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 This paper presents a new hybrid double mixed stress (4f-HMS) model, for the static analysis of 
isotropic plane structures, in which it is assumed a physically and geometrically linear behaviour. 
The main improvement of this model is, it approximates independently the three most important 
fields in the domain, more specifically the strain field, the stress field and the displacement field 
of each element. The displacements along the static boundary, considered to include inter-element 
boundaries, are also directly approximated. For the approximation functions in the space domain, 
a complete set of orthonormal Legendre polynomials are used. The adoption of these functions 
enables the use of analytical closed form solutions, for the computation of all linear structural 
operators, and leads to the development of very effective p- refinement procedures. The model 
being discussed is tested in terms of convergence capabilities using classical elastic strain energy 
and other common variables, in which the monotonic convergence is tested. To validate the model 
and to illustrate its potential, several numerical examples are discussed and comparisons are made, 
with solutions obtained using analytical results and other known finite element formulations. 
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1. Introduction 
 

 
     In the computational mechanics field, the most popular method for solving non-linear structural 
problems is the Finite Element Method (Hughes, 2003). This method is still nowadays the most popular 
numerical technique used in the field of continuum mechanics, due to its explicit physical meaning (Ghali 
et al., 1997), its theoretical robustness and efficiency (Clough et al., 1999). In spite of the popularity, and 
computational robustness of the conventional finite element method (CFE), this formulation still presents 
some drawbacks (Bathe, 1996) and some unfixed problems (Zienkiewicz, 2000). For this reason, several 
alternative formulations have been proposed over the years, such as: hybrid stress (Cen et al., 2011a; Cen 
et al., 2011b; Pian et al., 1969), hybrid displacement (Veubeke, 1965), Trefftz elements (Jirousek et al., 
1977; Ruoff, 1973; Stein, 1973), the extended finite element method (XFEM) (Moes et al., 1999), 
isogeometric finite elements (Cottrell et al,. 2009) and meshfree methods (Liu, 2003). It is possible to 
summarize three main classes of hybrid mixed finite element formulation, namely the hybrid-mixed, the 
hybrid and the hybrid- Trefftz formulations. These first studies, using alternative approximation functions 
with non-conventional methods, were conducted by Freitas et al. (1996) during the late nineties. Two 
models are derived for each formulation, the displacement and the stress models. All formulations evolve 
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directly from the first principles of mechanics, in particular equilibrium, compatibility and constitutive 
relations. What distinguishes the three types of formulations, is the set of constraints enforced a priori, 
on the domain approximations. 
 
     Since the late 80s the Structural Analysis Research Group of Instituto Superior Técnico has been 
involved in the development of alternatives for hybrid and mixed finite element formulations. Although 
these formulations present some advantages, they still have some limitations (Freitas et al., 1999). In 
recent years, hybrid-mixed stress finite element models have been developed for the static analysis of 
plane stretching and plate bending problems (Castro et al., 2006; Castro et al., 2001; Pereira et al., 1996a; 
Pereira et al., 2000). After establishing the properties of these alternative formulations, the next challenge 
was to extend their application to the analysis of problems closer to engineering practice. In a first step, 
elastoplastic models for the analysis of plane structures have been developed. After that, continuum 
damage models for the physically non-linear analysis of concrete structures have been studied and 
implemented (Silva et al., 2006b). 
 
     One of the main advantages associated with the use of this type of formulation is the flexibility 
introduced in the selection of the approximation functions. This fact makes it possible to use functions 
with special properties that cannot be implemented in the framework of conventional finite element 
models, such as Legendre polynomials, systems of wavelets and Walsh series. The hybrid-mixed stress 
models may also lead to quasi-equilibrated solutions which are very suitable for design purposes. It is 
then possible to define the main advantages of hybrid mixed stress formulations: 
 

 There is a great flexibility in choosing the approximation functions (Freitas et al., 1999). 
 The right choice for the degrees of the approximation functions may lead to “quasi-equilibrated” 

solutions (Arruda et al., 2011b). 
 If the approximation functions are orthogonal, the governing system is sparse (Arruda, 2011). 
 In the hybrid mixed stress (HMS) model, more specifically the mixed formulations, the 

deformation field is separated from the stress field. If the degrees are correctly chosen then the 
shear locking does not occur (Malkus et al., 1978). 

 The p- refinement is effective and easy to implement, and in linear analysis all operators of the 
governing system are computed analytically. No numerical integration is needed in linear analysis 
(Pereira et al., 1996a). 

 For simple geometries the use of macro-elements avoids the use of mesh generators (Arruda et 
al., 2013b). 

 In non-linear analysis, the evolution of the constitutive relation depends directly on the stress 
field. Since the HMS model directly approximates the stress field, some advantages may be 
obtained (Arruda et al., 2013a). 

 
      Due to the type of enforcement followed, for the equilibrium and compatibility conditions in the 
domain, and because the connection between elements is ensured by the weighted residual enforcement 
of the equilibrium conditions at the common boundary, the presented formulation is considered to lead 
to a stress model. 
 

