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 Active Queue Management (AQM) techniques are crucial for managing packet transmission effi-
ciently, maintaining network performance, and preventing congestion in routers. However, 
achieving these objectives demands precise traffic modeling and simulations in extreme and un-
stable conditions. The internet traffic has distinct characteristics, such as aggregation, burstiness, 
and correlation. This paper presents an innovative approach for modeling internet traffic, address-
ing the limitations of conventional modeling and conventional AQM methods' development, 
which are primarily designed to stabilize the network traffic. The proposed model leverages the 
power of multiple Markov Modulated Bernoulli Processes (MMBPs) to tackle the challenges of 
traffic modeling and AQM development. Multiple states with varying probabilities are used to 
model packet arrivals, thus capturing the burstiness inherent in internet traffic. Yet, the overall 
probability is maintained identical, irrespective of the number of states (one, two, or four), by 
solving linear equations with multiple variables. Random Early Detection (RED) was used as a 
case study method with different packet arrival probabilities based on MMBPs with one, two, and 
four states. The results showed that the proposed model influences the outcomes of AQM meth-
ods. Furthermore, it was found that RED might not effectively address network burstiness due to 
its relatively slow reaction time. As a result, it can be concluded that RED performs optimally 
only with a single-state model. 
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1. Introduction 
 
Internet communication has increased the widespread use of network devices, with routers playing a crucial role in this net-
work infrastructure. Data packets are transmitted through the network and pass through multiple routers before reaching their 
destinations. Within this complex network ecosystem, routers serve as key waypoints for these packets, temporarily storing 
them in memory buffers as they await further processing and forwarding. The memory within the router has a finite capacity, 
and when the memory buffer is overloaded and cannot accommodate incoming packets, packet loss occurs due to buffer 
congestion. Specifically, buffer congestion arises when the demand for buffer resources exceeds capacity, eventually leading 
to packet loss. As such, congestion is a critical network problem because it can significantly influence network performance, 
causing delays and reducing overall efficiency (Jafri et al., 2022). 
 
To effectively manage the flow of packets within router buffers and mitigate the congestion risks, routers employ two distinct 
but interrelated packet management mechanisms: queue management and scheduling. As discussed by Zhang et al. (2011), 
Queue management methods focus on how routers organize and prioritize packets within their buffers. These methods deter-
mine which packets should be forwarded next, which should be dropped, and how to allocate resources to ensure fair and 
efficient packet processing. The scheduling mechanisms address the temporal aspects of packet forwarding. Scheduling 
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decides when specific packets should be transmitted from the router's buffer onto the outgoing links, considering factors like 
packet priorities and quality of service (QoS) requirements. Effective scheduling ensures that packets are sent out in a manner 
that optimizes network performance while meeting various service-level agreements (Marin et al., 2020). 
 
Queue management is a critical packet management aspect, especially in rapidly changing traffic. With the potential for a 
sudden increase in network traffic and the rapid accumulation of packets in router buffers, the effectiveness of traditional 
scheduling mechanisms can be compromised. Accordingly, queue management, such as the Random Early Detection (RED), 
is pivotal in handling rapidly changing traffic. Queue management commonly uses packet dropping, which involves selec-
tively discarding packets to alleviate congestion consequences within routers. Depending on the queue management mecha-
nism, packet dropping as a congestion-handling technique may be used before or after packet accumulations (Almomani et 
al., 2019). 
 
As such, two broad categories of congestion control methods have been proposed: active and lazy mechanisms. Lazy methods, 
such as the drop tail approach, detect congestion only after the router buffer reaches capacity, often resulting in packet loss. 
On the other hand, active queue management (AQM) methods are designed to predict congestion before occurrence and 
respond to changes in network traffic at an earlier stage. AQM methods aim to control congestion before it becomes severe 
proactively. Notable AQM methods include RED (Floyd & Jacobson, 1993) and BLUE (Feng et al., 1999), which have been 
extended to conduct various advanced AQM methods. Subsequent developments resulted in more sophisticated AQM tech-
niques such as the Effective RED (Abbasov & Korukoglu, 2009), Time-window Augmented RED (Windowed-RED), and 
Enhanced RED (EnRED) (Abu-Shareha, 2019). 
 
As Internet traffic is highly dynamic and diverse, it exhibits unique features that must be considered for effective network 
management. These features include inherent aggregation, burstiness, and correlation (Liu et al., 2008). The presence of bursts 
of arrival packets and an inter-packet time shorter than the average intra-packet time can be early indicators of traffic conges-
tion, a critical issue to be addressed in network management (Khalil, 1994). Moreover, the global Internet network caters to a 
wide array of traffic types, which presents a significant challenge when modeling. Addressing this challenge is crucial when 
developing, evaluating, and benchmarking existing AQM methods (Domaski et al., 2018). Traditionally, AQM methods have 
relied on a modeling approach known as the Bernoulli process, known for its simplicity and ease of implementation. However, 
this modeling approach, while stable, often falls short in accurately capturing the complex and dynamic nature of real-world 
network traffic. Hence, there is a need for an innovative model that can better emulate the complexities of Internet traffic, 
ensuring that AQM methods can adapt effectively to the evolving demands of modern network environments (Saaidah et al., 
2014).   
 
