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 In a confirmatory study, researchers are expected to employ the covariance-based structural equation 
modeling (CB-SEM). One of the key presumptions when utilizing CB-SEM is that the data is multi-
variate normal. Nevertheless, a perfect normal distribution is rarely observed in real-life data. To re-
solve this, the unweighted least square (ULS) is designed to specifically deal with non-normal data in 
SEM. However, ULS often yields improper solutions like negative, or boundary estimates of unique 
variances since it considers measurement errors in observed variables. The disturbance in SEM is 
reflected in unique variance, which is random error due to unreliability or measurement error and 
reliable variation in the item that indicates unknown latent causes. Consequently, this can generate 
bias in indicator loadings estimates. As an action to disentangle this issue, the present study proposes 
the implementation of regularization parameters by adding small positive values to the variance-co-
variance matrix. The ratio of bias to variance in a model can be improved to obtain the best estimation 
performance. Pro-Active Monte Carlo simulation was used to produce multivariate non-normal data 
with designated sample sizes and population characteristics. The data were analyzed using R Program-
ming Environment by employing “psych”, “MASS”, “foreign”, “mvrnonnorm”, “purr”, and “sem-
Tools” packages with 1000 replications to produce multivariate non-normal data. Next, the 
“lavaan” package was used for SEM and regularized SEM analyses. The outcome of this study 
proves the capability of regularized ULS to improve parameter estimation.  

© 2023 by the authors; licensee Growing Science, Canada. 
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1. Introduction 
 

 
Structural equation modeling (SEM) is a second-generation statistical analysis approach. It was developed to assess the inter-
relationships among several variables in a model (Awang, 2023; Afthanorhan et al., 2021; Ainur et al., 2017; Aimran et al., 
2017; Zulkifli et al., 2022). In SEM, the unweighted least squares (ULS) estimation method is designed to work with non-
normal data (Mîndrilă, 2010). According to Jung and Takane (2008), ULS often yields inaccurate solutions like a negative, or 
boundary estimates of unique variances since it considers measurement errors in observed variables. Unique variance mani-
fests as the disturbance in SEM that is, random error due to unreliability or measurement error and reliable variation in the 
item that signifies unknown latent causes. In addition, ULS leads to more bias and less precision results in estimating param-
eters (Forero et al., 2009). When the data is non-normal, the estimates of the loadings may be biased or less efficient, which 
can lead to inaccurate conclusions about the relationships between the latent variables and the observed variables. Therefore, 
a vast literature has been promoting the method of regularization to overcome this matter (Jacobucci et al., 2016; Yuan & 
Bentler, 2017; Yuan & Chan, 2016). 
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Arruda (2017) stated that regularization can be explained simply as the state of having been made regular. Also, the inclusion 
of information to solve poorly identified problems is typically described using the mathematical notion of regularization. 
These definitions are similar to the informal definition given by Bickel and Li (2006), which highlights the modification of a 
method for providing effective solutions in difficult conditions. The majority of the applications focus on multicollinearity, 
overfitting, or sparsity problems. Numerous regularization techniques address the parsimony principles such as smoothing, 
model selection, or methods to control model complexity. In a similar vein, regularization can be used to speed up lengthy 
computations or invert matrices. Recent research has demonstrated that regularized techniques for regression are beginning 
to be employed in covariance modelling. Some regularization methods specific to SEM methodology have recently been 
applied and studied (Jacobucci et al., 2016; Yuan & Bentler, 2017; Yuan & Chan, 2016). Methods like lasso and ridge regres-
sion, for instance, have been included into SEM (Jacobucci et al., 2016; Jung, 2013). Jacobucci et al. (2016) proposed regu-
larized structural equation modelling, or regSEM, as a method of penalizing parameters to reduce model complexity and 
improve generalizability of models. Even though regularized ULS in RegSEM has been introduced for improvising the effect 
of unique variance, however, the method is seen less efficient as the method regularized directly on the specific parameter 
matrix, that leads to over shrinkage of the estimation problem. To address the issue, this study will demonstrate the imple-
mentation of the regularization parameter to each element in the sample covariance matrix in the ULS estimator. This approach 
seeks the optimal tradeoff between bias and assessing variability by adding small positive values to the elements of the co-
variance matrix. By doing so, it can be proven that the ratio of bias to variance in a model can be optimized to yield the best 
estimation performance.  
 
