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 The security and integrity of computer systems and networks highly depend on malware detection. 
In the realm of malware detection, the K-Nearest Neighbors (KNN) algorithm is a well-liked and 
successful machine learning algorithm. However, the choice of an acceptable distance metric pa-
rameter has a significant impact on the KNN algorithm's performance. This study tries to improve 
malware detection by adjusting the KNN algorithm's distance metric parameter. The distance met-
ric greatly influences the similarity or dissimilarity between instances in the feature space. The 
KNN algorithm for malware detection can be more accurate and effective by carefully choosing 
or modifying the distance metric. This paper analyzes multiple distance metrics, including Min-
kowski distance, Manhattan distance, and Euclidean distance. These metrics account for the traits 
of malware samples while capturing various aspects of similarity. The effectiveness of the KNN 
algorithm is evaluated using the MalMem-2022 malware dataset, and the results are broken down 
into these three-distance metrics. The experimental findings show that, among the three distance 
metric parameters, the Euclidean and Minkowski distance metric parameters considerably pro-
duced the best outcomes with binary classification. While with multiclass classification, the KNN 
algorithm has achieved the highest outcomes using Manhattan distance.       
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1. Introduction 
 
 

 
Cyberthreats refer to the possible dangers and attacks that could be launched against computer systems, networks, and other 
components of the digital infrastructure. The weaknesses in the technology are exploited by these threats to obtain illegal 
access, disrupt operations, steal data, or inflict damage in various other ways (Lei et al., 2022). DDoS attacks, social engi-
neering, phishing, and malicious software (malware) are typical cyberthreats (Alves, Das, & Morris, 2018; Jain, Rajvaidya, 
Sah, & Kannan, 2022). Malware is any software or code created with the sole intention of causing damage to computer 
systems, networks, or devices, exploiting them, or gaining unauthorized access to them. Hackers, often known as cybercrim-
inals, are the individuals or organizations responsible for the harmful creation of this content. Malware can infect various 
platforms, such as personal computers, server computers, mobile devices, and embedded systems. Malware's principal func-
tion is to undermine users' confidence in their computer systems' safety and reliability (Jain, Rajvaidya, Sah, & Kannan, 2022; 
Peng, Li, Zou, & Wu, 2013; Sen, Aydogan, & Aysan, 2018). According to the 2023 Cyber Threat Report published by Son-
icWall, malware had its first uptick since 2018, when the number of attacks surged to 5.5 billion, representing a 2% year-
over-year increase (Sonicwall, 2022). As of the year 2023, there are 300,000 new cases of malware created each day, 92% of 
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which are disseminated through email, and it takes an average of 49 days to identify them (Kolesnikov, 2023). Malware can 
be distributed in various ways, such as through infected websites, malicious email attachments, software downloads from 
unknown sources, or by exploiting software or operating system vulnerabilities (Qbeitah & Aldwairi, 2018; Das & Nanda, 
2013). It is essential for individuals, businesses, and organizations to keep strong cybersecurity measures in place. These steps 
can include the installation of network firewalls and intrusion detection systems, regularly patching systems and applications, 
and utilizing well-known antivirus software (Tirumala, Valluri, & Babu, 2019; Belaoued et al., 2020). However, due to the 
ever-changing nature of the threat landscape, it is imperative to develop new security solutions that are both intelligent and 
adaptable (Saurabh, 2018; Sai, Tyagi, Panda, & Kumar, 2022). The employment of machine learning (ML) algorithms is an 
option for accomplishing this goal (Sai et al., 2022; Abualhaj et al., 2022) Malware identification has benefited significantly 
from applying ML as a tool. The ability of traditional antivirus systems that rely on known patterns or signatures of previously 
recognized malware to detect new and developing strains of malware is restricted. ML algorithms, on the other hand, have 
the potential to detect and classify malware based on patterns and features that are automatically learned from massive vol-
umes of data. This presents a significant advantage over traditional algorithms of malware detection. Decision trees (DT), 
gradient boosting (GB), random forests (RF), support vector machines (SVM), logistic regression (LR), Naive Bayes (NB), 
and k-nearest neighbors (KNN) are examples of some of the most common ML algorithms (Kolhar et al., 2020; Rosmansyah 
& Dabarsyah, 2015; Yeo et al., 2018; Choudhary & Sharma, 2020; Chen et al., 2020; Al Zaabi & Mouheb, 2020). KNN is a 
non-parametric algorithm that assigns a classification to a data point by looking at the class labels of the points in the training 
data that are closest to it. The effectiveness of KNN is profoundly influenced by the distance metric used (Chen et al., 2020; 
Hegedus et al., 2011; Alsharaiah et al., 2023). In this study, we will investigate the effectiveness of the KNN algorithm for 
detecting malware using a variety of distance metrics. 

