Engineering Solid Mechanics 7 (2019) 263-278

Contents lists available at GrowingScience

Engineering Solid Mechanics

homepage: www.GrowingScience.com/esm

Non-local averaging in composite micro-mechanical material models

Sandeep Medikonda? and Ala Tabiei®

“Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA

ARTICLEINFO

ABSTRACT

Article history:
Received 7 July, 2019
Accepted 6 August 2019
Available online

6 August 2019

Keywords:

Unidirectional composites
Micro-mechanical model
Continuum damage mechanics
Non-local damage

Finite Element Method
LS-DYNA

Strain-softening material models have conventionally had a pathological mesh sensitivity in finite
element simulations and composite materials are indifferent to this problem. Spurious localization
is inherent to the structural problem in strain-driven softening. This limitation is caused as the
partial differential equations (that govern the structural problem) become ill-posed as the tangent
modulus becomes negative, for which uniqueness of the solution with respect to the spatial
discretization is lost. This causes the numerical results to unrealistically concentrate in a single
layer of elements. A basic theory of overcoming mesh sensitivity is the non-local continuum
theory. In this work, three different non-local models with isotropic weight function have been
proposed and implemented to work in conjunction with a composite micro-mechanical material
model. The effect of a weighing function in each of these formulations has been studied in detail.
All three non-local formulations have been observed to produce a nice smeared effect of damage

unlike the local damage models.

© 2019 Growing Science Ltd. All rights reserved.

1. Introduction

The exceptional ability of composite materials to absorb a high amount of kinetic energy during
impact loadings, combined with a high strength-to-weight ratio, makes their use extremely rewarding in
real world applications. This ability is due to the resistance offered to the growth of cracks which in turn
results from the heterogeneous micro-structure of composite materials. The crack propagation is typically
constrained at the boundaries between the constituent materials, which widely vary in their mechanical
properties. However, propagation and coalescence of the cracks can eventually lead to a steady
weakening of the material before a complete loss in the integrity of the structure.

Continuum damage mechanics, allows us to describe the heterogeneous micro-processes, such as
damage occurring because of the straining of materials as the macroscale behavior of the composite
materials. The crack development in the material is typically quantified as a damage state depending on
the failure mode, whose evolution causes a loss in the effective stress response or the stiffness of the
structure.

It is generally acknowledged that finite elements models with a fine mesh (smaller element size) yield
more accurate results (Lee et al., 2011; More & Bindu, 2015). However, this is no longer the case for
strain-softening materials. Numerical studies have shown that the results in strain-softening materials are
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essentially dependent on the finite element mesh (Sluys & De Borst, 1992; Sluys et al., 1993; de Borst
& Verhoosel, 2018). This complication is well known (Belytschko et al., 1986; Lasry & Belytschko,
1988), and any type of strain localization phenomena (failure, in-elasticity, damage), will tend to localize
in the smallest element of the finite element mesh. In other words, the smallest element in the mesh will
tend to fail/erode before other elements. Also, finer the mesh, the energy dissipated by the numerical
model decreases and tends to extremely low values, sometimes even to zero. Hence, the uniqueness of
the solution with respect to the mesh size is lost, which is quite troubling from a numerical standpoint.

This phenomenon can also be explained from a mathematical viewpoint. The partial differential
equations of motion governing the structural problem will change characteristic type at the onset of
softening, from hyperbolic to elliptic in dynamic problems and the opposite in static cases. This results
in an ill-posed problem as the initial and boundary conditions for one class of equations are not applicable
for the other. It should be noted that the strain localization isn’t purely a numerical phenomenon and it
can be observed in certain experiments, such as the necking of a ductile material in tension. However,
these strains are localized in some finite volume or a narrow band, the dimensions of which are
characteristic of the material.

Different remedies addressing this problem have been presented in the open literature and can be
classified into the following categories/approaches:

1. Cohesive crack models/Cohesive zone models (CZM) (Barenblatt, 1962; Bazant, 2019; Dugdale,
1960): These models acknowledge the presence of a strong discontinuity and describe softening with the
help of a traction-separation law (Park & Paulino, 2011). In these laws, as the surfaces separate traction
increases until a maximum is reached and then subsequently reduces to zero indicating complete
separation. The CZM model doesn’t necessarily represent any physical material, but describes the
cohesive forces which occur when the material layers are being pulled apart.