2. Methodology 

2.1 Simulation research model 

The existing method developed by Vale & Maurelli (1983) was used in this study to produce non-normally distributed data 
using Monte Carlo Markov Chain (MCMC) simulation techniques, with given skewness and kurtosis values of 2 and 7, re-
spectively (Pavlov et al., 2020). Three population models with various true indicator loading values were generated. Each 
model consisted of four latent constructs, each with four items and correlates at 0.7.  On the other hand, the homogeneous 
true indicator loading of 0.7 (for Model 1), 0.8 (for Model 2), and 0.9 (for Model 3), was predetermined respectively. The 
sample sizes chosen were 50, 100, 200, and 500. In path modelling, sample sizes of 100 to 200 are often used as the starting 
point (Awang, 2023; Henseler & Chin, 2010) with 50 samples indicating a small sample, and 500 demonstrating a large 
sample. Next, to ensure the consistency of the findings, 1000 replications of each sample size were performed resulting in the 
generation of 3x4x1000 = 12,000 datasets. ULS and regularized ULS were employed to estimate the indicator loading. For 
regularization, Arruda & Bentler (2017), Jacobucci et al. (2016), and Jung (2018) recommended that the optimal value of the 
regularization parameter, λ was chosen based on model performance through the smallest value of RMSEA. The simulation 
process and SEM analysis were carried out using the R statistical programming environment (R Core Team, 2018). The 
“psych” package, “MASS” package, “foreign” package, “mvrnonnorm” package, “purr” package and the “semTools” package 
were applied to produce multivariate non-normal data. Next, the “lavaan” package developed by Rosseel (2012) was used for 
SEM and regularized SEM analyses correspondingly. The three population models are as illustrated in Fig. 1, Fig. 2, and Fig. 
3. 
 

   
Fig. 1. Model 1 Fig. 2. Model 2 Fig. 3. Model 3 

 
2.2 Estimation Methods 

a. Unweighted Least Squares (ULS) 

The Unweighted Least Squares (ULS) estimation method was used to analyze non-normal data to assess fit and coefficients 
in CB-SEM. McDonald and Bollen (1990) claimed that ULS minimizes the fit function by using derivatives: 

 𝐹௎௅ௌ ൌ 12 𝑡𝑟 ሼሾ𝑆 −  Ʃሺ𝜃ሻሿሽଶ  (1) 

where tr is the trace of the matrix, S is the sample covariance matrix, is the model-implied covariance matrix and θ is 
the (t × 1) vector of parameters. The sum of squares of each element in the residual matrix (S −  Ʃሺθሻሻ is minimized using the 
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fit function 𝐹௎௅ௌ. Compared to ML and WLS, ULS has the advantage of producing a consistent estimator, but unlike ML, no 
distributional assumptions are required (Schermelleh-Engel, Moosbrugger & Muller, 2003).  
 
b. Regularized Unweighted Least Squares  

In order to produce an accurate estimate, particularly for non-ideal conditions and non-normal data, regularization method is 
applied to the estimation of the variance-covariance matrix in the ULS estimator. The ULS estimator is a popular method for 
estimating SEM parameters for non-normal data. However, it can suffer from issues such as biased estimates, unstable solu-
tions, and improper solutions (Forero et al., 2009). Improper solutions like negative or boundary estimates of unique variances 
can occur when there are errors in the measurement of the observed variables. It represents the minimum amount of variance 
that cannot be explained by the model. Regularization techniques can improve the stability of the covariance matrix estimates, 
which can also help to reduce the risk of negative error variances by ensuring enough variance for the latent variables. The 
values in the sample variance-covariance matrix play a crucial role in the estimation of model parameters in SEM (Kline, 
2016). The quality and reliability of parameter estimations, such as factor loading, can be significantly impacted by the accu-
racy and stability of the sample variance-covariance matrix. Stabilizing the variance-covariance matrix requires applying 
some forms of regularization to the sample covariance matrix. Regularization achieves this by adding a regularization param-
eter to the sample variance-covariance matrix, which can control the amount of regularization applied. Consequently, in this 
study, improved estimators (𝑆መ) is used instead of 𝑆 in ULS estimators through the addition of the regularization parameter, λ. 
This technique seeks the ideal trade-off between bias and assessing variability (Jacobucci et al., 2019) by balancing the fit of 
the model to the data and the complexity of the model including controlling the amount of shrinkage applied to the sample 
covariance matrix. This helps to improve the stability of the covariance matrix, especially when the sample size is small, or 
the number of variables is large. The improved sample variance-covariance matrix (𝑆መ), which incorporates the addition of 
regularization parameter, λ to each element of the sample covariance matrix is demonstrated below: 