To address the limitations of the Bernoulli process (BP), the Markov Model (MM) is employed, bringing a richer and more 
adaptable framework to the analysis of network behavior. The MM is a robust mathematical method extensively used to 
describe and predict variations and burstiness within a network's traffic patterns. This approach is fundamentally rooted in the 
concept of Markov chains, where the probability of an event is intricately linked to the probability of the system's current 
state, as vividly depicted in Figure 1. In essence, the MM is a powerful tool for calculating the probabilities of various network 
events, notably packet arrivals, based on the current state of an independent chain of states. This flexibility allows network 
analysts to model the arrival process in multiple ways. MM can be described using discrete time units, where events are 
meticulously tracked at specific intervals, providing insights into precisely when events occur. Alternatively, this arrival pro-
cess can be represented as batches of units, signifying that events arrive in clusters or groups, highlighting scenarios where 
network traffic exhibits burstiness. Moreover, the MM can also represent the arrival process as a continuous quantity, indi-
cating that events flow seamlessly without distinct time intervals, which is particularly useful for understanding smooth and 
continuous data streams. One of the notable advantages of the MM is its adaptability to various time scales. Accordingly, 
network analysts can leverage the MM to capture and analyze network behavior across different time frames, from millisec-
onds to hours or even days. This versatility in timescale analysis empowers researchers to understand network dynamics 
comprehensively, making the MM a valuable tool in network modeling and analysis (Yu-Dong et al., 2009). 
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Fig. 1. Markov Modulated for Packet Arrival  
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Markov Modulation (MM) can be categorized into Markov-modulated Poisson Process (MMPP), Markov-modulated Modu-
lated Fluid-Flow (MMFF), and Markov-modulated Bernoulli Process (MMBP). MMPP models the arrival events following 
the Poisson distribution that can change based on the current state. Using MMPP, only a single event can occur instantly, 
whether an arrival, departure, or both. As a result, it cannot represent digitalized communication well (Alsaaidah et al., 2016). 
The MMFF models arrivals as a continuous flow. Finally, MMBP models arrivals as independent events, with the probability 
of an event changing according to the current state. Various approaches have used MMBP for traffic modulation. However, 
existing methods use only two states (MMBP-2), which may not be sufficient to model the variability of Internet traffic (Li 
et al., 2020). 
 
This paper introduces a novel packet arrival model utilizing a four-state Markov-modulated Bernoulli process (MMBP-4) and 
conducts a comparative analysis against the MMBP-2 and basic Bernoulli Process (BP). The primary objective of this model 
is to replicate the same overall arrival probability as traditional models but with the added dimension of time-varying charac-
teristics. As such, this research leverages the Random Early Detection (RED) algorithm as a case study to evaluate the effec-
tiveness of the proposed MMBP-4 model. RED, a widely used Active Queue Management (AQM) technique, relies on accu-
rate traffic characterization to efficiently manage congestion and ensure Quality of Service (QoS) in network communication. 
The aim of applying MMBP-4 on RED is to assess its ability to capture intricate traffic characteristics, including burstiness, 
temporal dependencies, and fluctuations in network data arrivals. This evaluation will show whether the proposed model can 
enhance modeling traffic behavior and improve congestion control strategies. Accordingly, the rest of the paper is organized 
as follows: Section 2 provides an overview of the RED method and discusses the packet management mechanisms. The related 
works on AQM and MMBP are discussed in detail in Section 3. Section 4 presents the proposed work for modeling arrival 
traffic using MMBP-4 for RED. The results are discussed in Section 5. Finally, the conclusion is stated in Section 6. 
 
2. Background on the RED Method 
 
The RED method (Floyd & Jacobson, 1993) is a fundamental active queue management method that inspired various tech-
niques for network congestion control. Unlike other network management techniques, RED operates without the need for 
explicit notification of the senders. Instead, it relies on implicit notification, primarily through the practice of packet dropping 
when buffer congestion occurs. RED's operation depends on the dropping probability (Dp) concept, which determines the 
likelihood of dropping packets in a stochastic or probabilistic manner. The key to calculating this Dp lies in monitoring the 
average queue length (aql) within the network router or buffer, a metric that reflects the current congestion state. 
 
Fig. 2 provides a visual representation of the process, showing the essential role of two thresholds in determining the buffer's 
status. These thresholds serve as indicators of the buffer's length and congestion levels.  
 

