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 The space-time model combines spatial and temporal elements. One example is the Generalized 
Space-Time Autoregressive (GSTAR) Model, which improves the Space-Time Autoregressive 
(STAR) model. The GSTAR model assumes that each location has heterogeneity characteristics, 
and that the data is stationary. In this research, the moving average component is calculated by 
involving the relationship between variable values at a certain time and residual values at a pre-
vious time, and it is assumed that the data is not stationary, so the model used is the Generalized 
Space-Time Autoregressive Integrated Moving Average (GSTARIMA) Model. The model order 
for GSTARIMA is determined through the Space-Time Autocorrelation Function (STACF) and 
Space-Time Partial Autocorrelation Function (STPACF) to ensure accurate forecasting. Previous 
research only discussed the GSTARIMA(1,1,1) model, so in this research, the GSTARIMA(3,1,1) 
model will be addressed as a form of development of the GSTARIMA(1,1,1) model and applied 
to climate data. The climate data used in this research is sourced from NASA POWER and con-
sists of rainfall variables with large data sizes, requiring the use of the data analytics lifecycle 
method to analyse Big Data. The lifecycle includes six phases: discovery, data preparation, model 
planning, model building, communicating results, and operationalization. Based on the data pro-
cessing results with Python software, the GSTARIMA(3,1,1) model has a MAPE value of 9% 
for out-sample data and 11% for in-sample data. In contrast, the GSTARIMA(1,1,1) model has a 
MAPE value of 11% for out-sample data and 12% for in-sample data. So the GSTARIMA(3,1,1) 
model provides more accurate forecasting results. Therefore, selecting the correct model order is 
crucial for accurate forecasting. 
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1. Introduction 
 
The time series is the realization of a stochastic process defined as a sequence of ordered observations over time indices (Wei, 
2006). Referring to Box et al. (2015), there is a procedure for modelling time series based on the Box-Jenkins approach, which 
involves three stages: model identification, parameter estimation, and diagnostic checking. The identification stage aims to 
determine a suitable model for forecasting, including deciding the model order. The order in time series data serves to describe 
the number of lags or previous periods, and it also refers to the complexity level of the model used to represent the data. A 
higher order in a time series implies a more complex model. The appropriate order is crucial for producing a good and accurate 
model for forecasting or modelling time series. While a higher-order model may capture intricate patterns in time series data, 
estimating and interpreting can be more challenging. The principle of parsimony is applied to use a simpler model for a more 
straightforward interpretation. However, time series data may sometimes have intrinsic complexities requiring more complex 
models, such as in marine ecosystems, climate, global economy, and human social behavior. Therefore, the principle of par-
simony is not an absolute rule but rather a guideline to be considered in time series modelling. 
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Time series can be combined with spatial and is commonly referred to as space-time series. An example of a space-time model 
is the Space-Time Autoregressive (STAR) model. The assumption in the STAR model is homogeneous location characteris-
tics. According to Wei (2019), the STAR model is a special case form of the Vector Autoregressive (VAR) model. The STAR 
model was developed by Pfeifer & Deutsch (1980) applied to stationary data to analyze crime rates in Boston. Ruchjana 
(2002) extended the STAR model to the Generalized STAR (GSTAR) model for forecasting oil production in the Jatibarang 
field well locations. In the GSTAR model, locations are assumed to have heterogeneous characteristics, and the data is sta-
tionary. Borovkova et al. (2008) estimated the parameters of the GSTAR model using Ordinary Least Squares (OLS) and 
applied it to tea production. Nurhayati et al. (2012) compared GSTAR models of order 2 and order 1 to forecast the Gross 
Domestic Product (GDP) in Western European countries. Based on Mean Squared Forecast Error (MSFE) results, the GSTAR 
model of order 2 performed better. Prillantika et al. (2018) used GSTAR order 2 to compare parameter estimates with OLS 
and Kalman Filter for forecasting inflation rates, finding that parameter estimation using Kalman Filter was superior. Huda 
and Imro’ah (2023) modelled GSTAR of orders 1, 2, and 3, comparing five weight matrices, including uniform, queen conti-
guity, Minimum Spanning Tree (MST), inverse distance, and modified by railroad for forecasting Covid-19 in West Java 
Province. The results showed that the GSTAR model of order 3 using the MST weight matrix was the best forecasting model. 
Susanti et al. (2018) applied the GSTAR model to non-stationary data, resulting in the Integrated GSTAR model (GSTARI) 
for forecasting assets of Rural Credit Banks (BPR). Monika et al. (2022) utilizes a data mining approach to predict climate 
phenomena by combining the GSTARI model with exogenous variables and Autoregressive Conditional Heteroskedasticity 
(GSTARI-X-ARCH) to overcome heteroscedasticity conditions. 

Di Giacinto (2006) developed the Generalized Space-Time Autoregressive Moving Average (GSTARMA) model of order 1 
for autoregressive and moving average to analyze unemployment in Italy, using Maximum Likelihood Estimation (MLE) for 
parameter estimation. Akbar et al. (2020) applied the GSTARMA(1,0,1) model to forecast air pollution in Surabaya using 
two weight matrices: inverse distance and uniform. Parameter estimation methods included OLS and Seemingly Unrelated 
Regression (SUR). The research also discussed how the GSTARMA model can improve forecast errors compared to the 
GSTAR model. Andayani et al. (2017) used the GSTARMA model with added exogenous variables (GSTARMA-X). When 
applied to non-stationary data, the GSTARMA model requires differencing, resulting in the Generalized Space-Time Auto-
regressive Integrated Moving Average (GSTARIMA) model. Min and Hu (2010) developed the GSTARIMA(1,1,1) model 
and applied it to urban traffic network modelling and short-term traffic flow forecasting using the Least Square method for 
parameter estimation. Mubarak et al. (2022) applied the GSTARIMA(1,1,1) model to missing data to forecast gold prices. 
Sukarna et al. (2023) used the GSTARIMA(1,1,1)  model to forecast COVID-19 in Sulawesi, comparing it with the 
GSTARI(1,1,0) and GSTIMA(0,1,1) models; both models showed similar accuracy based on Mean Absolute Percentage 
Error (MAPE). 