2. Presentation of the 4f-HMS 
 
       A new Hybrid Double Mixed Stress (4f-HMS) element that also approximates the deformation field 
(Arruda et al., 2011a; Arruda et al., 2013a), is presented and tested. This element tends to overcome the 
known difficulties, when using damage mechanics with HMS (Silva et al., 2006a) , for governing systems 
based on flexibilities. The finite element models presented in this work, are based on the use of 
orthonormal Legendre polynomials as approximation functions. The properties of these functions, allow 
for definition of analytical closed form solutions, for the computation of all structural operators in linear 
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analysis. Numerical integration schemes are thus completely avoided. The numerical stability, associated 
with the use of Legendre polynomial bases, enables the use of macro-element meshes, where the 
definition of highly effective p-adaptive refinement procedures is simplified. A detailed presentation of 
these functions can be found in (Mendes et al., 2009).  

3. Research Significance and Objectives 
 
      Isotropic elastic constitutive relations are applied, in order to study the monotonic convergence of the 
strain energy with the 4f-HMS for 2D plane structures. These 2D tests are fundamental and sufficient, to 
study the convergence of strain energy in hybrid mixed formulation, as pointed out by Castro (Castro 
2011). Contrary to conventional FEM, there is no guarantee in the monotonic convergence of Hybrid 
Mixed formulation, as pointed out by other authors (Pereira et al., 1996b; Santos, 2009). Therefore, 
numerical tests are necessary to suppress these questions, when a new hybrid mixed model is presented. 
This is the first energetic test applied to study the numerical convergence with the 4f-HMS, which will 
fill this gap in the scientific knowledge. To validate the model being proposed, to illustrate its potential 
and to assess its accuracy (and numerical efficiency), several numerical examples are discussed and 
comparisons are made with solutions provided by analytical solutions from other authors. 
 

4. Previous Work and Studies with the 4f-HMS 
 

    Although new, this model has already been studied and applied in structural non-linear analysis. The 
first studies, concerned only the static non-linear analysis of concrete structures, using continuum damage 
mechanics (Arruda et al., 2013a), with the damage model of Comi (Comi et al., 2001b) and non-local 
regularization (Comi et al., 2001a), suppressing CFE in terms of total number of iterations. The next 
study tested the dynamic non-linear analysis of concrete dams, using once again the 4f-HMS (Arruda et 
al., 2013b), with the damage model of Mazars (Mazar,s 1984). In all numerical simulations, there is a 
good agreement with the experimental results and numerical results presented by CFE from other authors.  
When using the 4f-HMS model in non-linear analysis, the discretizations, can lead to systems with a 
relatively large number of degrees of freedom. However, as such systems are always very sparse, the use 
of algorithms specially designed for the storage and processing of sparse systems of large dimensions, 
ensures the effectiveness of the numerical computation process. 
 
5. Fundamental Relations 
 
    Consider a set of static forces, acting in an elastic body. The equilibrium, compatibility and elasticity 
equations governing the behaviour of that structure may be expressed as (Silva et al. 2006a): 

 𝐷𝑠 + 𝑏 = 0 (1) 
 
 𝑒 = 𝐷∗𝑢 (2) 

 
 𝑠 = 𝑘𝑒 (3) 

 
    The vectors 𝑠, 𝑒 and 𝑢 list the independent components of the stress, strain and displacement fields, 
respectively. Assuming a geometrically linear behaviour, the differential equilibrium operator 𝐷, and the 
differential compatibility operator 𝐷∗, represent linear and adjoint operators. The vector 𝑏 lists the body 
force components. The boundary of the structure may be subdivided into two complementary regions: 
the kinematic boundary, 𝛤௨, in which the value for the displacement fields is prescribed and the static 
boundary, 𝛤௧, where the applied forces are prescribed. It can be written: 
 
 𝑢 = 𝑢௰    𝑜𝑛   𝛤௨ (4) 

 
 𝑁𝑠 = 𝑡   𝑜𝑛   𝛤௧ (5) 
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    The vectors 𝑢௰ and 𝑡, gather the components of the prescribed displacements and forces, on the 
kinematic and static boundaries, respectively. The matrix 𝑁, lists the components of the unit outward 
normal vector. For a plane element, the operators and the vectors take the form of Eq. (6), Eq. (7) and in 
plane stress the stiffness is defined as Eq.  (8).  
 

 𝐷 =

⎣
⎢
⎢
⎢
⎡

𝜕

𝜕𝑥
0

𝜕
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6. Hybrid Double Mixed Stress Model 
 
      The hybrid double mixed stress (4f-HMS) model presented in this work, considers three independent 
approximations for the stress, strain and displacement fields in the domain of each element, expressed as 
follows. 
 