2. Crack Band Model (Bazant & Oh, 1983; Pijaudier-Cabot et al., 1993): The idea behind this theory
is to relate the specific volumetric energy, which is defined by the area underneath the stress-strain curve,
with the fracture energy of the material. Hence, for an element that is representative of the characteristic
process zone (and later a macroscopic crack) size, the product of the area under the stress-strain curve
and the element size, corresponds to the fracture energy and is a material constant. Since, the process
zone is represented by a band of elements with highly localized strain, the softening part of the stress-
strain law is adjusted according to the element size.

3. Regularized Models: These are the generalized continuum theories which are applicable on the
level of the constitutive equations. They typically use a characteristic length to prevent the localization
of strain. The regularized models lead to a continuously differentiable displacement field and this results
in a continuous strain field. Strain localization is typically manifested into a narrow band of high strain
elements. These models are further divided into:

a) Differential (gradient-enriched) formulations: This approach introduces higher special gradients
into the equations of motion, making the stresses in the constitutive model dependent on strain
gradients. The gradient formulations are further divided into Explicit (Aifantis, 1987) and Implicit
gradient formulations (Peerlings et al., 1996). For a detailed account the reader is referred to the
work of Simone (2007). At the core of these formulations, the damage is driven not only by an
equivalent internal variable (typically strain) but also by its Laplacean (second order differential
term resulting from Taylor’s series expansion). As long as the distribution of the internal variable
is uniform, its Laplacean vanishes and the model responds similar to a local formulation.
However, once the internal variable experiences its highest value, the curvature of its profile
becomes negative and the presence of the Laplacean in the non-local equivalent internal variable
results in a smaller value than the local one. The major difficulty with differential and especially
the explicit gradient formulations is the difficulty to program them in the finite element method,
mainly as the strain gradients are not normally computed or stored.
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b) Integral formulations: This category of nonlocal models abandon the classical assumption of
locality and define stress at a point to be dependent not only on the state variable (usually strain,
damage) at that point but also on a distribution of the state variable in a vanishing region around
the point (Bazant, 1986). In some of the early work, Pijaudier-Cabot and Bazant (1987) have
shown that the use of integral non-local formulations as an efficient way of dealing with strain
softening problems. In the following years, the use of nonlocal formulations has been extended
to a wide range of models including softening plasticity, smeared crack models and microplane
models. A detailed summary of these models can be found in the pioneering work of Bazant and
Jirasek (2002).

It must be noted that there are other remedies for addressing the mesh sensitivity problem of strain-
softening material models. One of them is the inclusion of rate-dependency (physical or numerical) in
the evolution of damage or visco-plasticity in the plastic hardening/softening material models. This
approach however, has been reported to be ineffective in explicit time integration scheme since the time
step is extremely small to provide a stable solution (Lasry & Belytschko, 1988). Another approach is the
use of generalized kinematic relations (dual equilibrium equations), which include either the continua
with microstructure (e.g., Cosserat’s continuum mechanics) or the continua with nonlocal strain (e.g.,
nonlocal elasticity) (Lakes, 1995). Both these methods introduce a new level of complexity and
sophistication by altering the equilibrium equations, which makes them difficult to implement in a FE
program.

The objective of the current work is to implement and study the effect of integral nonlocal damage
formulations inside a three-dimensional strain-rate and pressure-dependent composite micro-mechanical
material model. In the due process, the following contributions have been made to the current state of the
art:

1. A computationally inexpensive non-local progressive damage strategy (using Weibull damage
functions) has been proposed in an explicit framework that helps better control the distribution of
damage and prevents strain localization typically seen in strain-softening composite materials.

2. Three modifications have been proposed to the implementation of the proposed non-local damage
law along with a detailed study on the effect of a weighing function in each case.