 𝑆መ =  𝑆 + 𝜆  (2) 

where 𝑆 is the sample covariance matrix and λ is the regularization parameter. The value of lambda plays a crucial role in 
determining how much weight to be assigned to the variance-covariance matrix (Arruda & Bentler, 2017). Several lambda 
values (λ > 0) are tested and an optimal λ is chosen depending on the performance of the model. λ with the smallest RMSEA 
is chosen for each model. RMSEA is a fitness index that measures the discrepancy between the observed and predicted co-
variance matrices, adjusted for the complexity of the model. The goal of using the RMSEA criterion to select the regularization 
parameter is to find a balance between model fit and complexity that results in the most accurate and stable estimates of the 
model parameters. This study varied λ across multiple values, ranging from 0 to 1 in equal increments. Hence, with a regu-
larization parameter that has been considered in the sample covariance matrix of ULS, sufficient covariance between the 
measured variables is provided to ensure enough variance for the latent variables. Accordingly, the improved regularized ULS 
technique is as follows: 

 𝐹௥௘௚௎௅ௌ =  12 𝑡𝑟 {ൣ𝑆መ −  Ʃሺ𝜃ሻ൧}ଶ (3) 
 

where tr is the trace of the matrix, 𝑆መ is the regularized sample covariance matrix, Ʃሺ𝜃ሻ is the model-implied covariance matrix 
and θ is the (t x 1) vector of parameters.  

 

2.3 Comparative Bias Index (CBI) 

The population data was generated using different sample sizes and specified criteria, as had been previously mentioned. The 
actual values for model parameters like true indicator loading were found to be the population value. This value is required to 
generate simulated data. To examine the bias of parameter estimates produced from simulation data, the CBI developed by 
Aimran et al. (2017) was calculated for comparison. 𝐶𝐵𝐼 = 1 − ห𝜃෠ − 𝜃ห𝜃  

(4) 

where 𝜃෠ represents an estimate of the model parameter while 𝜃 denotes the parameter's actual value. A CBI value of ≥ 0.8 
denotes an estimate with acceptable bias, whereas a CBI value of > 0.9 denotes an estimate that is unbiased or has low bias. 
Otherwise, the bias estimate is unacceptable. 
2.4 Root Mean Square Error (RMSEA) 

As shown below, the RMSEA computes the difference due to approximation per degree of freedom: 
 𝑅𝑀𝑆𝐸𝐴 = ඨ𝐹଴𝑑𝑓  

 
 
(5) 

where 𝐹଴ denotes the discrepancy between the method used to generate the data and the model that was fitted. The acceptable 
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cut-off values for RMSEA are ≤ 0.08 (Awang, 2023). 
 

3. Result 

The results of the CBI and RMSEA values for all indicator loadings and models are reviewed in Table 1, Table 2 and Table 
3, respectively. 

 
Table 1  
The CBI, RMSEA and optimal regularization values for Model 1  

Sample 
size 

Items s RMSEA Optimal regularization parameter (λ) for 
regularized ULS ULS Regularized ULS ULS Regularized ULS 

50 A1 0.879 0.937 0.157 0.044 0.75 
A2 0.997 0.874 
A3 0.919 0.800 
A4 0.940 0.891 
B1 0.746 0.939 
B2 0.984 0.877 
B3 0.790 0.891 
B4 0.879 0.901 
C1 0.833 0.863 
C2 0.951 0.800 
C3 0.800 0.860 
C4 0.944 0.857 
Y1 0.947 0.880 
Y2 0.850 0.961 
Y3 0.994 0.974 
Y4 0.933 0.904 

100 A1 0.823 0.887 0.116 0.026 0.10 
A2 0.963 0.844 
A3 0.894 0.947 
A4 0.899 0.804 
B1 0.803 0.894 
B2 0.959 0.789 
B3 0.947 0.833 
B4 0.701 0.777 
C1 0.941 0.989 
C2 0.951 0.927 
C3 0.906 0.854 
C4 0.986 0.830 
Y1 0.934 0.961 
Y2 0.836 0.849 
Y3 0.851 0.859 
Y4 0.863 0.931 

