, and data sources. In addition to highlighting gaps that require further investigation, the 
drawbacks of machine learning are discussed. This study lays the groundwork for improving ML 
solutions by mapping technical challenges and future directions. 
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1. Introduction 
 

Smart contracts are being widely adopted across sectors like finance, supply chain, healthcare, etc. (Jiang et al., 2023; Shorman 
et al., 2020; Litke et al., 2019; de la Rosa et al., 2016; Garg et al., 2019). However, their immutability poses security concerns 
if vulnerabilities exist in code. As networks cannot be changed post-deployment, reviewing and testing contracts pre-deploy-
ment is critical. Attacks like the $150 million DAO hack highlight the need for improved security methods and best practices 
to prevent such incidents (Ivanov et al., 2023). Generally, the development of savvy contract applications requires satisfactory 
arrangements to identify bugs that were recently sent and distributed on blockchain systems. Formal confirmation distin-
guishes vulnerabilities in shrewd contracts, sometime recently arranged by characterizing determinations, making models, 
and utilizing instruments to analyze models. Be that as it may, formal confirmation is challenging, time-consuming, and 
requires noteworthy manual exertion. In differentiation, machine learning strategies can consequently identify irregularities 
and vulnerabilities, lessening manual exertion. Also, machine learning models are more adaptable as the number of keen 
contracts develops, whereas formal confirmation can end up computationally costly. Generally, machine learning comple-
ments formal confirmation by empowering cost-effective and adaptable defenselessness locations (Eshghie et al., 2021). Ma-
chine learning for recognizing shrewd contract vulnerabilities has risen as an imperative investigation region as of late. 
Whereas numerous consider utilizing ML for defenselessness locations, a comprehensive survey of solidifying approaches is 
missing. This paper conducts an efficient overview of 46 papers from 2018-2023 to think about, analyze, and classify ML 
strategies for defenselessness discovery. The overview serves to develop an understanding of state-of-the-art location appa-
ratuses and illuminate future inquiries about bearings. This survey includes the following contributions: 
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• We analyzed a comprehensive review of 46 relevant studies that focused on applying machine-learning techniques to 
detect smart contract security vulnerabilities. 

• We conducted a deep analysis to understand smart contract vulnerabilities detected by ML techniques. 

• We presented a classification of the machine learning methods used for detecting vulnerabilities in smart contracts 
according to their prevalence across primary studies. 

• We studied the main datasets used in smart contract vulnerability detection based on the sources and types of these 
datasets. 

• We discuss the main challenges that are facing the use of machine learning techniques for vulnerability detection in 
the future. 

This work offers valuable insights on machine learning for smart contract vulnerability detection to researchers and industry 
professionals. By synthesizing current literature, we highlight useful models, benchmarks, and challenges to guide academics 
and practitioners toward impactful progress on this critical emerging need. The structured analysis aims to advance develop-
ment processes, validate contract correctness, and reduce cyber risks. 
 
The paper is organized as follows: Section 2 summarizes existing surveys and systematic reviews focusing on smart contract 
vulnerability detection using machine learning. Section 3 discusses the research methodology and criteria for choosing papers. 
Section 4 discusses the three research questions in the systematic literature review and presents the main results. Section 5 
examines the main limitations of this survey. Finally, Section 6 concludes the paper and highlights possible future directions 
in this area. 
 
2. Background and Related work 

This section provides a background on smart contract vulnerabilities and utilizes machine learning methods to detect them. 
Then we compare our survey with related surveys and highlight their differences. 

2.1. Background 
 

2.1.1. Smart Contracts Vulnerabilities 
 

Though smart contracts promise automation, reliability, and trust less, they are prone to vulnerabilities that can lead to ex-
ploited contracts, locked funds, and other issues (Atzei et al., 2017; Chen et al., 2020). Given the significant value flowing 
through blockchain platforms like Ethereum via smart contracts, securing them is paramount. In the next subsection, we 
present the most common smart contract vulnerabilities as follows: 

• Reentrancy vulnerabilities: this vulnerability allows attackers to manipulate smart contract logic and steal assets by 
repetitively invoking functions, disrupting execution flow. These prevalent vulnerabilities, named after “reentrancy 
attacks” pose risks like enabling recursive withdrawal function calls that repeatedly transfer funds without updating 
balances (Qian et al., 2020; Jiang et al., 2023). 

• Gasless Send: The gasless send powerlessness in Ethereum keen contracts happens when Ethers are exchanged (uti-
lizing send work) to a contract and there's insufficient gas to execute the beneficiary contract's fallback work, causing 
an out-of-gas special case and unforeseen behavior (Qian et al., 2020). This powerlessness can empower denial-of-
service assaults, information misfortune, or state changes. For example, a lottery contract utilizing send to pay victors 
may be abused by an assailant making a fallback work that intentioned causes blunders, causing the exchange to fall 
flat midway and solidifying the contract (Narayana & Sathiyamurthy, 2023). Distinguishing and moderating gasless 
send vulnerabilities through testing and secure coding is basic for guaranteeing shrewd contract security and unwaver-
ing quality on blockchain stages. Designers must scrutinize contracts to reveal and address this predominant defense-
lessness. 

• Call integrity: This defenselessness permits assailants to misuse inappropriate dealing with outside calls to control 
contract behavior. This will empower unauthorized get to or control of reserves and information. Strong approval of 
outside call return values is key to invigorating contract keenness against such assaults (Lutz et al., 2021; Zheng et al., 
2023). 

• Type Casts: This helplessness happens when shrewd contracts incorrectly change over information sorts without ap-
proval, empowering assailants to supply inputs that trigger fizzled changes or unforeseen yields. For illustration, the 
unvalidated string-to-integer transformations can disturb contract rationale streams. To relieve abuses, input 
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information requires arranged approval, sometimes recently sorted changes, and yields ought to be checked for blun-
ders. Recognizing this helplessness prompts designers to actualize thorough controls when dealing with blended in-
formation sorts (Raja et al., 2020). 

• Stack Size Limit: This helplessness misuses Ethereum Virtual Machine's stack-based design. Aggressors can mishan-
dle call stack profundity by recursive self-calls, inevitably surpassing the restrain to disturb execution and cause finan-
cial misfortunes (Eshghie et al., 2021; Lutz et al., 2021). Mitigations incorporate minimizing inner calls, capping re-
cursion, and optimizing preparation but eventually require EVM convention changes to handle stack flood special 
cases. By understanding this center imperative, engineers can plan contracts protectively against exchange atomicity 
abuse. 

• Locked Ether: This powerlessness happens when savvy contract stores are blocked off due to imperfections in ra-
tionale or startling conditions (Rameder et al., 2022). For illustration, contracts missing withdrawal highlights can trap 
ether sent by assailants, whereas imperfect withdrawal rationale can empower assaults activating special cases to bolt 
client stores (Ivanov et al., 2023). To avoid ether locking, withdrawal highlights, and blunder-taking care are basic 
when exchanging ether possession. 

• Unprotected Self-Destruction: This powerlessness emerges when a savvy contract utilizes self-destructive work 
without appropriate control. This empowers assailants to abuse it to divert reserves or disturb contract behavior, pos-
turing critical dangers (Hwang et al., 2022). For illustration, a contract with an admin-only murder switch needs checks, 
permitting any client to end it. By doing so, assailants for all time deny benefit accessibility to authentic clients. To 
avoid this, designers ought to execute get-to controls limiting self-destruct conjuring to authorized substances as it 
were (Zheng et al., 2023). Shrewd contracts require intensive testing and reviewing to distinguish and relieve vulner-
abilities related to unprotected utilization of self-destruct. 

• Timestamp Dependency: This powerlessness emerges when diggers control savvy contract square timestamps to 
alter time-dependent rationale like due dates and clocks (Zheng et al., 2023). For illustration, aggressors may abuse 
pool contracts selecting arbitrary champs based on piece timestamps, guaranteeing they win over and over. Addition-
ally, offered closure timestamps can be modified to negate authentic offers rashly (Hwang et al., 2022). To moderate 
assaults, designers ought to assess time conditions, join security measures like state checks, and input approval. Clients 
ought to moreover work out caution when locked in contracts defenseless to timestamp control. 

• Access control: This defenselessness permits unauthorized contracts to get to, empowering noxious exercises like 
unauthorized support exchanges or information spills (Sun et al., 2023). In this case, the imperfect rationale may let 
anybody conjure limited capacities, controlling contract states and stores (Xu et al., 2021). Appropriate get-to-control 
instruments inside contract code are basic to avoid this, like role-based get-to-control and fitting work permeability 
settings. Executing solid get-to controls is pivotal for guaranteeing keen contract security and keenness. 