2. Micro-mechanical Material Model

The representative volume cell (RVC) used to develop the micro-mechanical relations is shown in
Fig. 1. This RVC is the same as the one originally proposed by Pecknold and Rahman (1994) and further
used in various micro-mechanical models by Tabiei and Aminjikarai (2009), Tabiei et al. (2005), Tabiei
and Chen (2001) and Medikonda et al. (2017). However, for completeness the micro-mechanics relations
are briefly discussed here. The unit cell is divided into three sub-cells: one fiber sub-cell, denoted as f,
and two matrix sub-cells, denoted as M4 and M respectively. The effective stresses in the RVC are
determined from the sub-cell values by combining 2 material parts: material part A consists of the fiber
sub-cell fand the matrix sub-cell M.4, and material part B consists of the remaining matrix Mg using the
iso-strain boundary conditions for all the directions. The dimensions of the unit cell are 1 x 1 unit square.
The dimensions of the fiber and matrix sub-cells are denoted by Wyand W, respectively as shown in Fig.
1. and defined as shown below:

=7 W, =121, M

where, Vris the fiber volume fraction.
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Fig. 1. A representative volume cell of unidirectional fiber reinforced polymer composite

Visco-plastic constitutive relations based on modified Bodner-Partom state variable model, initially
proposed by Goldberg et al. (2005) and further enhanced by Zheng and Binienda (2008) have been used
to represent the matrix sub-cells M4 and Ms. The full details of the model can be found in these
references, however for completeness only the incremental form of those equations are given below.

() 2)
de) =| 2D, e +ao,
! I [J (Ni J

7
d = ,/gde dey ; 3)

where, deel = dgé —dgri & dgi = (dglll +d5212 +d5§3) /3

dZ = ¢(Z, - Z)de' 4)

da =q(e, —a)de! (5)

Stability against high strain increments has been ensured by implementing a 4-step Runge-Kutta
integration scheme. The details of this algorithm can be found in Medikonda and Tabiei (2018).

Fiber response is initially assumed to be elastic and transversely isotropic however the material is
assumed to become orthotropic with damage evolution. As assumed by Tabiei and Babu (2009), the
damages to the fibers are considered to be a result of only the direct loading in the current model as well.

= [Cf ]{5 }f ©)

where, |c | is the stiffness matrix which can be partitioned into direct and shear stress stiffness matrices

as follows:

] [0 (7)
- )
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The direct stress stiffness matrix, should be symmetric and the following relationship should be
obeyed:

_— | ®)
Fj = E—/ , I,j=123andi# j (nosummation)

The direct and shear stress stiffness matrices in terms of the properties of the fibers are:

(1-d)E/ (1-v}) \/(l_dl)E{.(l_dz)Ezfvlj;Vifl \/(l—dl)Elf(l—d3)EsziZszi
(1_V22_2V1f2vzf1) (1 Vz@ 2‘/17;‘/{1) (1 V23 21/1)(2‘/27(1)
[C ]_ (-d )Ef(l Vi V21) (V23+V12V2f1)Ef\/(l d,)(1-d,) ©)
. (1+V23)(1_V23 _2V12V21) (1+V23)(1 V23 2V12V21
f
Symm (1-d,)E, (1 Vi VZI)
(1+V23)(1 V23 2V12V21)
G, 0 o0
HE GL 0 (10)
Symm. Gof12

It should be noted that the damage parameters 4, i = 1,2,3 , in the above relations follow progressive

failure models and are discussed in the following section. The model can also account for the strain-rate
dependency of certain glass fibers (Blazynski, 1987) using the following relations:

Glé :aGSS+G0f12 (11

ey (12)
1]10{@sz
(31 &,

Once the stresses in all the constituent sub-cells have been obtained, they are then combined using
the iso-strain boundary conditions to obtain the effective stresses of the RVC.

ol =W 0'“+(1 WZ)O'“ (13)
o3 =Wich+(1-W})o3, (14)
oy =WioL+(1-W})os, (15)
Ol =WV, + (=W Y, )1 -d o, (16)
op =W V00 +(1-WV,)(1-d)os (17)

oy =WV, o +(1-WV, 1-d)os, (18)
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Since, the use of iso-strain boundary conditions for shear isn’t quite realistic in a physical (Medikonda
et al., 2017) sense, different ad-hoc shear volume fraction coefficients, V4 and Vs, for the in-plane and
transverse shear have been introduced and have values quite lower than the volume fraction of the fibers.
Damage parameters 4, i = 4,5,6 , represent the damages imposed on the matrix material and affect only

the shear stresses of the resin. All damage functions and their subsequent non-local formulations will be
discussed in the following sections.

