
* Corresponding author.
E-mail address: hindawnouh@gmail.com (N. Alhindawi)

© 2022 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.ijdns.2022.2.011

International Journal of Data and Network Science 6 (2022). 849–860

Contents lists available at GrowingScience

International Journal of Data and Network Science

homepage: www.GrowingScience.com/ijds

Understanding and predicting bugs fixed by API-migrations

Nouh Alhindawia*, Omar Meqdadib, Jamal Alsakranc, Nader Mohammad Aljawarnehd and Ha-
tim S. Migdadie

aFaculty of Sciences and Information Technology, Jadara University, Irbid, Jordan
bDepartment of Software Engineering, Jordan University of Science and Technology, Irbid, Jordan
cComputer Information Science, Higher Colleges of Technology, Fujairah, United Arab Emirates
dFaculty of Business, Jadara University, Irbid, Jordan
eThe Hashemite University Zarqa, Jordan
C H R O N I C L E A B S T R A C T

Article history:
Received: October 8, 2021
Received in revised format: No-
vember 28, 2021
Accepted: February 17, 2022
Available online: February 17
2022

 Bug tracking systems are standard repositories that preserve a large number of uncovered
bugs. Once a bug is reported in these repositories, developers search for appropriate changes to fix
the bug. However, discovering the changes that can fix the bugs has a negative influence on the
schedule and cost of projects. Mainly, fixing bugs could be done by performing some other mainte-
nance changes. In this work, we study and examine the role of adaptive maintenance in the context
of API-migration during bug fixing activities through a case study on KOffice, Extragear/graphics,
and Open Scene Graph projects. Our goal is to direct developers towards potential bugs early in
development which are more likely to be fixed by performing adaptive changes as opposed to other
maintenance tasks. We examined the reports of fixed bugs from the bug tracking systems of the
studied projects, then we explored several factors related to variant dimensions of the reports and
their relevant version history commits, in order to evaluate their effectiveness to decide whether a
bug is likely to be fixed by adaptive changes. Our case study results show that bug residency time,
textual contents of the report, the component that the bug was found in, and reporter/commenter
experience show significant differences between the bugs that are fixed by adaptive changes and
other fixed bugs.

© 2022 by the authors; licensee Growing Science, Canada.

Keywords:
Bug fixing
Adaptive change
API migration
Empirical investigation
Bug classification

1. Introduction

Once someone discovers a bug, he/she creates a bug report in the bug tracking system, such as Bugzilla, describing what the
bug is. Then, the bug is assigned to a developer who is responsible for fixing it, and finally, once the bug is resolved, another
developer validates the fix and closes the associated report. Several software development activities focus on the process of
fixing bugs (Song et al., 2006; Zeng & Rine, 2004). Determining the effort required to fix a bug is an essential stage in project
management and planning. Such effort depends on several factors, such as the complexity of both the bug and code (Marks
et al., 2011). The primary step of fixing bugs is looking for the appropriate changes that are needed to perform a fix that results
in high quality and requires low effort. However, finding the proper changes for such a fix has a negative impact on both the
schedule and cost of projects. Fixing a bug could be accomplished by or could be fixed because of performing other perfective
or adaptive changes. In the field of perfective maintenance (e.g., adding new features and API-refactoring), there have been
prior studies that consider the relationship of such maintenance with the fault and defect fixing activities. Posnet et al. (2013)
found that adding new features is positively correlated with defect fixing activities of the Wicket project. The role of API-

 850

refactoring during the bug fixing activities is investigated in (Kim et al., 2011). The investigation results show that there is an
increase in the number of bug fixes after performing an API-level refactoring. Moreover, the results illustrate that there is
many revisions that contain both API-refactoring and bug fixing changes. The accommodation of adaptive maintenance for
bug fixing activities is not as well-studied. Therefore, we undertook an empirical study of three large open-source projects
that previously underwent major adaptive maintenance tasks. We exploited multiple years of both version control systems
(CVS) and bug tracking systems (Bugzilla) used by these projects to uncover exactly which bugs got fixed by the undertaken
adaptive changes. We then explored several dimensions of the uncovered fixed bugs in order to evaluate factors that affect
the decision of whether a bug will be fixed by implementing adaptive changes or not.

This paper makes two contributions. The first contribution is the investigation of the role of API-migration changes on bug-
fixing tasks. Thus, we searched for the existence of commits that involve both major API migrations and bug fixes. Our second
contribution is building prediction models to help developers flag early on if a bug is more likely to be fixed by performing
adaptive changes (in the context of API-migration) rather than other maintenance tasks. Therefore, we studied all bugs that
were fixed during adaptive maintenance changes, along with several factors, to help us discriminate bugs fixed by adaptive
changes. Below, our study has below research questions:

RQ1: Does API-migration to a new platform facilitate bug fixes?

In this study, we found that the API-migrations improved developer productivity where there were notable bug fixes after
performing adaptive maintenance changes.

RQ2: Which factors indicate, with high probability, that a bug will be fixed by adaptive changes?

We found that the bug residency time, textual contents of the bug report, the component that the bug was found in, and
reporter/commenter experience are the best indicators of whether a bug will be fixed by adaptive changes or not.

The remainder of this paper is organized as follows. Section 2 describes the approaches we followed in this study. Section 3
shows our case study and the main obtained results. Section 4 mentions several threats to the validity for our study. Section
5 reviews related work followed by Section 6 with the paper conclusions and some directions for future research.

2. Study setup

In this section, we describe our approach. First, we discuss the studied open-source projects, and then we show the approach
we follow to identify the bug-fixing revisions of the studied projects. Then, we list the examined factors that can be extracted
from the bug reports.