Pk2 1
Pk

4
Pk

3
Pk………….……….

n
Pk

M
inim

um
 threshold

Zero DroppingStochastic DroppingFull Dropping

Packet

Arrival

FCFS

M
axim

um
 threshold

Departure

Packet

 
Fig. 2. Single Router Buffer for RED 

 
The advantage of RED's stochastic mechanism is the ability to prevent global synchronization, a phenomenon that can detri-
mentally influence computer networks. RED predicts the buffer status by comparing the aql with the minimum and maximum 
thresholds. When the aql is below the minimum threshold, typically indicating a safe buffer state, RED refrains from dropping 
any packets, effectively setting Dp to zero. When the aql surpasses the minimum threshold but remains below the maximum 
threshold, RED implements stochastic packet dropping. Dp is set between 0 and 1, reflecting a measured response to buffer 
congestion without resorting to full-scale packet drops. Finally, when the aql exceeds the maximum threshold, RED takes 
decisive action to alleviate congestion. In this scenario, full packet dropping is implemented, signified by setting Dp to 1. This 
aggressive response helps maintain network stability and prevents further impacts of the congestion consequences. 
 
RED was one of the first Active Queue Management (AQM) methods that enabled early congestion detection and addressed 
the global synchronization problem (Abu-Shareha, 2022). However, RED exhibits several drawbacks, summarized as follows: 
1) RED depends on aql for calculating Dp, which estimates the traffic load based on the connections, ignoring the packet load 
status (Ahmed & Nasrelden, 2018). 2) Incorrectly configured threshold values may reduce network performance in delays 
and packet loss (Zhu et al., 2023). 3) Although the goal of calculating and using Dp is to maintain moderate queue length, 
RED reaction to the sudden change in the network traffic (i.e., bursty traffic)  is relatively slow (Abu-Alhaj et al., 2021). 
Accordingly, the behavior of the RED should be analyzed under correlated and bursty traffic conditions to improve its per-
formance. This paper proposes an analysis of the RED method under the MMBP-4 model.  
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3. Literature Review  
 
Various methods have been proposed to implement one of the MM types, which are used to build and analyze queue manage-
ment techniques. Wang et al. (2011) introduced a robust network model and analysis method to predict and manage queuing 
delays at a specific level. The model operates within a single buffer under multi-class traffic conditions, accommodating 
multiple packet sources. The model consists of three essential sub-components: the predictor, the monitor, and the processor. 
The predictor anticipates delay values within successive time windows and adjusts the threshold position based on its 
relationship with the theoretical delay. The monitor mechanism dynamically regulates the incoming packets' Variable Bit Rate 
(VBR). The processor computes the delay within each time slot. To evaluate and compare the results, the study employed the 
BP model with disturbances against the RED (Floyd & Jacobson, 1993) and PI (Hollot et al., 2001) methods. Various AQM 
methods were proposed and evaluated using the BP model, such as BLUE (Feng et al., 1999), EnRED (Abu-Shareha, 2019), 
and PI (Hollot et al., 2001). 
 
In the MMBP-2, Guan, Awan, et al. (2004) presented a discrete stochastic queueing model for analyzing RED performance 
with bursty and correlated traffic. Accordingly, an MMBP-2 is used with a fixed state probability (i.e., 0.9), while the other 
has a variable probability in the range of (0-1). The evaluation results were used to set the threshold to its optimal value and 
adjust the dropping probabilities for the RED method to match the required type of service. Similarly, Guan, Woodward, et 
al. (2004) proposed an analytical model to improve delay by mitigating aggressive source behavior. In this model, the source 
refrains from sending packets once it exceeds a specific threshold, effectively treating it as implicit feedback from the queue. 
Furthermore, these thresholds undergo dynamic adjustments based on the network's state. Consequently, this model controls 
the mean queue to a predetermined value, ensuring the fulfillment of the required Quality of Service (QoS) specifications. 
The authors conducted their analysis using the MMBP-2 framework. The probabilities associated with the two states were 
closely clustered (e.g., 0.20 and 0.25) and were lower than the departure rate (0.3). As a result, the experiments were conducted 
under moderate traffic status. 
 
Guan et al. (2006) proposed a new method for AQM aimed at maintaining the buffer queue at a specific level, even when 
dealing with delay constraints. The proposed method used a bang-bang type control strategy (Chen et al., 2023), which 
controls the arrival rate and dynamically adjusts a threshold. The threshold is adapted based on the difference between the 
mean and target delay. The arrival rate is calculated based on the queue length. Like Guan, Woodward, et al. (2004), this 
model was developed and analyzed using MMBP-2, with arrival probabilities of 0.20 and 0.25 and a departure rate of 0.3. 
Lim et al. (2011) introduced an adaptive queue management method to stabilize the delay within the queue. This approach 
was built based on an aggregated traffic model. The proposed method reduced the queuing time by adjusting the mobile 
queuing threshold that governs traffic arrival rates. This queuing threshold dynamically adapts based on calculated average 
delays. A discrete queuing model was developed to simulate the method's process using an aggregated traffic model with N 
overlapping flows, modeled using MMBP-2 arrival processes. Various settings for MMBP-2 were employed; however, the 
results showed consistency across these settings. Consequently, the experiments were conducted under moderate traffic load. 
 