200 A1 0.900 0.921 0.134 0.040 0.20 
A2 0.881 0.909 
A3 0.993 0.993 
A4 0.870 0.874 
B1 0.781 0.927 
B2 0.904 0.867 
B3 0.789 0.894 
B4 0.741 0.851 
C1 0.989 0.964 
C2 0.817 0.991 
C3 0.811 0.920 
C4 0.907 0.904 
Y1 0.991 0.997 
Y2 0.873 0.890 
Y3 0.820 0.893 
Y4 0.953 0.967 

500 A1 0.846 0.980 0.117 0.035 0.40 
A2 0.766 0.993 
A3 0.874 0.903 
A4 0.717 0.981 
B1 0.856 0.983 
B2 0.690 0.986 
B3 0.757 0.991 
B4 0.686 0.966 
C1 0.983 0.923 
C2 0.849 0.913 
C3 0.773 0.979 
C4 0.740 0.984 
Y1 0.920 0.949 
Y2 0.801 0.956 
Y3 0.820 0.950 
Y4 0.889 0.976 

Note: Bold values indicate unacceptable bias estimates 

For Model 1, the loading of each item under the corresponding constructs was set to 0.7. The findings for Model 1 are depicted 
in Table 1. The finding revealed that ULS outperforms regularized ULS with no bias estimates (≥0.8) for a sample size of 50. 
Next, for 100 samples, a number of unfavorable bias estimates (<0.8) was observed for both estimation methods. The biased 
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estimates generated by regularized ULS are due to overestimation of indicator loadings. Thus, this finding suggests that the 
proposed method generates comparable results to ULS for a sample size of 100. However, the regularized technique produces 
a compelling result without any indicators exhibiting unacceptable bias estimates when involving a large sample (n ≥200). 
Conversely, there are more unacceptable bias estimates for ULS at large sample size (n=500). Moreover, the RMSEA values 
improved and achieved an acceptable threshold of 0.08 when employing regularized ULS. For the selection of the optimal 
regularization parameter, a small sample model (n=50) requires an extremely large regularization parameter value, λ=0.75 to 
obtain a better fit model with minimal RMSEA. Nevertheless, the optimal regularization parameters for sample sizes of 100, 
200 and 500 are 0.10, 0.20 and 0.40, respectively, denoting a non-apparent difference. 

 
Table 2 
The CBI, RMSEA and optimal regularization values for Model 2 

Sample 
size 

Items CBI RMSEA Regularization parameter (λ) for regular-
ized ULS ULS Regularized ULS ULS Regularized ULS 

50 A1 0.768 0.839 0.123 0.077 0.80 
A2 0.740 0.970 
A3 0.613 0.934 
A4 0.518 0.916 
B1 0.981 0.835 
B2 0.740 0.909 
B3 0.873 0.926 
B4 0.765 0.959 
C1 0.964 0.855 
C2 0.713 0.946 
C3 0.588 0.946 
C4 0.848 0.920 
Y1 0.698 0.966 
Y2 0.983 0.983 
Y3 0.898 0.994 
Y4 0.960 0.978 

100 A1 0.893 0.986 0.141 0.031 0.10 
A2 0.650 0.794 
A3 0.611 0.805 
A4 0.575 0.853 
B1 0.813 0.996 
B2 0.696 0.809 
B3 0.700 0.843 
B4 0.643 0.776 
C1 0.823 0.958 
C2 0.743 0.791 
C3 0.565 0.790 
C4 0.835 0.801 
Y1 0.750 0.915 
Y2 0.913 0.896 
Y3 0.953 0.893 
Y4 0.788 0.880 

200 A1 0.959 0.984 0.137 0.036 0.20 
A2 0.779 0.845 
A3 0.669 0.865 
A4 0.724 0.904 
B1 0.948 0.975 
B2 0.718 0.875 
B3 0.750 0.894 
B4 0.650 0.835 
C1 0.866 0.994 
C2 0.648 0.850 
C3 0.718 0.850 
C4 0.741 0.866 
Y1 0.781 0.939 
Y2 0.923 0.920 
Y3 0.909 0.914 
Y4 0.901 0.911 