2.1 Studied projects

To conduct our study, we selected three open-source projects that were previously examined in (Meqdadi et al., 2013).
Meqdadi et al. (2013) analyzed two KDE packages (KOffice and Extragear/graphics) and OpenSceneGraph (OSG) as study
subjects, and manually identified all the undertaken adaptive commits for these systems within a specific period of time. These
projects represent prime examples of successful open-source development that involve significant API migration and have
changed logs with good quality (Meqdadi et al., 2013). KOffice and Extragrear were undergoing adaptive maintenance be-
tween 06/28/2005 and 12/31/2010. The maintenance was due to an update in the QT framework. QT is an open source,
platform-independent framework for developing GUIs. QT4 was released in 2004. In 2006, KOffice and Extragear began
maintenance for migration from QT3 to QT4. The migration lasted four years, ending in 2010. OpenSceneGraph migrated
for similar reasons, but their migration took place between 08/11/2008 and 03/11/2010. Meqdadi et al. (2013) searched
through log messages for usages of particular terms (Qt function, interface, and feature names) that had some relevance to
what needed to be updated between Qt3 and Qt4. They then read over and inspected the actual commits to make sure they
were adaptive change commits. Most of the commits during that time period did not have anything to do with adaptive
changes. The other commits addressed corrective maintenance issues or were involved in the adding of new functionality or
features to the examined systems. A summary of this is given in Table 1.

Table 1
Adaptive And Non-Adaptive Commits For The Three Systems Over The Given Time Period.

 Koffice Extragear/
Graphics

OSG

Adaptive Maintenance Task Migration from Qt3 to Qt4 Migration from Qt3 to Qt4 Migration to OpenGL 3
Adaptive Task Starting-Date 03/29/2006 11/07/2006 09/18/2008
Adaptive Task Ending-Date 12/31/2010 12/31/2010 12/31/2010
Total Number of Commits 38,980 26,336 4,310

Number of Non-Adaptive Commits 38,849
(99.7%)

26,117
(99.2%)

4,231
(98.2%)

Number of Adaptive Commits 131
(0.3%)

219
(0.8%)

79
(1.8%)

N. Alhindawi et al. / International Journal of Data and Network Science 6 (2022) 851

2.2 Identification of Bug Fixing Commits

A number of techniques have been proposed to assist in the recovering of links between fixed bugs and committed changes
for open software projects. Traditional heuristics to identify these links depend on the assumption that developers use explicit
hints/tags, such as specific keywords (e.g., bug, crash, and fix) and bug ID references, about bug fixing activities in their
change commits (Wu et al., 2011). Therefore, recovering the bug-fixing commits from the version history could be accom-
plished by looking for certain keywords (e.g., fix, bug, and crash) and for bug ID references in change commits (Zimmermann
et al., 2007; Pan et al., 2009; Aljawarneh et al., 2021). For instance, shows one of the commits (revision # 1025738) from the
Subversion repository of KOffice that was manually labeled as adaptive in (Meqdadi et al., 2013). In this adaptive commit,
the developer mentioned the ID of the relevant bug (BUG: 206526) that was fixed using the enhanced version of QPainter
class of Qt4 after migrating the system from Qt3 to Qt4. Consequently, to explicitly identify bug-fixing revisions, our meth-
odology follows the approach that was performed in (Wu et al., 2011). This approach is based on searching the commit log
messages for valid bug reference numbers.

< logentry
 revision="1025738">
<author> berger </author>
<date>2009-09-19T15:14:53.994867Z </date>
<paths>
<path
 kind=""action="M"> /trunk/koffice/krita/ui/canvas/
kis_prescaled_projection.cpp </path>
</paths>
<msg> Fix: the image isn't shown anymore after validating
the preferences and using the QPainter canvas
BUG: 206526
</msg>
</logentry>
</logentry>

Fig. 1. A Snippet of an adaptive bug-fixing commit for the

KOffice system

3. Study results

We now present the details behind the results and the outcomes of our study.

A. RQ1: Does API-migration to a new platform facilitate bug fixes?

To answer this question, we first used the approach presented in the previous section to identify all bug-fixing commits
along with their relevant fixed bugs of the studied projects during the examination period. Afterward, we categorized the
uncovered fixing commits into either one of two categories, namely adaptive commits and non-adaptive commits, based on
the results of the manual categorization performed in (Meqdadi et al., 2013). The first category contains all commits that fixed
bugs by accomplishing adaptive maintenance tasks (e.g., migrating to a new API or compiler). In contrast, the second category
contains commits that fixed bug by accomplishing all other maintenance tasks (i.e., adding new features or enhancements
tasks). One important note from the results of Meqdadi et al. (2013) is that the adaptive commits normally do not involve
large, complex changes to system functionality. Moreover, as an additional verification, we used the GNU UNIX DIFF utility
to identify changed source code lines occurring in each adaptive commit that was recognized as a bug fix commit. Our veri-
fication shows that all the undertaken source code changes of the verified commits were API-migration changes. Given this
result, we can form the hypothesis that the first category covers only commits that include both major API migrations and bug
fixes. Second, we classified every fixed bug during the examination period into one of two categories: Adaptively_Fixed and
Non_Adaptively_Fixed. The first category contains all bugs that were fixed by performing adaptive changes (e.g., linked to
a fix-revision of type adaptive). The second category covers only bugs that were fixed by performing non-adaptive changes
(e.g., linked to a fix-revision of type non- adaptive). Table 2 shows the results of using the above approach for the three
examined systems, along with number of Adaptively_Fixed bugs and Non_Adaptively_Fixed bugs. Therefore, the results of
the table illustrate the fact that API-migrations through adaptive maintenance fix a set of existing bugs in the open source
systems.