One of the spatiotemporal phenomena is climate, as it can be observed based on location and time. According to the World 
Meteorological Organization (WMO) (2022), climate characterizes the average weather conditions for a specific area over a 
long period, requiring a minimum of 30 years for description. The European Union (2023) states that climate change affects 
all regions globally across various sectors, including agriculture, health, fisheries, tourism, and more. According to Ahlonsou 
et al. (2018), climate variables directly impacting daily life include rainfall, which has wet and dry seasons in tropical or 
subtropical regions. Wet months are typically characterized by higher rainfall and more frequent rain events, while dry months 
experience lower rainfall and less frequent rain. Wet months often occur in December, January, and February (DJF), and dry 
months in June, July, and August (JJA). The amount of climate data being observed is increasing rapidly, leading to the 
emergence of "Big Data" - huge and complex data sets that cannot be easily managed, processed, or analyzed using conven-
tional techniques. Based on Dietrich et al. (2015) Big Data is characterized by 3Vs: volume, variety, and velocity. Volume 
refers to the size of the data, which can be in billions of rows and millions of columns. Variety describes the different forms 
in which data is produced, including structured and unstructured data. Velocity refers to the speed at which new data is created 
and grows.  According to a survey by Transforming Data With Intelligence, organizations that implemented Big Data Ana-
lytics saw improvements in marketing focus, business insights, and client-based segmentation. A study by McKinsey Global 
Institute (2011) discovered that data holds comparable significance for organizations as both labor and capital. Those organ-
izations adept at efficiently collecting, analyzing, visualizing, and leveraging insights from Big Data can set themselves apart 
from competitors, surpassing them in terms of operational efficiency. Organizations in any industry with Big Data can benefit 
from its careful analysis to gain insight and depth to solve real problems. The data analytics lifecycle method can be used to 
analyze Big Data. This method is designed specifically for Big Data and has six phases: discovery, data preparation, model 
planning, model building, communication results, and operationalized. By applying this method, Binbusayyis and Vaiyapuri 
(2019) were able to identify the main features of a cyber intrusion detection system. Based on the above exposition, this 
research develops a GSTARIMA(1,1,1) model order for climate data forecasting. The chosen model order aligns with model 
identification results using the Time Autocorrelation Function (STACF) and Space-Time Partial Autocorrelation Function 
(STPACF) since climate data falls into intrinsic complexities that require a more complex model. Additionally, parameter 
estimation for the GSTARIMA model is performed with model orders more significant than one using Maximum Likelihood 
Estimation (MLE). The climate data for this research is obtained from the National Aeronautics and Space Administration 
Prediction of Worldwide Energy Resources (NASA POWER), which falls under Big Data, and the data analytics lifecycle 
method is employed. Mean Absolute Percentage Error (MAPE) is used as the evaluation metric for the forecasting method. 
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2. Materials 
 

This section discusses the theories that support research following the Box Jenkins procedure, starting from model identifica-
tion, parameter estimation, and diagnostic checking—as well as the data analytics lifecycle method for analyzing Big Data. 

2.1. Data Analytics Lifecycle 
 

According to Dietrich et al. (2015), the data analytics lifecycle is specifically designed for data science projects and Big Data 
problems. The lifecycle consists of six phases, namely discovery, data preparation, model planning, model building, com-
municating results, and operationalization. These phases can be observed in Fig. 1. In most of the phases, the process can 
move forward to the next phase or return to the previous one. 

 

Fig. 1. Data analytics lifecycle phases (Dietrich et al. 2015) 

2.2. Box-Jenkins Procedure 
 

The Box-Jenkins method is a time series analyse technique that was introduced by George E. P. Box and Gwilym M. Jenkins. 
It is a three-stage procedure that involves model identification, parameter estimation, and diagnostic checking (Box et al. 
2015). The model identification stage involves selecting a suitable model for the forecasting process and determining the 
model order. For univariate time series, the data must meet the stationarity requirements before proceeding with the Autocor-
relation Function (ACF) and Partial ACF (PACF) plots. For multivariate time series, the ACF Matrix (MACF) and MPACF 
can be used, while for space-time series, Space-Time ACF (STACF) and STPACF are appropriate. The model parameter 
estimation stage is focused on estimating the model parameters, and the diagnostic checking stage aims to test the suitability 
and feasibility of the forecasting model. A feasible model should have significant parameters and the resulting errors should 
not have a particular pattern. Additionally, the process requires that white noise or errors are independent and have a normal 
distribution. 

2.3. Space Time Autocorrelation Function and Space Time Partial Autocorrelation Function 
 

Wei (2019) identified Space Time Autocorrelation Function (STACF) and Space-Time Partial Autocorrelation Function 
(STPACF) as essential tools in space-time analysis to identify correlation patterns. Eq. (1) is used to determine STACF. 

𝜌ො௟(𝑘) = ∑ ቀ𝐖(௟)𝐙(𝑡 − 𝑘)ቁᇱ ൫𝐙(𝑡)൯௡௧ୀ௞ାଵට∑ ൫𝐖(௟)𝐙(𝑡)൯ᇱ൫𝐖(௟)𝐙(𝑡)൯௡௧ୀଵ ∑ ൫𝐙(𝑡)൯ᇱ൫𝐙(𝑡)൯௡௧ୀଵ  . 
 (1) 

To determine STPACF, the Yule-Walker equation is used which can be seen in Eq. (2), with spatial order 𝜆 being the last 
coefficient of 𝜙௟௞ = (𝑙 = 0,1,2, … , 𝜆 dan 𝑘 = 1,2,3, … ). 
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2.4. Generalized Space Time Autoregressive Integrated Moving Average Model 
 

According to Wei (2019) the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model com-
bines the GSTARI and GSTIMA models. The GSTARIMA model assumes heterogeneous location characteristics, non-sta-
tionary data, and white noise or zero average errors with constant uncorrelated variance, independent and normally distributed. 
The GSTARIMA(𝑝,𝑑, 𝑞) model can be expressed in Eq. (3). 

𝐘(𝑡) = ෍෍𝚽௞,௟𝐖(௟)𝐘(𝑡 − 𝑘)ఒೖ
௟ୀ଴

௣
௞ୀଵ −෍෍𝛉௞,௟𝐖(௟)𝐞(𝑡 − 𝑘)ఊೖ

௟ୀ଴ + 𝐞(𝑡).௤
௞ୀଵ   (3) 

where 𝐘(𝑡) = 𝐙(𝑡) − 𝐙(𝑡 − 1), … ,𝐘(𝑡 − 𝑘) = 𝐙(𝑡 − 𝑘) − 𝐙(𝑡 − 𝑘 − 1) and 𝐞(𝑡) ~𝒊𝒊𝒅𝑁(0,𝜎ଶ),  𝐙(𝑡) : vector of observation variables (𝑁 × 1) at time 𝑡, 𝐙(𝑡 − 𝑘): vector of observation variables (𝑁 × 1) at time (𝑡 − 𝑘), 𝚽௞,௟ : autoregressive and space time parameters at time order 𝑘 and spatial order 𝑙 measuring (𝑁 × 𝑁) in the form  

of a diagonal matrix ൫𝚽௞௟(ଵ),𝚽௞௟(ଶ),𝚽௞௟(ଷ), … ,𝚽௞௟(ே)൯, 𝜆௞ : spatial order in 𝑘-th autoregressive, 𝐖(௟) : weight matrix (𝑁 × 𝑁) at spatial order 𝑙 (𝑙 = 1,2,3, … ) contains 𝑤௜௜ = 0 and ∑ 𝑤௜௝௜ஷ௝ = 1, 𝛉௞,௟ : moving average and space time parameters at time order 𝑘 and spatial order 𝑙 measuring (𝑁 × 𝑁) in the  

form of a diagonal matrix ൫𝛉௞௟(ଵ),𝛉௞௟(ଶ),𝛉௞௟(ଷ), … ,𝛉௞௟(ே)൯, 𝛾௞ : spatial order in 𝑘-th moving average, 𝐞(𝑡) : error vector (𝑁 × 𝑁) at time 𝑡, 𝐞(𝑡 − 𝑘) : error vector (𝑁 × 𝑁) at time (𝑡 − 𝑘). 