Saaidah et al. (2014) analyzed the performance of the BLUE method to adjust its parameter settings using MMBP-2 with 
varied state probabilities. The results showed that the performance of BLUE, simulated and analyzed using MMBP-2 during 
heavy congestion, is better than that obtained using BP. The results suggested that BLUE is suitable for implementation on 
routers processing Internet traffic with a bursty and correlated nature. Similarly, Alsaaidah et al. (2016) analyze the 
performance of the BLUE and Gentle BLUE (GBLUE) methods. The performance analysis shows that Gentle BLUE 
outperforms BLUE.  For RED, Xu et al. (2021) presented a performance analysis model using MMBP-2. 
 
The need for the MMBP-4 models was realized recently. Accordingly, Mahawish and Hassan (2022) proposed utilizing the 
Markov decision process (MDP) to modify the RED algorithm with MMBP-4. In this approach, various queue length 
parameters were modeled using the four states in the MMBP-4; each influences the performance of the RED differently. 
Additionally, each transition probability between the four states in the MMBP represents a different decision to be made. 
According to the obtained results, MMBP-4 improves the RED's performance. 
 
A survey of various Markov Models (MM) was presented by Zaryadov et al. (2017), which examined different AQM methods. 
Table 1 summarizes the methods and aims of the developed AQMs. In essence, the modeling of arrival traffic should 
accurately capture the characteristics of real traffic. Internet traffic is inherently aggregated, exhibiting burstiness and 
correlation. To accommodate these traits and represent probabilistic traffic effectively, the Markov-Modulated Bernoulli 
Process (MMBP) is commonly employed for arrival traffic modeling. However, the simplicity of the implemented models 
has limited their ability to represent the complexity of actual traffic. Therefore, this paper introduces a more intricate MMBP-
4 model instead of the commonly used BP and MMBP-2 models. By increasing the number of states in the Markov Model, 
we enhance our ability to model the intricacies of Internet traffic and generate more complex probabilities. 
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Table 1  
Summary of the Related Work 

Ref.  Model Traffic Model Aim 
Guan, Awan, et al. (2004) MMBP-2 Bursty and heavy  Attain QoS 
Guan, Woodward, et al. (2004) MMBP-2 Stable and moderate  Attain QoS 
Guan et al. (2006) MMBP-2 Stable and moderate  Reduce delay 
Wang et al. (2011) BP Moderate with disturbance Controlling delay 
Floyd and Jacobson (1993)  BP Stable  Proactive congestion control 
PI (Hollot et al., 2001)  BP Stable  Stabilize the performance 
BLUE (Feng et al., 1999) BP Stable  Reduce loss 
EnRED (Abu-Shareha, 2019) BP Stable  Reduce loss 
Lim et al. (2011) MMBP-2 Stable and moderate  Controlling delay 
Saaidah et al. (2014) MMBP-2 Bursty and heavy  Analyze BLUE  
Alsaaidah et al. (2016) MMBP-2 Bursty and heavy  Compare BLUE to GBLUE 
Mahawish and Hassan (2022) MMBP-4 Bursty and heavy  Improve RED 

 
4. The Proposed Work 
 
BP is a stochastic and discrete-time process with a number of independent random variables Xi. Using BP, packet arrival 
events stochastically occur at every time slot, represented by a variable Xi. The probability of packet arrival pk, in the time 
slot k, is independent of the arrival probability at other time slots, as BP is memoryless. Packet arrival in slot k follows a 
binomial distribution, with a probability of p for a packet arrival at Xi and a probability of failure, represented as 1−p. The gap 
between two successive arrivals follows a geometric distribution with parameter p. MMBP is employed to evaluate and bench-
mark the RED AQM method. However, BP does not account for the burstiness of traffic in the design and evaluation of AQM. 
This paper introduces a model that extends such traffic modeling with four states while maintaining an overall probability to 
allow for a comparison between MMBP-4, MMBP-2, and BP. Figure 3 illustrates the proposed framework for benchmarking 
RED using BP, MMPP-2, and MMBP-4. 
 

 
Fig. 3. RED Benchmarking Framework 

 
4.1 Parameter Initialization 
 
The parameter settings are listed in Table 2. The departure probability for all models and all experiments is set to 0.5 for all 
models. The packet arrival probability for each model is set to different values in each experiment, ranging from [0.18–0.93]. 
The overall probability for each model is identical for each experiment to create a fair comparison. Each value creates a 
different traffic load environment. Heavy traffic is generated with possible congestion as the arrival probability exceeds the 
departure probability. On the other hand, a light traffic load is generated when the arrival probability is below the departure. 
 