This paper is organized as follows: Section 2 presents some related works. Section 3 discusses the CIC-MalMem-2022 dataset. 
Section 4 presents the preprocessing of the CIC-MalMem-2022 dataset. Section 5 discusses the KNN algorithm. Section 6 
discusses the K-Fold cross-validation technique. Section 7 presents the implementation environment and the results. Section 
8 presents the conclusion.    
 

2. Literature review  

Rosmansyah and Dabarsyah (2015) has developed an innovative method for detecting malware on Android devices using API 
classes. The method, detailed in their research paper, leverages ML g techniques to classify programs as benign or malicious. 
The authors also evaluate the precision rates achieved by implementing ML. The classification process in the study involves 
using cross-validation and percentage split tests, along with incorporating 51 API package classes derived from 16 API clas-
ses. Three classification algorithms—RF, J48, and SVM—are employed to categorize the malware and benign samples. The 
study encompasses 412 application samples, comprising 205 clean applications and 207 applications containing malicious 
software. The study results reveal that the RF algorithm achieves an impressive precision rate of 92.4% in the cross-validation 
test. In comparison, the SVM method attains a precision rate of 91.4% in the percentage split test. Yeo et al. (2018) have 
automated malware detection using convolutional neural network (CNN) and other ML methods. Traditional malware detec-
tion techniques are vulnerable to malware because they have relied on particular packet fields like port numbers and protocols. 
Instead of depending on port numbers and protocols, the suggested method improves robustness and accuracy by using 35 
unique properties retrieved from packet flows. The researchers used information from the Stratosphere IPS project to assess 
the method's efficacy. This dataset contained normal state packets from an uninfected environment and nine public malware 
packets. The 35 features were collected from the flows after the packets were transformed into flow data using Netmate. SVM, 
CNN, multi-layer perceptron (MLP), and RF algorithms were used for classification. The outcomes showed the effectiveness 
of the suggested method, with both CNN and RF achieving above 85% accuracy, precision, and recall for all classes. Com-
pared to traditional methods that rely on port numbers and protocols, this method presents a more trustworthy and accurate 
way of identifying malware by utilizing the CNN method and the 35 pertinent features retrieved from packet flows. 

 
Choudhary and Sharma (2020) discuss polymorphic malware, which continuously modifies its identifiable characteristics to 
evade detection by traditional signature-based systems. The authors employ static information extracted from malicious and 
non-malicious executable files in a machine-learning algorithm to enable rapid malware prediction. Each algorithm yields 
distinct classification results. The DT algorithm achieves an accuracy of approximately 99.14%, while the RF algorithm 
demonstrates an accuracy of around 99.47%. Notably, the Light GBM algorithm surpasses the RF algorithm, achieving an 
accuracy of nearly 99.50% and attaining the highest level of accuracy. The Light GBM algorithm exhibits efficiency in terms 
of training time and accuracy, outperforming the RF classifier. Moreover, the Light GBM method offers several advantages, 
including a significantly reduced false negative rate compared to other classifiers. Chen et al. (2020) develop a model that 
combines the SVM algorithm and the active learning by learning (ALBL) method to overcome the problem of little labeled 
data and lessen classification mistakes. The model is made flexible in response to expert feedback, allowing for modifications 
and advancements over time. Notably, the model gives higher priority to samples with greater levels of uncertainty, offering 
insightful information about the sources and effects of the data. The researchers used the malware family dataset from the 
Microsoft Malware Classification Challenge (BIG 2015) on Kaggle to assess the proposed model. The main element was the 
ALBL method, which enabled iterative model training with consultant input. The model's outstanding accuracy rate of 99.64% 
was attained. The outcomes unequivocally show that the ALBL method efficiently improves the ML model's functionality 
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and raises the standard of labeled samples. The model consequently shows a lower classification error rate and quickly reaches 
its accuracy rate. Al Zaabi and Mouheb (2020) present a machine-learning approach for Android malware detection that 
utilizes various static features derived from Android Application Packages (APKs). Features, including opcodes, permissions, 
API calls, activities, and services are highlighted in the study. The researchers gathered the dataset from various raw APK 
file-providing sources, and AndroPyTool was used to extract dynamic and static information from these files. A total of 4000 
APK files were employed in the initial experiment, with 50% categorized as malware and the other 50% as benign programs. 
Several ML classifiers, including the Linear Classifier, Boosted Trees, Gaussian NB, DT, RF, Gaussian Process (GP), and 
SVM, are used in the proposed malware detection method. GP produced the highest accuracy of the classifiers (83%), with 
DT and RF closely behind with 82% accuracy. The GP produced the highest accuracy while taking the longest to train and 
evaluate the model. 
 