The GSTARIMA(1,1,1) model is expressed in Eq. (4). 𝐘(𝑡) = 𝚽ଵ଴𝐘(𝑡 − 1) + 𝚽ଵଵ𝐖(ଵ)𝐘(𝑡 − 1) − 𝛉ଵ଴𝐞(𝑡 − 1) − 𝛉ଵଵ𝐖(ଵ)𝐞(𝑡 − 1) + 𝐞(𝑡).  (4) 

The GSTARIMA(2,1,1) model is expressed in Eq. (5). 𝐘(𝑡) = 𝚽ଵ଴𝐘(𝑡 − 1) + 𝚽ଶ଴𝐘(𝑡 − 2) + 𝚽ଵଵ𝐖(ଵ)𝐘(𝑡 − 1) + 𝚽ଶଵ𝐖(ଵ)𝐘(𝑡 − 2) − 𝛉ଵ଴𝐞(𝑡 − 1) − 𝛉ଵଵ𝐖(ଵ)𝐞(𝑡 − 1) + 𝐞(𝑡).  (5) 

The GSTARIMA(3,1,1) model is expressed in Eq. (6). 
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2.5. Distance Inverse Weight Matrix 
 

Based on Wei (2019) a weight matrix is a square matrix that contains the weights of the corresponding locations as its ele-
ments. In the GSTARIMA model, the weight matrix is calculated based on the distance between locations to determine its 
elements. On the other hand, the inverse distance weight matrix is a weight matrix that is based on the actual distances between 
the locations. The inverse distance weight can be calculated using Eq. (7). 𝑤௜௝ = 1𝑑௜௝ ,  (7) 

where 𝑤௜௝ is an element of the distance inverse weight matrix at locations 𝑖 and  𝑗,𝑑௜௝ is the distance from location 𝑖 to location 𝑗. Standardization is performed in the form 𝑤௜௝ to obtain the value ∑ 𝑤௜௝(௟)௜ஷ௝ = 1. If it is assumed that there are three locations 
then, the inverse distance weight matrix is in the Eq. (8). 

𝐖 = ൣ𝑤௜௝൧ =
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⎢⎢⎡ 0 𝑤ଵଶ𝑤ଵଶ + 𝑤ଵଷ + 𝑤ଵସ 𝑤ଵଷ𝑤ଵଶ + 𝑤ଵଷ + 𝑤ଵସ𝑤ଶଵ𝑤ଶଵ + 𝑤ଶଷ + 𝑤ଶସ 0 𝑤ଶଷ𝑤ଶଵ + 𝑤ଶଷ + 𝑤ଶସ𝑤ଷଵ𝑤ଷଵ + 𝑤ଷଶ + 𝑤ଷସ 𝑤ଷଶ𝑤ଷଵ + 𝑤ଷଶ + 𝑤ଷସ 0  

⎦⎥⎥
⎥⎥⎤.  (8) 

2.6. Maximum Likelihood Estimation 
 

 

Based on Terzi (1995), Maximum Likelihood Estimation (MLE) is a method for estimating regression parameters by maxim-
izing the likelihood function. The probability density function used is expressed in Eq. (9). 𝑓(𝜀|𝛃) = 1(2𝜋)೙మ(𝜎ଶ)೙మ expቆ− (𝐘 − 𝐗𝛃)ᇱ(𝐘 − 𝐗𝛃)2𝜎ଶ ቇ.  (9) 

The likelihood function is as follows: 𝐿(𝛃|𝜀) = 𝑓(𝜀|𝛃). 

The natural logarithm of the likelihood function is used, so that it becomes an Eq. (10). 

ln 𝐿(𝛃|𝜀) = ln൭ 1(2𝜋)೙మ(𝜎ଶ)೙మ expቆ− (𝐘 − 𝐗𝛃)ᇱ(𝐘 − 𝐗𝛃)2𝜎ଶ ቇ൱, 
 = −𝑛2 ln 2𝜋 − 𝑛2 ln𝜎ଶ − (𝐘 − 𝐗𝛃)ᇱ(𝐘 − 𝐗𝛃)2𝜎ଶ . 
 

 (10) 

The Eq. (10) is derived from 𝛃 to maximize the likelihood function, then we get eEq. (11). 𝜕 ln 𝐿(𝛃|𝜀)𝜕𝛃 = − (𝐘 − 𝐗𝛃)ᇱ(−𝐗)2𝜎ଶ = 0, 
  (𝐘 − 𝐗𝛃)ᇱ𝐗2𝜎ଶ = 0.  (11) 

The Eq. (11) multiplied by 2𝜎ଶ𝐗′, becomes, (𝐘 − 𝐗𝛃)ᇱ𝐗𝐗′ = 0. 
Next multiply both sides by (𝐗𝐗ᇱ)ି𝟏, so it is obtained as follows: (𝐘 − 𝐗𝛃)ᇱ𝐗𝐗ᇱ(𝐗𝐗ᇱ)ି𝟏 = 0, (𝐘 − 𝐗𝛃)ᇱ = 0. 

Transpose both sides, to obtain the Eq. (12). 𝐘 − 𝐗𝛃 = 0,  𝐗𝛃 = 𝐘.  (12) 
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Next multiply 𝐗′ with both sides of Eq. (12) to obtain Eq. (13).   𝐗′𝐗𝛃 = 𝐗′𝐘, (𝐗ᇱ𝐗)ି𝟏𝐗ᇱ𝐗𝛃 = (𝐗ᇱ𝐗)ି𝟏𝐗ᇱ𝐘,  (13) 

From Eq. (13), the parameter estimates for the MLE method are obtained in Eq. (14) 𝛃෡ = (𝐗ᇱ𝐗)ି𝟏𝐗ᇱ𝐘. 
  (14) 

The GSTARIMA(3,1,1) model for three locations (𝑁 = 3), can be expressed as a matrix like Eq. (15). 

቎𝑌(ଵ)(𝑡)𝑌(ଶ)(𝑡)𝑌(ଷ)(𝑡)቏ = ൦𝜙ଵ଴(ଵ) 0 00 𝜙ଵ଴(ଶ) 00 0 𝜙ଵ଴(ଷ)൪ ቎𝑌(ଵ)(𝑡 − 1)𝑌(ଶ)(𝑡 − 1)𝑌(ଷ)(𝑡 − 1)቏ + ൦𝜙ଶ଴(ଵ) 0 00 𝜙ଶ଴(ଶ) 00 0 𝜙ଶ଴(ଷ)൪ ቎𝑌(ଵ)(𝑡 − 2)𝑌(ଶ)(𝑡 − 2)𝑌(ଷ)(𝑡 − 2)቏ + ൦𝜙ଷ଴(ଵ) 0 00 𝜙ଷ଴(ଶ) 00 0 𝜙ଷ଴(ଷ)൪ ቎𝑌(ଵ)(𝑡 − 3)𝑌(ଶ)(𝑡 − 3)𝑌(ଷ)(𝑡 − 3)቏ + 