We now address a reasonable question concerning the relationship between API-migration and later bug-fixing activities: Are
there more bug fixes after committing an API-migration change?

 852

Table 2
Adaptively_Fixed And Non-Adaptively_Fixed Bugs For The Three Systems Over The Given Time Period

 KOffice Extragear/
Graphics

OSG

Total Number of Fixed Bugs 1234 1107 283
Number of Adaptively_Fixed bugs 57

(4.62%)
86

(7.77%)
34

(12.01%)
Number of Non_Adaptively_Fixed bugs 1177

(95.38%)
1021

(92.23%)
249

(87.99%)

To answer the above question, we need to find all bug-fix revisions (e.g., non-adaptive commits) within N revisions after each
adaptive commit where fixing applied to the same file-level locations that were earlier touched by that adaptive commit. To
avoid considering the bugs that possibly could be introduced by the undertaken API-migration change of an adaptive commit,
where we plan to investigate this type of bug introducing in the future, we only count fixing those bugs that were introduced
before the adaptive commit was accomplished. For instance, to find the true benefits of revision 1025738, see Fig. 1 on helping
later bug fixing, we count the number of bugs that were introduced before 19-09-2009 and fixed within N non-adaptive
revisions after committing 1025738, where the fixing includes changing the file koffice/ krita/ ui / canvas / kis_prescaled_pro-
jection .cpp.

Based on the results of (Aljawarneh, et al.2021). , we set N to 20. Then, for each adaptive commit, we computed the fix rate
(#fix- revisions / N). We used these computed fix rates as the data points for classification. To help such classification, we
used the 5-point summary approach, the same approach that was used for commit categorization in (Alali et al.,2008). We
developed a tool to apply this categorization over the collected adaptive commits and classify them into different categories
based on the computed fix rate. Table 3 provides a summary (e.g., the data, quartiles) of the adaptive commit categorization
using the fix rate measure for KOffice. The Range column of this table represents the boundaries of each defined region for
the corresponding boxplot. The details of the five-point summarization are described elsewhere (Alali et al.,2008). The results
show that the API-migrations improve developer productivity where there are notable bug fixes after performing adaptive
maintenance changes. For instance, 17.56% of KOffice adaptive commits have fixing rate of 11 % or more.

B. RQ2: Which factors indicate, with high probability, that a bug will be fixed by adaptive changes?

Now, we would like to identify the factor or group of factors that have a significant impact on the recognizing of potential
bugs that have the likelihood to be fixed through adaptive changes from the other set of bugs. These factors must represent
distinguishing common characteristics and trends that hold for a broad range of Adaptively_Fixed bugs and show a statistically
significant difference between this type of fixed bugs and the other fixed bugs across several systems. With this information,
we can devise our study of which factors to use to detect this type of bug early on.

Table 3
Five-Point Summary Of Adaptive Commits Categorized By Fix Rate For Koffice

 KOffice
Quartile Fix Rate
Q0 (Min) 0

Q1 5%
Q2 (Median) 5%

Q3 10%
Q4 (Max) 25%

IQR Q3 - Q1 = 5%
Boxplot Range Ratio in adaptive commits

Extra-Small 0% – 5% 60.26 %
Small 6% – 10% 22.18 %

Medium 11% - 17% 12.98 %
Large 18% - 24% 3.82 %

Extra-Large >= 25% 0.76 %

Prior research is loaded with prediction models regarding the determination and prediction of bugs for various goals. For
instance, Shihab.et al (Shihab et al., 2010) identified a set of the top factors that influence the likelihood of a bug being re-
opened. In (Valdivia-Garcia et al., 2018), the study results show the major factors that help in predicting blocking bugs which
prevent other bugs from being fixed. Sun et.al. (Sun et al., 2011) identified a set of factors to detect duplicate bugs. Kukkar
and Mohana (2018) and Lamkanfi et al. (2011) used textual information as a factor to predict bug severities. To come up with
a list of factors, we surveyed prior work that had focused on mining bug reports. We leverage the knowledge from numerous prior studies and exposed several factors that could indicate whether a bug will be fixed by adaptive changes or not. Then, we investigated each of these factors and examine if it represents a distinguishing common trend that could recognize Adap-
tively_Fixed bugs from the other bugs. We computed the level of significance of these factors using the Mann-Whitney U
non-parametric tests (Conover, 1999). In this statistical testing, a p-value of 0.05 or less represents the significance level. If
the p-value is greater than 0.05, then we assume there is no observable difference between Adaptively_Fixed and Non_Adap-
tively_Fixed bugs. Based on the results of this test, our investigation classified these factors into one of two categories, namely significant and insignificant factors. The first category includes all factors that could help identify Adaptively_Fixed bugs

N. Alhindawi et al. / International Journal of Data and Network Science 6 (2022) 853since they show significant differences between the two types of fixed bugs across all three examined projects. The second category included all other factors that show no significant difference between the two types of fixed bugs. 1- Significant Factors
We now take a closer look at each significant factor and attempt to uncover the significant differences between the Adap-
tively_Fixed and Non_Adaptively_Fixed bugs in the terms of each of these factors. The goal is to characterize what a typical
Adaptively_Fixed bug looks like. Or, more importantly, the goal is to see if a typical Adaptively_Fixed bug exists.

• Bug Residency Time
First, we examine the interval between the time when a bug was fixed (e.g., resolved and closed), and the time when that bug
was initially reported. That is, for each fixed bug linked to a fixing commit in the version history, we examine the elapsed
time between its original injection, as given by its associated bug report, and its eventual fix time, as given by its associated
fixing commit. This time interval represents the residency time of a bug (Zeng & Rine, 2004). Here, we address the question:
do fixed bugs by adaptive commits have a longer residency time than other fixed bugs?