• Transaction-ordering dependencies: This vulnerability poses security risks by enabling attackers to exploit the se-
quence of blockchain transactions. Vulnerabilities like front-running let attackers unfairly manipulate orders for profit 
(Narayana & Sathiyamurthy, 2023). For example, decentralized exchanges can be targeted by initiating token sales 
without balances, then quickly purchasing those tokens before sell transactions confirm (Lutz et al., 2021). To mitigate 
this, transaction sequence assumptions should be discarded, critical operations consolidated, and blockchain states 
cross-referenced across transactions to ensure execution order consistency. 
 

• Bad Random Number Generation: Inadequate random number generation in smart contracts stems from insecure 
methods vulnerable to prediction or manipulation by attackers leveraging blockchain transparency (Zhang et al., 2022). 
For example, lotteries using previous block hashes for winner selection can be exploited by miners ensuring favorable 
hashes through specific transactions. Pseudo-randomness from block data has proven insecure. Solutions like timed 
commitment protocols better secure randomness by having participants commit secrets and deposits, later disclosing 
secrets or forfeiting deposits to compute final random numbers (Ibba et al., 2021). Secure blockchain randomness 
requires replacing vulnerable methods with robust cryptographic protocols. 

• Unpredictable state: This vulnerability leads to unforeseen behaviors or outcomes due to race conditions, external 
influences, or interactions with other contracts (Liu et al., 2021b). These blemishes have caused major security 
breaches and budgetary misfortunes, just like the Equality Wallet occurrence, which cost $300 million worth of Ether 
(Qian et al., 2020). To moderate eccentric contract states, engineers must actualize shields and validations to guarantee 
secure behavior, nearby comprehensive testing and reviews some time recently sending. Distinguishing and tending 
to non-deterministic code viewpoints is basic to avoid troublesome occasions stemming from untrustworthy contract 
states. 
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2.1.2. Machine Learning Approaches for Detecting Vulnerabilities in Smart Contracts  
Machine learning strategies have revolutionized shrewd contract powerlessness location (Cai et al., 2023; Yang et al., 2022; 
Liu et al., 2021b; Melody et al., 2019; Xing et al., 2020), empowering mechanized location, more profound investigation, and 
the recognizable proof of obscure vulnerabilities. Machine learning is broadly utilized for defenselessness location by analyz-
ing the source code of savvy contracts (Cai et al., 2023; Momeni et al., 2019; Kim et al., 2019; Zhou et al., 2022; Yang et al., 
2022; Liu et al., 2021b, 2022; Yashavant et al., 2022; Tune et al., 2019; Xu et al., 2021; Jie et al., 2023), bytecode (Wang et 
al., 2020; Xing et al., 2020), or arrange environment vulnerabilities (Varun et al., 2022; Eshghie et al., 2021; Eduardo A. 
Sousa et al., 2021; Aziz et al., 2022; Mandloi and Bansal, 2022; Tooth et al., 2020; Pahuja and Kamal; Xiong et al., 2023). 
ML models can be prepared to utilize known powerlessness information to identify vulnerabilities in savvy contracts. The 
preparing handle includes extricating highlights from shrewd contract code, bytecode, or the environment arrangement. These 
highlights are utilized to prepare a classification demonstration. The show predicts vulnerabilities in keen contracts based on 
learned designs from labelled information. The result of the show is assessed utilizing measurements such as review, exact-
ness, and exactness to survey its capacity to precisely classify powerless and non-vulnerable keen contracts. 
 
Shrewd contract vulnerabilities can be recognized utilizing machine learning models, which offer noteworthy focal points 
over classical techniques. The other section will examine these focal points as follows: 
 
Automation: ML models can computerize the location handle of vulnerabilities within the contracts, decreasing the require-
ment for manual assessment and examination (Lutz et al., 2021). This mechanization can essentially speed up the discovery 
preparation, particularly when managing an expansive number of keen contracts. 
Adaptability: Machine-learning models can adjust and learn to identify unused sorts of vulnerabilities (Rameder et al., 2022). 
This capability empowers keen contracts to quickly recognize unused security vulnerabilities that are sometimes recently sent 
on blockchain systems. 
Reduce Human Bias: A machine-learning demonstration can aid decrease human inclination to helpless discovery by giving 
objective and data-driven bits of knowledge. As a result, the forecast handle gets to be more exact and solid (Jiang et al., 
2023). 
Complex Pattern Recognition: ML models can recognize complex designs and connections inside savvy contract code which 
will not be effectively recognizable through conventional techniques (Sürücü et al., 2022). This capacity to recognize perplex-
ing designs can lead to the location of unobtrusive vulnerabilities. 
Precision: Machine learning models can be prepared to distinguish vulnerabilities with high accuracy, diminishing untrue 
positives and untrue negatives (Lutz et al., 2021). This exactness is fundamental for precisely recognizing security issues in 
savvy contracts. 

2.2. Related work 
 
This segment offers related overviews on the considered theme and highlights their highlights, as appeared in Table 1. The 
contributions in (Jiang et al., 2023) present a survey of machine learning-based smart contract vulnerability detection tools, 
outlining challenges and future trends. (Virani & Kyada, 2022) conducts a systematic literature review on smart contract 
security, identifying weaknesses and detection techniques. (Wang et al., 2021b) presented a comprehensive literature review 
categorizing security tools and techniques into six groups. (Chen et al., 2021) conducted an empirical study analyzing papers 
to identify twelve maintenance issues and classify current methods. The goal is to explore vulnerabilities, detection ap-
proaches, maintenance concerns, and mitigation measures to enhance smart contract security across these works. Ivanov et al. 
(2023) conducted a survey presenting a taxonomy to classify 133 smart contract threat mitigation solutions into eight core 
methods and created standardized workflows. It performs an evolutionary analysis identifying trends and future perspectives 
while highlighting weaknesses. Alharby and Van Moorsel (2017) performed a systematic mapping study summarizing the 
state-of-the-art in smart contract security and correctness verification. It introduces taxonomy, addresses open challenges, and 
proposes solutions. Sürücü et al. (2022) presented the first survey focused on ML models for detecting smart contract vulner-
abilities, showing higher efficiency than traditional methods. Tikhomirov (2017) contributed by selecting 53 papers showcas-
ing verification methods, introduced a categorization taxonomy, and emphasized formal methods’ importance. Mololoth et 
al. (2023) explored integrating blockchain and ML for future smart grids. It highlighted security and transparency benefits, 
grid management and prediction optimization, and using smart contracts to automate energy trading. Research gaps and future 
directions were also discussed. In Huang et al. (2019), a literature review on smart contract security is conducted from a 
software lifecycle perspective, highlighting vulnerabilities and best practices for secure development. Kushwaha et al. (2022) 
analyzes Ethereum smart contract vulnerabilities, detection tools, real-world attacks, and precautions through a systematic 
approach. Imperius and Alahmar (2022) present a systematic overview of techniques for testing smart contract reliability and 
security on blockchains. Chithanuru and Ramaiah (2023) studied utilizing AI for inconsistency discovery in blockchain, em-
phasizing security angles and utilization cases. Hasanova et al. (2019) give an in-depth examination of blockchain vulnera-
bilities and propose relief methodologies like upgrades to cryptography, agreement calculations, and secure coding hones. 
The common topic is distinguishing security issues in savvy contracts and blockchain frameworks whereas investigating 
methods to anticipate, distinguish, and relieve vulnerabilities over the computer program lifecycle. The orderly survey by 
Kirli et al. (2022) gives an outline of keen contract applications and benefits in vitality frameworks, highlighting the potential 
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for change in nearby bits of knowledge for industry partners. Huang et al. (2019) audit savvy contract security over the pro-
gram lifecycle, pointing to distinguish and relieve vulnerabilities utilizing procedures like audits and ML. Kushwaha et al. 
(2022) analyze Ethereum contract vulnerabilities, devices, assaults, and safety measures methodically. Imperius and Alahmar 
(2022) present an outline of unwavering quality and security testing strategies for contracts on blockchains. Chithanuru and 
Ramaiah (2023) overview AI strategies for peculiarity discovery in blockchain covering angles like contracts, agreements, 
and frameworks. The center ranges span analyzing contract vulnerabilities, looking into location approaches, analyzing un-
wavering quality testing strategies, utilizing AI for security, and tackling preferences of savvy contracts in vitality frameworks. 
 