 
𝑠 = 𝑆௏𝑋௏    𝑖𝑛   𝑉
𝑢 = 𝑈௏𝑞௏    𝑖𝑛   𝑉
𝑒 = 𝐸௏𝜖௏    𝑖𝑛   𝑉

 (9) 

 
    Matrices 𝑆௏, 𝐸௏ and 𝑈௏, gather the approximation functions and vectors 𝑋௏, 𝜖௏ and 𝑞௏, list the 
corresponding weights. The displacement field along the static boundary (which includes the boundaries 
between neighbouring elements) is also approximated: 
 
 𝑢 = 𝑈௰𝑞௰    𝑜𝑛   𝛤௧. (10) 

 
      The matrix 𝑈௰, lists the approximation functions and vector 𝑞௰ the corresponding weights. The 
equilibrium condition in the domain is enforced, using the following weighted residual form (Pereira et 
al. 1996b): 

 න 𝑈௏
௧ (𝐷𝑠 + 𝑏)𝑑𝑉 = 0. (11) 

 
     Replacing in Eq. (11), the approximations defined for the stress fields in the domain Eq. (9), it is 
possible to recover the domain equilibrium condition in the discrete model, expressed as: 
 
 𝐴௏

௧ 𝑋௏ = −𝑄௏ (12) 
with 
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  𝐴௏
௧ = න 𝑈௏

௧ 𝐷𝑆௏𝑑𝑉     𝑄௏ = න 𝑈௏
௧ 𝑏𝑑𝑉. (13) 

 
     The equilibrium conditions on the boundary presented in Eq. (14), the compatibility conditions in the 
domain displayed in Eq. (17) and the constitutive Eq. (20), are all also enforced in a weighted residual 
form (Arruda et al., 2011b). Assuming for the moment, a linear elastic behaviour it is possible to write: 
 

 න 𝑈୻
௧(𝑁𝑠 − 𝑡)𝑑𝛤௧ = 0 (14) 

leading to: 

 𝐴௰
௧ 𝑋௏ = 𝑄௰ (15) 

with 

 
𝐴௰

௧ = න 𝑈௰
௧(𝑁𝑆௏)𝑑𝛤௧     

𝑄௰ = න 𝑈௰
௧𝑡𝑑𝛤௧     

 (16) 

 
 

 න 𝑆௏
௧ (𝑒 − 𝐷∗𝑢)𝑑𝑉 = 0 (17) 

resulting in: 

 𝐵௏
௧ 𝜖௏ = −𝐴௏𝑞௏ + 𝐴௰𝑞௰ + 𝑢ത௰ (18) 

with 

 
𝑢ത௰ = න(𝑁𝑆௏)௧𝑢௰𝑑𝛤௨       

𝐵௏
௧ = න 𝑆௏

௧ 𝐸௏ 𝑑𝑉
 (19) 

 
 

 න 𝐸௏
௧ (𝑘𝑒 − 𝑠)𝑑𝑉 = 0 (20) 

leads to: 

 𝐵௏𝑋௏ = 𝕂𝜖௏ (21) 

with 

 𝕂 = න 𝐸௏
௧ 𝑘𝐸௏𝑑𝑉. (22) 

 
     The governing system Eq. (23) is obtained by combining the equilibrium, compatibility and elasticity 
conditions in the discrete model. 
 

⎣
⎢
⎢
⎡
−𝕂 𝐵௏ 0 0

𝐵௏
௧ 0 −𝐴௰ 𝐴௏

0 −𝐴௰
௧ 0 0

0 𝐴௏
௧ 0 0 ⎦

⎥
⎥
⎤

൞

𝜖௏

𝑋௏

𝑞௰

𝑞௏

ൢ = ൞

0
𝑢ത௰

−𝑄௰

−𝑄௏

ൢ (23) 
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     The elastic strain energy, is given by Eq. (24) as referred in (Holzapfel, 2000). In this case, it is 
possible to replace the approximations adopted in Eq. (9), obtaining Eq. (24) and deduce the elastic strain 
energy for the 4f-HMS, using isotropic constitutive relations.  
 

Π௘ =
1

2
න 𝑠௧𝑒 𝑑𝑉 

⇒ Π௘ =
1

2
න(𝑆௏𝑋௏)௧𝐸௏𝜖௏  𝑑𝑉 

⇒ Π௘ =
1

2
𝑋௏

௧ 𝐵௏
௧ 𝜖௏ 

(24) 

 
     The elastic strain energy in conventional finite element formulation (CFE), is only function of the 
node displacement and stiffness matrix (Cook et al., 2002), contrary to hybrid mixed formulation. 
 

Π௘
஼ிா =

1

2
𝑞௧𝐾𝑞 (25) 

 
      The relationship between the degrees of the polynomials, used for approximation of the stress fields 
and degrees of the polynomials associated with the displacement field, should be carefully established to 
avoid the appearance of spurious modes, which are manifested through the existence of dependencies in 
the governing system. In this case, if 𝑛 is used for the stress and strain field, then 𝑛 − 1 will be used for 
the displacement field, in order to avoid the referred dependencies (Castro et al., 2006; Hughes, 2003; 
Zienkiewicz et al., 2000). 
 
     In this work, equilibrium finite elements proposed by (De Almeida et al., 1991; Freitas, 1990; Pereira, 
1996), more specifically hybrid stress (HS) elements are also used in some examples, namely the 
cantilever benchmark. More details on the governing system and its variables can be found in the 
previously cited works, in which it is demonstrated that the governing system is assembled as displayed 
in Eq. (27), and the strain energy is given by Eq. (28). The vector 𝑋௏, is the same as Eq. (9), and stands 
for the weights of the approximation functions, that guarantee the equilibrium in the domain (𝐷𝑆௏𝑋௏ =
0), based on the Pascal triangle. The vector 𝑞௰, has the same assumption as described in Eq. (10), which 
is related to the boundary displacement in each side of the finite element. The independent terms 𝑢ത௰ and 
𝑄௰, are the prescribed displacement and applied forces in the kinematic and static boundary respectively. 
The operator 𝐴௰, is identical to Eq. (16), but the flexibility operator 𝔽, is constructed using the 
approximation function for the stress field in the domain (Freitas et al., 1993). This last term is given by 
Eq. (26). 