500 A1 0.951 0.915 0.121 0.022 0.45 
A2 0.731 0.941 
A3 0.731 0.973 
A4 0.788 0.999 
B1 0.964 0.910 
B2 0.724 0.993 
B3 0.780 0.989 
B4 0.701 0.944 
C1 0.914 0.934 
C2 0.720 0.958 
C3 0.716 0.958 
C4 0.720 0.981 
Y1 0.886 0.988 
Y2 0.868 0.969 
Y3 0.868 0.960 
Y4 0.843 0.969 

Note: Bold values indicate unacceptable bias estimates 
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Next, Table 2 displays the indicator loadings computed by the CBI for Model 2. For Model 2, each item loading was set to 
0.8. The research revealed that the regularized ULS consistently outperformed ULS across all sample sizes (n= 50, 100, 200, 
500) with the lowest RMSEA value. On the other hand, ULS yields numerous low bias indicator estimates (CBI <0.8). A 
thorough review of CBI values reveals that regularized ULS produces an estimate that is superior to ULS (CBI value close to 
1). Also, for the selection of the optimal regularization parameter, a small sample model (n=50) requires an extremely large 
regularization parameter value, λ=0.80 to obtain a better fit model with the smallest RMSEA. Meanwhile, the optimal regu-
larization parameters needed for sample sizes of 100, 200 and 500 are 0.10, 0.20 and 0.45, correspondingly, denoting a non-
apparent difference. From this finding, a similar pattern is observed from Model 1 in selecting the optimal value of λ for the 
regularized ULS method. Small sample (n=50) requires a very large λ to generate a better fit model, hence yielding a more 
unbiased indicator loading estimate. 
 

Table 3 
The CBI, RMSEA and optimal regularization values for Model 3 

Sample 
size 

Items CBI RMSEA Regularization parameter (λ) for regular-
ized ULS ULS Regularized ULS ULS Regularized ULS 

50 A1 0.768 0.810 0.107 0.059 0.65 
A2 0.740 0.943 
A3 0.613 0.984 
A4 0.518 0.961 
B1 0.981 0.809 
B2 0.740 0.992 
B3 0.873 0.981 
B4 0.765 0.976 
C1 0.964 0.781 
C2 0.713 0.970 
C3 0.588 0.956 
C4 0.848 0.994 
Y1 0.698 0.984 
Y2 0.983 0.950 
Y3 0.898 0.940 
Y4 0.960 0.939 

100 A1 0.893 0.834 0.118 0.059 0.55 
A2 0.650 0.922 
A3 0.611 0.963 
A4 0.575 0.941 
B1 0.813 0.832 
B2 0.696 0.973 
B3 0.700 0.964 
B4 0.643 0.958 
C1 0.823 0.802 
C2 0.743 0.950 
C3 0.565 0.936 
C4 0.835 0.976 
Y1 0.750 0.977 
Y2 0.913 0.941 
Y3 0.953 0.931 
Y4 0.788 0.928 

200 A1 0.959 0.860 0.080 0.041 0.45 
A2 0.779 0.899 
A3 0.669 0.939 
A4 0.724 0.919 
B1 0.948 0.857 
B2 0.718 0.951 
B3 0.750 0.944 
B4 0.650 0.938 
C1 0.866 0.824 
C2 0.648 0.928 
C3 0.718 0.911 
C4 0.741 0.952 
Y1 0.781 0.969 
Y2 0.923 0.931 
Y3 0.909 0.921 
Y4 0.901 0.914 

500 A1 0.951 0.888 0.081 0.029 0.35 
A2 0.731 0.870 
A3 0.731 0.911 
A4 0.788 0.893 
B1 0.964 0.884 
B2 0.724 0.926 
B3 0.780 0.922 
B4 0.701 0.916 
C1 0.914 0.849 
C2 0.720 0.901 
C3 0.716 0.884 
C4 0.720 0.927 
Y1 0.886 0.960 
Y2 0.868 0.920 
Y3 0.868 0.910 
Y4 0.843 0.900 

Note: Bold values indicate unacceptable bias estimates 
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Next, every item loading under each of the corresponding constructs for Model 3 was set to 0.9. The outcome is tabulated in 
Table 3. Consistent with the findings for Model 2, the regularized ULS method obviously appears to be better than ULS for 
all sample sizes (n= 50, 100, 200, 500) with the lowest value of RMSEA. On this ground, regularized ULS is indeed able to 
improve the performance of the existing method; ULS, in estimating the parameters for non-normal data. However, this 
method requires a large sample (n≥500) to yield more precise loading estimates where the CBI value is > 0.9 or close to 1. 
Besides, a small sample model (n=50) requires an extremely large regularization parameter value, λ=0.65 to obtain a better 
fit model with the smallest RMSEA. However, there are no discernible differences in the optimal regularization parameter 
across sample sizes.  
  

