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 Of all the current challenges faced by Jordan, the most severe is the inadequacy of the water supply. 
The country is almost entirely reliant on rainfall, whose pattern, however, is highly variable in terms 
of its frequency, regularity, and quantity. Evidently, therefore, the ability to anticipate rainfall accu-
rately is critically important for the effective planning and management of water resources in Jordan, 
and particularly in agricultural areas. Influenced by a range of factors such as temperature, relative 
humidity, and wind speed, rainfall is a stochastic process. This paper suggests the use of a fuzzy 
model that draws upon data gathered at 26 stations situated in a range of locations throughout Jordan. 
The model is capable of forecasting seasonal rainfall relating to a specific station. Its ability to deliver 
predictions with an acceptable degree of accuracy has been demonstrated, and it can be concluded 
from this that the fuzzy technique can provide a model that is capable of efficiently forecasting sea-
sonal rainfall. 
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1. Introduction 
 
Among the services provided by meteorological offices globally, one of the most important and challenging is the forecasting 
of the weather—a complex process that integrates a wide range of specialist technological expertise. One of the fundamental 
elements involved in this is water, which is essential to human survival and necessary for a wide range of vitally important 
activities. These include the production of food through agriculture, which is wholly reliant on rainfall for its success, but 
rainfall is also critical for many other processes and activities that are critical to human life. The variables that determine 
climatic conditions—such as minimum and maximum temperatures, humidity, and rainfall—are in a constant state of flux 
over time. These generate a time series with respect to each parameter, and this may be utilized to create a prediction model, 
either statistically or via other means that draw upon the time series data. (Ozone layer, temperature, relative humidity, etc.) 
There is consequently a requirement for effective control over these variable factors in order to obtain accurate forecasts of 
rainfall, and a number of computational methods have been proposed with a view to accomplishing this. In the context of the 
adequacy of water resources, Jordan is considered to be one of the most deprived nations. Located within the eastern Medi-
terranean climate zone, the country is characterized by hot and dry summers and cool and wet winters. Its rainfall profile 
shows an irregular distribution across the various regions as well as substantial annual variation in terms of its quantity and 
timing (Jordanian Ministry of Water and Irrigation Publication, 2015; Raddad, 2005; Al-Ansari et al., 2014; Zahran, 2015; 
Janarthanan et al., 2021), with a rainy season extending from October to April. A significant proportion of Jordan’s landmass 
is arid or semi-arid; here, the annual rainfall amounts, on average, to less than 200 millimeters, most of which is lost to 
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evaporation, whereas in the north-west region, a maximum of some 600 millimeters per annum may be received. The country 
is primarily dependent on rainfall for its water resources, but water availability is highly variable due to the dry climatic 
conditions. The severity of the water resources challenge may be observed by tracking the per capita supply, which by 1977 
had risen to 429.9 m3, compared with only 94 m3 in 2018. This dramatic shift in consumption is accounted for by the rapid 
population increase and the lack of water resources (Raddad, 2005; Al-Ansari et al., 2014). Jordan’s rainfall and the parameters 
that inform it are uncertain and non-linear. Jordan is therefore considered to be suitable for the fuzzy logic algorithm approach 
to forecasting, which is commonly supported in contemporary research in the field of rainfall prediction. 
 
FL is a type of many-valued logic that employs approximate rather than precise reasoning. FL variables may possess a truth 
value varying between 0 and 1 (Zadeh, 1965; Logic et al., 1999; Kasabov, 1998), as distinct from typical binary sets, where 
the value of a variable is restricted to either “true” or "false." A FL consists of the nonlinear mapping of a set of input data to 
scalar output data and includes the four basic elements of a FL system: the fuzzifier, the rules, the inference engine, and the 
defuzzifier. At the design stage, the fuzzy logic process includes the following phases: definition of the linguistic variables 
and terms; construction of the membership functions; and construction of the rule base. In the inference phase, the stages 
include: employing the membership functions; converting crisp input data into fuzzy values; evaluating the rules within the 
rule base; combining the outcomes of each rule; and defuzzification, which involves converting the output data to real values 
(Logic et al., 1999; Kasabov, 1998). It is notable that a number of scientific domains that involve uncertainty have beneficially 
deployed fuzzy-based models. 
 
This paper is structured as follows: Section 2 considers existing work in the fields of rainfall prediction and fuzzy-based 
systems. In Section 3, proposals for FL models are explored, while Section 4 provides reflections on the results. Finally, the 
conclusions of this research are presented in Section 5. 
 