Table 2  
Parameter Settings 

Parameter Values 
Arrival probability  0.18-0.93 
Departure probability  0.5 
Capacity 20 
Queue weight 0.002 
Dmax 0.1 
Minimum Threshold 3 
Maximum Threshold 9 

 
4.2 Traffic Modeling 
 
Using the discrete-time queue model, unequal time slots capture and evaluate the model performance, each accommodating 
one departure or arrival event or both. Departure occurs before arrival, and both events depend on the events' probabilities 
and a linear congruential generator. According to the MMBP, these events occur based on the probability of the model's 
current state. MMBP-4 uses four states (i.e., s0, s1, s2, s3), each state has a different packet arrival probability value (i.e., p0, 
p1, p2, p3). The transmission probability from one state to another is represented in Eq. (1) for MMBP-4 and Eq. (2) for MMBP-
2. 
 𝑟௜௝ =  1 − 𝑝௜ / 3 (1) 𝑟௜௝ =  1 − 𝑝௜ (2) 
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The initial state for packet arrival in MMBP-2 and MMBP-4 is s0. The packet arrival is then implemented depending on the 
state's probability. The next event occurs in the same state or after transferring to another, as shown in Fig. 4. 
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Fig. 4. RED-MMBP-4 

 
As such, assume that the packet arrives in state s0 during time slot i. The next arrival process occurs in the same state, with a 
probability of p0, or the process transmitted to another state, with a probability of (1- p0)/3. The key distinction between BP, 
MMBP-2, and MMBP-4 lies in using multiple states instead of a single state in BP. The transmission probabilities are 
represented by a transition probability matrix Rm. In contrast, the arrival probabilities at different states are represented using 
the diagonal matrix Am, as given in Eq. (3) and Eq. (4), respectively.  
 

𝑅𝑚 = ൦ 𝑝௢ (1 − 𝑝௢)/3(1 − 𝑝ଵ)/3 𝑝ଵ (1 − 𝑝௢)/3 (1 − 𝑝௢)/3(1 − 𝑝ଵ)/3 (1 − 𝑝ଵ)/3(1 − 𝑝ଶ)/3 (1 − 𝑝ଶ)/3(1 − 𝑝ଷ)/3 (1 − 𝑝ଷ)/3 𝑝ଶ (1 − 𝑝ଶ)/3(1 − 𝑝ଷ)/3 𝑝ଷ ൪  
 

(3) 

𝐴𝑚 = ൦𝑝଴ 00 𝑝ଵ 0 00 00 00 0 𝑝ଶ 00 𝑝ଷ൪ 
 
 

(4) 

 
Accordingly, the steady-state probabilities for s0 and s1 in the MMBP-2 are given in Eq. (5) and Eq. (6), respectively. In 
contrast, the probabilities for s0, s1, s2, and s3 in the MMBP-4 are given in Eqs. (7-10). 
 𝑃௦బ஻௉ିଶ =  𝑝଴ × 𝑃(𝑠଴) + (1 − 𝑝ଵ) × 𝑃(𝑠ଵ) (5) 𝑃௦భ஻௉ିଶ =  𝑝ଵ × 𝑃(𝑠ଵ) + (1 − 𝑝଴) × 𝑃(𝑠଴) (6) 𝑃௦బ஻஻ିସ =  𝑝଴ × 𝑃(𝑠଴) + (1 − 𝑝ଵ / 3) × 𝑃(𝑠ଵ) + (1 − 𝑝ଶ / 3) × 𝑃(𝑠ଶ) + (1 − 𝑝ଷ / 3) × 𝑃(𝑠ଷ) (7) 𝑃௦భ஻஻ିସ =  𝑝ଵ × 𝑃(𝑠ଵ) + (1 − 𝑝଴ / 3) × 𝑃(𝑠଴) + (1 − 𝑝ଶ / 3) × 𝑃(𝑠ଶ) + (1 − 𝑝ଷ / 3) × 𝑃(𝑠ଷ) (8) 𝑃௦మ஻஻ିସ =  𝑝ଶ × 𝑃(𝑠ଶ) + (1 − 𝑝଴ / 3) × 𝑃(𝑠଴) + (1 − 𝑝ଵ / 3) × 𝑃(𝑠ଵ) + (1 − 𝑝ଷ / 3) × 𝑃(𝑠ଷ) (9) 𝑃௦య஻஻ିସ =  𝑝ଷ × 𝑃(𝑠ଷ) + (1 − 𝑝ଷ / 3) × 𝑃(𝑠ଷ) + (1 − 𝑝ଵ / 3) × 𝑃(𝑠ଵ) + (1 − 𝑝ଶ / 3) × 𝑃(𝑠ଶ) (10) 
  
Thus, to achieve a specific overall probability of value v, the average of these probabilities should be equal to v. To simplify 
the process, each of these probabilities can be set to v. As such, Ps0

BP-2 and Ps1
BP-2 are both set to v. The values of P(s0) and 

P(s1) are set to different values in the range of [0-1], to create different network load. Finally, the values of P0 and P1 are 
calculated based on the equations above. A similar technique is implemented for the four-state Markov model.  
 