4. Discussion 

The performance of the regularized ULS and the traditional ULS methods in terms of CBI was investigated in this current 
study. Monte Carlo Markov Chain method was used to generate data with different sample sizes using a simple model that 
fits certain conditions (e.g., non-normal, complete data). Thus, some conclusions were derived from the results. As previously 
mentioned, the three models' actual item loadings are uniformly set between 0.7 and 0.9. For Model 1, when n=50, ULS 
outperforms regularized ULS with no bias estimates (≥0.8), indicating that ULS is favorable for small sample sizes. Mean-
while, for n=100, the finding discloses that a number of unfavorable bias estimates (<0.8) was observed for both estimation 
methods. This finding suggests that the proposed method (i.e., the regularized ULS) generates comparable results to those of 
ULS when the sample sizes are 50 and 100. However, the regularized ULS method outperforms the ULS when the sample 
size is sufficiently large (i.e., n≥200). Moreover, the RMSEA values improved and achieved an acceptable threshold of 0.08 
when employing regularized ULS. Conversely, the number of undesirable bias estimates for ULS increases as the sample size 
increases (n ≥ 200). Thus, it is suggested that the study is carried out using a regularized ULS estimator when data with an 
actual loading of 0.7 is to be simulated.  

For Model 2 and Model 3, ULS yields several low bias indicator estimates (CBI <0.8). However, the regularized ULS is 
capable of yielding unbiased estimates across all sample sizes (n=50, 100, 200 and 500). In light of this finding, when the 
actual indicator loading is high, regularized ULS is suitable to be employed for small to large samples. Therefore, it can be 
inferred from the results that when true indicator loadings are high, the loadings are precisely estimated and hence lie within 
the permissible bias range. Considering greater sample sizes (n=200), it can hence be deduced that regularized ULS can be 
utilized to generate more precise parameter estimates in simulation studies with population indicator loadings greater than 
0.7. The biases of indicator loading estimates in ULS for all sample sizes might be due to its underestimation. Thus, the new 
regularized approach has been proven to overcome this matter.  

In addition, the choice of regularization parameter, λ is crucial in yielding better estimation. A small sample (n=50) requires 
very large λ to generate a good fit model, hence resulting in more unbiased indicator loading estimate. In addition, the differ-
ences between optimal regularization parameters across large sample sizes (n≥100) are not noticeable. Still, the selection of 
tuning parameters should depend on the model characteristics and sample size. By incorporating a positive constant value into 
the sample variance-covariance matrix, the stability of the covariance matrix is enhanced, thereby mitigating the risk of neg-
ative error variances. The values within the sample variance-covariance matrix play a crucial role in determining the model 
parameters. The accuracy and stability of the sample variance-covariance matrix can significantly impact the estimated pa-
rameter values. Thus, selecting the optimal value of the regularization parameter is crucial for generating the best estimate 
values (Arruda & Bentler, 2017). A greater λ value is necessary to achieve more stable and precise estimates of certain con-
structs especially for small sample size. Therefore, it is vital to evaluate the model through the smallest value of RMSEA and 
test various choices of the regularization parameter accordingly (Jacobucci et al, 2016).  

5. Conclusion 

In summary, it is suggested that regularized ULS is a great estimator if the true indicator loadings are high (e.g., ≥ 0.7). It has 
been discovered in this present study that the addition of regularization parameter to each element in the sample covariance 
matrix of ULS estimator has been proven to enhance the loading estimates particularly when using non-normal data as well 
as when the indicator loading for the simulated data is large (e.g., 0.7). Since real-life data are usually non-normal, the findings 
of this study can be used by the policy makers and researchers to obtain a more accurate estimation in analyzing the inter-relation-
ships between variables.  
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