  ൦𝜙ଵଵ(ଵ) 0 00 𝜙ଵଵ(ଶ) 00 0 𝜙ଵଵ(ଷ)൪ ൥ 0 𝑤ଵଶ 𝑤ଵଷ𝑤ଶଵ 0 𝑤ଶଷ𝑤ଷଵ 𝑤ଷଶ 0 ൩ ቎𝑌(ଵ)(𝑡 − 1)𝑌(ଶ)(𝑡 − 1)𝑌(ଷ)(𝑡 − 1)቏ + ൦𝜙ଵଵ(ଵ) 0 00 𝜙ଵଵ(ଶ) 00 0 𝜙ଵଵ(ଷ)൪ ൥ 0 𝑤ଵଶ 𝑤ଵଷ𝑤ଶଵ 0 𝑤ଶଷ𝑤ଷଵ 𝑤ଷଶ 0 ൩ ቎𝑌(ଵ)(𝑡 − 1)𝑌(ଶ)(𝑡 − 1)𝑌(ଷ)(𝑡 − 1)቏ + 

 ൦𝜙ଵଵ(ଵ) 0 00 𝜙ଵଵ(ଶ) 00 0 𝜙ଵଵ(ଷ)൪ ൥ 0 𝑤ଵଶ 𝑤ଵଷ𝑤ଶଵ 0 𝑤ଶଷ𝑤ଷଵ 𝑤ଷଶ 0 ൩ ቎𝑌(ଵ)(𝑡 − 1)𝑌(ଶ)(𝑡 − 1)𝑌(ଷ)(𝑡 − 1)቏ − ൦𝜃ଵ଴(ଵ) 0 00 𝜃ଵ଴(ଶ) 00 0 𝜃ଵ଴(ଷ)൪ ቎𝑒(ଵ)(𝑡 − 1)𝑒(ଶ)(𝑡 − 1)𝑒(ଷ)(𝑡 − 1)቏ − 

 ൦𝜃ଵଵ(ଵ) 0 00 𝜃ଵଵ(ଶ) 00 0 𝜃ଵଵ(ଷ)൪ ൥ 0 𝑤ଵଶ 𝑤ଵଷ𝑤ଶଵ 0 𝑤ଶଷ𝑤ଷଵ 𝑤ଷଶ 0 ൩ ቎𝑒(ଵ)(𝑡 − 1)𝑒(ଶ)(𝑡 − 1)𝑒(ଷ)(𝑡 − 1)቏ + ቎𝑒(ଵ)(𝑡)𝑒(ଶ)(𝑡)𝑒(ଷ)(𝑡)቏. 

 (15) 

For estimate parameters using the MLE method, Eq. (15) was transformed following the simple linear model 𝐘 = 𝐗𝛃 + 𝛆. 
Express 𝐔௜ = ∑ 𝑤௜௝𝐘௝ே௝ୀଵ  and 𝐕௜ = ∑ 𝑤௜௝𝐞௝ே௝ୀଵ , so it becomes Eq. (16). 

቎𝑌(ଵ)(𝑡)𝑌(ଶ)(𝑡)𝑌(ଷ)(𝑡)቏ = ቎𝑌(ଵ)(𝑡 − 1) 0 0 𝑌(ଵ)(𝑡 − 2) 0 0 𝑌(ଵ)(𝑡 − 3) 0 00 𝑌(ଶ)(𝑡 − 1) 0 0 𝑌(ଶ)(𝑡 − 2) 0 0 𝑌(ଶ)(𝑡 − 3) 00 0 𝑌(ଷ)(𝑡 − 1) 0 0 𝑌(ଷ)(𝑡 − 2) 0 0 𝑌(ଷ)(𝑡 − 3) 

𝑈(ଵ)(𝑡 − 1) 0 0 𝑈(ଵ)(𝑡 − 2) 0 0 𝑈(ଵ)(𝑡 − 3) 0 00 𝑈(ଶ)(𝑡 − 1) 0 0 𝑈(ଶ)(𝑡 − 2) 0 0 𝑈(ଶ)(𝑡 − 3) 00 0 𝑈(ଷ)(𝑡 − 1) 0 0 𝑈(ଷ)(𝑡 − 2) 0 0 𝑈(ଷ)(𝑡 − 3) 

−𝑒(ଵ)(𝑡 − 1) 0 0 −𝑉(ଵ)(𝑡 − 1) 0 00 −𝑒(ଶ)(𝑡 − 1) 0 0 −𝑉(ଶ)(𝑡 − 1) 00 0 −𝑒(ଷ)(𝑡 − 1) 0 0 −𝑉(ଷ)(𝑡 − 1)቏

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡𝜙ଵ଴(ଵ)𝜙ଵ଴(ଶ)𝜙ଵ଴(ଷ)𝜙ଶ଴(ଵ)𝜙ଶ଴(ଶ)𝜙ଶ଴(ଷ)𝜙ଷ଴(ଵ)𝜙ଷ଴(ଶ)𝜙ଷ଴(ଷ)𝜙ଵଵ(ଵ)𝜙ଵଵ(ଶ)𝜙ଵଵ(ଷ)𝜙ଶଵ(ଵ)𝜙ଶଵ(ଶ)𝜙ଶଵ(ଷ)𝜙ଷଵ(ଵ)𝜙ଷଵ(ଶ)𝜙ଷଵ(ଷ)𝜃ଵ଴(ଵ)𝜃ଵ଴(ଶ)𝜃ଵ଴(ଷ)𝜃ଵଵ(ଵ)𝜃ଵଵ(ଶ)𝜃ଵଵ(ଷ)⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

+ ቎𝑒(ଵ)(𝑡)𝑒(ଶ)(𝑡)𝑒(ଷ)(𝑡)቏. 
(16) 
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The Eq. (16), already has the same structure as a simple linear model, where 

𝐘 = ቎𝑌(ଵ)(𝑡)𝑌(ଶ)(𝑡)𝑌(ଷ)(𝑡)቏, 
𝐗 = ቎𝑌(ଵ)(𝑡 − 1) 0 0 𝑌(ଵ)(𝑡 − 2) 0 0 𝑌(ଵ)(𝑡 − 3) 0 0 𝑈(ଵ)(𝑡 − 1) 00 𝑌(ଶ)(𝑡 − 1) 0 0 𝑌(ଶ)(𝑡 − 2) 0 0 𝑌(ଶ)(𝑡 − 3) 0 0 𝑈(ଶ)(𝑡 − 1)0 0 𝑌(ଷ)(𝑡 − 1) 0 0 𝑌(ଷ)(𝑡 − 2) 0 0 𝑌(ଷ)(𝑡 − 3) 0 0  

0 𝑈(ଵ)(𝑡 − 2) 0 0 𝑈(ଵ)(𝑡 − 3) 0 0 −𝑒(ଵ)(𝑡 − 1) 0 00 0 𝑈(ଶ)(𝑡 − 2) 0 0 𝑈(ଶ)(𝑡 − 3) 0 0 −𝑒(ଶ)(𝑡 − 1) 0𝑈(ଷ)(𝑡 − 1) 0 0 𝑈(ଷ)(𝑡 − 2) 0 0 𝑈(ଷ)(𝑡 − 3) 0 0 −𝑒(ଷ)(𝑡 − 1) 