3. Isotropic Nonlocal Formulation

As previously mentioned in the introduction, the nonlocal approach consists of replacing a state
variable by its nonlocal counterpart obtained by weighted averaging over a spatial neighborhood of each
point under consideration. Hence in a domain field ¥, the corresponding nonlocal state variable is defined
as:

z,(x) = [ B(x,8)z,(6)dV (&) (19)

where, B(x,¢&)is a given nonlocal operator. In an infinite body, the weight function depends only on the
distance between the ‘source point’, &, and the ‘target’ point, «, and is given by the following relation:
a(x, 20
Plxgy=— 208 20
[etx.e)ar )
Vv

It should be noted that the weighing function «(x,&) is a monotonically decreasing non-negative
function of the distance r:Hx—é’H. Typically, a Gaussian distribution is considered as the weight

function. However, however, a wide range of weighing functions can be considered. The behavior of a
few of these functions has been shown in Fig. 2.
The Gauss distribution function is given by the following relation:

2

lx-¢]

a(xaé:):exp - 2L2

; @2y

where L, is a parameter reflecting the internal length of the nonlocal continuum and should be
experimentally determined. A truncated quartic polynomial or the bell-shaped function is given by the
following relation:

2
x—¢&
I '

(22)

a(x,&)=(1-

A typical green function used in the implicit gradient models, which has a weight function equivalent
to the integral nonlocal models is given by the following relation:

bl @

1
a(x,§)=—ex
(x,6)=—, p{ I
Lastly, a simple conical function and the 3-Parameter function based on the work of Pijaudier-Cabot
and Bazant (1987) are given by the following relations:

[ k=4 e
a(x,¢)= <1—T
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P —-q
a(x,&)=|1+ (—"x ~ 5"}
L

The use of the length parameter L, has been considered to be ad-hoc by Schwer (2011), however
most other authors have stated this to be a material parameter that has to be experimentally determined.
Studying the effect of this parameter and the different types of weight functions discussed above, in the
context of a micro-mechanical material model is a topic of interest and will be undertaken in the current
work. For the results presented in Fig. 2, a value of 1 has been used except for the green’s function where
a value of 0.5 has been used. In addition, a value of p =8 and ¢ = 2 has been used for the 3-parameter

weight function.
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Fig. 2. Nonlocal Weight Functions

4. Numerical Implementation

In the current section, we discuss the methodology used for the numerical implementation of a
nonlocal model in a non-linear finite element code (LS-DYNA®) (Hallquist, 2006; Hallquist et al., 2014;
Wang & Xia, 1998). In this context, Andrade et al. (2011) presented an algorithm for the numerical
implementation of a Lemaitre-based ductile damage nonlocal model. A big drawback of this model is its
demand for simultaneous access to all integration points in the finite element mesh, this would make the
analysis painstakingly slow. However, building on the work of Tvergaard and Needleman (1995). and
Cesar de Sa et al. (2010), Andrade et al. (2011) at a later stage proposed a nonlocal formulation that can
be easily incorporated as a general feature for any user-defined material model (UMAT) in LS-DYNA.
Hence, the drawback of accessing the neighboring integration points at once is overcome by adopting a
strategy that saves and uses information of the state variable from a previous time step. The disadvantage
of such as assumption is that it necessitates small time steps for enough accuracy. However, since the
explicit time integration scheme of LS-DYNA naturally requires a very small-time step (less than the

critical time step (At < 2/ @) in order to guarantee stable solutions this condition is easily met. It is
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worth noting that LS-DYNA does offer the option of using nonlocal formulations through the keyword
*MAT NONLOCAL, which uses the 3-parameter weight function discussed in equation 25, however
this option is limited to the use of very few elastoplastic models, nonetheless user-defined material
models.