One main advantage of answering the above question is providing a good understanding of the entire life cycle of those bugs
that are fixed by the adaptive changes comparing with the other fixed bugs. Table 4 reports the descriptive statistics and the
results of the Mann-Whitney test (p-value) obtained when comparing the bug residency time for Adaptively_Fixed and
Non_Adaptively_Fixed bugs. The results demonstrate that the mean time of residency of Adaptively_Fixed bugs is approxi-
mately 6 months longer than the mean time of residency of the other fixed bugs. Moreover, the results of the Mann-Whitney
test always report a statistically significant difference between the residency time of bugs fixed by adaptive changes and other
fixed bugs for the three examined systems, where all reported p-values are less than the value of 0.05. Given this trend, we
would observe the fact that bugs fixed by adaptive changes often have a longer residency time before being fixed. This fact
can be explained by the idea that most of these fixed bugs were originally injected in the system because of existing bugs or
missing features in the employed API or compiler release, where developers are unable to wrap around these problems. Con-
sequently, developers wait for a significant improvement of APIs or compilers. For instance, the QValueList <QString> does
not have a virtual destructor in the release Qt 3.x (QTBUG-8292), and because of that some KOffice code kept crashing and
leading to an undefined behavior. This reported KOffice bug has been resolved by using the new class QList after releasing
the new API Qt 4.8. Once again, a reasonable question to ask is: are our time investigation results analogous and comparable
with time interval results of previous empirical studies that investigated residency time of generic fixed bugs? The previous
empirical studies indicate that, in most cases, the bug residency time of most bugs that are fixed by nonspecific changes is 3
months (Zeng & Rine, 2004). This finding is comparable with our obtained results regarding the set of bugs that were fixed
by non-adaptive changes.

• Comment Dimension

Hooimeijer and Weimer (2007) showed that the number of comments associated with a bug report indicates the time it takes
to fix it. Additionally, Shihab et al. (2010) used the number of comments as a factor in determining whether a bug will be re-
opened or not. These prior studies motivate us to investigate if there is any trend regarding the number of comments associated
with those bugs that were fixed by adaptive maintenance. As such, for each fixed bug, either by adaptive changes or not, we
directly extracted the number of comments associated with it. Table 5 reports the descriptive statistics and the results of the
Mann-Whitney test (p-value) obtained when comparing the comment count for Adaptively_Fixed and Non_Adaptively_Fixed
bugs. The results of the Mann-Whitney test report no statistically significant difference between the comment counts of bugs
fixed by adaptive changes commits and other fixed bugs, where the p-values are 0.059, 0.054, and 0.047 for the KOffice,
Etragear/graphics, and the OSG respectively. Therefore, no solid conclusion can be drawn in this view of the comparison
between Adaptively_Fixed and Non_Adaptively_Fixed bugs in the term of comment count.

Nevertheless, the study results in (Hooimeijer & Weimer, 2007) illustrated that bugs that receive more user attention get fixed
faster. Conversely, based on our results of time interval measures of the two types of fixed bugs, which were discussed pre-
viously, we would observe that bugs with a large comment count and long residency time are more likely to be fixed by
adaptive changes rather than other maintenance tasks. Consequently, the above observation motivates us to investigate the
average time interval between successive comments attached to every Adaptively_Fixed bug and see if such an average would
help in distinguishing this type of fixed bugs from the other fixed bugs. Thus, for each fixed bug, we extracted the time interval
between every two successive comments from its report. Then, we computed the corresponding average time interval (AVGct)
for the bug. Table 6 reports the descriptive statistics and the results of the Mann-Whitney test (p-value) obtained when com-
paring the AVGct for Adaptively_Fixed and Non_Adaptively_Fixed bugs. One important note here, the Adaptively_Fixed bugs
always show higher values of AVGct. The reason is due to the observation that these bugs received a lower number of com-
ments during a long residency time as we discussed before. Also, the results of the Mann-Whitney test report a statistically
significant difference between the AVGct of Adaptively_Fixed bugs and other fixed bugs for the three examined systems,
where the p-values are always less than the value of 0.05.

 854

Therefore, we would observe that, although there is no significant difference between bugs fixed by adaptive changes and
other fixed bugs in the term of comment count, bugs fixed by adaptive changes have a higher time interval between their
successive comments.

• Developer’s Experience
Recently, the research community focused on understanding the relation between the people dimension (e.g., the reporter,
commenters, and the fixer) of a given bug report and the bug classification (Al-Bourini et al., 2021). Here, we address the
question: is the experience level of developers involved in fixing Adaptively_Fixed bugs any different from that of developers
involved in other fixing activities? This research question investigates whether a bug fixed through adaptive maintenance
requires developers who have higher/lower experience levels with respect to other fixing activities. Since adaptive changes
are system-wide maintenance operations that require a developer who has a broad knowledge of the system and APIs, we are
hypothesizing that bugs fixed by adaptive changes were performed by developers who have more experience with adaptive
maintenance.