−𝑉(ଵ)(𝑡 − 1) 0 00 −𝑉(ଶ)(𝑡 − 1) 00 0 −𝑉(ଷ)(𝑡 − 1)቏, 

𝛃 =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡𝜙ଵ଴(ଵ)𝜙ଵ଴(ଶ)𝜙ଵ଴(ଷ)𝜙ଶ଴(ଵ)𝜙ଶ଴(ଶ)𝜙ଶ଴(ଷ)𝜙ଷ଴(ଵ)𝜙ଷ଴(ଶ)𝜙ଷ଴(ଷ)𝜙ଵଵ(ଵ)𝜙ଵଵ(ଶ)𝜙ଵଵ(ଷ)𝜙ଶଵ(ଵ)𝜙ଶଵ(ଶ)𝜙ଶଵ(ଷ)𝜙ଷଵ(ଵ)𝜙ଷଵ(ଶ)𝜙ଷଵ(ଷ)𝜃ଵ଴(ଵ)𝜃ଵ଴(ଶ)𝜃ଵ଴(ଷ)𝜃ଵଵ(ଵ)𝜃ଵଵ(ଶ)𝜃ଵଵ(ଷ)⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

, 𝛆 = ቎𝑒(ଵ)(𝑡)𝑒(ଶ)(𝑡)𝑒(ଷ)(𝑡)቏. 

Eq. (9) to Eq. (14) are used to obtain parameter estimates 𝛃෡ᇱ = ൫𝜙෠ଵ଴(ଵ),𝜙෠ଵ଴(ଶ),𝜙෠ଵ଴(ଷ),𝜙෠ଶ଴(ଵ),𝜙෠ଶ଴(ଶ),𝜙෠ଶ଴(ଷ),𝜙෠ଷ଴(ଵ),𝜙෠ଷ଴(ଶ),𝜙෠ଷ଴(ଷ),𝜙෠ଵଵ(ଵ), 𝜙෠ଵଵ(ଶ),𝜙෠ଵଵ(ଷ),𝜙෠ଶଵ(ଵ),𝜙෠ଶଵ(ଶ),𝜙෠ଶଵ(ଷ),𝜙෠ଷଵ(ଵ),𝜙෠ଷଵ(ଶ),𝜙෠ଷଵ(ଷ),𝜃෠ଵ଴(ଵ),𝜃෠ଵ଴(ଶ),𝜃෠ଵ଴(ଷ),𝜃෠ଵଵ(ଵ),𝜃෠ଵଵ(ଶ),𝜃෠ଵଵ(ଷ)൯. 
2.7. Diagnostic Checking 
 

The diagnostic checking process is conducted to identify errors and determine whether the assumptions have been met or not. 
The error assumptions that need to be fulfilled are the multivariate nature of white noise and its normal multivariate distribu-
tion. The Portmanteau test is executed to verify whether the multivariate properties of white noise are satisfied. Similarly, to 
avoid the assumption of a normal multivariate distribution, Chi-Square QQ plots are used. The Portmanteau test was first 
developed by Box and Pierce (1970) then Ljung and Box (1978) set it using standardized autocorrelation values. The Port-
manteau test is conducted using Eq. (17). Referring to Tsai and Yang (2005), Chi-Square QQ plots are a graphical technique 
that aims to check the validity of assumptions in data by calculating the expected values based on the distribution. A normal 
distribution can approximate data if the plot resembles a straight line. 

𝑄௅஻ = 𝑛(𝑛 + 2)෍(𝑛 − 𝑘)ିଵ𝜌௞ଶ௠
௞ୀଵ ,  (17) 

where 𝑛 are many samples, and 𝜌௞ଶ autocorrelation at the 𝑘-th lag. 
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2.8. Mean Absolute Percentage Error 
 

Mean Absolute Percentage Error (MAPE) is an evaluation of a forecasting model that considers the influence of actual values. 
MAPE can be calculated using the Eq. (18) (Lawrence et al., 2009). 

𝑀𝐴𝑃𝐸 = 1𝑁(𝑇 − 1)෍෍൤ฬ𝑒̂௜(𝑡)𝑍௜(𝑡)ฬ൨்
௧ୀଶ

ே
௜ୀଵ × 100%,  (18) 

where, 
 𝑍௜(𝑡) : actual value of the 𝑡-th period at the 𝑖-th location, 𝑒̂௜(𝑡) : residual of the 𝑡-th period at the 𝑖-th location, 𝑇 : the number of time series observations, 𝑁 : many observation locations. 

Referring to Lewis (1982) in Lawrence et al. (2009), there is a scale for assessing model accuracy based on the MAPE value 
which can be seen in Table 1. The smaller the MAPE value, the more accurate the model forecasting results. 
 
Table 1 
MAPE value scale 

MAPE Scale Level of accuracy 𝑴𝑨𝑷𝑬 ൑ 𝟏𝟎% Highly Accurate Forecasting 𝟏𝟎% ൏ 𝑴𝑨𝑷𝑬 ൑ 𝟐𝟎% Accurate Forecasting 𝟐𝟎% ൏ 𝑴𝑨𝑷𝑬 ൑ 𝟓𝟎% Reasonable Forecasting 𝟓𝟎% ൏ 𝑴𝑨𝑷𝑬 Inaccurate Forecasting 
 

3. Methodology 
 

The research method used is the data analytics lifecycle, which has six phases: discovery, data preparation, model planning, 
model building, communication results, and operationalization. This research aims to develop the GSTARIMA(1,1,1) model 
using the Maximum Likelihood Estimation (MLE) method for forecasting climate data in West Java Province.  

 
 

(a) (b) 
Fig. 2. Research flow chart 

 

The data used comes from NASA POWER, which can be accessed at https://power.larc.nasa.gov/data-access-viewer/. The 
data collected on NASA POWER is 51,818,587 TB, which includes big data. In NASA POWER, the data consists of three 
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communities: Agroclimatology, Renewable Energy, and Sustainable Buildings. Climate data is available in the Agroclima-
tology community. The climate variable used in this research is rainfall.  

In general, this research flow uses the Data Analytics Lifecycle which can be seen in Fig. 2 which is also used to help analyze 
Big Data. Starting from determining the research gap, data sources, hypotheses, data selection, choosing the suitable model, 
model development, and data processing, to interpreting research results, which can be an appeal to relevant agencies regard-
ing rainfall. 

4. Result and Discussion 
 

This section contains the results and a discussion of this research, which follows the phases of the data analytics lifecycle. 

4.1. Discovery 
 

During the discovery phase, the first step is to identify the problem by studying and investigating it and developing an under-
standing process. In addition, the data sources needed and available for the research to be conducted are examined, and initial 
hypotheses, which will later be tested with the data, are formulated. 

1) Framing Problem 
 

The ongoing issue of climate change has become a global concern due to its devastating consequences, which pose a signifi-
cant risk to the survival of all living creatures and the future of upcoming generations. According to the (European Union, 
2023) climate change has affected various sectors worldwide, including agriculture, health, fisheries, and tourism. Precipita-
tion is a critical climate variable that influences several aspects of our lives. The scarcity of rainfall can cause droughts, which 
have a detrimental impact on the ecosystem. Conversely, excessive rainfall can trigger floods and landslides, leading to severe 
consequences. 

Climate data is a crucial component of space-time data, which can be modelled using space-time models. To identify research 
gaps, a literature review was conducted on space-time models utilizing various sources such as scientific journals, e-books, 
and previous research. Moreover, bibliometric analysis was employed to investigate the research gap. 