3. CIC-MalMem-2022 Dataset 
 
The Canadian Institute for Cybersecurity developed the CIC-MalMem-2022 to evaluate malware detection algorithms. This 
paper will utilize the CIC-MalMem-2022 to evaluate the proposed algorithm because it consists of wildly propagated malware 
in the real world. The CIC-MalMem-2022 consists of three main malware categories, each containing five more malware 
subcategories, as shown in Table 1. The CIC-MalMem-2022 contains 58,596 records, divided equally between benign and 
malicious (Dener, Ok, & Orman, 2022). Besides, the CIC-MalMem-2022 contains 55 features. 
 
Table 1  
Malware Categories 

Malware Main Category Malware Subcategory # of Samples 

Ransomware 

MAZE 1958 
Pysa 1717 

Shade 2128 
Conti 1988 
Ako 2000 

Spyware 

TIBS 1410 
Gator 2200 

180Solutions 2000 
Transponder 2410 

Coolwebsearch 2000 

Trojan Horse 

Refroso 2000 
Reconyc 1570 

Zeus 1950 
scar 2000 

Emotet 1967 
Total 29,298 

 
4. Data preprocessing 

The CIC-MalMem-2022 dataset must be processed to be ready for ML algorithms. The first step of data preprocessing is to 
convert the textual data into numbers since the KNN algorithm works with numbers (Abualhaj et al., 2022). Only the output 
(label) field in the CIC-MalMem-2022 dataset contains text, and all other fields contain numbers. As mentioned earlier, the 
dataset output field contains 15 subcategories of malware plus the benign category (Dener, Ok, & Orman, 2022). The label 
encoding technique has been used to replace the value of these fields with numbers from 0 to 14 for malware subcategories 
and 15 for the benign category (Abualhaj et al., 2022). The second step of data preprocessing is ensuring the data has the same 
scale (Abualhaj et al., 2022). This is done to prevent specific features with large values from dominating over other features 
with smaller values. To accomplish this goal, the min-max scaling method was applied to scale the values of all features to a 
range between 0 and 1 (Abualhaj et al., 2022). Table 3 shows a sample of the original CIC-MalMem-2022 dataset before 
preprocessing. Table 4 shows a sample of the CIC-MalMem-2022 dataset after preprocessing (after applying label encoding 
and min-max scaling). 
 