Like previous studies, we do not consider the general experience of developers (e.g., total number of days on a project).
Instead, we evaluate a developer’s experience based on his/her contributions on the undertaken maintenance activities (e.g.,
adaptive and non-adaptive) and bug fixing accomplishments. We used four different measures to assess developers’ contri-
butions. The first measure used to capture the developer’s contribution on the undertaken adaptive maintenance is named
adaptive experience (AdpExp). This measure is computed for a developer Di as:

AdpExp (Di) = |AdpCommits (Di)| / |AdpCommits|,

where |AdpCommits (Di)| is the number of adaptive commits performed by Di and |AdpCommits| is the total number of
adaptive commits performed during the examination period. Similarly, we adopted a variant of the first measure, named as
adaptive experience (NAdpExp), where the numerator is computed by only taking into account the non-adaptive commits
performed by Di, and the denominator represents the total number of non-adaptive commits performed during the examination
period. The third measure used to capture the developer’s contribution on the undertaken fixing activities that were
accomplished through adaptive changes is named as adaptive fixing experience (AFixExp). This measure is computed for a
developer Di as:

AFixExp (Di) = |AdpFixBug (Di)| / |AdpFixBug|,

where | AdpFixBug (Di)| is the number of bugs that were Adaptively_Fixed by Di and | AdpFixBug| is the total number of
Adaptively_Fixed bugs during the examination period. Also, we adopted a variant of the third measure, named as non-adaptive
fixing experience (NAFixExp), where the numerator is computed by only taking into account the bugs fixed by Di, which
were performed through non-adaptive changes, and the denominator represents the total number of bugs that were fixed
through non-adaptive changes during the examination period.

In essence, given a bug report, our approach works as follows:

1. Extract the bug reporter and the set of all developers who attached a comment to the report. This step is performed
by mining the bug tracking system.

2. For every reporter and commenter, compute the four mentioned contribution metrics. This step is performed by
mining the author dimension, see Error! Reference source not found., of the commits that are recorded in the
version history of the system. Of course, we earlier showed that the commits are classified as either adaptive or non-
adaptive, and the set of bug fixing commits (e.g., adaptive and non-adaptive) are also identified for each system.

3. Finally, for each bug report, calculate the following measures:
a. S_AdpExp: Sum of AdpExp of the reporter and all commenters of the bug report.
b. S_NAdpExp: Sum of NAdpExp of the reporter and all commenters of the bug report.
c. S_AFixExp: Sum of AFixExp of the reporter and all commenters of the bug report.
d. S_ NAFixExp: Sum of NAFixExp of the reporter and all commenters of the bug report.

As we can note from the above steps, our computations need data extracted from both the version history and bug tracking
system. Since developers could use different login names in different scenarios, we need to map between user accounts in the
bug tracking system of a project. For our investigation, we did this mapping manually for each examined system. Table 7
reports the descriptive statistics and the results of the Mann-Whitney test (p-value) obtained when comparing the developers’
contributions (measured using four metrics described early) for Adaptively_Fixed and Non_Adaptively_Fixed bugs. In this
table, The four contribution metrics, on all three subject systems, reveal an expected result: developer’s experience (e.g., bug
reporter, commenter, or fixer) in adaptive maintenance is higher for Adaptively_Fixed bugs than for other fixed bugs, while
developer’s experience in non-adaptive maintenance is lower for Adaptively_Fixed bugs than for other fixed bugs. This dif-
ference is also always statistically significant as illustrated by the results of the Mann-Whitney test (p-value < 0.05).

N. Alhindawi et al. / International Journal of Data and Network Science 6 (2022) 855

The main explanation of our findings is provided by the results of (Aljawarneh, et al.2020), which illustrate that API-migration
changes are complex, critical, and system-wide tasks, and thus performing bug fixing through such migration requires a
developer who is an expert with this type of maintenance and understands the new features that exist in the new API version.
Therefore, the experience of the reporter/commenter of a bug mirrors better knowledge of the type of changes needed to fix
that bug in the future. On the other hand, delving a bit deeper into the people dimension of recorded bug reports, we found
that nearly 85% of the fixed bugs through adaptive maintenance hold this observation: the reporter and the fixer of a bug are
the same person. Moreover, our investigations show that the developer who fixed a bug by adaptive changes always posted
at least one comment in the relevant bug report. Consequently, we would observe that if a bug was reported or commented by
adaptive maintenance experts, then it is more likely to be fixed by adaptive changes rather than other maintenance tasks.

Table 4
Bug Residency Time (E.G., #Months) In Adaptively_Fixed And Non_Adaptively_Fixed Bugs: Descriptive Statistics And
Mann-Whitney Test (P-Value)

Bug Residency Time

System
Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 11.23 9.51 6.53 4.51 4.10 4.36 0.026
Extragear/graghics 12.41 9.82 5.13 4.93 3.55 4.71 0.023
OSG 9.83 6.51 3.47 3.16 1.62 3.88 0.032

Table 5
Comment Count In Adaptively_Fixed And Non_Adaptively_Fixed Bugs: Descriptive Statistics And Mann-Whitney Test
(P-Value)

Comment Count

System
Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 3.06 2.00 4.28 3.25 2.00 2.34 0.059
Extragear/graghics 3.41 3.00 2.26 3.72 3.00 2.15 0.054
OSG 3.17 2.00 3.41 3.83 3.00 2.47 0.047

Table 6
AVGCT measure (E.G., #MONTHS) inADAPTIVELY_FIXED and NON_ADAPTIVELY_FIXED BUGS: Decriptive
statistics and Mann-Whitney test (P-Value)

AVGct

System
Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 4.06 2.85 2.09 2.51 1.90 3.22 0.035
Extragear/graghics 4.11 3.73 1.78 1.93 1.32 3.19 0.041
OSG 2.27 1.89 2.62 1.44 1.11 5.56 0.039