2. Literature review 
 
The existing literature suggests that Artificial Intelligence (AI) algorithms are eminently suitable for application within the 
weather forecasting field, and in particular for the prediction of rainfall. Adopted widely within numerous fields characterized 
by nonlinear patterns, FL lends itself especially well to utilization in the development of models to predict weather parameters. 
This is due to the substantial levels of uncertainty inherent in weather forecasting, as attested by the current literature 
(Ramadoss et al., 2020; Rahman, 2020; Kumar, 2019; Agboola et al., 2013), in which a number of current studies have 
deployed FL for this purpose. A discussion of these studies is provided in this section. In Ramadoss et al. (2020), acceptable 
results were produced in a study that utilized an intelligent fuzzy model where temperature (T) and wind speed (SW) were 
used to forecast the rainfall (FR) rate. This involved applying the fuzzy rule, whereby the antecedent and consequent state-
ments relate the input variable to each other in order to determine the results. The study presented in Rahman (2020) combined 
the input factors of temperature and wind speed with a single output variable—the amount of predictable rainfall. The graph’s 
diagram is constructed using eight equations representing temperature and wind speed, which correspond to the membership 
values. Eight equations for distinct categories are also created by rainfall. The environmental conditions that increase rainfall 
incidence are represented by fuzzy levels. Membership functions are derived following the minimum composition of the 
inference section of the fuzzification undertaken for temperature and wind speed. 
 
In Kumar, 2019, the researchers investigated the use of a FL method to examine rain prediction, given that this can assist in 
forecasting short-term load. The security analysis of generational short-term load forecasting is a highly valuable instrument 
for unit commitment. Based on the results, it was concluded that FL is a reasonably accurate technique for predicting the 
amount of rainfall when using wind speed and temperature data. As previously noted, the accurate prediction of rainfall plays 
an important role in enhancing the management of water resources. Effective connections between water authorities across 
the country and the accurate forecasting of rainfall are also critically important in facilitating the monitoring and avoidance 
of disaster conditions such as drought and flooding. The source (Agboola et al., 2013) explores whether FL may be utilized 
to model rainfall in south-western Nigeria. Here, the FL model consists of two functional components—on the one hand, the 
fuzzy reasoning or decision-making element, and on the other, the knowledge base. The authors computed the prediction 
accuracy and determined, according to the results obtained, that the fuzzy technique is indeed capable of efficiently managing 
the collected data. Their model displayed both flexibility and the capability to replicate a poorly defined connection between 
the input and output variables. 
 
3. Methodology 
 
3.1 Area of study (Jordan) 
 
Located on the Asian continent between latitudes 29° and 34°N and longitudes 35° and 40°E, Jordan experiences a semi-dry 
climate in the summer with average temperatures in the mid–30s °C (approximately 86 °F) and a chilly winter, when the 
temperature is on average approximately 13 °C (55 °F). The rainy season extends from November to April, with December 
and February being the wettest of the winter months. Other than in the northwest of the country, which receives between 250 
and 600 millimeters (10 and 18 inches) of precipitation annually, Jordan typically receives under 100 millimeters (4 inches) 
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of rain. The present study separated Jordan into four distinct areas—the north, south, middle, and desert—with each area 
having rainfall and climatic parameters that are distinct from the others. Fig. 1 depicts the subdivision into areas. In defining 
the four areas in which stations were to be located, the sole criterion considered was seasonal rainfall between October and 
April. 
 

 
 Fig. 1. Map of Jordan with each of the four regions (areas of study) shown in different colors 

 
3.2 Data set and data pre-processing 
 
Monthly rainfall data was obtained from the national meteorological department of Jordan for the period 1977–2020. The data 
was obtained from 26 weather stations across Jordan. To address the issue of dirty, incomplete, and noisy real-world data, 
data cleaning was conducted, which also addressed duplicate records, data entry inaccuracies, and inconsistencies such as 
those arising from the use of multiple data sources. This involved the replacement with mean values of any values missing 
from the seasonal rainfall data. Outlier data—such as observations that were distant from others—were removed. A sample 
of the climate dataset for the middle region, including the capital, Amman, is provided in Table 2 and Fig. 2. 
 