4.3 Dropping Probability Calculation 
 
According to the RED method, Dp is calculated based on the pre-calculated aql, two predetermined thresholds, a pre-defined 
parameter, Dmax, and a counter. The counter is set to -1 when the packet is not dropped to increase the probability of dropping 
the next packet and avoid global synchronization. On the other hand, the counter's value is set to 0 when the packet is dropped 
to decrease the probability of dropping the next packet. In all cases, Dp is calculated as given in Eqs. (11-12). 
 𝐷𝑝ᇱ =  𝐷௠௔௫ × (𝑎𝑞𝑙 − 𝑚𝑖𝑛௧)/(𝑚𝑎𝑥௧ − 𝑚𝑖𝑛௧) (11) 𝐷𝑝 =  𝐷𝑝ᇱ/((1 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) × (𝐷𝑝ᇱ)) (12) 
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4.4 Performance Metrics  
 
The performance of the RED method under different traffic generation processes is measured using the mean queue length 
(MQL), the queuing delay (DEL), the dropping rate (DR), and packet loss (PL). The MQL is the average number of packets 
accommodated in the router buffer. This measure can be classified as a cost measure. The lower the measure, the better the 
performance. The calculation of the MQL measure is implemented as given in Eq. (13).   
 𝑀𝑄𝐿 =  ෍ 𝑖 × 𝑝௜ே௜ୀ଴  (13) 

 
where N is the router capacity, and i represents a specific queue length within the buffer capacity.  
 
DEL is the packets' average waiting time, calculated using Little’s law, as given in Eq. (14). 
 𝐷𝐸𝐿 =  𝑀𝑄𝐿/𝑇  (14) 
 
PL is the ratio of lost packets compared to the number of arrived packets. DR reflects the rate of dropping packets based on 
the AQM decision. All these measures are cost types, yet these should be balanced between PL and DR. Accordingly, the 
increase of DR is not always related to decreased performance.  
 
5. The Experimental Results 
 
The BP, MMBP-2, and MMBP-4 methods were simulated, and the results are discussed based on the previously mentioned 
performance measures. 
 
5.1 The Simulation Environment 
 
Java was used to simulate RED-BP, RED-MMBP-2, and RED-MMBP-4 models. As illustrated in Figure 5, the discrete-time 
queue is used as it is the most utilized queuing technique. The simulation environment is a single router buffer node with First 
Come, First Serve (FCFS) as the scheduling method. 
 

P
k2

P
k1

P
k4

P
k3………….……….P
kn

m
inthreshold

No dropping probability Marking /dropping packet 
randomly 

Dropping all 
arriving packet 

P
k

Packet Arrival

Packet queued in the router 
(FCFS)

m
axthreshold

Packet Departure

P
k

0p

1p

2p

3p

 
Fig. 5. RED-MMBP-4 Model 

 

5.2 Results  
 
The results of the RED method using different modeling techniques based on MQL, DEL, DR, and PL are illustrated in Figs. 
(6-9). Fig. 6 illustrates the performance of the RED-BP, RED-MMBP-2, and RED-MMBP-4 based on MQL. As shown, the 
performance of these methods varied based on the arrival probability. In the case that the arrival probability is low (i.e., α is 
up to 0.33), no congestion occurs. In such a case, RED-MMBP-4 provides equal MQL results with other methods. In this 
case, the traffic characteristics are not revealed with such a low arrival rate. The value of the MQL is varied when the arrival 
rate increases to create a congestion state. In such a case, the results for the MMBP-4 are worse than those of the MMBP-2 
and BP, as the traffic characteristics are exposed in such a case, and MMBP-4 revealed the slow response of the RED, as 
discussed earlier. Fig. 7 illustrates the performance of the RED-BP, RED-MMBP-2, and RED-MMBP-4 based on DEL. 
Again, the performance of these methods varied based on the arrival probability. In the light traffic case, RED-MMBP-4 
provides equal DEL results with other methods. The results are expected as the traffic characteristics are not revealed with 
such a low arrival rate. With heavy traffic load, the results for the RED-BP are better than those of the MMBP-2 and RED-
MMBP-4, as the traffic characteristics are exposed in such a case, and MMBP-4 is a better model to address the limitations 
of the RED method.   
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Fig. 6. Methods performance based on MQL  

 

 
Fig. 7. Methods performance based on DEL  

 