 𝔽 = න 𝑆௏
௧ 𝑘ିଵ𝑆௏𝑑𝑉, (26) 

 

          ൤
𝔽 −𝐴௰

−𝐴௰ 0
൨ ൜

𝑋௏

𝑞௰
ൠ = ൜

𝑢ത௰

−𝑄௰
ൠ, (27) 

 

           Π௘
ுௌ =

1

2
𝑆௏

௧ 𝔽𝑆௏. (28) 

     Using a displacement and a stress formulation of finite element, it is possible to calculate an upper 
and lower bound of the energy error and therefore, estimate the rate of convergence of the 4f-HMS in the 
numerical examples. 
 
7. Approximation Functions 
 
     The use of hybrid and hybrid-mixed finite element models, based on the use of orthonormal Legendre 
polynomials and trigonometric functions for the analysis of plane structures, has been explored in (Silva 
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et al., 2004). Another important contribution, was given by (De Almeida et al. 1996), studying the bounds 
and error for adaptive refinement, using hybrid stress and hybrid displacement elements, for linear 
analysis. As mentioned before, the use of hybrid-mixed models introduces a great flexibility in the choice 
of the approximation functions. This fact, made it possible to use functions with special properties, that 
cannot be used in classical finite element formulations (Pereira et al., 1996b). Complete sets of 
orthonormal Legendre polynomials, are used to define the approximation bases required by the 4f-HMS 
model. The generation and manipulation of such functions, is fully described in (Pereira et al. 1996a; 
Pereira et al., 1996b; Spiegel et al., 1999). The Legendre polynomials can be defined using the Rodriguez 
Eq. (29). 
 

𝑃௡(𝑥) =
1

2௡ 𝑛!
×

𝑑௡

𝑑𝑥௡
(𝑥ଶ − 1)௡  , 𝑤𝑖𝑡ℎ     𝜆௡ = ඨ

2𝑛 + 1

2
 (29) 

 

   
 

𝑃଴(𝑥) 
 

𝑃ଵ(𝑥) 𝑃ଶ(𝑥) 

   
 

𝑃ଷ(𝑥) 
 

𝑃ସ(𝑥) 𝑃ହ(𝑥) 

   
 

𝑃଺(𝑥) 
 

𝑃଻(𝑥) 𝑃 (𝑥) 

Fig. 1. Legendre Polynomials in 1D space. 
 
     To illustrate the main difference between the Legendre approximation functions, and the 
approximation functions of CFE, the normalized Legendre functions are displayed for 1D case and 2D 
case. Fig. 1 presents the Legendre polynomials up to the 8th degree. Tensor products, involving 1D bases 
in each coordinate direction, lead to the construction of Legendre polynomial bases for 2D domains. Fig. 
2 presents the nine 2D functions defined using all 1D Legendre polynomials, up to the 2nd degree. In the 
case of a 3D domain, the approximation functions are built using the 3rd direction z. These approximation 
functions, do not obey any of the kinematic boundaries, contrary to the ones used in CFE. This is possible 
in 4f-HMS, since in this formulation the kinematic boundary condition is only enforced using the 
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Galerkin method (as referred in equation (14)). Therefore, it is expected some discontinuity along the 
kinematic boundary in the deformed shape, when using Legendre polynomials with 4f-HMS.  
 

   
 

𝑃଴(𝑥) × 𝑃଴(𝑦) 
 

𝑃ଵ(𝑥) × 𝑃଴(𝑦) 𝑃ଶ(𝑥) × 𝑃଴(𝑦) 

   
 

𝑃଴(𝑥) × 𝑃ଵ(𝑦) 
 

 
𝑃ଵ(𝑥) × 𝑃ଵ(𝑦) 

 
𝑃ଶ(𝑥) × 𝑃ଵ(𝑦) 

   
 

𝑃଴(𝑥) × 𝑃ଶ(𝑦) 
 

𝑃ଵ(𝑥) × 𝑃ଶ(𝑦) 𝑃ଶ(𝑥) × 𝑃ଶ(𝑦) 

Fig. 2. – Legendre Polynomials in 2D space. 
 
     As referred before, one of the main advantages of using these polynomials, is the possibility of 
avoiding any numerical integration for linear analysis. It is always possible to define analytical 
expressions, for all structural operators, even for cases where orthogonality is not presented. 
 

⎩
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       It is still possible to integrate numerically, some non-common examples: 
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√3

ଵ

ିଵ

ଵ

ିଵ

. (41) 

 

8. Numerical Applications 
 
     In this section, some numerical examples in which the analytical solution is known, are tested for 
isotropic elastic models. The first test consists of a rectangular plate with a crack in the middle, and 
subjected to tensile stress in the top. This example possesses an almost exact solution, presented in the 
numerical work of (Freitas et al., 1999). In the second test, is the classical L-Shape Plate under tension, 
in which an analytical solution is provided by (Shephard et al., 1989). Finally a short cantilever presented 
in the work of (Pereira, 1996), which was also tested with equilibrium finite element formulation, is 
assessed and compared with the new proposed finite element. In all examples the 4f-HMS is directly 
compared with CFE. 
 