 
Fig. 2. The seasonal rainfall rate of Amman (Middle region stations) for period between 1989 and 2020 

 
Table 1 
Sample of dataset for middle region in Jordan 

TMEAN CLOUD SWPEED HUMDAYS PREC 
The Middle 

9.7 3.4 4.3 18 37 
14.7 3.4 7.4 4 57.6 
6.9 4.5 4.8 13 73.9 

1988 8 3.9 6.8 15 
7.95 5.54 8.8 19.9 140.1 
7.9 5.9 8.3 23.8 173 
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5.1 5.7 9.8 22 199.8 
3.3 Fuzzy model 
 
A fuzzy logic model may also be known as a fuzzy inference system. In the current study, the two functional elements of the 
model are: firstly, the knowledge base, consisting of a number of fuzzy "if-then" rules; and secondly, a database that describes 
the membership functions of the fuzzy sets used in the fuzzy rules. The inference operations based on these rules are performed 
by the fuzzy reasoning or decision-making unit, which is founded upon the knowledge base. 
A typical process for building a fuzzy expert system will consist of the five steps set out below: 
 

1. Define the linguistic variables and specify the problem; 
2. Identify the fuzzy sets; 
3. Create fuzzy rules by eliciting and constructing them; 
4. Encode the fuzzy sets, fuzzy rules and fuzzy procedures in order to conduct fuzzy inference on the expert system; 
5. Assess and adjust the system; 

 
Steps 1 and 2: Defining the problem, variables and fuzzy sets 
 

Applying steps 1 and 2 above to the current model, the involvement of several linguistic variables is noted. These are: tem-
perature (T), wind speed (SW), cloud (C), humidity (H), and rainfall rate (FR). The linguistic values selected for the typical 
linguistic variables are: VL, L, N, H, and VH, the meanings of which are defined in Table 2. The mathematical approach to 
deriving the fuzzy set of a typical fuzzy variable is presented in Fig. 3. 
 

 
 
Table 2 
Fuzzy Variables meaning 

Abbreviations Meaning 
VL Very low 
L Low 
N Normal 
H High 

VH Very high 
 

 
Fig. 3. Fuzzy sets of Membership function (μ) and corre-

sponding fuzzy levels 
In the calculation operation, the range of the fuzzy variables, between their minimum and maximum values, is separated into 
an ascending-order numerical scale, beginning with the minimum. Fig. 3 displays the range and fuzzy levels for any fuzzy set 
of objects in a triangle functional diagram, with the range divided into five equal sub-ranges, each representing a fuzzy level. 
They are displayed in ascending order and abbreviated as VL, L, N, H, and VH, with abbreviations and definitions of each 
level provided in Table 2. 
 
Step 3: Constructing Fuzzy Rules 

In this stage, appropriate production rules are constructed. These consist of the antecedent and consequent sections of the 
fuzzy rule, followed by algorithms using logic based on the previous experience of decision makers. The truth table that 
supports identification of the potential fuzzy rules can be found at Table 3. 
 

Table3 
Fuzzy RuleTruth Table 

T \ SW VL L N H VH 
VL VL L H VH VH 
L VL L L N H 
N VL L N1 N L 
H VL VL VL VL VL 

VH VL VL VL VL VL 
1The intersection of row (T) and column (SW) produce rainfall (FR) value. The rule of this value is : IF (TP is N ) and ( WS is H ) then ( RF is N ) 

Step 4: Coding the fuzzy system 
 

In step 4, the design of the fuzzy sets and fuzzy rules involves coding the fuzzy system. In this study, the MATLAB Fuzzy 
Logic Toolbox was deployed to achieve this. 
 

Step 5: Assessment and adjustment 
 



B. Zahran et al.  / International Journal of Data and Network Science 7 (2023) 101

In Step 5, the final phase, the system is assessed and adjusted accordingly. This is the most challenging stage, as it is essential 
in determining whether or not the fuzzy system fulfils the requirements set out for it.  
3.4 Performance evaluation—error measures 
 
A number of error metrics were utilized to establish the effectiveness of the fuzzy rule-based model, as set out below:  
 

1. Prediction Error (PE): 
 𝑃𝐸 =  (|𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦 𝑎𝑐𝑡𝑢𝑎𝑙 |) 𝑦 𝑎𝑐𝑡𝑢𝑎𝑙  

(1) 

 
       where the PE is sufficiently minimal—defined as near to 0— the prediction model is considered good. 
 
2. Root Mean Square Error (RMSE):  

 

𝑅𝑀𝑆𝐸 =  ඨ∑ ൫𝑦௝ − ŷ௝൯ଶே௝ 𝑁  
 

(2) 

 
This metric is typically used to determine the extent of any divergence between the prediction provided by the model and 
the actuality of the entity being modeled. 
 
3. Mean Absolute Error (MAE): 
 𝑀𝐴𝐸 =  ห𝑦௝ − ŷ௝ห𝑁  

(3) 

 
The lower the MAE generated by this calculation, the more accurate the model.  
 