 
Fig. 8. Methods performance based on DR 

 
Fig. 8 presents the performance analysis of three models based on DR: RED-BP, RED-MMBP-2, and RED-MMBP-4. In a 
scenario with light traffic, all compared models achieved an optimal dropping rate of zero, ensuring efficient network 
operation. Interesting patterns emerge as the packet arrival probability gradually increases within the range of 0.33 to 0.48. 
RED-BP emerges as the standout performer in this transitional phase, outperforming the other methods. This superior 
performance can be attributed to the Mean Queue Length (MQL) values employed by these models, which are crucial in 
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shaping dropping rates. However, as the arrival probability continues to rise, the dynamics shift. RED-MMBP-2 takes the 
lead in maintaining a more favorable dropping rate than the other methods. Concurrently, RED-BP's performance remains 
good but begins to drop down. In contrast, RED-MMBP-4 experiences challenges in adapting to the changing load conditions. 
The gradual increase in packet arrivals leads to accumulation within the network buffer, ultimately impacting network 
performance. While Dropping Rate (DR) is indeed a cost measure, it becomes necessary during periods of heavy traffic to 
prevent congestion-induced loss. In this context, RED-MMBP-4 falls short in dropping adequate packets to effectively 
manage the congested network, resulting in undesirable packet loss. These findings highlight the importance of selecting the 
right congestion control method based on the prevailing traffic conditions, as a one-size-fits-all approach may not yield 
optimal results. 
 

  
Fig. 9. Methods performance based on PL  

 
Fig. 9 illustrates the performance comparison based on PL. Notably, all three models exhibit identical PL performance when 
operating under light and moderate traffic conditions, where the packet arrival rate (α) remains within the range of 0 to 0.63. 
However, it's under conditions of heavy congestion that the distinctions become apparent. In this scenario, RED-MMBP-2 
emerges as the standout performer, demonstrating superior PL performance compared to the other methods. This observation 
underscores the effectiveness of RED-MMBP-2 in mitigating packet loss during periods of intense network congestion. 
 
6. Conclusion 
 
In this paper, a novel four-state Markov-modulated Bernoulli process is designed to serve as a robust benchmark for evaluating 
the performance of the RED method. To create a meaningful comparison, we also establish two-state and one-state models 
by carefully solving the relevant equations, ensuring they share similar probabilities while exhibiting distinct burstiness 
characteristics. Using the proposed model, the research vividly highlights the limitations of the RED method, particularly 
when contrasted with analyses involving models featuring only one or two states. The essential traffic properties were captured 
through our developed model, including burstiness and correlation dynamics. The results showed that the proposed model has 
better performance measures for MQL, DEL, PL, and DR, especially with heavy congestion. These findings underscore the 
potential of our model as a valuable tool for assessing and enhancing network congestion control mechanisms. 
 

Acknowledgment  
 

This research was funded by Arab Open University grant number (AOURG-2023-005). 
 

References 
 

Abbasov, B., & Korukoglu, S. (2009). Effective RED: An algorithm to improve RED's performance by reducing packet loss 
rate. Journal of Network and Computer Applications, 32(3), 703-709. 
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2008.07.001  

Abu-Alhaj, M. M., Hussein, A. H., Kharma, Q., & Shambour, Q. (2021). Multi-indicator Active Queue Management Method. 
Computer Systems Science and Engineering, 38(2), 251-263.  

Abu-Shareha, A. A. (2019). Enhanced Random Early Detection using Responsive Congestion Indicators. International 
Journal of Advanced Computer Science and Applications (IJACSA), 10(3), 358-367. 
https://doi.org/http://dx.doi.org/10.14569/IJACSA.2019.0100347  

Abu-Shareha, A. A. (2022). Integrated Random Early Detection for Congestion Control at the Router Buffer. Computer 
Systems Science and Engineering, 40(2), 719-734. http://www.techscience.com/csse/v40n2/44469  

Ahmed, A., & Nasrelden, N. (2018, 19-21 February). New congestion control algorithm to improve computer networks 
performance 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt.  

0 0 0

0.
07

3

0.
19

2

0.
28

9

0 0

0.
01

8

0.
04

3 0.
10

2 0.
14

5

0 0 0.
00

3 0.
05

2

0.
13

7 0.
18

0

0.05

0.1

0.15

0.2

0.25

0.3

0 . 1 8 0 . 3 3 0 . 4 8 0 . 6 3 0 . 7 8 0 . 9 3

PL

ARRIVAL RATE

PL PERFORMANCE

MMBP-4

MMBP-2

BP



 1160

Almomani, O., Saaidah, A., Al Balas, F., & Al-Qaisi, L. (2019). Simulation Based Performance Evaluation of Several Active 
Queue Management Algorithms for Computer Network. 2019 10th International Conference on Information and 
Communication Systems (ICICS),  

Alsaaidah, A., Zalisham, M., Fadzli, M., & Abdel-Jaber, H. (2016). Markov-modulated bernoulli-based performance analysis 
for gentle blue and blue algorithms under bursty and correlated traffic. Journal Of Computer Science.  