Once the generic state variable that is desired to turned nonlocal has been decided upon (for e.g. - in

eq. 19). Using the approximated nonlocal approach. The updated value of the nonlocal variable, Z: 41, at
the current time is given as:

z,=K"z,, (26)

where, K" is a nonlocal penalty factor defined as

27
Knl — ( )

S

where, z, and z, are respectively the local and nonlocal values at the last converged time step. Adopting
the Gaussian quadrature integration rule for Eq. (19), we get:

o (28)
z, = ZWij 20
j=1

where, f3,is the nonlocal operator that relates the Gauss points i and j located at global coordinates x
and ¢ respectively. In additions the quantities w, and J, are the Gaussian weights and Jacobian

evaluated at Gauss point j. Lastly, we, is the number of Gauss points that lie inside the nonlocal volume
of interaction from point i. It must be noted that the factors w;, f; and J, are merely geometrical in
nature and they depend on the finite element mesh itself rather that the constitutive model (UMAT).
Hence, these factors only need to be calculated once, at the start of a simulation. The key part of the

implementation lies in calculation of the nonlocal penalty factor K™, which is then used to calculate the
nonlocal value of the constitutive variable z , which in turn is selected depending on the choice of the
model that is enhanced with nonlocality.

Nonlocal user-subroutine (subroutine usrnonlocal)

—  Caleulate the Centroid and Jacabian for each element

—» Identify the surrounding elements and implement a
selection logic based on the weighing function: a( &)

—  Compute the geametrie nonlocal factors: (&)

—  Perform non-local ing using gaussian i

!

Compute non-local damage factors
—+  Depending on the formulation selected, Calculate K™
—  Note that this will be the non-local strain in the casc of’
Formulation-3
Stored in history variable 87 for each element (i), ie..
hsvs(i,87) =&k

l

Provided to the Material Model subroutine
subroutine umat43v(....,hsvs,...)

]

TmH® mE2-- -Hxmz
!

e

Save all damage variables (local and nonlocal) for use in the
next time step

|

Fig. 3. Schematic flowchart illustrating the implementation of nonlocal strategy in LS-DYNA (Andrade
etal., 2011)
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In the context of a micromechanical model discussed in the previous sections. Three slightly different
formulations have been proposed, implemented and tested in the current work.

4.1 Formulation-1:

The damage function is given by the following relation:

tle
me (o i

n+l 1 E:“m“g"dgi' " n
d!"” =maxql-exp| ——| ——= ,dy b, (29)

. 1l
where, o is the undamaged stress, O',)!C

exponent in the corresponding directions (i.e., 11, 22, 33, 12, 23 and 31) and the sub-script & ranges
from 1 to 6. The calculated damage from Eq. (29), is then used in reducing the stiffness of the lamina.

is the maximum strength and m, is the damage softening

Ekdamaged — (1 _ d[:ﬁ—l )Ezn—damaged (30)

By using the non-local formulation described above, a non-local value of the damage variable can be
calculated by using the damage from the previous time step ‘n’ in Eq. (28), this results in:

_ npg; (31)
dl =Y wJ Bd,
j=1

which can then be used in calculating the nonlocal penalty factor and the updated nonlocal damage
variable using the following equations:

Knl — 67kn (32)
d;
d;{nﬂ)* = Kﬂld]:,H—I (33)

Lastly, instead of the local value of the damage the updated nonlocal value can be used in reducing
the stiffness of lamina.

EZamaged — (1 _ d}gn+l)* )E;;m—damaged (34)

The reduced values of the stiffness are then used to calculate the effective stresses of the
representative volume cell discussed in the previous chapters.

4.2 Formulation-2:

In the current formulation strain is non-localized instead of damage which leads to the following non-
local strain calculation.

npg; 35
5 =S 5 .