Table 1 
Recent surveys have examined machine learning models for enhancing smart contract security 

Ref. Title Publication 
venue 

Year Time 
line 

Syst. 
review 

Smart 
contracts 

ML 
focused 

Datasets 
description 

(Atzei et al., 
2017) 

A survey of attacks 
on ethereum smart 
contracts (sok) 

Springer 2017 No Yes No No No 

(Alharby and 
Van Moorsel, 
2017) 

Blockchain-based smart 
contracts: A systematic 
mapping study 

arXiv 2017 No Yes No No No 

(Tikhomirov, 
2017) 

A survey on 
Security verification of 
blockchain smart contracts 

IEEE 2019 No Yes No No No 

(Huang et al., 
2019) 

Smart contract security: 
A software lifecycle perspective IEEE 2019 No Yes No No No 

(Hasanova et 
al., 2019) 

A survey on blockchain cybersecurity vul-
nerabilities and possible countermeasures Wiley 2019 No Yes No No No 

(Chen et al., 
2020) 

A Survey on Ethereum Systems 
Security: 
Vulnerabilities, Attacks, and Defenses 

ACM 2020 No Yes No No No 

(Wang et al., 
2021b) 

Security enhancement technologies 
for smart contracts in the block-
chain: 
A survey 

Wiley 2021 Yes Yes No No No 

(Chen et al., 
2021) 

Maintenance-related concerns for 
postdeployed Ethereum smart con-
tract development: issues, tech-
niques, and future challenges 

Springer 2021 Yes Yes No Yes Yes 

(Timucin and 
BIRO˙GUL, 
2021)˘ 

A survey: Making “Smart Con-
tracts” really smart Wiley 2021 No Yes Yes No No 

(Virani and 
Kyada, 2022) 

A Systematic Literature Review on 
Smart Contracts Security arXiv 2022 Yes Yes No No No 

(Su¨ru¨cu¨ et 
al., 2022) 

A survey on ethereum smart con-
tract vulnerability detection using 
machine learning 

SPIE 2022 No Yes Yes Yes Yes 

(Kirli et al., 
2022) 

Smart contracts in energy systems: 
A systematic review of fundamen-
tal approaches and implementa-
tions 

Elsevier 2022 Yes Yes Yes No No 

(Kushwaha et 
al., 2022) 

Systematic review of security vul-
nerabilities in ethereum blockchain 
smart contract 

IEEE 2022 Yes Yes No No No 

Imperius and 
Alahmar 
(2022) 

Systematic Mapping of Testing 
Smart 
Contracts for Blockchain Applica-
tions 

IEEE 2022 Yes Yes No No No 

Rameder et al. 
(2022) 

Review of automated vulnerability 
analysis of smart contracts on 
Ethereum 

Frontiers 2022 Yes Yes No No No 

(Ivanov et al., 
2023) 

Security Threat Mitigation For 
Smart Contracts: A Comprehen-
sive Survey 

ACM 2023 No Yes Yes No No 

(Jiang et al., 
2023) 

Enhancing Smart-Contract Secu-
rity through Machine Learning: A 
Survey of Approaches and Tech-
niques 

Electronics 2023 No Yes Yes Yes Yes 

(Mololoth et 
al., 2023) 

Blockchain and machine° learning 
for future smart grids: A review MDPI 2023 No Yes Yes No No 

(Chithanuru 
and Ramaiah, 
2023) 

An anomaly detection on block-
chain 
infrastructure using artificial intel-
ligence techniques: Challenges and 
future directions–A review 

Wiley 2023 No Yes Yes Yes Yes 

(Piantadosi et 
al., 2023) 

Detecting functional and securi-
tyrelated issues in smart contracts: 
A systematic literature review 

Wiley 2023 Yes Yes No Yes Yes 

Our SLR Machine Learning Approaches for 
Enhancing Smart Contracts Secu-
rity: 
A Systematic Literature Review 

- - Yes Yes Yes Yes Yes 
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Hasanova et al. (2019) presents an in-depth examination of blockchain vulnerabilities, proposing relief techniques including 
cryptography, agreement calculations, and secure coding best hones. Timucin and BIROË GUL (2021) studied approaches to 
improve savvy contract insights utilizing procedures like ML and formal confirmation. Piantadosi et al. (2023) surveys inquire 
about consequently distinguishing shrewd contract bugs and vulnerabilities. Atzei et al. (2017) presented the primary scientific 
classification of programming pitfalls causing Ethereum contract vulnerabilities, analyzing related dangers. Rameder et al. 
(2022) systematically reviews the state-of-the-art automated smart contract vulnerability analysis on Ethereum, examining 
classifications, detection methods, tools, and benchmarks. The key focus areas are analyzing vulnerabilities in blockchain 
systems and smart contracts, reviewing detection approaches, discussing enhancement techniques to improve contract robust-
ness, and suggesting countermeasures to security issues. 
 
Alharby and van Moorsel (2017) conducted a systematic mapping study of 24 papers on smart contracts, highlighting current 
research topics and open challenges. Tikhomirov (2017) summarized Ethereum’s technical overview, problems, and sug-
gested solutions. Atzei et al. (2017) developed a taxonomy of Ethereum contract vulnerabilities and reviewed related attacks. 
Wöhrer and Zdun (2018) presented a literature review defining Solidity-level smart contract patterns in terms of problems 
and solutions. Grishchenko et al. (2018) surveyed verification and security-focused design approaches for Ethereum contracts, 
discussing advancements like the EtherTrust static analyzer. Mense and Flatscher (2018) presented a new taxonomy of vul-
nerabilities based on ecosystem severity and compared detection tools to help developers avoid critical issues. The focus is 
on summarizing Ethereum smart contract security issues, vulnerabilities, verification methods, design patterns, and detection 
tools to enhance robustness. 
 
Macrinici et al. (2018) conducted a systematic mapping study covering smart contract knowledge, vulnerabilities in secu-
rity/privacy/scalability/programming, and prospective solutions. Miller et al. (2018) surveyed the smart contract ecosystem 
and formal analysis methods, challenges, and opportunities. Harz and Knottenbelt (2018) reviewed languages and tools based 
on security properties for handling vulnerabilities. Kirillov et al. (2019) reviewed Solidity contract vulnerabilities in Ethereum 
and proposed software analysis tools alongside manual auditing for security. Rouhani and Deters (2019) systematically sur-
veyed smart contracts in terms of security methods/tools, performance, and applications. This SLR presents a structured anal-
ysis of ML techniques and models for smart contract vulnerability detection across dimensions like vulnerabilities covered, 
models adopted, and dataset sources/types while proposing future work to advance ML solutions. 
 
3. Research methodology 

SLRs study, evaluate, and interpret existing research on vulnerability detection in smart contracts using ML techniques 
through a reasonable and impartial methodology. As no comprehensive systematic studies exist on ML for detecting contract 
vulnerabilities, this work follows Kitchenham’s methodology (Keele et al., 2007; Kitchenham, 2004) to fill the gap. Addi-
tionally, the baseline method from Al-Shamayleh et al. (2018) is followed to identify the state-of-the-art research for answer-
ing the research questions. Conducting an SLR enables trustworthy, rigorous, and unbiased assessment to advance under-
standing of ML techniques applied to smart contract security. The current SLR involves several steps, including planning, 
conducting, and reporting as shown in Fig.  1. 
 

 
Fig. 1. Flowchart of SLR process (Al-Shamayleh et al., 2018) 

3.1. Research design 
 

In this step, the current research requirements are explained by identifying the research questions and their corresponding 
keywords. 
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3.1.1. Research Questions 
 

According to our literature review, the state-of-the-art lacks systematic reviews utilizing ML to detect smart contract vulner-
abilities in terms of technique characteristics and dataset sources. Conducting such a survey would benefit practitioners and 
researchers by advancing understanding of detection tools and informing future work. To address this gap, our study conducts 
a comprehensive survey, reviewing, analyzing, describing, and classifying 46 articles from 2018-2023 to delve into vulnera-
bility detection across perspectives. We examined papers through research questions focused on critical dimensions of ML 
techniques and datasets for security enhancement. 

• RQ1: What are the most frequent smart contract vulnerabilities faced by machine learning approaches? 

• RQ2: What are the machine learning models used for smart contracts vulnerability detection? 
• RQ3: What are the sources and types of datasets used in smart contract security using machine learning? 

3.1.2. Research process 
 
By utilizing this SLR process, primary study papers can be located by searching five electronic databases, as shown in Table 
2, which contain full-text articles and papers about using machine learning techniques to detect vulnerabilities in smart con-
tracts. A secondary scanning and analysis step, in addition to the first search using these databases, ensures the accuracy and 
comprehensiveness of the studies as they relate to the current research questions. Search results are primarily related to de-
tecting vulnerabilities in Ethereum smart contracts using machine learning techniques. 
 