• Location Dimension
A large body of research focused on considering the component as a factor to predict different aspects of bugs. For instance,
Marks et.al (Zeng & Rine, 2004) study the fix-time along three dimensions including the location of the bug (e.g., which
component). Sun et al. (2011) included the bug component as a factor in their model to predict duplicate bugs. They found
that the component of a bug is one of the most important factors in determining whether the bug will be re-opened or not.
Therefore, in this research, we studied the Adaptively_Fixed bug along with the location dimension (e.g., component), where
we aim at investigating whether this dimension could help in predicting if adaptive changes may fix a given bug or not. The
intuition is that the type of fixing changes of a bug would be similar to the common change type of prior bugs in that compo-
nent. That is, if most bugs in a component were fixed by performing an API-migration task, then a new bug in that component
is likely to be fixed by some similar API-migration tasks. Accordingly, in our study, we choose the fix rate (e.g., adaptively
and non-adaptively) of each component as a metric to gauge the likelihood of using the adaptive changes to fix a bug in that
component. We used two different measures to assess the fix rate of a component. The first measure used to capture the
contribution of the adaptive maintenance on fixing prior bugs of a given component is named as adaptive fixing contribution
(AdpFixCont) and it is computed for a component Ci as:

AdpFixCont (Ci) = |AdpFixBug (Ci)| / |FixBug (Ci)|,

where | AdpFixBug (Ci)| is the number of bugs that were Adaptively_Fixed in Ci and | FixBug (Ci)| is the total number of
fixed bugs in Ci during the examination period. The second measure used to capture the contribution of the non-adaptive
maintenance on fixing prior bugs of a given component is named as non-adaptive fixing contribution (NAdpFixCont). Since,
in this study, we classify the fixing changes into either adaptive or non-adaptive, the second measure is computed for a com-
ponent Ci as:

NAdpFixCont (Ci) = 1 - AdpFixCont (Ci).

 856

For every component Ci of each studied system, we computed the AdpFixCont (Ci) and NAdpFixCont (Ci). For instance,
Fig. 2 shows the computed fix contribution measures over the components of the KOffice system. We can see that most of
the components have higher NAdpFixCont than AdpFixCont, while only two components have higher AdpFixCont than
NAdpFixCont. That is, we would observe that bugs residing in some specific components are more likely to be fixed through
adaptive changes than by the other maintenance changes.

• Description and Comment Texts
As we discussed before, the developer who fixed a bug by adaptive changes posted at least one comment related to that fixing
activity, which is associated with API-migration tasks. On the other hand, Shihab et al. (2010) identified the bug description
and comment text as top factors that influence the likelihood of a bug being re-opened. In (Valdivia-Garcia et al., 2018), the
study results show that the bug description and the comment text are important factors in predicting blocking bugs that prevent
other bugs from being fixed. These prior studies and our previous results motivate us to address a main question concerning
the prediction of bugs that could be fixed by adaptive maintenance changes. Here, we see if there are some terms from the
bug description and the comment texts that are strongly related to those bugs being fixed by adaptive changes rather than
other bugs. That is, we address the question: do the bug description and the comment text attached to a bug report indicate
whether a bug will be fixed by a sort of adaptive changes or not? To answer this question, we need a vocabulary of the most
frequent terms used in the bug description and the comment text attached to the reports of Adaptively_Fixed bugs over the
three examined projects. To deal with textual contents of the description and attached comments of a bug report, a special
processing is employed to convert these textual attributes into numerical values. Similar to the prior studies, we used the Naive
Bayesian classifier (Meyer & Whateley, 2004) on the description text and attached comments to build a vocabulary of the
most frequent terms used in the reports of Adaptively_Fixed bugs over the three examined systems. Therefore, we used a
training set consisting of 2/3 randomly selected bug reports. Then, two corpora were generated from the training set, where
the first corpus (Corpus_A) contains the textual contents of the descriptions and attached comments of the Adaptively_Fixed
bugs, while the second corpus (Corpus_NA) contains the textual contents of the descriptions and attached comments of the
other fixed bugs. Afterward, the Bayesian classifier was trained using the two derived corpora.

The text of the description and attached comments are divided into tokens, where each token represents a single word. The
occurrence frequency of each token was computed, and then each word is assigned a probability of being relevant to an
Adaptively_Fixed bug or Non_Adaptively_Fixed bug. The probability P(Wi) is assigned to each word Wi as follow:

 If Wi is only in Corpus_A, then P(Wi) is close to 1.
 If Wi is only in Corpus_NA, then P(Wi) is close to 0.
 Otherwise, if Wi is in both corpora, then its probability is calculated by:

P(Wi) = | FreqA(Wi) | / | FreqT(Wi) |.

where | FreqA(Wi) | is the occurrence frequency of word (Wi) in Corpus_A and | FreqT(Wi)| is the total occurrence frequency
of Wi in the both corpora (occurrence frequency in Corpus_A + occurrence frequency in Corpus_NA). For instance, Table 8
has a list of some words that have a probability close to 1 for the KOffice system ordered by their occurrence frequency
Corpus_A(| FreqA(Wi)|), while Table 9 has a list of some words that have a probability close to 0 for the same system ordered
by their occurrence frequency in Corpus_NA(e.g., | FreqNA(Wi) |). Once again, we excluded the terms “fix” and “bug” from
our consideration as they are expected to be frequent terms in both corpora. As we can observe, some terms are more relevant
to Adaptively_Fixed bugs than other bugs, where these terms have noteable occurrence frequencies. This gives some credence
to the idea of using a set of predefined terms in predicting those bugs being fixed by adaptive changes rather than other
changes across a broader set of systems. After the classifiers were trained, for each bug report (Reporti), we combined the
description text and the attached comments into one text Ti. Then, we obtained the Bayesian-score of Ti based on the computed
probabilities of its words as follow:

P (Ti) = ∏ P (Wi) / (∏ P (Wi) + ∏ (1- P (Wi))).