Based on which the nonlocal penalty factor is calculated using the following relation:

Knl 6_‘; (3 6)

n

i
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and subsequently this factor is used in the damage function given by the following relation:

. 1 EkdamagedKnlgij My .,
d!" =max{l—-exp| —| ———~| |, 4| (37)

me o)

4.3 Formulation-3:

Like Formulation-2, the non-local strain is calculated based on equation (35). However, instead of
calculating the penalty factor this calculated non-local strain is directly used in the damage formulation
as shown below:

damaged — "\
n+l 1 Ek 8ii n
d PR max<l—exp| ——| ——= , d p

me e

(38)

5. Results and Discussion

To test the non-local technique, it has been implemented along with the micro-mechanical material
model discussed in the previous chapters and applied on a tensile dog-bone specimen, commonly used
in the experimental determination of the properties of composites. The dimensions of the specimen are
shown in Fig. 4.

/
S
4 </ 80 "
Y | // ‘ 5 !
)T—'(
S| |
A

Fig. 4. Tensile Dog-bone Specimen (Andrade et al., 2011)

Fig. 5 shows the 3 meshes that have been built for the specimen with different mesh sizes. It should
be noted that the mesh size has been only significant increased for the curved part of the specimen since
this is the primary area of interest. The symmetry in the specimen has been taken into consideration and
hence only a quarter of the model has been modeled to reduce computational effort. Additionally, it must
be noted that only one layer of elements with a 0-degree fiber orientation representing a single ply have
been numerically modelled.

520 Elements Histary Varishiesg

520 Elements

1836 Elements

1836 Elements

Hist

2880 Flements

3087e1_
aaaaaa i
1.084.01

oy |

Fig. 5. Tensile Dog-bone Specimen with different Fig. 6. Local Damage in the Tensile Dog-bone
mesh sizes Specimen for different mesh sizes
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The material properties of E-glass/Epoxy presented in Table 1 have been used here. Note that one
end of the specimen has been fixed and the other end of the specimen is being pulled by 1.2 mm. Initially,
the models have been run without calling the non-local routine and the results of local damage in the pull
direction in the end deformed state have been presented in Figure 6. Please note that History Variable 9
seen in Fig. 6 corresponds to local damage variable in the longitudinal direction. As expected, strain
tends to localize in a few elements for these cases and as a result the material damages in those regions.

In addition, note that the maximum allowable damage d; *! has been constrained to 0.01 to account for

numerical instabilities.

Table 1. Properties and parameters of E-glass/Epoxy composite lamina

V, £, (s E\(GPa) Viy X,(Mpa) X .(Mpa) E,(GPa) Vas
0.43 1x1073 74 0.25 3500 1600 4.93 0.25
0, (Mpa) o, (Mpa) G,,(GPa) Gy,(GPa) gy Eam Esm Va
80 255 30 1.97 0.011 0.15 0.15 0.014
V., a,(GPa) b, b, E, (GPa) v, D,(s™) n
0.020 0.900 1.00 1.00 3.00 0.4 1x10° 0.80
Zy(MPa) Z(MPa) q a, o C S, (MPa)  Sy,(MPa)
420.0 820.0 120.0 0.15 0.06 0.0 100 86
Ss10(MPa) @ (deg.)
64 20

Results shown in Fig. 7, Fig. 8 and Fig. 9 correspond to the tensile tests carried out with the different
non-local formulations activated. Please note that History Variable 87 observed in the legend of the
remaining figures represents the non-local damage variable in the longitudinal direction. Irrespective of
the methodology used it is clearly seen that every non-local formulation discussed in the previous section
prevents strain-localization and shows a more smeared effect of damage. It is important to note that the
maximum damage (lower value shown in the figure) experienced by each model is different and for
consistent comparison the fringe limits have been manually adjusted to correspond to the maximum
damage experienced by the models in that figure.