Table 2  
Online databases 

Identifier Database URL 
ED1 IEEE Xplore https://ieeexplore.ieee.org/ 
ED2 ACM https://dl.acm.org/ 
ED3 Springer Link https://link.springer.com/ 
ED4 Science Direct https://www.sciencedirect.com/ 
ED5 Wiley https://onlinelibrary.wiley.com/ 

  
3.1.3. Keywords 
 

The use of suitable keywords can help save valuable time by filtering studies relevant to the three main research questions. 
These keywords were derived from the titles, abstracts, or keywords of relevant papers. We employed interchangeable key-
words to locate more research papers related to Ethereum smart contracts. The following keywords are used. 1. Ethereum 2. Blockchain 3. “Smart Contracts” 4. “Machine Learning” 5. “Artificial Intelligence” 6. Venerability OR Detection OR Attacks OR Security 

These keywords were combined using the conjunction AND and disjunction OR logic operators. The resulting keyword for 
the automated search is given as follows: 
 
((((Ethereum OR Blockchain) AND (“ Smart contracts”)) AND ((“Machine Learning”) OR (“ Artificial Intelligence”))) 
AND (Venerability OR Detection OR Attacks 
OR Security)) 
 

3.2. Review conduction 
In this section, we illustrate how the SLR process is conducted. The SLR search process involves several phases based on the 
rules and frameworks used to create this review. 

3.2.1. Selection of relevant studies 
 
After obtaining the initial research studies, their relevance was assessed. To verify the relevance of the initially selected 
studies, a second round of research was conducted by reviewing them. To ensure that our inclusion and exclusion criteria 
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were consistent, we randomly re-evaluated the selected studies after the initial screening. The SLR study selection procedure 
is shown in Fig. 2. 
 
The selection of relevant research studies was done in seven steps, as follows: 

1. Find relevant research works by using appropriate keywords in databases. 
2. Discard studies not relevant to the search criteria. 
3. Remove studies based on their titles or abstracts that are irrelevant. 
4. Read the context of the selected studies in full to assess them. 
5. Assess other researchers’ bibliographies. 
6. Analyze the results for the second check in an organized manner. 
7. Obtain initial studies. 
 

 
Fig. 2. Study selection procedure for the current SLR 

 

 

 

3.2.2. Inclusion and exclusion criteria 
 

 
Using the inclusion and exclusion criteria, we identified all relevant studies. The scope of this SLR encompasses research 
studies on machine learning and smart contract security. Furthermore, the study considered journal articles and full papers in 
English from peer-reviewed original studies published from January 2018 to July 2023 to ensure the inclusion of recent and 
up-to-date studies. In contrast, studies that do not directly answer the research questions or do not cover the same area are 
excluded from this review. The inclusion and exclusion criteria are summarized in Table 3. Moreover, the percentage of initial 
and selected studies for each online database source is provided in Fig. 3. 
 
Table 3  
Inclusion and exclusion criteria involved in the search process 

Inclusion and exclusion criteria 
Inclusion Criteria 
IC1 Studies that are peer reviewed original studies. 
IC2 Peer-reviewed studies that address the research questions 
IC3 Studies that focus on machine learning and smart contracts vulnerability detection 
IC4 Studies are published after 2018. 
Exclusion criteria 
EC1 Studies are not in English. 
EC2 Studies that are unrelated to the research questions. 
EC3 Duplicated studies (by title or content). 
EC4 Studies providing unclear results or findings. 
EC5 Studies published in the conferences. 
EC6 Studies addressing non-machine learning methods such as static analysis, dynamic analysis, etc. 
EC7 Scurvies papers. 
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3.2.3.  Quality assessment criteria 
 
SLR quality was evaluated during the eligibility phase. A combination of inclusion/exclusion criteria and quality assessment 
criteria shown in Table 4 were applied to the studies screened in the screening phase. In total, 61 studies were submitted to 
six researchers. Three researchers reviewed each study to exclude irrelevant studies. Criteria for inclusion and exclusion were 
rated from 1 to 5. Based on rigorous review and screening, 46 studies were selected after applying inclusion/exclusion and 
quality assessment criteria to the full text of 61 studies. 
 

 
Fig. 3. Proportion of selected studies 

 
 
 
Table 4  
Quality assessment criteria for the SLR 

Quality Assessment Criteria 
QC1 The proposed vulnerability detection approaches 
QC2 Context and environment are clearly defined. 
QC3 The research design supports the study goals and 
QC4 Objectives, goals, and results are accurately deline-
QC5 Contributions and limitations are clearly defined. 
QC6 The evaluation metrics are used to 

 

 
3.2.4.  Data extraction 
 

In the data extraction and synthesis process, the main objective is to gather the information required from the studies that were 
selected after the second phase by a specialized team. A structured Microsoft Excel data extraction form as shown in Table 5 
was used for the relevant information. Additionally, four researchers analyzed the full text of each study. 

Table 5 
Data extraction form 

No. Extracted data Description 
1. Identity of study Unique identity for the study. 
2. Bibliographic references Authors, year of publication, title, citations, source of Publication, and publication 

venue. 
3. Empirical research method Experiment, case study, and survey. 

4. Contribution Method, model, framework, and tools. 

5. Focus of study Main topic areas, keywords, motivation, and purpose of the study. 

6. Vulnerabilities of smart contracts Studying the vulnerabilities that affect the security of smart contracts. 

7. The existing machine learning approaches Description the machine learning methods, models, and tools that are applied 
to smart contract security. 

8. The datasets used Description of the datasets used in training the ML models, including their sources. 
 

3.3. Demographic data and overview 
Analyzing the demographic features of the studies included in the evaluation is crucial to gauging the quality of research and 
the total result in this research area. Additionally, this analysis will provide future research by highlighting the most impactful 
studies in this domain. 

4. Results 

Based on the research questions outlined in the preceding section, we present the findings of the systematic literature review 
in this section. 

4.1. RQ1: What are the most frequent smart contract vulnerabilities faced by machine learning approaches? 
 

Various classifications exist in the literature for categorizing vulnerabilities in smart contracts. These classifications encom-
pass factors such as the level at which they occur, potential attack vectors, and the severity of security risks they pose. For 
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example, Momeni et al. (2019) address 16 different types of vulnerabilities.  Table 6 offers a comprehensive classification 
that considers both the introduction level and the associated security severity of vulnerabilities. Please note that some cells in 
Table 6 are empty and are denoted as "- ". 

Table 6  
Synthesis of Ethereum smart contract vulnerabilities covered in primary studies 

Vulner-
ability 
level 

Type of  
vulnera-
bility 

security  
level 

#Stud-
ies References 

High 
level 
language 

Re-en-
trancy 

High 22 [Ashizawa et al. (2021), Sun and Gu (2021), Eshghie et al. (2021), Lutz et al. (2021), Mandloi and 
Bansal (2022), Zheng et al. (2023), Qian et al. (2022), Zhang and Liu (2022), Momeni et al. 
(2019), Qian et al. (2020), Zhou et al. (2022), Hwang et al. (2022), Yang et al. (2022), Liu et al. 
(2021b), Zhang et al. (2022), Yashavant et al. (2022), Sun et al. (2023), Song et al. (2019), Xing et 
al. (2020), Xu et al. (2021), Jie et al. (2023), Narayana and Sathiyamurthy (2023)] 

 Gasless 
send 

Medium 
High 

12 [Ashizawa et al. (2021), Eduardo A. Sousa et al. (2021), Lutz et al. (2021), Gupta et al. (2022), 
Zheng et al. (2023), Liu et al. (2021a), Shah et al. (2023), Essaid et al. (2019), Fang et al. (2020), 
Yashavant et al. (2022), Xu et al. (2021), Narayana and Sathiyamurthy (2023)] 

 Call integ-
rity 

Medium 
High 

9 [Lutz et al. (2021), Zheng et al. (2023), Momeni et al. (2019), Zhou et al. (2022), Hwang et al. 
(2022), Yang et al. (2022), Zhang et al. (2022), Sun et al. (2023), Xu et al. (2021)] 

 Type casts Medium 2 [Ashizawa et al. (2021), Yashavant et al. (2022)] 

 Leakage of 
confidenti-
ality 

High 1 [Momeni et al. (2019)] 

- - SUM 45(28)  - 

EVM 
bytecode 

Stack size 
limit 

Medium-
High 

14 [Ashizawa et al. (2021),Sun and Gu (2021), Lutz et al. (2021), Zheng et al. (2023), Qian et al. 
(2022), Momeni et al. (2019), Zhou et al. (2022), Zhang et al. (2022), Yashavant et al. (2022), 
Sun et al. (2023), Song et al. (2019), Xing et al. (2020), Xu et al. (2021), Jie et al. (2023)] 

 Locked 
Ether 

High 5 [Zheng et al. (2023), Tann et al. (2018), Momeni et al. (2019), Xing et al. (2020), Xu et al. (2021) ] 

 Unpro-
tected self-
destruction 

High 4 [Zheng et al. (2023), Lutz et al. (2021), Gogineni et al. (2020), Momeni et al. (2019) ] 

- - SUM 23(17) - - 

Block-
chain 
Environ-
ment 

Timestamp 
depend-
ency 

Medium-
High 

12 
[Ashizawa et al. (2021), Sun and Gu (2021), Zheng et al. (2023), Qian et al. (2022), Zhang and Liu 
(2022), Hwang et al. (2022), Liu et al. (2021b), Zhang et al. (2022), Yashavant et al. (2022), Sun et 
al. (2023), Song et al. (2019), Jie et al. (2023)] 