Table 3  
Sample of the CIC-MalMem-2022 dataset before preprocessing 

Features 1 to 9 Label 
45, 12, 13.91549774, 0, 313.792842, 2360, 52.44444444, 14120, 313.792842 Benign 
39, 15, 11.41025641, 0, 220.5897436, 1562, 40.05128205, 8603, 220.5897436 Ransomware-Ako 
38, 15, 9.578947368, 0, 178.3421053, 1057, 35.23333333, 6347, 218.862069 Spyware-Transponder 
42, 16, 10.73809524, 0, 209.2142857, 1621, 38.5952381, 8787, 209.2142857 Horse-Emotet 

 
Table 4  
Sample of the CIC-MalMem-2022 dataset after preprocessing 

Features 1 to 9 Label 
0.109589041, 0.0625, 0.808633354, 0, 0.011238179, 0.609448251, 0.984155138, 0.010160989, 0.007197615 0 

0.082191781, 0.109375, 0.643469107, 0, 0.007481654, 0.321673278, 0.713782847, 0.004875474, 0.004433016 1 
0.077625571, 0.109375, 0.522735517, 0, 0.005778875, 0.139560043, 0.608673288, 0.002714132, 0.004381769 10 

0.095890411, 0.125, 0.599155215, 0, 0.00702317, 0.342949874, 0.682017433, 0.005051753, 0.004095596 11 
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5.   KNN algorithm 

KNN is one of the most widely used ML algorithms and can be utilized for classification and regression work. It is a non-
parametric algorithm, meaning it makes no assumptions about the data distribution used as a basis for its calculations. KNN 
excels in several areas, including its ease of use and interpretability and its capacity to solve classification issues involving 
several classes. However, because it needs to calculate distances for every data point, it can be a computationally expensive 
algorithm, especially when working with huge datasets (Hegedus et al., 2011). 

5.1 KNN algorithm processes  

The KNN algorithm uses several processes to distinguish malware from benign data. First, as mentioned earlier, the CIC-
MalMem-2022 dataset should be loaded and processed to be ready for the KNN algorithm. Then, the value of the K (K-th 
nearest neighbor) parameters should be defined. In this paper, we will use the values of 3 and 5 for K, as these values have 
been tested and proved to be the best. After that, determine the distances that separate the newly added data point from the 
rest of the training data points. Euclidean distance, Manhattan distance, and Minkowski distance are common techniques 
KNN uses. Selecting the appropriate distance measure significantly impacts how well the KNN algorithm performs, as will 
be covered in Section 5.2. Next, determine which K neighbors are closest to the newly added data point based on your com-
puted distances. Before the final process, determine the K neighbors' data points that belong to each class and count them. 
Finally, the class label of the new data point should be assigned based on the class that has the majority among the K neigh-
boring points (Hegedus et al., 2011; Ma & Chi, 2022; Shi et al., 2022). At this stage, the new data point has been determined 
as malware or benign, and KNN can output the predicted result. Fig. 1 shows the pseudocode of the KNN algorithm.  

KNN Algorithm  
1. trainingSet: the labeled dataset for training 
2. testInstance: the instance to classify of predict 
3. k: the number of nearest neighbors to consider 
4. for each instance in trainingSet 
5.        distance = calculate the distance using Eq. (1), Eq.(2) or Eq. (3) 
6.        Distances.append((instance, distance)) 
7.        Sort(distance) based on distances 
8.         Neighbors = [] 
9.               for i=0 to k-1 
10.                       neighbors.append(distances[i].instance) 
11.                       results = majorityVote(neighbors) 
12.                end 
13.  end 

Fig. 1. Pseudocode of the KNN algorithm 

5.2 Distance metric  

Choosing the value of the distance measure is one of the key procedures in KNN, as was previously mentioned. The chosen 
distance metric may impact the KNN algorithm's performance. The nature of the problem and the data will determine which 
distance measure is best to use, so it's critical to consider these factors. For various types of data, different metrics are appro-
priate. Euclidean distance, Manhattan distance, and Minkowski distance are popular distance measures (Gao & Li, 2020; 
Maruf & Laksito, 2020; Zhang, Li, & Li, 2022). 

5.2.1. Euclidean distance  

Euclidean distance is one of the most common metrics for measuring the distance between two points in a Euclidean space. 
It is the straight-line distance between two points. In the context of the KNN algorithm, Euclidean distance is often used to 
measure the distance between data points. When using KNN for classification, the algorithm needs to find the k nearest data 
points to a given query point and then make predictions based on the labels or values of these neighboring points. Euclidean 
distance is one way to measure how close each point is to the query point. If you have two points in a 2-dimensional space, 
P1 (x1, y1) and P2 (x2, y2), the Euclidean distance between these points is calculated using the Pythagorean theorem in Eq. 
(1) (Gao & Li, 2020; Maruf & Laksito, 2020; Zhang, Li, & Li, 2022). 
 