9. Cracked Rectangular Plate 
 
     The rectangular plate, with a central crack shown in Fig. 3 is a typical example, where the use of a 
higher-order scheme is recommended, due to the existence of a strong singularity at the tip of the crack. 
Owing to symmetry conditions, only ¼ of the plate is analysed. Fig. 4 shows the different meshes used 
in the analysis, with the rectangular elements taken into consideration. The mesh with non-rectangular 
elements is used, to illustrate the effect of mesh distortion both in the governing system sparsity and in 
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the accuracy of the solution. The p- refinement procedure, involves the use of a given finite element mesh 
with increasing values for degree of the Legendre polynomial. It is assumed here that degree parameter 
ranges from values given in Table 1. For the CFE, a regular structured mesh was used. Combining the 
different finite (rectangular) element meshes, with the different degrees of approximation, it is possible 
to define a set of 50 different discretizations, used to illustrate the efficiency of p- adaptive procedures. 
A small test is also presented for the h- refinement, in which the degree of the Legendre polynomial is 
fixed at 2, for the all the meshes. 
 

  
a) b) 

Fig. 3. – Plane cracked structure a) Real case, b) Analysed structure. 
 

      

2 Elements 4 Elements 6 Elements 9 Elements 16 Elements 
4 Elements 
Distorted 

Fig. 4. – Adopted mesh for the plane cracked structure. 
 
Table 1. Adopted discretizations for the plane cracked structure.  

Discretizations 

2 Elements 
Legendre Degree 2 3 4 5 9 13 15 17 20 50 

Degrees of Freedom 148 264 412 592 1632 3184 4152 5248 7132 41812 

4 Elements 
Legendre Degree 2 3 4 5 9 11 13 15 17 40 

Degrees of Freedom 290 519 812 1169 3237 4655 6329 8259 10445 53984 

6 Elements 
Legendre Degree 2 3 4 5 7 9 11 15 20 30 

Degrees of Freedom 432 774 1212 1746 3102 4842 6966 12366 21276 46296 

9 Elements 
Legendre Degree 2 3 4 5 7 9 11 15 17 20 

Degrees of Freedom 644 1155 1810 2609 4639 7245 10427 18519 23429 48829 

16 Elements 
Legendre Degree 2 3 4 5 7 9 11 15 17 20 

Degrees of Freedom 1140 2046 3208 4626 8230 12858 18510 32886 41610 56616 

CFE Degrees of Freedom 182 462 992 3782 14762 

 
     For the isotropic model, using the following mechanical properties 𝐸 = 1.0𝑃𝑎, 𝜈 = 0.3, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
1.0, an almost “exact” elastic strain energy can be admitted as 𝑈 = 0.0458402901388889 𝐽. This 
numerical value is given in the work of Freitas et al. (1999), and is obtained by applying a dual 
extrapolation technique, to two series of kinematically and statically admissible solutions, which provide 
lower and upper bounds for the exact solution. In Fig. 5 it is presented the strain energy convergence a) 
rate and b) absolute error Eq. (42), for all regular meshes presented in Fig. 4, using all the discretizations 
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adopted in Table 1. In the same graphic, the elastic strain energy is also presented for the CFE, using Q4 
elements with full numerical integration scheme. An absolute error (in this case a positive value) is used, 
to allow a logarithmic scale. 
 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 % =
|𝑂𝑢𝑡𝑝𝑢𝑡௔௡௔௟௜௧௜௖௔௟ − 𝑂𝑢𝑡𝑝𝑢𝑡௡௨௠௘௥௜௖௔௟|

|𝑂𝑢𝑡𝑝𝑢𝑡௔௡௔௟௜௧௜௖௔௟|
× 100%. (42) 

 
     For this numerical test, all meshes except one presented a perfectly monotonic convergence 
(excluding the mesh with 2 finite elements). All of these, also presented a pure linear convergence when 
a logarithmic scale is used (when plotting the absolute error). This convergence behaviour is expected in 
hybrid stress models, but in hybrid mixed stress models some inconsistences are also expected. This isn’t 
any different in the new hybrid double mixed stress (4f-HMS) model, in which the 2 element convergence 
presents a non-monotonic convergence for lower degrees of approximation. Contrary to CFE, in which 
the convergence is monotonic (due to its displacement formulation), in the 4f-HMS there is no assurance 
on its evolution. Also analysing Fig. 5 b), it is possible to conclude that for smaller degrees of freedom 
(bellow 1000), even with only 2 elements the 4f-HMS presents more accurate results than the CFE. 

  
a) b) 

Fig. 5. – Energetic convergence for the cracked rectangular plate, a) Strain energy vs DOF, b) Absolute 
error of the strain energy vs DOF.  