 Access 
control 

High 9 [Zheng et al. (2023), Gaur et al. (2022), Zhang and Liu (2022), Momeni et al. (2019), Hwang et al. 
(2022), Sun et al. (2023), Xu et al. (2021), Jie et al. (2023), Narayana and Sathiyamurthy (2023)] 

 Transac-
tion-order-
ing de-
pendency 
(TOD) 

High 

 

6 [Varun et al. (2022), Lutz et al. (2021), Qian et al. (2022), Zhang et al. (2022), Sun et al. (2023), 
Song et al. (2019)] 

 Bad ran-
dom num-
ber genera-
tion 

Medium - 
High 

3 [Yang et al. (2022), Xu et al. (2021), Jie et al. (2023) ] 

 Unpredict-
able state 

High 1 [Zhou et al. (2022)] 

- - SUM 31(21) - - 

 
4.1.1. Source Code Vulnerabilities 
 
The data presented in Table 6 demonstrates that among vulnerability classifications, source code vulnerabilities receive the 
most research attention. These refer to errors introduced in smart contracts authored by developers, wherein the programming 
code is written using programming languages. Hence, they are susceptible to the entire range of bugs and weaknesses known 
to afflict computer programs in general. When developers fail to identify and rectify vulnerabilities at the source code level, 
the subsequent execution of smart contracts may exhibit unanticipated behaviors. Attackers can then leverage these vulnera-
bilities to manipulate the execution logic of contracts for malicious objectives. 
  
It is observable that Re-entrancy is the most frequently addressed vulnerability type by 23 primary studies (Ashizawa et al., 
2021; Sun and Gu, 2021; Eshghie et al., 2021; Lutz et al., 2021; Mandloi and Bansal, 2022; Zheng et al., 2023; Qian et al., 
2022; Zhang and Liu, 2022; Momeni et al., 2019; Kim et al., 2019; Zhou et al., 2022; Hwang et al., 2022; Yang et al., 2022; 
Liu et al., 2021b; Zhang et al., 2022; Yashavant et al., 2022; Sun et al., 2023; Song et al., 2019; Xing et al., 2020; Xu et al., 
2021; Jie et al., 2023; Narayana and Sathiyamurthy, 2023). This powerlessness happens when the contract permits recursive 
calls back into itself sometime recently overhauling the state, empowering stores to be depleted more than once. Aggressors 
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can abuse this helplessness to create a recursive call back into the powerless work, rehashing operations sometimes recently 
the casualty contract's state has been overhauled. In reality, two components, to be specific the criticality score relegated to it 
and the recurrence of essential considerations tending to it, decide the significance of this helplessness. Coming in as the 
moment most commonly tended to powerlessness sort inside the source code blunders category, the issue of gasless send is 
investigated in profundity by 12 diverse essential ponders (Ashizawa et al., 2021; Eduardo A. Sousa et al., 2021; Lutz et al., 
2021; Gupta et al., 2022; Zheng et al., 2023; Liu et al., 2021a; Shah et al., 2023; Essaid et al., 2019; Tooth et al., 2020; 
Yashavant et al., 2022; Xu et al., 2021; Narayana and Sathiyamurthy, 2023). This specific powerlessness, which is evaluated 
at a medium level of seriousness, can lead to fragmented overhauls of the contract's state, causing possibly hopeless resource 
or information debasement. Besides, assailants abuse this powerlessness to carry out denial-of-service assaults. Particularly, 
gasless send vulnerabilities happen when savvy contracts utilize capacities like send() or exchange() to exchange Ether with-
out setting a gas constraint. Bypassing all available gas to the recipient, the contract retains no gas to handle exceptions, any 
errors, or unfinished computations after the transfer. 
  
Call integrity has emerged as another prevalent vulnerability classification, with 9 primary studies (Zheng et al., 2023; Lutz 
et al., 2021; Zheng et al., 2023; Momeni et al., 2019; Zhou et al., 2022; Hwang et al., 2022; Yang et al., 2022; Zhang et al., 
2022; Sun et al., 2023; Xu et al., 2021) dedicated to examining it. This vulnerability occurs when smart contracts call external 
function invocations towards untrusted contracts. Attackers can possibly abuse the inappropriate taking care of call return 
values to control execution rationale, bring about resource steady loss, repudiate legally binding rules, dissolve beliefs, and 
trigger high-priority keenness concerns. Call judgment vulnerabilities are regularly evaluated at medium to basic seriousness. 
As an outline, Decentralized Fund (DeFi) may join oracle-based contracts for securing resource estimating inputs to decide 
intrigued and collateralization extents on advances. Aggressors can develop false prophets to intentionally outfit distorted 
proportions by capitalizing on unconfirmed information ingestion. By misleadingly blowing up collateral resource costs, nox-
ious substances seem to borrow entireties surpassing veritable security collateral, subsequently disturbing center rationale and 
controls. Subsequently, precise machine-learning models are essential to identify this sort of helplessness. 
  
The slightest visit powerlessness sorts in this classification are sort casts (Ashizawa et al., 2021; Yashavant et al., 2022) and 
spillage of privacy (Momeni et al., 2019). The sort-cast powerlessness happens when there's an unseemly utilization of sort-
casting capacities in a shrewd contract. Sort casting changes information from one sort to another, like changing over a string 
to a number. On the off chance that it is done improperly without approval, this will lead to unforeseen behaviors. Assailants 
misuse this by nourishing inputs that cause the sort of change to come up short or give startling results. For illustration, 
consider a keen contract that takes a string parameter, changes it over to a number utilizing the sort cast work, and after that 
employs it for a few calculations. Spillage of privacy happens when touchy information is disgracefully put away or taken 
care of inside a savvy contract's code. Since blockchains are transparent by design, data stored directly in contracts is visible 
to all. Attackers exploit this by analyzing contractual data flow to uncover secret values. 

4.1.2. Bytecode Vulnerabilities 

Numerous exploitation scenarios lead to unauthorized Ether drainage. One such scenario involves a malformed bytecode that 
can be crafted to make unauthorized Ether transfers or to skip authorization checks in contracts. A second scenario targets 
token transfer functionality, which is expected to check if the sender’s balance exceeds the transfer amount before execution. 
An attacker deploys a malformed bytecode that jumps straight to the token transfer logic without balance checks. As can be 
seen, the stack size limit is the most frequent type of vulnerability, accounting for 14 primary studies (Ashizawa et al., 2021; 
Sun and Gu, 2021; Lutz et al., 2021; Zheng et al., 2023; Qian et al., 2022; Momeni et al., 2019; Zhou et al., 2022; Zhang et 
al., 2022; Yashavant et al., 2022; Sun et al., 2023; Song et al., 2019; Xing et al., 2020; Xu et al., 2021; Jie et al., 2023). The 
stack size limit refers to a situation when smart contract functions make extensive internal function calls that occupy stack 
space beyond specified limits. In the Ethereum Virtual Machine (EVM), stack space is limited to 1024 calls. Attackers abuse 
this by constraining contracts into profound recursion. The stack estimates constraints helplessness in shrewd contracts and is 
ordinarily considered medium-critical in seriousness. As a result, this powerlessness makes dissent of benefit clear, can bolt 
client reserves, is dubious to fix, needs protocol-level changes, and ruins exchanges, making its security effect noteworthy. 
Bolted ether is the moment most noticeable defenselessness sought by 5 essential considerations (Zheng et al., 2023; Tann et 
al., 2018; Momeni et al., 2019; Xing et al., 2020; Xu et al., 2021). This classification of security defenselessness relates to 
getting ether caught and rendered unrecoverable. Aggressors abuse this by purposely activating conditions that exchange ether 
to keen contracts with no withdrawal capacities. Unprotected self-destruction has risen as another high-risk helplessness clas-
sification, with 4 essential things (Zheng et al., 2023; Lutz et al., 2021; Gogineni et al., 2020; Momeni et al., 2019) devoted 
to analyzing it. This defenselessness happens when shrewd contracts have capacities that can trigger the devastation or suicide 
of the contract without getting control. The self-destruct operation in Robustness ends code execution and wipes out the 
contract's information and usefulness all time. Assailants misuse this helplessness to mount changeless denial-of-service as-
saults. For illustration, consider a contract with an admin-only slaughter switch that permits the admin to end it beneath certain 
conditions. 
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4.1.3. Blockchain Vulnerabilities 
 
Essential things about addressing the critical sorts of helplessness inside the blockchain environment. Blockchain environment 
vulnerabilities emerge when savvy contracts make imperfect presumptions around the fundamental blockchain biological 
system they exist inside. Aggressors misuse the decentralization and straightforwardness of open blockchains to break these 
presumptions and disturb contract rationale. For example, sequential and censorship resistance properties may erroneously 
lead designers to assume strict exchange requesting and idealize state confinement. Aggressors perform exchange reordering 
or replaying assaults to damage this center presumption. It is discernible that timestamp reliance (Ashizawa et al., 2021; Sun 
& Gu, 2021; Zheng et al., 2023; Qian et al., 2022; Zhang & Liu, 2022; Hwang et al., 2022; Liu et al., 2021b; Zhang et al., 
2022; Yashavant et al., 2022; Sun et al., 2023; Tune et al., 2019; Jie et al., 2023) is the foremost visit powerlessness sort in 
this classification secured by the 12 essential ponders. This vulnerability occurs when smart contracts use block timestamps 
to trigger actions, make random numbers, or take blockchain-dependent decisions. As miners can manipulate block 
timestamps to some extent, attackers exploit this to influence contract execution. 
  