Chen, Z., Feng, X., Liu, S., & Zhang, W. (2023). Bang–bang control for a class of optimal stochastic control problems with 
symmetric cost functional. Automatica, 149, 110849.  

Domaski, A., Domaska, J., Czachorski, T., Klamka, J., Marek, D., & Szygua, J. (2018). The influence of the traffic self-
similarity on the choice of the non-integer order PIα controller parameters. In Computer and Information Sciences (pp. 1-
8). Springer Nature.  

Feng, W.-c., Kandlur, D. D., Saha, D., & Shin, K. G. (1999). BLUE: A New Class of Active Queue Management Algorithms.  
Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on 

Networking, 1(4), 397-413. https://doi.org/10.1109/90.251892  
Guan, L., Awan, I.-U., & Woodward, M. E. (2004). Stochastic modelling of random early detection based congestion control 

mechanism for bursty and correlated traffic. IEE Proceedings-Software, 151(5), 240-247.  
Guan, L., Woodward, M. E., & Awan, I.-U. (2004, 11-13 October). Stochastic modelling of maintaining specified QoS 

constraints in discrete-time domain 13th International Conference on Computer Communications and Networks, Chicago, 
IL, USA.  

Guan, L., Woodward, M. E., & Awan, I.-U. (2006, 18-20 April). Bounding delay through a buffer using dynamic queue 
thresholds 20th International Conference on Advanced Information Networking and Applications-Volume 1 (AINA'06), 
Vienna, Austria.  

Hollot, C. V., Misra, V., Towsley, D., & Gong, W. B. (2001). On designing improved controllers for AQM routers supporting 
TCP flows Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Anchorage, AK, 
USA.  

Jafri, S. T. A., Ahmed, I., & Ali, S. (2022). Queue-Buffer Optimization Based on Aggressive Random Early Detection in 
Massive NB-IoT MANET for 5G Applications. Electronics, 11(18), 2955.  

Li, S., Xu, Q., Gaber, J., Dou, Z., & Chen, J. (2020). Congestion control mechanism based on dual threshold DI-RED for 
WSNs. Wireless personal communications, 115, 2171-2195.  

Lim, L. B., Guan, L., Grigg, A., Phillips, I. W., Wang, X. G., & Awan, I. U. (2011). Controlling mean queuing delay under 
multi-class bursty and correlated traffic. Journal of Computer and System Sciences, 77(5), 898-916. 
https://doi.org/http://dx.doi.org/10.1016/j.jcss.2010.08.007  

Liu, S., Başar, T., & Srikant, R. (2008). TCP-Illinois: A loss-and delay-based congestion control algorithm for high-speed 
networks. Performance Evaluation, 65(6), 417-440.  

Mahawish, A. A., & Hassan, H. J. (2022). Improving RED algorithm congestion control by using the Markov decision process. 
Scientific Reports, 12(1), 13363.  

Marin, A., Rossi, S., & Zen, C. (2020). Size-based scheduling for TCP flows: Implementation and performance evaluation. 
Computer Networks, 183, 1-15.  

Saaidah, A. M., Jali, M. Z., Marhusin, M. F., & Abdel-jaber, H. (2014, 2-4 September). Markov-modulated Bernoulli-based 
performance analysis for BLUE algorithm under bursty and correlated traffics 2014 International Conference on 
Computer, Communications, and Control Technology (I4CT), Langkawi, Malaysia.  

Wang, J., Guan, L., Lim, L. B., Wang, X. G., Grigg, A., Awan, I., . . . Chi, X. (2011). QoS enhancements and performance 
analysis for delay sensitive applications. Journal of Computer and System Sciences, 77(4), 665-676.  

Xu, Q., Li, S., Van Do, T., Jia, K., & Yang, N. (2021). Performance analysis of cognitive radio networks with burst dynamics. 
IEEE Access, 9, 110627-110638.  

Yu-Dong, C., Li, L., Yi, Z., & Jian-Ming, H. (2009). Fluctuations and pseudo long range dependence in network flows: a non-
stationary Poisson process model. Chinese Physics B, 18(4), 1373.  

Zaryadov, I., Korolkova, A., Kulyabov, D., Milovanova, T., & Tsurlukov, V. (2017, 25–29 September). The survey on 
Markov-modulated arrival processes and their application to the analysis of active queue management algorithms 
Distributed Computer and Communication Networks: 20th International Conference, Moscow, Russia.  

Zhang, J., Xu, W., & Wang, L. (2011). An Improved Adaptive Active Queue Management Algorithm Based on Nonlinear 
Smoothing. Procedia Engineering, 15, 2369-2373.  

Zhu, H., Sun, H., Jiang, Y., He, G., Zhang, L., & Lu, Y. (2023). A Sketch-Based Fine-Grained Proportional Integral Queue 
Management Method. Axioms, 12(9), 814.  

 

    

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