Similar to the prior studies, the calculation of P (Ti) is based on the probabilities of the highest 15 words within the text Ti.
A survey by Bettenburg et al. (Zimmermann et al., 2010) shows that bug reports with code samples are fixed sooner than other
bugs. So, we counted the number of semicolons in the bug report (e.g., description and attached comments) of both Adap-
tively_Fixed and Non_Adaptively_Fixed bugs, to see any distinguishing trend between the two types of fixed bugs in term of
semicolon counting.

2. Significant factor

Table 10 lists the factors that were classified as insignificant by our investigation results, besides their results of the Mann-
Whitney test. For instance, as we can note from, the priority measure shows a significant difference between the two types of
fixed bugs for only the Extragear/graphics system (e.g., p-value = 0.048), and so we consider this factor as insignificant.

N. Alhindawi et al. / International Journal of Data and Network Science 6 (2022) 857

Table 7
Developer’s Experience In Adaptively_Fixed And Non_Adaptively_Fixed Bugs: Descriptive Statistics And Mann-Whitney
Test (P-Value)

S_AdpExp

System
Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 0.18 0.15 0.08 0.04 0.01 0.07 0.011
Extragear/graghics 0.13 0.09 0.06 0.03 0.01 0.05 0.012
OSG 0.15 0.12 0.06 0.06 0.02 0.07 0.019

S_NAdpExp
System Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 0.04 0.02 0.06 0.09 0.05 0.10 0.013
Extragear/graghics 0.04 0.02 0.05 0.16 0.09 0.19 0.011
OSG 0.03 0.01 0.07 0.12 0.08 0.13 0.018

S_AFixExp
System

Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 0.20 0.18 0.05 0.03 0.01 0.06 0.022
Extragear/graghics 0.17 0.14 0.09 0.02 0.01 0.06 0.014
OSG 0.19 0.16 0.08 0.04 0.02 0.05 0.017

S_NAFixExp
System Adaptively_Fixed Bugs Non_Adaptively_Fixed Bugs p-value

Mean Median St. Dev. Mean Median St. Dev.
KOffice 0.05 0.03 0.08 0.13 0.11 0.17 0.019
Extragear/graghics 0.02 0.01 0.05 0.09 0.06 0.14 0.016
OSG 0.04 0.01 0.07 0.12 0.08 0.16 0.020

Fig. 2. The distribution of fix rate for bugs over the components of KOffice. The x-axis shows the specific component, while

the y-axis shows the computed AdpFixCont and NAdpFixCont

Table 8
Top 15 Words With Probability Close To 1 Ordered By Occurrence Frequency In Corpus_A For The Koffice System

 | | FreqA(Wi)| | FreqA(Wi)|
Threadpool 17.18% Platform 10.23% Port 4.16%
Leak 15.42% Deprecate 8.81% Signal 3.88%
Wizard 14.43% Catch 7.45% Slot 3.42%
Include 12.89% Cast 5.33% Allocate 3.16%
Operator 12.06% Format 4.47% Lightweight 3.01%

4. Threats to validity

We now present some possible threats to validity. The systems we studied are all open-source systems. The applicability of
our approach for industry/proprietary systems are not claimed in this study, though, and is left for a future investigation. In
our study, we used traditional heuristics to identify bugs that were fixed by adaptive changes. The results of conventional
heuristics largely depend on the changelog and commit quality. As a result, we could fail to identify all bugs that were fixed
by adaptive changes. Moreover, developers have non-standard patterns as when to commit. Some commit every small suc-
cessful change early due to time constraints, where others wait until the completion of the whole problem.

5. Conclusion

The paper presents a new model based on the decision trees for predicting whether or not a bug will be fixed by implementing
adaptive changes in the context of API-migration. The model locates bugs of interest in the bug-tracking systems. A set of

0
0.2
0.4
0.6
0.8

1

KOffice

AdpFixCont NAdpFixCont

 858

factors extracted from the version control and bug repositories of three large open-source systems have been evaluated. Our
results show that a set of factors show significant differences between the bugs that are fixed by adaptive changes and other
fixed bugs. We intend to investigate this path in future research. We also plan to expand our study by investigating more
projects and figuring out if our proposed model is valid for industrial projects. Moreover, we plan to construct a golden set of
API-transformational rules to automatically fix some system bugs.

Table 9
Top 15 Words With Probability Close To 0 Ordered By Occurrence Frequency In Corpus_Na For The Koffice System.

 FreqNA(Wi)| | FreqNA(Wi)| | FreqNA(Wi)|
Work 14.75% Pattern 7.45% Build 3.52%
Break 11.61% Overrun 7.31% Load 3.09 %
Debug 10.17% Disable 7.05% Patch 2.76%
Duplicate 8.02% Message 6.30% Query 2.42%
Typo 7.78% behavior 5.81% Background 1.83%

Table 10
The summary of factors that show no significant difference between adaptively_fixed and non_adaptively_fixed bugs

Name Factor Description Computed p-value
KOffice Extragear

/Graphics
OSG

Severity The severity of a reported bug that describes the impact of it. The severity
of a bug is represented by an integer number with a range from 1 (e.g.,
low) to 7 (e.g., high)

0.054 0.071 0.066

Priority The priority of a reported bug that shows the order in which a bug should
be focused on with respect to other bugs. The priority of a bug is repre-
sented by an integer number with a range from 1 (e.g., high) to 5 (e.g.,
low).

0.067 0.048 0.059

Priority
Changed

Shows whether or not the priority of a bug has been changed after the
initial report. The value of 1 means the priority has been changed, and 0
otherwise

0.054 0.071 0.061

Number in the
CC list

The number of developers in the CC list of a bug report 0.062 0.055 0.041

Description
size

The total number of words in the description of a bug in its report 0.071 0.064 0.053

Comment size The total number of words of all comments attached to a bug report 0.069 0.044 0.058
Comment
Count

The total number of comments attached to a bug report 0.058 0.054 0.049

Reporting
Time

The time when the bug was reported. The time is measured as: 1(morning),
2 (day), and 3(night).