Access control has surfaced as a prevalent, high-severity vulnerability, with coverage across 9 primary studies (Zheng et al., 
2023; Gaur et al., 2022; Zhang & Liu, 2022; Momeni et al., 2019; Hwang et al., 2022; Sun et al., 2023; Xu et al., 2021; Jie et 
al., 2023; Narayana and Sathiyamurthy, 2023). This powerlessness happens when savvy contracts fall flat to appropriate limits 
and get to too touchy capacities and information. By abusing these imperfections, aggressors can execute favored operations 
and take over control of contracts. For this case, consider a contract that incorporates an admin-only "drainfunds" work to 
recover ether in crises. In the event that the work needs a get-to-control check for the admin part, any client seems to conjure 
it to take stores. Inside this classification, another high-severity defenselessness sort is Transaction-ordering reliance (TOD), 
which is examined in 6 essential things. This helplessness happens when the result of a keen contract's execution depends on 
the arrangement in which exchanges are included in a piece. Aggressors misuse this by controlling exchange orders to modify 
contract behavior. Terrible arbitrary number eras (Yang et al., 2022; Xu et al., 2021; Jie et al., 2023) and erratic state (Zhou 
et al., 2022) are the least visited powerlessness sorts in this classification. The awful arbitrary number era defenselessness 
happens when savvy contracts endeavor to produce arbitrariness in an uncertain way. The straightforward nature of block-
chains implies such irregular values can be unsurprising or controlled by aggressors. An erratic state (energetic libraries) 
happens when savvy contracts stack outside library code or join third-party usefulness through interfacing like delegate calls 
or work calls to outside contracts. As this makes contract behavior subordinate to outside untrusted code, assailants misuse 
such associations. For illustration, consider a contract that depends on an outside Prophet library for sourcing basic infor-
mation like resource costs. An assailant can send a noxious adaptation of this library with inaccurate information to seize the 
target contract's state. 
 
4.1.4. Others Vulnerabilities 
 
Ethereum’s programmable and decentralized nature allows developers to create complex smart contracts and decentralized 
applications (dapp). However, this also opens up attack vectors that malicious actors can exploit in several scenarios. Attackers 
exploit smart contract vulnerabilities in four key ways. First, they insert code bugs to steal funds or brick contracts (Aziz et 
al., 2022; Aljofey et al., 2022; Kim et al., 2019; Wang et al., 2020; Liu et al., 2022; Md et al., 2023; Pahuja and Kamal). 
Second, they manipulate cryptography to alter outcomes (Zhang et al., 2022). Third, they create fake dapp sites to phish users 
and misdirect wallet connections (Aladhadh et al., 2022; Xiong et al., 2023). Fourth, they build Ponzi schemes (Zheng et al., 
2023; Yu et al., 2021; Wang et al., 2021a; Gupta et al., 2022; Zheng et al., 2023; Cai et al., 2023; Goswami et al., 2021) with 
smart contracts, paying early investors with funds from later ones until collapse when new investors stop. Anonymity and 
transparency help attackers build credibility. The complexity of smart contracts, coupled with blockchain properties like im-
mutability enables these frauds. All these scenarios can be the root causes of fraud because of the immutability, irreversibility, 
and transparency of transactions on Ethereum. While these qualities have secured its blockchain, the complexity of smart 
contract programming opens up vulnerabilities that attackers can exploit through phishing sites to ultimately defraud users. 
 
4.2. RQ2: What are the machine learning models used for smart contracts vulnerability detection? 
 
This section provides a thorough overview of machine learning methods for detecting security vulnerabilities in smart con-
tracts. It begins by analyzing the distribution of machine learning models over time. Moreover, it includes a comprehensive 
list of the most frequently used machine learning models in the primary studies analyzed. In Fig.  4, it is evident that 57% of 
studies use deep learning models for smart contract vulnerability detection (Ashizawa et al., 2021; Varun et al., 2022; Sun 
and Gu, 2021; Lutz et al., 2021; Yu et al., 2021; Wang et al., 2021a; Gupta et al., 2022; Gogineni et al., 2020; Tann et al., 
2018; Liu et al., 2021a; Aladhadh et al., 2022; Shah et al., 2023; Qian et al., 2022; Zhang & Liu, 2022; Essaid et al., 2019; 
Kim et al., 2019; Qian et al., 2020; Zhou et al., 2022; Hwang et al., 2022; Liu et al., 2021b; Zhang et al., 2022; Liu et al., 
2022; Yashavant et al., 2022; Sun et al., 2023; Xiong et al., 2023; Jie et al., 2023), while only 32% of studies utilize supervised 
machine learning models (Zheng et al., 2023; Eshghie et al., 2021; Eduardo A. Sousa et al., 2021; Aziz et al., 2022; Zheng et 
al., 2023; Aladhadh et al., 2022; Aljofey et al., 2022; Gaur et al., 2022; Momeni et al., 2019; Wang et al., 2020; Goswami et 
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al., 2021; Yang et al., 2022; Song et al., 2019; Xing et al., 2020; Xu et al., 2021; Md et al., 2023; Pahuja and Kamal; Jie et al., 
2023). Additionally, 4 primary studies (Aladhadh et al., 2022; Momeni et al., 2019; Xing et al., 2020; Jie et al., 2023) adopt 
a hybrid approach, combining both supervised and deep learning models. These techniques leverage the strengths of super-
vised models to incorporate rules for known vulnerabilities, while the deep learning component reveals intricate patterns in 
smart contract code and transactions not easily detected by supervised classifiers. Furthermore, a limited number of studies 
use unsupervised learning models, denoted as clustering (Fang et al., 2020). 

 

Fig. 4. Distribution of models used in primary studies 

The trends depicted in Fig. 5. and Fig. 6. showcase the evolution of supervised and deep learning models in detecting smart 
contract vulnerabilities from 2018 to 2023, respectively. Supervised models were initially introduced in 2019, exhibiting a 
rising trend in usage for vulnerability detection until 2023. On the other hand, deep learning models were introduced in 2018, 
displaying a similar upward trajectory in usage for vulnerability detection until 2022. However, Fig.  6. indicates a declining 
trend in the utilization of deep learning for vulnerability detection in 2023. 
 

 
Fig. 5. Trend of supervised learning models over time 

 

 
Fig. 6. Trend of deep learning models over time 
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Table 7 outlines the utilization of machine learning methods in primary studies. Supervised and deep learning are exclusively 
applied for smart contract vulnerability detection, while unsupervised, semi-supervised, and reinforcement learning methods 
are not utilized for this purpose. The table reveals the utilization of supervised learning models in primary studies. Random 
Forest (RF) emerges as the most used method, involved in 11 studies. Additionally, Decision Tree (DT) and Support Vector 
Machine (SVM) are popular choices, featured in 8 and 9 studies, respectively. Furthermore, K-Nearest Neighbor (KNN), 
Extreme Gradient Boosting (XGBoost), Naive Bayes (NB), and Logistic Regression are each present in 6, 6, 5, and 2 studies, 
respectively. Additionally, clustering models are featured in 1 study, where contracts are grouped by creator addresses to 
identify different versions by the same developers and match destructed contracts to later "upgraded" versions based on sim-
ilarity. 
 
In addition, Table 7 presents an overview of the prevalence of deep learning models in primary studies. Recurrent Neural 
Networks (RNN) emerge as the most utilized recurrent model, found in 9 studies, followed by Convolutional Neural Net-
works (CNN) with 7 occurrences. Neural networks (NN) emerge as the predominant graph-based model, appearing in 5 
studies. Additionally, hybrid deep learning, Multilayer Perceptrons (MLPs), and A Deep Neural Network (DNN) are fre-
quently employed, accounting for 4, 3, and 2 studies, respectively. 
 