4. Accuracy: 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − 𝑅𝑀𝑆𝐸 (4) 

         where 𝑦௝  and  ŷ𝐣 are observed and predicted values for rainfall, respectively and N is the number of observations.  

 
Fig. 4 shows the fuzzy logic Modeling Procedures and performance evaluation. 
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Fig. 4. Fuzzy Logic Modeling Procedures: A. Modeling Procedures, B. Performance Evaluation 

3.5 Primary proposed fuzzy model 
 

The scheme outlined below was utilized to construct a primary model, which was then successively improved until the final 
version, having the lowest possible error rate, was achieved. The primary model had two input variables: wind speed (SW) 
and temperature at a specific time (T), as well as one output variable: estimated rainfall. The input variables were selected on 
the basis of their proven influence upon the occurrence of rainfall. The values of the input variables are grouped into fuzzy 
levels using the linguistic variable. With a membership value, the input variable will belong to one or, at most, two of these 
levels. An input value is translated to its corresponding membership function (MF) value by establishing parameter types, 
ranges, and rules to identify all the membership values for any specific input variable. Further detail of the primary model is 
depicted in Fig. 5 and Table 4. 
 

 
Fig. 5. Fuzzy set and membership functions related to temperature (T) – primary model 

Table 4  
Sample of primary model Rules 

 

3.5.1 Results of primary model and discussions 
 
Fig. 6 presents the preliminary results of our survey  
 

 
 

Fig. 6. Actual values vs. predicted values (Primary model –Middle region) 
 

3.5.2 Results of primary model and discussions 
 
The results demonstrated that the primary model is not accurate, achieving only a 41.6% measure of accuracy, which is 
unsatisfactory. In a comparison of the ith and (i-1)th seasons utilizing real data and total results, it was established that the value 
of the computed FR diverges from the corresponding pattern of decrease or growth with identical ranges of SW and T data. 

Actual data Predicted output

1. If (SW is L ) and ( T is L) then ( FR is L ) 
2. If (SW is L ) and ( T is N) then ( FR is L ) 
3. If (SW is L ) and ( T is H) then ( FR is L ) 
4. If (SW is N ) and ( T is L) then ( FR is L ) 
5. If (SW is N) and ( T is N) then ( FR is N ) 

Average PE =12.943 RMSE = 58.3 

Accuracy (%) = 41.6   

Average MAE = 52.1  
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This is particularly the case where the actual value of FR is situated within the upper range. On the basis of this assessment, 
it was concluded that substantial improvement of the primary model was required. 
3.5.2 Improvement of the primary model 
 
The fundamental issue with the previous initial fuzzy-based time series forecasting model was its inability to successfully 
predict the rainfall. A review of the several procedures carried out to improve the model is described here: 
 
The fundamental issue with the previous initial fuzzy-based time series forecasting model was its inability to Handling the 
missing and anomaly values found in the dataset with appropriate means. 
 

• Choosing the appropriate order (past values) of time-series data experimentally. 
• Reconstructing the fuzzy sets according to the importance of the climatic parameter to rainfall prediction  
• Rebuilding the fuzzy rules carefully and experimentally to achieve the best results 
• Increasing the input space and the parameters that affects the rainfall prediction. 

 
The primary model was subsequently examined to identify means of enhancing the match between the anticipated and real 
FR values, through a number of additional steps, for example:  
 

 Repeat the investigation into the climate of the study area in order to: 
o Add or remove parameters (input variables); 
o reformulate the rules based on the climate study (adjusting rules conclusions); 

 Amend the input and/or the output membership functions: 
o change the centers of the membership functions (change the range, change the type of membership function); 
o add or remove membership functions; 

 Study the effects of each rule on the model results, selecting those that are of use. 
 

3.6 Final fuzzy models  

Following numerous experiments to enhance the primary models, in which over 60 models were tested, a final model was 
established that carried an acceptable error rate. These four models cover the four regions. The final model included four input 
variables—wind speed (SW), cloud cover (CL), humidity (HU), and temperature at a specific time (T)—and one output var-
iable, which is estimated rainfall. The input variables were translated to their corresponding membership function (MF) value 
by establishing parameter types, ranges, and rules to identify all the membership values for any specific input variable. A 
detailed description of the final model for the middle region is provided in the Figs. (7-11) and Table 6. 
 