 

Fig. 3. Bibliometric analysis with keywords “Generalized Space Time Autoregressive” OR “GSTAR” 
 

According to the bibliometric analysis results in Fig. 3, the GSTARIMA model still needs to be developed further. This can 
be observed from the size of the circle in the GSTARIMA model, which is smaller than that of the GSTAR model. Therefore, 
this research focused on developing the GSTARIMA model order. Additionally, the GSTARIMA model can capture fluctu-
ations in time series data by considering the error between observed and predicted values. The research aims to forecast 
climate data using the GSTARIMA model with the appropriate order. Rainfall variables obtained from NASA POWER and 
included in Big Data. The data analytics lifecycle method was employed to handle Big Data. 

2) Identify Data Sources 
 

The research utilizes climate data from West Java Province, specifically focusing on rainfall variables. The data is obtained 
from NASA POWER, a system and dataset developed by the United States Space Agency to provide information about global 
energy resources. NASA POWER offers information on various weather parameters such as solar radiation, air temperature, 
humidity, rainfall, and more, sourced from different sources, including satellites and global climate models. The data volume 
used in this research is 512,101,087 TB, which is widely distributed.  

3) Hypothesis  
 

The development of the GSTARIMA(1,1,1) model order will provide more accurate climate data forecasting using MAPE 
value criteria. 
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4.2. Data Preparation  
 

The data preparation phase includes data exploration, pre-processing, or conditioning the data before modeling and analysis. 

1) Data Selection 

 
Fig. 4. Map of West Java Province 

Daily rainfall data for 27 regencies/cities in West Java Province, collected from the NASA POWER database, amounts to 
340,173 or 12,599 data for each regency/city from January 1989 until February 2023. Data from NASA POWER is satellite 
data with a radius of 57𝑘𝑚ଶ, so some several regencies/cities have the same data. Locations were selected to represent the 
same data, and 11 regencies/cities were selected, Bandung City, Bekasi City, Bogor City, Tasikmalaya City, Cianjur Regency, 
Cirebon City, Sumedang Regency, Indramayu Regency, Subang Regency, Kuningan Regency, and Regency Pangandaran 
which can be seen in Fig. 4 marked with a green dot on the map. 

2) Data Cleaning 
 

Data from 11 regencies/cities that underwent the data selection stage were cleaned to handle missing values using Python 
software. No missing values were found in 11 regencies/cities data in West Java Province. 

3) Data Transformation 
 

Daily data that has undergone the data cleaning stage is aggregated into monthly data. Obtained 414 monthly data from 12,599 
daily data for each regency/city. In this research, the data taken was for December, January, and February (DJF), so from 414 
data, 104 monthly data were obtained. 

4) Data Integration 
 

In the integration stage, data is combined from various sources. In this research, the data combined is rainfall data in the month 
of DJF with latitude and longitude coordinate data. 

4.3. Model Planning 

After the data selection phase, the resulting data is split into two groups: 80% in-sample data, which consists of 83 data (from 
January 1989-February 2016), and 20% out-sample data, which consists of 21 data (from December 2016-February 2023).  

 

Fig. 5. The correlation value between locations 
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The in-sample data is used for training purposes, while the out-sample data is used for testing the accuracy of rainfall fore-
casting using the GSTARIMA model. The correlation value was calculated to determine the attachment between locations; in 
this case Python software was used; the results can be seen in Fig. 5. Based on Fig. 5, the strongest attachment occurs in the 
Bekasi City area with Bogor City, with a value of 0.96. The process of data centering involved subtracting the data recorded 
at time 𝑡 (𝑍(𝑡)) from the average (𝑍̅). Afterward, a stationarity test was performed using the Augmented Dickey-Fuller 
(ADF) test with the aid of Python software. The adfuller function was utilized for this purpose. The results of the ADF test, 
which can be observed in Table 2, were obtained through this process. 

Table 2 
Stationarity test of climate data in West Java Province 

Location Variable Before Differencing After Differencing 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Condition 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Condition 
Bandung City 𝑍ଵ(𝑡) 0.1808 Not Stationary 0.01 Stationary 
Bekasi City 𝑍ଶ(𝑡) 0.06637 Not Stationary 0.01 Stationary 
Bogor City 𝑍ଷ(𝑡) 0.0904 Not Stationary 0.01 Stationary 
Tasikmalaya City 𝑍ସ(𝑡) 0.3268 Not Stationary 0.01 Stationary 
Cianjur Regency 𝑍ହ(𝑡) 0.1469 Not Stationary 0.01 Stationary 
Cirebon City 𝑍଺(𝑡) 0.1483 Not Stationary 0.01 Stationary 
Sumedang Regency 𝑍଻(𝑡) 0.1902 Not Stationary 0.01 Stationary 
Indramayu Regency 𝑍଼(𝑡) 0.2103 Not Stationary 0.01 Stationary 
Subang Regency 𝑍ଽ(𝑡) 0.1995 Not Stationary 0.01 Stationary 
Kuningan Regency 𝑍ଵ଴(𝑡) 0.09398 Not Stationary 0.01 Stationary 
Pangandaran Regency 𝑍ଵଵ(𝑡) 0.02382 Stationary 0.01 Stationary 

 

Based on Table 2, ten of the eleven locations have 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ൐ 𝛼 where 𝛼 = 0.05 so accept 𝐻଴ or the data is not stationary. 
However, Pangandaran Regency's has a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ൏ 𝛼 so reject 𝐻଴ or the data is stationary. To achieve data stationarity, a 
differencing process was conducted by subtracting the t-th time series data from the previous one. Python software was used 
to assist with this process by utilizing the diff function. The differencing process was applied only once during the research, 
and the results are shown in Table 2. After the differencing process, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for all locations is smaller than 𝛼 or reject 𝐻଴, which states that the data is stationary. Next, identification model with calculate the Akaike's Information Criterion (AIC) 
value to determine the best model order at each location. The AIC values obtained for each location can be seen in Table 3. 
Wei (2019) states that the GSTARIMA model is a special case of the Vector Autoregressive Integrated Moving Average 
(VARIMA) model, and the VARIMA model is a combination of ARIMA models of the same order and correlation attachment 
between locations. In this research, locations that have the same order were selected, that the observation locations that have 
the same order include Bekasi City, Bogor City and Indramayu Regency with the best model order ARIMA(3,1,1); Cianjur 
Regency and Cirebon City with the best ARIMA model order (4,1,1); and Tasikmalaya City, Sumedang Regency, Kuningan 
Regency, and Pangandaran Regency with the best model order ARIMA(0,0,1).  