Euclidean Distance =  ඥ(x2 −  x1)² +  (y2 −  y1)²)  (1) 
 
5.2.2. Manhattan distance  
 
Manhattan distance determines the distance between two points on a grid. Manhattan distance is concerned with the total 
horizontal and vertical distances between the two points, as opposed to Euclidean distance, which determines the shortest path 
between two points. When calculating the distance between data points in the KNN method, the Manhattan distance can be 
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utilized as an alternative to the more popular Euclidean distance. The Manhattan distance can be extremely helpful when 
working with high-dimensional data or features with diverse scales. For two points in a 2-dimensional space, P1 (x1, y1) and 
P2 (x2, y2), the Manhattan distance between these points is calculated using Eq. (2) (Gao & Li, 2020; Maruf & Laksito, 2020; 
Zhang, Li, & Li, 2022).  
 

Manhattan Distance = |x2 - x1| + |y2 - y1|        (2) 

5.2.3. Minkowski distance  

Minkowski distance is a generalized metric for determining the separation between two points in an N-dimensional space. 
Special instances of the Minkowski distance include the Euclidean distance and the Manhattan distance. In a broad sense, 
Minkowski distance can be used to estimate the separation between data points in the KNN algorithm. For two points P1 and 
P2 with coordinates (x1, x2, ..., xn) and (y1, y2, ..., yn), respectively, the Minkowski distance of order p is calculated using Eq. 
(3) (Gao & Li, 2020; Maruf & Laksito, 2020; Zhang, Li, & Li, 2022). 
 

Minkowski Distance =  (∑ |𝑥 −  𝑦| )భ          (3) 

6. K-Fold cross-validation  

K-Fold cross-validation is a popular method for evaluating the effectiveness of an ML model. The dataset is divided into five 
consecutive folds. The model is then trained and tested five times, with a different fold serving as the test set and the remaining 
folds serving as the training set. The data are then averaged to provide a more precise assessment of the model's performance 
(Wu et al., 2023). In Fig. 2, the K-Fold cross-validation is shown. 

 

Fig. 2. K-Fold cross-validation operations 

6. Implementation and results  

For implementation, a laptop with the following specifications is used: Intel Core I7-13620H CPU, SSD 512GB, 16 GB DDR5 
RAM, and MS Windows 11. Besides, Python programming, widely used in ML, implements and evaluates the KNN algorithm 
with different distance metric parameters. Multiclass classification has been used in evaluation experiments. The KNN algo-
rithm has been evaluated based on the elements of the confusion matrix: True positive (TPo), True Negative (TNe), False 
Positive (FPo), and False Negative (FNe). Using these elements, four metrics were built to evaluate the usefulness of the KNN 
algorithm to detect malware. Accuracy (Acr) is the first metric. The Acr is determined using Eq. (4). Recall (Rec) is the second 
metric. The Rec is determined using Eq. (5). Precision (Pre) is the third metric. The Pre is calculated using Eq. (6). F1-Score 
is the final metric. The F1-Score is calculated using Eq. (7) (Wu et al., 2023; Al-Mimi et al., 2023). 
 𝐴𝑐𝑟 = (𝑇𝑃𝑜 + 𝑇𝑁𝑒)(𝑇𝑃𝑜 + 𝑇𝑁𝑒 + 𝐹𝑃𝑜 + 𝐹𝑁𝑒) 

(4) 

𝑅𝑒𝑐 = 𝑇𝑃𝑜(𝑇𝑃𝑜 + 𝐹𝑁𝑒) (5) 

𝑃𝑟𝑒 = 𝑇𝑃𝑜(𝑇𝑃𝑜 + 𝐹𝑃𝑜) (6) 



 436 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ൈ 𝑃𝑟𝑒 ൈ 𝑅𝑒𝑐𝑃𝑟𝑒 + 𝑅𝑒𝑐 (7) 