  
Fig. 7. Membership functions related to temperature (T) – 
middle model 

Fig. 8. Membership functions related to cloud (CL) – middle 
model 
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Fig. 9. Membership functions related to wind speed (SW) – 
middle model 

Fig. 10. Membership functions related to humidity (HU) – 
middle model 

 
Fig. 11. Membership functions related to rainfall (FR) – middle model 

 
Table 6 
Sample of fuzzy rules for the middle region model  

1. If (T is VL) and (CL is H) and (SW is H) and (HU is VH) then (FR is VH)  
2. If (T is VL) and (CL is H) and (SW is VH) and (HU is H) then (FR is VH)  

3. If (T is L) and (CL is N) and (SW is L) and (HU is VL) then (FR is VL) 
4. If (T is L) and (CL is N) and (SW is L) and (HU is L) then (FR is VL)  
5. If (T is L) and (CL is N) and (SW is L) and (HU is H) then (FR is L)  

6. If (T is L) and (CL is N) and (SW is H) and (HU is VL) then (FR is L)  
7. If (T is L) and (CL is N) and (SW is VH) and (HU is L) then (FR is L)  
8. If (T is L) and (CL is H) and (SW is H) and (HU is L) then (FR is H)  
9. If (T is VL) and (CL is N) and (SW is L) and (HU is L) then (FR is L)  

10. If (T is L) and (CL is N) and (SW is H) and (HU is L) then (FR is VL)  
 

 
4. Results and discussion 

 
4.1 The result of the Middle Region model  

 
The results of the Middle Region model and the performance measures are shown are depicted in Fig. 12. 
 

 

 

 
Fig. 13. Actual Values vs. Predicted Values (middle model) 

 
The accuracy of the proposed model has increased significantly after taking into account more climatic parameters that affect 
rainfall rate, namely: temperature, wind speed, cloud cover, humidity, and carefully constructing the fuzzy sets and rules. A 
careful reading of the metrics values indicates that the proposed method has successfully modeled the season’s rainfall in the 
middle region of Jordan. 

 
4.2 The result of the North, South and Desert Region model 

 
 

Average PE =0.479063543  

RMSE = 13.48202 

Accuracy (%) = 86.51798 

Average MAE = 9.053239 
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To summarize, we grouped final results of the proposed model for remaining regions: North, South and Desert regions.   
 
Table 7 
Calculated Error Measures for north , south, desert models 

Region Average PE RMSE Accuracy (%) Average MAE 

North 0.43 26.56 73.43 16.22 
South 0.57 5.85 94.14 4.23 
Desert 0.67 3.67 96.32 2.52 

A careful reading of the results produces the following conclusions: 

• The greater the number of climatic factors affecting rainfall within the model, the greater the accuracy of the results 
generated. The final model took into account the parameters of temperature, cloud cover, wind speed, and humid-
ity. 

• Handling missing values and anomalies found in the dataset is crucial to achieving the best results. 
• Using the appropriate order (past values) of the data affects the performance notably. 
• The establishment of a separate model with respect to each region with its own climatic parameters is the preferred 

approach. In this case, the overall territory of study (Jordan) was divided into four regions, and accordingly, four 
separate fuzzy models were designed. 

• Within the fuzzy model, the various parameters for the four proposed regional models were initially established 
and subsequently adjusted experimentally and heuristically. Consequently, each model differs from all the others in 
respect of the parameters utilized, including with regard to fuzzy variable values and ranges, membership func-
tions, and fuzzy roles. 

• Seasonal rainfall is extremely variable in the middle, the north, and the desert regions. 
• The results obtained indicate the models proposed are effective in predicting seasonal rainfall in Jordan. 

 
5. Conclusion 
 
This study sought to forecast seasonal rainfall in Jordan using a fuzzy-based model. The evaluation of the proposed fuzzy 
model utilized performance metrics including PD, RMSE, MAE, and accuracy. The error measures thus generated suggest 
that the proposed model is both reliable and acceptable—and is therefore capable of use as a seasonal rainfall prediction tool. 
The area of study—Jordan—was divided into four regions, each with a similar climate profile. Frequent adjustment of the 
fuzzy model parameters was undertaken to enhance performance and achieve acceptable results. Following numerous exper-
iments, the climatic parameters of temperature, wind speed, cloud cover, and humidity were adopted as the inputs to the 
model. The models were flexible and capable of representing a weakly defined link between an input and an output variable. 
Based on the findings of this study, it is possible to conclude that the fuzzy technique is capable of providing accurate general 
rainfall predictions. In terms of future work, further optimization may be achieved by combining FL techniques with an 
alternative method such as artificial neural networks (ANN), exploring the potential of neuro-fuzzy algorithms to provide 
enhanced results. In addition, experimentation involving larger data sets and more numerous rainfall parameters integrated 
within the models may prove to be of further value. Finally, it may be useful to explore the utilization of deep-learning 
techniques within the prediction models in order to manage large data volumes. 
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