Table 3  
AIC value to determine the best model order 

Location AIC Best Model Order 
Bandung City 539.085 ARIMA(4,1,2) 
Bekasi City 590.838 ARIMA(3,1,1) 
Bogor City 561.406 ARIMA(3,1,1) 
Tasikmalaya City 537.788 ARIMA(0,1,1) 
Cianjur Regency 549.074 ARIMA(4,1,1) 
Cirebon City 549.074 ARIMA(4,1,1) 
Sumedang Regency 521.643 ARIMA(0,1,1) 
Indramayu Regency 536.683 ARIMA(3,1,1) 
Subang Regency 561.307 ARIMA(3,1,0) 
Kuningan Regency 519.662 ARIMA(0,1,1) 
Pangandaran Regency 522.478 ARIMA(0,1,1) 

 

  
(a) (b) 

 
Fig. 6. STAF and STPACF rainfall data in West Java Province 
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In this research, Bekasi City, Bogor City, and Indramayu Regency were selected with third-order autoregressive, first-order 
integrated, and moving average because the model used in this research is the GSTARIMA model and also based on Fig. 5, 
the attachment between these three locations has a higher correlation, 0.96, 0.88, and 0.84 compared to the correlation between 
Cianjur Regency and Cirebon City which is only 0.62. STACF and STPACF were computed for all three locations, and the 
resulting plots can be found in Fig. 6. STPACF was truncated at the third lag, indicating that the best model for this data is a 
third-order autoregressive model. Therefore, in this research, the GSTARIMA(3,1,1) model was chosen to develop the 
GSTARIMA(1,1,1) model. 

4.4. Model Building 

Based on model identification results, the GSTARIMA (3,1,1) model was used as a development of the 
GSTARIMA(1,1,1) model. The GSTARIMA(3,1,1) model forecasts rainfall in West Java Province. Locations that meet the 
criteria are Bekasi City, Bogor City, and Indramayu Regency. 

The inverse distance weight matrix is used to determine the weight of a location based on the relationship between locations. 
Eqs. (7) are used to determine the inverse distance weight matrix. The results of the inverse distance weight matrix calculation 
can be seen in Eqs. (19), which will then be used to estimate the model parameters. 

𝐖 = ൥ 0 0.737 0.2630.788 0 0.2120.569 0.431 0 ൩.  (19) 

The parameters of the GSTARIMA(3,1,1) model were estimated using MLE as in subchapter 2.6 with the assumption that 
the error is white noise or zero average with constant uncorrelated, independent variance and a normal distribution 𝑁(0,𝜎௘ଶ𝐈). 
A Python script was built to assist the data processing process. The results of estimating the parameters of the 
GSTARIMA(3,1,1) model using MLE can be seen in Table 4. 

Table 4  
GTARIMA(3,1,1) model parameters for forecasting climate data in West Java province 

Parameter Estimator Parameter Estimator Parameter Estimator Parameter Estimator 𝝓𝟏𝟎(𝟏) -1.076 𝜙ଷ଴(ଵ) 0.286 𝜙ଶଵ(ଵ) -0.091 𝜃ଵ଴(ଵ) -0.701 𝝓𝟏𝟎(𝟐) -0.894 𝜙ଷ଴(ଶ) -0.288 𝜙ଶଵ(ଶ) 0.222 𝜃ଵ଴(ଶ) -0.952 𝝓𝟏𝟎(𝟑) -0.584 𝜙ଷ଴(ଷ) -0.313 𝜙ଶଵ(ଷ) -0.339 𝜃ଵ଴(ଷ) -0.566 𝝓𝟐𝟎(𝟏) -0.627 𝜙ଵଵ(ଵ) 0.339 𝜙ଷଵ(ଵ) -0.434 𝜃ଵଵ(ଵ) -0.131 𝝓𝟐𝟎(𝟐) -0.959 𝜙ଵଵ(ଶ) 0.076 𝜙ଷଵ(ଶ) 0.166 𝜃ଵଵ(ଶ) 0.133 𝝓𝟐𝟎(𝟑) -0.253 𝜙ଵଵ(ଶ) -0.165 𝜙ଷଵ(ଷ) 0.106 𝜃ଵଵ(ଷ) -0.195 
 

The parameter values that have been obtained in Table 4, when entered into the GSTARIMA(3,1,1) model at the location of 
Bekasi City can be seen in Eq. (20), Bogor City in Eq. (21), and Indramayu Regency in Eq. (22). 𝑌෠ଵ(𝑡) = −1.076𝑌ଵ(𝑡 − 1) + 0.251𝑌ଶ(𝑡 − 1) + 0.089𝑌ଷ(𝑡 − 1) − 0.627𝑌ଵ(𝑡 − 2) − 0.066𝑌ଶ(𝑡 − 2) − 0.023𝑌ଷ(𝑡 − 2) + 0.286𝑌ଵ(𝑡 − 3) − 0.321𝑌ଶ(𝑡 − 3) − 0.114𝑌ଷ(𝑡 − 3) + 0.701𝑒ଵ(𝑡 − 1) − 0.096𝑒ଶ(𝑡 − 1) − 0.034𝑒ଷ(𝑡 − 1), 

 

 (20) 

𝑌෠ଶ(𝑡) = −1.076𝑌ଵ(𝑡 − 1) + 0.251𝑌ଶ(𝑡 − 1) + 0.089𝑌ଷ(𝑡 − 1) − 0.627𝑌ଵ(𝑡 − 2) − 0.066𝑌ଶ(𝑡 − 2) − 0.023𝑌ଷ(𝑡 − 2) + 0.286𝑌ଵ(𝑡 − 3) − 0.321𝑌ଶ(𝑡 − 3) − 0.114𝑌ଷ(𝑡 − 3) + 0.701𝑒ଵ(𝑡 − 1) − 0.096𝑒ଶ(𝑡 − 1) − 0.034𝑒ଷ(𝑡 − 1), 
 

 (21) 

𝑌෠ଷ(𝑡) = −1.076𝑌ଵ(𝑡 − 1) + 0.251𝑌ଶ(𝑡 − 1) + 0.089𝑌ଷ(𝑡 − 1) − 0.627𝑌ଵ(𝑡 − 2) − 0.066𝑌ଶ(𝑡 − 2) − 0.023𝑌ଷ(𝑡 − 2) + 0.286𝑌ଵ(𝑡 − 3) − 0.321𝑌ଶ(𝑡 − 3) − 0.114𝑌ଷ(𝑡 − 3) + 0.701𝑒ଵ(𝑡 − 1) − 0.096𝑒ଶ(𝑡 − 1) − 0.034𝑒ଷ(𝑡 − 1), 
 (22) 

 

where 𝑌(𝑡) = 𝑍(𝑡) − 𝑍(𝑡 − 1), … ,𝑌(𝑡 − 𝑘) = 𝑍(𝑡 − 𝑘) − 𝑍(𝑡 − 𝑘 − 1), for example, Eq. (20) if return to 𝑍(𝑡) can be ex-
pressed in the Eq. (23). 𝑍መଵ(𝑡) − 𝑍ଵ(𝑡 − 1) = −1.076ሾ𝑍ଵ(𝑡 − 1) − 𝑍ଵ(𝑡 − 2)ሿ + 0.251ሾ𝑍ଶ(𝑡 − 1) − 𝑍ଶ(𝑡 − 2)ሿ + 0.089ሾ𝑍ଷ(𝑡 − 1) − 𝑍ଷ(𝑡 − 2)ሿ − 0.627ሾ𝑍ଵ(𝑡 − 2) − 𝑍ଵ(𝑡 − 3)ሿ − 0.066ሾ𝑍ଶ(𝑡 − 2) − 𝑍ଶ(𝑡 − 3)ሿ − 0.023ሾ𝑍ଷ(𝑡 − 2) − 𝑍ଷ(𝑡 − 3)ሿ + 0.286ሾ𝑍ଵ(𝑡 − 3) − 𝑍ଵ(𝑡 − 4)ሿ − 0.321ሾ𝑍ଶ(𝑡 − 3) − 𝑍ଶ(𝑡 − 4)ሿ − 0.114ሾ𝑍ଷ(𝑡 − 3) − 𝑍ଷ(𝑡 − 4)ሿ + 0.701eଵ(𝑡 − 1) − 0.096eଶ(𝑡 − 1) − 0.034eଷ(𝑡 − 1) − 𝑍ଵ(𝑡 − 1), 