 
     Fig. 6 displays the strain energy convergence (a – rate and b – absolute error) for the 4 element mesh, 
with regular and distorted case (Fig. 4), using all the discretizations adopted in Table 1. In this case, the 
4f-HMS presents an even worst monotonic convergence, which presents a lower bound for the distorted 
mesh. It can also be pointed out that, although, the level of distortion is high, the rate of convergence of 
the 4f-HMS is also high. 
 

  
a) b) 

Fig. 6.  Energetic convergence for the cracked rectangular plate, only with 4 elements using straight 
and distorted meshes, a) Strain energy vs DOF, b) Absolute error of the strain energy vs DOF. 

 
     The evolution of the vertical displacement and stress at the top left node of Fig. 3 b), is displayed in 
Fig. 7. The purpose of this test is to assess the monotonic convergence of the 4f-HMS, for the 
displacement and stress field. The theoretical value of the vertical stress, is 1/6 N/m2, but the exact value 
of the vertical displacement is unknown. 
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a) b) 

Fig. 7.  Convergence for the cracked rectangular plate at the top left node, a) Vertical stress vs DOF, b) 
Vertical displacement vs DOF. 

 
     It is clear in Fig. 7 a), that there is no monotonic convergence in all discretizations with the 4f-HMS, 
contrary to the one observed in CFE. Also, the rate of convergence in the 4f-HMS is clearly superior than 
the CFE in terms of stress behaviour, for regular meshes. This is expected, since in the 4f-HMS the stress 
field is directly approximated. On the other hand, this conclusion would be erroneous in Fig. 7 b). In fact, 
for some discretizations, the CFE presents almost the same rate convergence as the 4f-HMS for the 
displacement field. Once again, the displacements with the 4f-HMS are not always monotonic, contrary 
to the CFE which are always lower bound due to its stiffer formulation. 
 

  
a) b) 

Fig. 8.  Convergence for the cracked rectangular plate, only with 4 elements using straight and distorted 
meshes, a) Vertical stress vs DOF, b) Vertical displacement vs DOF. 

 
     In Fig. 8, the convergence rate of a fully regular and a totally distorted mesh, with 4f-HMS are 
compared, with the purpose of studying the Gibbs effect in the static and kinematic boundary. In Fig. 8 
a), the distorted mesh presents some difficulties converging in to a stress level of 1/6 N/m2, even for the 
number of degrees of freedom of more than 40 000. This is due to the Gibbs effect presented in the 
approximation of the stress field by Legendre polynomials. This effect is enchased when discontinuities 
occur in the static boundary, when after x=1.0 the stress level is exactly 0.0 N/m2, as shown in Fig. 9. In 
any case this problem is more visible in distorted meshes with 4f-HMS, but for regular meshes this 
problem is less noticeable. This can be concluded by observing Fig. 8 a), where for 2 and 16 regular 
elements the value is almost stable around 1/6 N/m2. Since the kinematic boundary of the impose problem 
presents no discontinuity, it is expected a good convergence rate for the displacement field of the regular 
and the distorted mesh, which can be concluded by observing Fig. 8 b). Although the 4 element mesh is 
heavily distorted, the convergence rate of the displacement is similar to the 4 element regular mesh. 

 
Fig. 9  Vertical stress distribution in the top static boundary of the cracked rectangular plate 
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      In Fig. 10, the evolution of the shear stress field 𝜏௫௬ for the p- refinement is displayed for the 4 
elements mesh. Although the convergence is extremely fast, the use of Legendre polynomials presents 
some instabilities due to the Gibbs effect, as it can be seen in the 40th degree approximation. This 
drawback, in the use of Legendre polynomials for the approximation functions, is also observed in the 
work of (Mendes et al. 2009). The h- refinement is also presented in Fig. 11, maintaining the degree of 
approximation 2 for the Legendre polynomial and using the same stress scale as in Fig. 10. Due to the 
low level of finite elements and degree approximation used, the rate convergence is very low. To present 
the effectiveness of the 4f-HMS with distorted elements, a p- refinement is displayed in Fig. 12, using 
the same stress scale as in Fig. 10. Even with high distortion, the convergence rate is extremely fast with 
low DOF, but in this case the Gibbs effect is much more pronounced. 
 

      
 2nd degree 3rd degree 5th degree 9th degree 

17th 
degree 

40th 
degree 

Fig. 10.  Evolution of the shear stress distribution, for the 4 elements mesh, using p- refinement. 
 

     
2 
Elements 

4 
Elements 

6 
Elements 

9 
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16 
Elements 

Fig. 11.  Evolution of the shear stress distribution, for the 4 elements mesh, using h- refinement. 
 

       

2nd degree 3rd degree 4th degree 9th degree 
13th 
degree 

17th 
degree 

40th 
degree 

Fig. 12. Evolution of the shear stress distribution, for the 4 elements distorted mesh, using p- 
refinement 

10. L-Shaped Plate Under Tension 
 
     The L-Shaped plate shown in Fig. 13 is another typical example, where the use of a higher-order 
scheme is recommended, due to the existence of a strong singularity in the interior corner. This problem 
is particularly important, since it is known for showing some numerical instabilities due to the Gibbs 
effect alongside the static boundary. Owing to symmetry conditions, only ¼ of the plate is analysed. 
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      Fig. 14 shows the different meshes used in the analysis, with the rectangular elements considered. It 
is assumed here, that the degree parameter of the Legendre polynomial approximation, ranges from 
values given in Table 2. Combining the different finite (rectangular) element meshes, with the different 
degrees of approximation, it is possible to define a set of 33 different discretizations, used to illustrate 
the efficiency of p- adaptive procedures. 
 