 
As mentioned earlier, the choice of distance metric in the KNN algorithm is impacting the KNN algorithm performance. For 
that, different values of distance metrics are tested: the Euclidean distance, Manhattan distance, and Minkowski distance. Fig. 
3 (a), 3 (b), and 3 (c) display the Acr of the KNN algorithm with binary classification, multiclass classification (4 classes), 
and multiclass classification (16 classes), respectively. With binary classification, the Acr of the KNN has attained the highest 
values of 99.974% when k is 3 for both Euclidean distance and Minkowski distance. However, multiclass classification (4 
classes) and multiclass classification (16 classes) of the KNN have attained the highest values of 82.218% and 66.937%, 
respectively, when k is 3 with Manhattan distance.  
 

Fig. 3. (a) Accuracy of binary clas-
sification 

Fig. 3. (b) Accuracy of multiclass 
classification (4 classes) 

Fig. 3. (c) Accuracy of multiclass classifi-
cation (16 classes) 

 
The KNN has attained the same exact value of Acr as Rec, as shown in Fig. 4 (a), 4 (b), and 4 (c). Fig. 5 (a), 5 (b), and 5 (c) 
display the Pre of the KNN algorithm with binary classification, multiclass classification (4 classes), and multiclass classifi-
cation (16 classes), respectively. Fig. 6 (a), 6 (b), and 6 (c) display the F1-score of the KNN algorithm with binary classifica-
tion, multiclass classification (4 classes), and multiclass classification (16 classes), respectively. With binary classification, 
the pre and F1-score of the KNN have attained the same highest values (99.974%) of Acr and Rec when k is 3 for both 
Euclidean distance and Minkowski distance. However, multiclass classification (4 classes) and multiclass classification (16 
classes) of KNN have attained the highest Rec values (82.397% and 66.888%, respectively) and the highest F1-score values 
(82.247% and 67.329%, respectively), when k is 3 with Manhattan distance. 
 

   
Fig. 4. (a) Recall of binary classi-

fication 
Fig. 4. (b) Recall of multiclass 
classification (4 classes) 

Fig. 4. (c) Recall of multiclass classification (16 
classes) 

 

   
Fig. 5. (a) Precision of binary classi-
fication 

Fig. 5. (b) Precision of multiclass 
classification (4 classes) 

Fig. 5. (c) Precision of multiclass clas-
sification (16 classes) 

 
 

In summary, the KNN algorithm has achieved the highest Acr, Rec, Pre, and F1-score with the three classification types when 
k is 3. On the other hand, the KNN algorithm has achieved the highest Acr, Rec, Pre, and F1-score with binary classification 
using Euclidean distance and Minkowski distance. While with multiclass classification (4 classes) and multiclass classification 
(16 classes), the KNN algorithm has achieved the highest Acr, Rec, Pre and, F1-score using Manhattan distance. 
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Fig. 6. (a) F1-score of binary classi-

fication 
Fig. 6. (b) F1-score of multiclass 

classification (4 classes) 
Fig. 6. (c) F1-score of multiclass classifica-
tion (16 classes) 

 

7. Conclusion 

In conclusion, this research aimed to improve the identification of malware by adjusting a parameter in the KNN algorithm 
that was related to distance metrics. It is possible to dramatically improve the performance of the algorithm by picking an 
appropriate distance measure, which will ultimately result in the identification of malware samples that is both more accurate 
and dependable. When several distance metrics, like the Euclidean distance, the Manhattan distance, and the Minkowski 
distance, were looked at, it became clear that different distance metrics show different aspects of how similar the different 
instances of the feature space are. To conduct the study, the MalMem-2022 malware dataset was utilized. It was discovered 
that, out of the three different distance metrics considered, the Euclidean distance and Minkowski distance consistently pro-
duced the best results with binary classification. In contrast, Manhattan distance produced the best results with multiclass 
classification. This study's results contribute to the growing field of malware detection by illuminating the influence that 
distance metrics have on how well the KNN algorithm does its job. Security analysts and practitioners can use the optimized 
parameter settings to improve the accuracy and reliability of malware detection systems, enhancing the overall security posture 
of computer networks and systems. This can be done by using the capabilities of the optimized parameter settings. 
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