 (23) 
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so 𝑍መଵ(𝑡) is expressed in the Eq. (24). 𝑍መଵ(𝑡) = −0.076𝑍ଵ(𝑡 − 1) + 0.449𝑍ଵ(𝑡 − 2) + 0.913𝑍ଵ(𝑡 − 3) − 0.286𝑍ଵ(𝑡 − 4) + 0.251𝑍ଶ(𝑡 − 1) − 0.317𝑍ଶ(𝑡 − 2) − 0.255𝑍ଶ(𝑡 − 3) + 0.321𝑍ଶ(𝑡 − 4) + 0.089𝑍ଷ(𝑡 − 1) − 0.112𝑍ଷ(𝑡 − 2) − 0.091𝑍ଷ(𝑡 − 3) + 0.114𝑍ଷ(𝑡 − 4) + 0.701eଵ(𝑡 − 1) − 0.096eଶ(𝑡 − 1) − 0.034eଷ(𝑡 − 1). 

 (24) 

 

Do the same thing for the Eq. (21) and Eq. (22). 

Diagnostic checks are performed to ensure that the error is white noise and follows a normal multivariate distribution. The 
results of the Portmanteau test indicate that the 𝑝-value ൐ α, where α = 0.05, which means the error satisfies the character-
istics of white noise. To confirm the normal multivariate distribution, a Chis-Square QQ plot is used, which is shown in Fig.7. 
The error in the GSTARIMA(3,1,1) model is almost close to the normal line, indicating that it has a normal multivariate 
distribution. Therefore, the GSTARIMA(3,1,1) model is suitable for forecasting climate data as it meets the necessary as-
sumptions. 

 

Fig. 7. Chi-Square QQ plot of GSTARIMA(𝟑,𝟏,𝟏) model 
 

The GSTARIMA(3,1,1) model was used to forecast climate data on the out-sample data. The results have been plotted in 
Fig. 8, which shows that the forecasting pattern matches the actual data. This indicates that using the GSTARIMA(3,1,1) 
model for forecasting is effective. However, forecasting using the GSTARIMA(3,1,1) model on climate data is only for short-
term forecasting, which can be seen in Fig. 8; only the first month to the third month is close to the actual data. 

  
(a) (b) 

 
(c) 

  
Fig. 8. Plot of actual data and forecasting results of the GSTARIMA(𝟑,𝟏,𝟏) model in Bekasi City (a), Bogor City (b), and 
Indramayu Regency (c) 



 786 

Forecasting was conducted using the GSTARIMA(1,1,1) model, following the same process as the GSTARIMA(3,1,1) 
model. In this case, the principle of parsimony was applied by selecting order one in autoregression. The MAPE values were 
then calculated for both models to evaluate their forecasting performance. The GSTARIMA(3,1,1) model achieved a MAPE 
value of 11% for in-sample data and 9% for out-sample data. Meanwhile, the GSTARIMA(1,1,1) model gained a MAPE 
value of 12% for in-sample data and 11% for out-sample data. As the MAPE value of the GSTARIMA(3,1,1) model is smaller 
than that of the GSTARIMA(1,1,1) model, the former is better at forecasting climate data, especially rainfall in West Java 
Province. 

4.5. Communicate Result 

Based on the model building results, the GSTARIMA(3,1,1) model was used to forecast climate data, and the MAPE results 
for the out-sample data were 9%, which is considered very accurate. This answers the hypothesis in discovery phase, which 
states that the development of the GSTARIMA(1,1,1) model order provides more accurate forecasting results. 

A visualization was conducted on rainfall forecasting data in West Java Province, specifically in Bekasi City, Bogor City, and 
Indramayu Regency. The results of the visualization of the forecasting data for December 2022 until February 2023 can be 
seen in Fig. 9. 

  

(a) (b) 

 

(c) 

Fig. 9. Rainfall forecast map for December 2022 (a), January 2023 (b), February 2023 (c) 
 

Based on Fig. 9, the location with the highest rainfall in December 2022 was Indramayu Regency, with a recorded amount of 
10.83496761𝑚𝑚. On the other hand, Bekasi City and Bogor City had the lowest rainfall in December 2022, ranging from 
7.627009869𝑚𝑚 to 7.983449618𝑚𝑚. In January 2023, Bekasi City had the highest rainfall, and Bogor City had the lowest 
rainfall, while in February, Bekasi City had the highest rainfall and Indramayu Regency had the lowest. The rainfall values 
across the locations were quite similar, as indicated in the legend. These findings suggest that there was an almost even 
distribution of rainfall intensity in West Java Province, so there was no extreme rainfall in the three regions in December, 
January, and February (DJF). 

4.6. Operationalized 

The development of the GSTARIMA(1,1,1) model order results in more accurate forecasting. Selecting the correct order is 
crucial for the model's effectiveness. This advancement is expected to have a significant impact on the field of modeling. 
Additionally, using the GSTARIMA(3,1,1)  model for forecasting holds significant potential in offering advantages as 
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suggestions to relevant organizations such as the Meteorology, Climatology and Geophysics Agency (BMKG). It also func-
tions as an early warning system for forecasting climate, with a primary focus on rainfall in the province of West Java. 

5. Conclusion 
 

The research on climate data forecasting uses the data analytics lifecycle approach to develop the GSTARIMA(1,1,1) model. 
This approach makes research more structured by beginning with the discovery phase, which helps identify problems and 
research gaps for model development. The data preparation phase is also helpful for analyzing big data, ranging from 12,599 
data to 104 data for each region/city. 

In the model planning phase, the best model order for forecasting is determined using STACF and STPACF—estimation 
using the MLE method for the GSTARIMA(3,1,1) model in the model building phase. The result communication phase helps 
to analyze forecasting results, and the operationalized stage is a form of implementing solutions or actions based on insights 
and analysis results. 

The research shows that the GSTARIMA (3,1,1)  model provides better forecasting results than the 
GSTARIMA(1,1,1) model, as seen from the MAPE value. In the GSTARIMA(3,1,1) model, the MAPE value for out-sample 
data is 9%, and for in-sample data is 11%. In contrast, in the GSTARIMA(1,1,1) model, the MAPE value for out-sample data 
is 11%, and for in-sample data, it is 12%. This confirms that the hypothesis given at the discovery stage is accepted. Based 
on this research, it can be concluded that selecting the correct order is crucial for the model's feasibility and accuracy in 
spatiotemporal forecasting. Therefore, it can be concluded that choosing the correct order will produce a more accurate model. 
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