 
 

a) b) 
Fig. 13.  Plane structure a) Real case, b) Analysed structure. 

 
 

   
2 Elements 3 Elements 12 Elements 

Fig. 14. Adopted mesh for the L-shaped plane. 
 
Table 2. Adopted discretizations for the L-shaped plane 

Discretizations 

2 Elements 
Legendre Degree 1 2 3 4 5 9 13 15 17 20 50 

Degrees of Freedom 64 148 264 412 592 1632 3184 4152 5248 7132 41812 

3 Elements 
Legendre Degree 1 2 3 4 5 9 11 13 15 17 40 

Degrees of Freedom 96 222 396 618 888 2448 3516 4776 6228 7872 40578 

12 Elements 
Legendre Degree 1 2 3 4 5 7 8 9 11 15 20 

Degrees of Freedom 372 864 1548 2424 3492 6204 7848 9684 13932 24732 92592 

CFE Degrees of Freedom 192 352 682 1472 2562 9922 60802 

 
    For the isotropic model, using the following mechanical properties 𝐸 = 10ହ𝑃𝑎, 𝜈 = 0.3, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
1.0, an exact elastic strain energy can be admitted as 𝑈 = 0.1555(6) 𝐽. This analytical value is given in 
the work of Shephard et al. (Shephard et al. 1989). In Fig. 15 it is presented the strain energy convergence 
a) rate and b) absolute error, for all meshes presented in Fig. 14, using all the discretizations adopted in 
Table 2. For the CFE, a regular structured mesh was used. The main difference from the previous example 
is that, even for regular meshes some lower bounds may be found, meaning once again the 4f-HMS 
presents no monotonic consistence, in terms of strain energy convergence. Another difference, is when 
a logarithmic scale is used to plot the absolute error, the variation is no longer pure linear. This is due to 
the linear load along the static boundary, and the lower level of singularity. 
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a) b) 

Fig. 15.  Energetic convergence for the L-shaped plate, a) Strain energy vs DOF, b) Absolute error of 
the strain energy vs DOF 

 
    In Fig. 16, the evolution of static and kinematic boundaries values is presented for both 4f-HMS and 
CFE. A peculiar non-convergence appears in Fig. 16 a) for the mesh with 2 elements (which are distorted) 
even for more than 40 000 number of degrees of freedom. Once again, this is a problem derived from the 
approximation of Legendre polynomials in the 4f-HMS stress field. Observing Fig. 17, it is possible to 
conclude that in the top and bottom of the static boundary, the noise due to the Gibbs effect is extremely 
large, leading to heavy jumps near the borders. Although this is only visible for the 2 element mesh, the 
meshes with 3 and 16 elements also present some convergence issues in the static boundary, as can be 
observed in Fig. 18 in which this problem is atoned, but present. It is also important to point out that, for 
all 4f-HMS discretizations, the resultant stress (force) is always equal to 200N. 
 

  
a) b) 

Fig. 16. Convergence for the L-shaped plate in the bottom left node, a) Horizontal stress vs DOF, b) 
Horizontal displacement vs DOF 

 
     In Fig. 16 b), the convergence rate of the 4f-HMS is compared with the CFE for the kinematic 
boundary, for the bottom left node. Due to the rate inefficiency at the stress level, some convergence 
issues occur for the displacement with the 4f-HMS using low degrees of freedom, when directly 
compared with CFE. 
 

  
Fig. 17. Horizontal stress distribution in the left 
static boundary of the L-shaped plate, for the 
higher discretizations 

Fig. 18. Zoomed horizontal stress distribution in 
the left static boundary of the L-shaped plate, only 
for 12 element model 

 
     In Fig. 19, the evolution of the shear stress field 𝜎௫௬ for the p-refinement is displayed for the 2 
elements mesh, using a deformed shape at the scale of 5000. Although the convergence is extremely fast, 
the use of Legendre polynomials presents some instabilities due to the Gibbs effect, as in the previous 
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example. This is more perceptible along the diagonal kinematic boundary between elements. For the 1st 
discretization, since the degree of approximation of the stress field is only 2 (and consequently for the 
displacement field 1), it is expected a severe discontinuity along the kinematic boundary. This is also due 
to the fact that in the 4f-HMS formulation both Neumann and Dirichlet conditions are only enforced 
using the weighted residual method (Galerkin method). Even in the 2nd and 3rd discretization, a smaller 
kinematic boundary error is observed. 
 

     
2nd degree 3rd degree 4th degree 5th degree 9th degree 

    
 13th degree 15th degree 17th degree 20th degree 

Fig. 19. Evolution of the shear stress distribution, for the 2 elements mesh, using p- refinement 
 
     Contrary to the previous example, the Gibbs effect has almost completely vanished, as can been seen 
in Fig. 20 for the best discretization for each mesh presented in Table 2. 
 