0.052 0.055 0.052

Reporting Date The date when the bug was reported. We use two metrics to capture the
reporting date: month and year

0.061 0.055 0.055

References

Alali, A., Kagdi, H., & Maletic, J. I. (2008, June). What's a typical commit? a characterization of open source software repos-
itories. In 2008 16th IEEE international conference on program comprehension (pp. 182-191). IEEE.

Al-Bourini, F. A., Aljawarneh, N. M., Almaaitah, M. F., Altahat, S., Alomari, Z. S., & Sokiyna, M. Y. (2021). The Role of
E-Word of Mouth in the Relationship between Online Destination Image, E-satisfaction, E-Trust & E-Service Quality for
International Tourists Perception. Journal of Information Technology Management, 13(Special Issue: Big Data Analytics
and Management in Internet of Things), 92-110.

Aljawarneh, N. M., Abd kader Alomari, K., Alomari, Z. S., & Taha, O. (2020). Cyber incivility and knowledge hoarding:
Does interactional justice matter?. VINE Journal of Information and Knowledge Management Systems.

Aljawarneh, N., Mahafzah, A., Altahaa, S., Alzboun, E., & Harafsheh, I. (2021). Online sales system and organization out-
come. International Journal of Data and Network Science, 5(3), 485-494.

Aljawarneh, N., Taamneh, M., Alhndawi, N., Alomari, K., & Masad, F. (2021). Fog computing-based logistic supply chain
management and organizational agility: The mediating role of user satisfaction. Uncertain Supply Chain Manage-
ment, 9(3), 767-778.

Alsafadi, Y., Aljawarneh, N., Çağlar, D., Bayram, P., & Zoubi, K. (2020). The mediating impact of entrepreneurs among
administrative entrepreneurship, imitative entrepreneurship and acquisitive entrepreneurship on creativity. Management
Science Letters, 10(15), 3571-3576.

Conover, W. J. (1999). Practical nonparametric statistics (Vol. 350). john wiley & sons.
Hooimeijer, P., & Weimer, W. (2007, November). Modeling bug report quality. In Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering (pp. 34-43).
Kim, M., Cai, D., & Kim, S. (2011, May). An empirical investigation into the role of API-level refactorings during software

evolution. In Proceedings of the 33rd International Conference on Software Engineering (pp. 151-160).
Kukkar, A., & Mohana, R. (2018). A supervised bug report classification with incorporate and textual field knowledge. Pro-

cedia Computer Science, 132, 352-361.

N. Alhindawi et al. / International Journal of Data and Network Science 6 (2022) 859

Lamkanfi, A., Demeyer, S., Soetens, Q. D., & Verdonck, T. (2011, March). Comparing mining algorithms for predicting the
severity of a reported bug. In 2011 15th European Conference on Software Maintenance and Reengineering (pp. 249-
258). IEEE.

Marks, L., Zou, Y., & Hassan, A. E. (2011, September). Studying the fix-time for bugs in large open source projects. In
Proceedings of the 7th International Conference on Predictive Models in Software Engineering (pp. 1-8).

Menzies, T., & Marcus, A. (2008, September). Automated severity assessment of software defect reports. In 2008 IEEE
International Conference on Software Maintenance (pp. 346-355). IEEE.

Meqdadi, O., Alhindawi, N., Collard, M. L., & Maletic, J. I. (2013, September). Towards understanding large-scale adaptive
changes from version histories. In 2013 IEEE International Conference on Software Maintenance (pp. 416-419). IEEE.

Meyer, T. A., & Whateley, B. (2004, July). SpamBayes: Effective open-source, Bayesian based, email classification system.
In CEAS.

Pan, K., Kim, S., & Whitehead, E. J. (2009). Toward an understanding of bug fix patterns. Empirical Software Engineering,
14(3), 286-315.

Posnett, D., Hindle, A., & Devanbu, P. (2011, October). Got issues? do new features and code improvements affect defects?.
In 2011 18th Working Conference on Reverse Engineering (pp. 211-215). IEEE.

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W. M., Ohira, M., Adams, B., ... & Matsumoto, K. I. (2010, October). Predicting
re-opened bugs: A case study on the eclipse project. In 2010 17th Working Conference on Reverse Engineering (pp. 249-
258). IEEE.

Song, Q., Shepperd, M., Cartwright, M., & Mair, C. (2006). Software defect association mining and defect correction effort
prediction. IEEE Transactions on Software Engineering, 32(2), 69-82.

Sun, C., Lo, D., Khoo, S. C., & Jiang, J. (2011, November). Towards more accurate retrieval of duplicate bug reports. In 2011
26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011) (pp. 253-262). IEEE.

Valdivia-Garcia, H., Shihab, E., & Nagappan, M. (2018). Characterizing and predicting blocking bugs in open source projects.
Journal of Systems and Software, 143, 44-58.

Wu, R., Zhang, H., Kim, S., & Cheung, S. C. (2011, September). Relink: recovering links between bugs and changes. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engi-
neering (pp. 15-25).

Zeng, H., & Rine, D. (2004, September). Estimation of software defects fix effort using neural networks. In Proceedings of
the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004. (Vol. 2, pp. 20-
21). IEEE.

Zimmermann, T., Premraj, R., & Zeller, A. (2007, May). Predicting defects for eclipse. In Third International Workshop on
Predictor Models in Software Engineering (PROMISE'07: ICSE Workshops 2007) (pp. 9-9). IEEE.

 860

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY). license
(http://creativecommons.org/licenses/by/4.0/).