History Variabless7
Formulation 1 1,000e400
9701601 :I
9402601}
0.1042:01_
8805001 _
8506601 _
8.207c01_
7909801 _
7610001 __
7a1tea _i
7012001k
History Variable#T
Formulation 2 1.000e+00

Formul lation 1

7870601 _
7.565e-01 _
7261601
695701

History Vaniable#87

7000601 _
7670801 __
731100 %
7.01ze.01 |

Fig. 7. Non-local Damage in a 520 Element Fig. 8. Non-local Damage in an 1836 Element
Tensile Dog-bone Specimen Tensile Dog-bone Specimen
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From the results presented in Fig. 7, Fig. 8 and Fig. 9, it is clearly seen that Formulation-3 predicts
higher damage in-comparison to the rest irrespective of the mesh size i.e., bigger red-zones have been
observed. However, this effect has been observed to diminish as the mesh density increased.

The general pattern of how the damage grows is also significantly different for Formulation-3, when
compared with Formulation-1 or Formulation-2. This is much more evident in Figure 10, which is the
exact same figure as Figure 8, except for the fact that the minimum contour in the figures has been
adjusted to reflect the minimum amount of damage experienced by the 3 formulations. Note that the
warmer colors in the figure make this much more evident.

History Variable#s7

Formulation 1

1.000e+00.
2.6242-01

2248001 _|
8871601 _
uuuuuu i
8110601 _

Formulation 1

History Varlable#87
10008400

9774801

a547e.01 8
9321801 _
9.004.01 _
8.868e-01 _

1143601 _
7.367e-01

864101 _
8415601 _
sate0r 8188601 __
6614001 7962601 _
623801 j 7136601 |
History Variablexs? History Variable#47
Formulation 2 10008400, Formibitlon 2 1.000¢+00.
0.624e-01 ] 9774601
9.248e-07 954701 |
8871601 | 9321601

8495001 _ N
2119001 N
7743601 N
7367601 _ R
gt 815001
Soiacs) -i 7.962601 :i
Azt 7738201
History Variable#s?
Formulation 3 1.000¢+00
9624801
9.248e.01_f
8871001 _
8405001 _

2868001

History Varlable¥s7
Formulation 3 1.000e+00

8119001
7743001
7387001
6901201 __
6614001 _ﬁ
823801

8198601 _
7902001 _
7.736801 |

Fig. 9. Non-local Damage in a 2880 Element Tensile Dog- Fig. 10. Non-local Damage in an 1836 Element Tensile

bone Specimen

Dog-bone Specimen (least damage contour)

5.1 Effect of weighing function

The effect of each weighing function (discussed in section 3) on the end results have been studied for
all mesh sizes (530, 1836 and 2880 element models) and presented in Figures 11-19 for all 3 formulations.
Based on the results the following comments can be made:

1.

The effect of different weighing functions has been observed to be quite significant for the
520-element model in all 3 formulations. Both the variation of the damage (distribution of
damage contours) and the maximum damage in the model (lowest value or the red-color in
the contour levels) has been observed to be quite different.

As the no. of elements in the model increases (i.e., for the 1836 and 2880 element models),
the damage distribution tends to become similar for all cases and the variation in the
maximum amount of damage observed in each model, becomes quite less as well. This can
be observed in Figures 14-19.

The maximum amount of damage predicted by Formulation-3 (figures 13, 16 & 19) often
tends to be higher than Formulations-1&2 which is the value corresponding to the red contour.
This is particularly true in the case of the 520-element model run with the 3-Parameter weight
function and Formulation-3.

As expected with an increase in the mesh density, nearly every weight function tends to
produce a smoother variation of damage and the no. of elements represented by a higher
damage (or red color) tend to decrease.
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6. Conclusions

In this work, three nonlocal models have been coupled with a non-linear micro-mechanical composite

material model and implemented in the explicit finite element code LS-DYNA. These non-local
formulations have been designed to work with the progressive damage law of the constitutive model.
Numerical analyses have been carried out on a tensile dog-bone specimen and the results have shown
that the non-local strategy has been able to prevent the strain localization traditionally seen in strain-
softening material models. In addition, the non-local formulations have also been implemented with
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various weighing functions commonly used in literature and their effect on the end results has been
studied in detail. Overall, the use of a non-local formulation on strain-softening composite materials is
highly recommended and the work presented here illustrates the advantages qualitatively.
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