   
2 Elements 3 Elements 12 Elements 

Fig. 20. Shear stress distribution for the 3 meshes using the best discretization  
 

11. Short Cantilever 
 
     In the following example, the short cantilever depicted in Fig. 21, in which the vertical displacement 
is generally governed by shear flexibility, is tested using 4f-HMS finite element model. This benchmark 
example is usually studied by other researchers (Pereira, 1996), when testing new finite element 
formulations in terms of strain energy convergence. This particular example was performed by (Pereira, 
1996), using equilibrium finite element, more specifically hybrid stress (HS) formulation (De Almeida 
et al., 1991). For the isotropic model, an almost “exact” elastic strain energy can be admitted as 𝑈 =
0.100361948𝐽. This numerical value is given in the work (Pereira 1996), and is obtained by applying a 
dual extrapolation technique to two series of kinematically and statically admissible solutions, which 
provide lower and upper bounds for the exact solution. In Table 3, the adopted discretizations for the 4f-
HMS, CFE and HS models are displayed, including the degree of the Legendre polynomial 
approximation for the 4f-HMS case. In 3 cases, the total number of degrees of freedom is presented. For 
the 4f-HMS, it was used only one distorted element, since in the previous tests this was the one that 
presented lower convergence rate. 
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Fig. 21.  Short cantilever subjected to vertical static distributed load (Pereira, 1996) 

 
Table 3. Adopted discretizations for the short cantilever 

Discretizations 

4f-HMS 
Legendre Degree 1 2 3 4 5 9 13 15 17 20 50 
Degrees of Freedom 64 148 264 412 592 1632 3184 4152 5248 7132 41812 

CFE Degrees of Freedom 192 352 682 1472 2562 9922 60802 
HS Degrees of Freedom 74.5 272 668 2382 4406 

 

  
a) b) 

Fig. 22. Energetic convergence for the short cantilever, a) Strain energy vs DOF, b) Absolute error of 
the strain energy vs DOF 

 
     It is displayed in Fig. 22 the strain energy a) evolution and b) absolute error, using all the 
discretizations adopted in Table 3. In this case, the 4f-HMS presents a poor error evolution when directly 
compared with HS for higher DOF. Even with the level of distortion, the rate of convergence of the 4f-
HMS is high when directly compared with CFE. It can be concluded that for lower level of distortion, 
the 4f-HMS presents a good rate of convergence in terms of strain energy, even though it may present 
some instability in the static boundary as viewed before. In Fig. 23, the shear stress distribution in the 
deformed shape is present for several discretizations with the 4f-HMS finite element model. This stress 
distribution is important since, in previous studies by other authors, it was demonstrated that it is difficult 
to obtain an exact result near the upper left node, mainly in the left kinematic boundary (Freitas, 1999). 
In terms of stress distribution, only for degrees above the 17th it is possible to obtain a coherent shear 
stress distribution near the upper left node. A correct shear distribution in the left kinematic boundary is 
also obtained only for the 50th degree. This is a direct consequence of the distortion of the adopted mesh 
with 4f-HMS. The deformed shape, presented in Fig. 23 for the first discretizations, violates the 
kinematic left boundary of the fixed support. Only after the 5th degree, no visual kinematic violations are 
present (even though they always exist due to the 4f-HMS formulation). This effect is strongly noticeable 
in discretization of the 2nd degree, since the displacement field presents a 1st degree approximation. 
 

0.098

0.100

0.102

0.104

0.106

0.108

0.110

20 200 2000 20000

St
ra

in
 E

ne
rg

y 
[J

]

Degrees of Freedom

Exact

4f-HMS

CFE

HS

0.00%

0.00%

0.01%

0.10%

1.00%

10.00%

20 200 2000 20000

Ab
so

lu
te

 R
el

at
iv

e 
Er

ro
r [

%
]

Degrees of Freedom

4f-HMS

CFE

HS



M.R.T. Arruda et al.  / Engineering Solid Mechanics 7 (2019) 
 

309

  

 

2nd degree 3rd degree 

  
4th degree 5th degree 

  
13th degree 17th degree 

  
20th degree 50th degree 
Fig. 23.  Evolution of the shear stress distribution, using p- refinement for the short cantilever, using 

the stress and strain degree approximation 
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12. Conclusions 
 
     The objective of this work consisted in the development and test of a hybrid double mixed stress finite 
element model for the static analysis plane elements.  

 The examples presented show clearly that the model is stable, robust and leads to accurate results. 
Effective p- and h- refinement procedures can also be easily implemented, although the h- 
refinement isn’t as effective as in CFE in terms of computational cost.  

 The possibility of hierarchy refinement without changing the mesh, allows the use of macro-
elements of large dimensions, which greatly simplifies the operations of post-processing.  

 Since 4f-HMS model does not verify neither equilibrium nor compatibility conditions, nothing 
can be concluded for the upper or lower bound of the strain energy calculated, for isotropic elastic 
models.  

 Just like in previous studies (Mendes et al. 2009), when using hybrid mixed formulation with 
Legendre polynomials approximation, the Gibbs effect may cause some convergence issues in 
the stress field, particularly surrounding the static boundary of the imposed problem. 

 
     As future work, the first step will correspond to the verification of the LBB inf-sup condition (Babuška 
et al. 1997), using the 4f-HMS for static analysis. It is expected also the generalization of the models 
discussed here to make possible the static and dynamic analysis of physically and geometrically non-
linear structures, using mixed time integration. 
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