Table 7  
Distribution of Machine Learning models in primary studies 

Machine Learning 
Method 

Method Name No. 
Studies 

References 

Supervised Learn-
ing 

RF 11 [Eshghie et al. (2021), Eduardo A. Sousa et al. (2021), Mandloi and Bansal (2022), Momeni 
et al. (2019), Wang et al. (2020), Yang et al. (2022), Song et al. (2019), Xing et al. (2020), 
Md et al. (2023), Pahuja and Kamal, Jie et al. (2023)] 

 DT 8 [Eduardo A. Sousa et al. (2021),Aziz et al. (2022), Mandloi and Bansal (2022), Momeni et 
al. (2019), Wang et al. (2020), Goswami et al. (2021), Md et al. (2023), Pahuja and Kamal] 

 SVM 9 [Eshghie et al. (2021), Eduardo A. Sousa et al. (2021), Zheng et al. (2023), Aladhadh et al. 
(2022), Gaur et al. (2022), Momeni et al. (2019), Goswami et al. (2021), Md et al. (2023), 
Pahuja and Kamal] 

 KNN 6 [Eshghie et al. (2021), Eduardo A. Sousa et al. (2021), Wang et al. (2020), Xu et al. (2021), 
Md et al. (2023), Pahuja and Kamal] 

 XGBoost 6 [Zheng et al. (2023), Zheng et al. (2023), Aljofey et al. (2022), Wang et al. (2020), 
Md et al. (2023), Pahuja and Kamal] 

 NB 5 [Eshghie et al. (2021), Eduardo A. Sousa et al. (2021), Goswami et al. (2021), Md et al. 
(2023), Pahuja and Kamal] 

 Linear Classification 2 [Zheng et al. (2023), Pahuja and Kamal] 

 DTLightGBM 1 [Pahuja and Kamal] 

- SUM 48(19) - 
Deep Learning RNNLSTM 9 [Varun et al. (2022), Wang et al. (2021a), Gupta et al. (2022), Gogineni et al. (2020), Tann 

et al. (2018), Shah et al. (2023), Qian et al. (2022), Essaid et al. (2019), Qian et al. (2020)] 
 CNN 7 [Sun and Gu (2021), Qian et al. (2022), Kim et al. (2019), Zhou et al. (2022), 

Hwang et al. (2022), Liu et al. (2022), Xing et al. (2020)] 
 NN 5 [Ashizawa et al. (2021), Cai et al. (2023), Momeni et al. (2019), Yashavant et al. (2022), 

Xing et al. (2020)] 
 CNNGCN 4 [Yu et al. (2021), Zhang and Liu (2022), Xiong et al. (2023), Jie et al. (2023)] 

 RNN 3 [Qian et al. (2022), Essaid et al. (2019), Jie et al. (2023)] 

 MLPs 2 [Varun et al. (2022), Aladhadh et al. (2022)] 

 DNN 2 [Lutz et al. (2021), Zhang et al. (2022)] 

 RNNGRU 2 [Gupta et al. (2022), Shah et al. (2023)] 

 Hybrid Deep Learn-
ing 

4 [Liu et al. (2021a), Liu et al. (2021b), Sun et al. (2023),Narayana and Sathiyamurthy 
(2023)] 

- SUM 37(30) - 

 
4.3. RQ3: What are the sources and types of datasets used in smart contract security using machine learning? 
 
ML-based smart contract vulnerability detection models require data to be built and evaluated (Ashizawa et al., 2021; Zhang 
and Liu, 2022; Kim et al., 2019; Wang et al., 2020; Yang et al., 2022; Liu et al., 2021b; Song et al., 2019). Several elements 
contribute to evaluating the quality of a dataset, including the source, size, scale, type, and preprocessing steps. Inappropriate 
data preprocessing can lead to suboptimal ML model performance. For instance, mishandling data preprocessing can result 
in inadequate ML model performance (Kim et al., 2019). In this section, we examine the steps involved in collecting, sorting, 
and representing data used in vulnerability detection studies. The need for accessible information for preparation has been 
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recognized as a noteworthy deterrent in utilizing machine learning for identifying shrewd contract vulnerabilities (Durieux et 
al., 2020). Subsequently, there's a need to inquire about tending to strategies for procuring satisfactory datasets to prepare 
machine learning models for powerlessness discovery forms. To address this issue, we analyzed dataset sources from 46 
essential considerations. Based on our investigation, we found that datasets for this reason can be categorized into three pri-
mary bunches: benchmarks, collected information, and cross-breed information. These benchmarks comprise standardized 
datasets reasonable for evaluating the adequacy of helplessness location strategies and procedures (Ashizawa et al., 2021; Sun 
and Gu, 2021; Wang et al., 2021a; Gupta et al., 2022; Tann et al., 2018; Liu et al., 2021a; Aljofey et al., 2022; Shah et al., 
2023; Zhang and Liu, 2022; Cai et al., 2023; Momeni et al., 2019; Kim et al., 2019; Tooth et al., 2020; Zhou et al., 2022; 
Hwang et al., 2022; Yang et al., 2022; Liu et al., 2022; Yashavant et al., 2022; Sun et al., 2023; Xu et al., 2021; Md et al., 
2023; Jie et al., 2023). 
 
Open sources and genuine Ethereum systems are as often as possible utilized as benchmarks for recognizing savvy contract 
vulnerabilities (Zhang and Liu, 2022; Cai et al., 2023; Hwang et al., 2022; Sun et al., 2023; Xu et al., 2021). As a portion of 
this exertion, we point to gather an assorted set of contracts that speak to a wide assortment of decentralized applications, 
savvy contract dialects, and sorts of vulnerabilities. From the collected information, particular contracts are selected to be 
included within the benchmark dataset. It is critical to consider components such as contract complexity and defenselessness 
diversity when selecting a contract. The objective is to form a dataset that envelops different sorts of vulnerabilities and 
precisely reflects real-world circumstances. In certain cases, benchmark datasets may incorporate engineered keen contracts 
inferred from controlled helplessness infusion methods. These contracts are ordinarily made utilizing code-generation strate-
gies and follow particular designs or layouts. Through the engineered era, large-scale datasets can be made, covering a more 
extensive run of vulnerabilities. Also, benchmark datasets envelop honest-to-goodness savvy contract applications or hand-
written code parts. By physically making these cases, we guarantee that the dataset joins the vulnerabilities agent of actual 
coding hones. To form shrewd contracts physically, one must recognize vulnerabilities within the source code, present fitting 
shortcomings, and keep up an adjustment between rightness and authenticity. 
 
There are either freely accessible datasets from stores such as GitHub or Kaggle, or the creators have made their datasets 
(Zheng et al., 2023; Aziz et al., 2022; Aladhadh et al., 2022; Qian et al., 2022; Wang et al., 2020; Goswami et al., 2021; Liu 
et al., 2021b; Xiong et al., 2023). Moreover, a few consider combining different sources for powerlessness discovery to im-
prove the precision of comes about (Wang et al., 2021a; Liu et al., 2021a; Aljofey et al., 2022; Zhang & Liu, 2022; Cai et al., 
2023; Kim et al., 2019; Hwang et al., 2022; Liu et al., 2021b; Sun et al., 2023; Xu et al., 2021; Md et al., 2023), which is 
alluded to as crossover sources in this consider. 
 
The distribution of dataset sources in the primary studies is shown in Fig.  7. Based on our analysis, 54 % of primary studies 
used collected datasets to detect smart contract vulnerabilities as shown in Table 8. It is believed that this trend is because 
smart contract analysis is a relatively new field of research and there are not widely used, standardized benchmarks for tasks 
such as vulnerability detection. Researchers thus must collect data from multiple resources to capture a wide range of vulner-
abilities, code structures, and coding practices present in the actual smart contracts used in various applications. Researchers 
rely on benchmark datasets to assess and compare the efficacy of various ML models. Our perceptions uncover that 33% of 
the things about developing defenselessness location models utilize these benchmark datasets. This drift can be ascribed to a 
few variables. Firstly, the field of savvy contract examination is still in its early stages and experiencing fast advancement, 
driving a need for comprehensive and standardized benchmark datasets. Furthermore, the nonattendance of a bound-together 
approach for gathering and organizing vulnerabilities inside the Ethereum environment poses challenges in making broadly 
acknowledged benchmark datasets. Besides, the approval of these datasets, counting the foundation of ground truth for vul-
nerabilities, may be a multifaceted and time-intensive handle, encouraging restricting their accessibility.   
 

 
Fig. 7. The source of the datasets used in primary study papers 
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Table 8  
Detailed distribution of collected sources 

Source of dataset No. Stud-
ies 

References 
Ethereum 6 [Lutz et al. (2021), Wang et al. (2021a), Gogineni et al. (2020), Goswami et al. (2021), 

Zhang et al. (2022), Song et al. (2019)] 
Website 5 [Zheng et al. (2023), Qian et al. (2022), Wang et al. (2020), Goswami et al. (2021), Xiong 

et al. (2023)] 
Kaggle 3 [Aziz et al. (2022), Md et al. (2023), Pahuja and Kamal] 

Ethereum Classic (ETC) 2 [Aziz et al. (2022), Aladhadh et al. (2022)] 

Github 2 [Aladhadh et al. (2022), Aljofey et al. (2022), 
Narayana and Sathiyamurthy (2023)] 

SmartBugs Wild 2 [Cai et al. (2023), Xu et al. (2021)] 

PonziContractDataset 1 [Zheng et al. (2023)] 

RSC and RCS 1 [Qian et al. (2020)] 

ESC (Ethereum Smart Contracts) 1 [Liu et al. (2021b)] 

VSC (VNT chain Smart Contracts) 1 [Liu et al. (2021b)] 

ScrawlD 1 [Yashavant et al. (2022)] 

Others 11 [Varun et al. (2022), Eshghie et al. (2021), Eduardo A. Sousa et al. (2021), Yu et al. (2021), 
Mandloi and Bansal (2022), Zheng et al. (2023), Gaur et al. (2022), Cai et al. (2023), Essaid 
et al. (2019), Fang et al. (2020), Xing et al. (2020)] 

SUM 37(31) - 

 
The third noteworthy information source, bookkeeping for 13% of essential ponders, is half-breed, combining different 
sources. Analysts habitually utilize half-breed sources within the powerlessness location to prepare to ease the limitations 
of personal information sources and procure more changed and comprehensive datasets. For example, analysts can gener-
alize their machine learning models to distinguish a wide run of shortcomings by amalgamating information from bench-
mark datasets with information from stages such as GitHub, open-source ventures, or websites to develop a half-breed 
dataset that better mirrors real-world scenarios. Table 9 presents a comprehensive breakdown of the benchmark information 
utilized within the essential things about. Notably, Etherscan developed as the foremost as often as possible utilized source 
of benchmark datasets due to its expansive open dataset containing a confirmed collection of keen contracts, which is 
fundamental for preparing and testing machine learning models (Zheng et al., 2023). The accessibility of these materials 
advances repeatability and collaboration among analysts included in shrewd contract defenselessness location. In addition, 
22 particular essential things about utilizing benchmark datasets sourced from different sources. 
 
Table 9  
Detailed distribution of benchmark sources 

Source of dataset No. Studies References 
Etherscan 12 [Ashizawa et al. (2021), Sun and Gu (2021), Wang et al. (2021a), Aljofey et al. (2022), 

Momeni et al. (2019), Kim et al. (2019), Zhou et al. (2022), Yang et al. (2022), 
Liu et al. (2022), Yashavant et al. (2022), Md et al. (2023)] 

SmartBug 5 [Eshghie et al. (2021), Zhang and Liu (2022), Cai et al. (2023), Hwang et al. (2022), 
Sun et al. (2023), Xu et al. (2021)] 

SolidFI 5 [Zhang and Liu (2022), Cai et al. (2023), Hwang et al. (2022), Sun et al. (2023), Xu et al. (2021)] 
Google BigQuery 3 [Gupta et al. (2022), Tann et al. (2018), Kim et al. (2019)] 
SoliAudit 1 [Sun et al. (2023)] 
HuanGai ManualCheckDatase 1 [Cai et al. (2023)] 
CICDDoS2019 1 [Liu et al. (2021a)] 
BoT-IoT 1 [Liu et al. (2021a)] 
CICIDS2017 1 [Liu et al. (2021a)] 
SmartEmbed 1 [Jie et al. (2023)] 
X-IIoTID 1 [Shah et al. (2023)] 
Etherscamdb 1 [Md et al. (2023)] 

 
On the other hand, datasets utilized for helplessness discovery can envelop changing information sorts. For occasion, machine 
learning models for defenselessness location can distinguish vulnerabilities in different information designs, counting source 
code, bytecode, exchanges, addresses, squares, or combinations thereof. It's vital to scrutinize these information sorts fastidi-
ously, as they require particular preprocessing methods and must be spoken to unexpectedly when utilizing machine learning 
models. In addition, diverse information sorts call for different structural approaches in machine learning models. Table 10 
provides a detailed breakdown of the specific data types employed in primary studies. It reveals that 12 primary studies 
exclusively utilized source code (Cai et al., 2023; Momeni et al., 2019; Kim et al., 2019; Zhou et al., 2022; Yang et al., 2022; 
Liu et al., 2021b, 2022; Yashavant et al., 2022; Song et al., 2019; Xu et al., 2021; Jie et al., 2023). According to our analysis, 
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the majority of primary studies employed a combination of various data types for detecting security vulnerabilities in contracts, 
totaling 18 primary studies. Notably, source code and bytecode emerge as the most prevalent data type combinations (Ashi-
zawa et al., 2021; Sun and Gu, 2021; Zheng et al., 2023; Qian et al., 2022; Zhang and Liu, 2022; Hwang et al., 2022; Zhang 
et al., 2022). 

Table 10  
Data types of datasets involved in primary studies 

Data Type No. 
Studies 

References 
Source code 12 [Cai et al. (2023), Momeni et al. (2019), Qian et al. (2020), Zhou et al. (2022), Yang et al. 

(2022), Liu et al. (2021b), Liu et al. (2022), Yashavant et al. (2022), Song et al. (2019), Xu 
et al. (2021), Jie et al. (2023), Narayana and Sathiyamurthy (2023)] 

Transaction 7 [Varun et al. (2022), Eshghie et al. (2021), Eduardo A. Sousa et al. (2021), Aziz et al. 
(2022), Mandloi and Bansal (2022), Fang et al. (2020), Pahuja and Kamal] 

Source code + Bytecode 7 [Ashizawa et al. (2021), Sun and Gu (2021), Zheng et al. (2023), Qian et al. (2022), 
Zhang and Liu (2022), Hwang et al. (2022), Zhang et al. (2022)] 

Source code + Bytecode + Transactions 4 [Zheng et al. (2023), Aljofey et al. (2022), Kim et al. (2019), Sun et al. (2023)] 

Bytecode 2 [Wang et al. (2020), Xing et al. (2020)] 

Bytecode + Addresses 2 [Gogineni et al. (2020), Tann et al. (2018)] 

Transactions + Addresses 2 [Yu et al. (2021), Md et al. (2023)] 

Bytecode + Transactions + Blocks + 
Addresses 

1 [Lutz et al. (2021)] 

Bytecode + Transactions + Source code 
+ Addresses 

1 [Goswami et al. (2021)] 

Source code + Bytecode + Transactions 
+ Blocks 

1 [Wang et al. (2021a)] 

Addresses 1 [Xiong et al. (2023)] 

Others 6 [Gupta et al. (2022), Liu et al. (2021a), Aladhadh et al. (2022), Gaur et al. (2022), Shah et 
al. (2023), Essaid et al. (2019)] 

 
5. Threats to Validity 
 

Several validity threats should be considered when conducting a systematic literature review on ML for detecting smart con-
tract vulnerabilities: 

• Publication bias risks omitting relevant papers, distorting results (Vegendla et al., 2018). Comprehensive database 
searches, manual collection, and appropriate search terms help mitigate this. 

• Search strategy limitations may cause relevant studies to be missed, reducing comprehensiveness. 
• Findings may not generalize broadly due to dataset, model, and other limiting factors. 
• The Evolution of ML and smart contract technologies may quickly render findings outdated.  
• Interpretation bias may influence synthesis of results. 
• Timeline restrictions to July 2023 omit more recent relevant papers. 

 
With rapidly emerging research, it is important to monitor new technologies to ensure currency. Enhancing the review by 
expanding data sources, dataset characteristics, vulnerabilities, and ML models can increase robustness. 

6. Conclusions 

Ethereum smart contracts play a pivotal role in digital agreements but have substantial security concerns in managing signif-
icant sums of virtual currency. This SLR systematically surveyed 46 primary studies on using machine learning models for 
detecting vulnerabilities in smart contracts, structured around three research questions. Key findings show the most prevalent 
vulnerability addressed is Re-entrancy, featured in 23 studies, and growing usage of ML, particularly deep learning, for de-
tection. 57% of studies employed DL models categorized across architectures, with LSTM RNNs and CNNs being the most 
prominent. Further examination revealed that 54% of studies used collected datasets. The review underscores the significance 
of ML techniques in addressing smart contract security challenges. Key future directions involve enhancing model robustness 
to new vulnerabilities through continuous learning, multi-language support, advanced features, and addressing data challenges 
around labeling, imbalance, and availability. Advancing analysis necessitates a focus on generalization, representation, com-
pleteness, and accessibility. Finally, key future directions involve enhancing model robustness to new vulnerabilities through 
continuous learning, multi-language support, and advanced features while also addressing underlying data challenges like 
labeling reliability, imbalance, and availability dependence.  
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