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 Underwater structures are subjected to hydrostatic pressure during their service life. Sharp V-
notched components can be seen as a part of many underwater structures. For example, welded 
components, machined parts, gears, screws and bolts are among the well-known elements that 
contain sharp V-notches. The notch tip is a likely zone for initiation of cracks due to high stress/ 
strain concentration. The reliability analysis of the V-notched components requires a good 
understanding of stress/ strain distribution near the notch tip. The fracture initiation of the V-
notched components can be controlled by the tangential strain field near the notch tip. The 
tangential strain distribution and fracture initiation conditions are studied in this paper for 
notched components subjected to hydrostatic pressure. The effect of each tangential strain term 
on fracture initiation angle as well as tangential strain distribution around the notch tip is 
investigated using finite element simulation of a V-notched semi-circular specimen. It is shown 
that not only the singular terms, but also the “constants train field” significantly influence on 
tangential strain distribution and fracture initiation angle around the notch tip. The results of 
this paper can be used for standardization of the fracture in underwater structures containing 
V-notched components. 
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1. Introduction 
 

       One of the most crucial difficulties on designing underwater structures is limiting their stresses 
under allowable stress criteria; because they are under hydrodynamic loads in their entire life. For this 
purpose, some researchers (Nayebi & Ansari, Sadrabadi, 2013; Takabi, 2016) have utilized modern and 
advanced materials such as FG materials to decrease stresses of structures. However, when it comes to 
notches, especially in underwater structures, material enhancement could not work out per se, and a 
meticulous study should also be performed on notched components. Notched components are seen in 
many engineering structures ranging from micro scale to macro scale. When the radius of the notch tip 
is very small compared to the length of its sides, the notch is considered as sharp. Cracks are introduced 
as a special case of notches mathematically, in which the notch angle is zero. In a V-notched component 
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subjected to external mechanical loading, the state of the stress/ strain becomes singular at the notch 
tip which means the stress/ strain field approaches infinity adjacent the notch tip, mathematically. 
However, it is impossible to reach infinite stress/strain in a real material and hence, micro-cracks 
develop in an area, called fracture process zone, around the notch tip. The stress/ strain field evaluation 
at the notch tip is very important because fracture may initiate from the weakened area at the notch tip 
by increasing external mechanical loading which may finally result in catastrophic failure of the whole 
structures. 

       The elastic stress and strain fields around V-notch tip and crack tip have been extensively been 
investigated by many researchers in the past (Seweryn, 1994; Qian, 2001; Seweryn & Lukaszewicz, 
2002; Susmel & Taylor, 2008; Ayatollahi et al., 2006, 2010a,b, 2011a, 2013; Ayatollahi & Mirsayar, 
2011; Abd-Elhady, 2013; Ayatollahi & Aliha, 2007, 2008 a, b, 2009, 2011; Ameri et al., 2012, Arabi 
et al., 2013; Mirsayar & Samaei, 2013, 2014, 2015; Lazzarin et al., 2010; Gomez et al., 2008; Mirsayar, 
2013, 2014a,b,c, 2015a; Aliha et al., 2015a, b; Torabi, 2013; Mirsayar et al., 2014). Among them, 
Mirsayar et al. (2014) and Ayatollahi et al. (2011a) have studied the effect of first non-singular stress 
term on the stress distribution as well as the fracture initiation angle around the tip of a notch existing 
at the interface of two dissimilar materials. However, these studies are mainly focused on V-notches 
subjected to remote mechanical loading and the V-notches subjected to surface tractions have rarely 
been studied. Qian (2001) obtained the stress field equations for an interface notch with surface shear 
and normal tractions. He pointed out that surface tractions could be presented as a constant stress field 
around the notch tip and may influence on the stress distribution around the interface notch tip. 
However, the effect of surface tractions on the strain field and fracture initiation condition around the 
notch tip has not been investigated yet.  

        Several fracture criteria have been proposed so far to investigate fracture initiation conditions at 
the notch tip. These criteria can basically be classified into three different groups: energy based, stress 
based and strain based approaches (Erdogan & Sih, 1963; Sih, 1974; Chang, 1981; Selvarathinam & 
Goree, 1998; Mirsayar, 2015b). Among the energy based facture criteria, the maximum strain energy 
density criterion (Sih, 1974) is widely used by the researches and claims that fracture initiates at the 
notch tip in direction where the strain energy reaches its maximum value. The maximum tangential 
stress criterion (Erdogan & Sih, 1963) is a well-established stress based criterion which says that 
fracture propagates at the critical distance (rc) from notch tip in direction where tangential stress () 
reaches the ultimate strength (c) of the material. Similarly, the maximum tangential strain (MTSN) 
criterion claims that fracture occurs at the critical distance from the notch tip in direction where 
tangential strain () attains its ultimate tensile strain (c)(Chang, 1981). However, all of these 
traditional fracture criteria only consider the singular stress/ strain field and the effects of non-singular 
terms are ignored.  

       In this paper, the role of constant strain term, induced from normal surface tractions (hydrostatic 
pressure), on the tangential strain field as well as fracture initiation angle around the notch tip is studied. 
It is shown that the constant strain field significantly influences on the tangential strain field around 
notch tip. Also, the significant effect of constant strain field on the fracture initiation direction is 
highlighted.  

2. Elastic field equations around V-notch tip 

       Fig. 1 shows the schematic of a sharp V-notch subjected to both remote mechanical loading and 
normal surface tractions (hydrostatic pressure) alo\g its edges. Williams (1952) studied the stress field 
equation around the V-notch tip using linear elastic fracture mechanics (LEFM) assumptions. 
According to this work, the stress field around the notch tip subjected to remote external loading can 
be expressed in terms of the so-called Williams series expansions(Williams, 1952; Ju & Chung, 2007) 
as; 
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where r and  are the polar coordinates with the origin at the notch tip(see Fig. 1), n is the order of term 
in the infinite series and  is the wedge angle. 

 
Fig. 1. Schematic of a sharp V-notch subjected to remote mechanical loading together with a 

surface hydrostatic pressure. 
 

       The parameters n
I and n

II  are mode I and mode II eigenvalues, obtained from positive roots of 

the following characteristic equation, which respectively represent opening and sliding mode of 
deformation at the notch tip. 

sin( ) sin( ) 0

sin( ) sin( ) 0

I I
n n

II II
n n

   

   

 

 
 

(2)
 

 

        The Eq. (1) is only valid for real values of the eigenvalues and as a result, the corresponding stress 

intensity factors, An and Bn, are real numbers. The functions ( , , )k k
ij nf     are kwon functions which 

represent variation of the stress field in tangential direction and are given in Ayatollahi and Nejati 
(2011) ( ( , ) (r, )i j  and ( , )k I II ). For n = 1, the coefficients A1 and B1 are related to the singular 
terms and are called mode I and mode II stress intensity factors respectively. 

        Qian (2001) indicated that for an interface notch problem subjected to combined shear and normal 
surface tractions, a particular solution should be added to the conventional solution. According to this 
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work, the particular solution is corresponding to  = 1 which leads a stress term independent from radial 
distance (-1=0), called “constant stress term”. For notch problem in a homogeneous media subjected 
to only hydrostatic pressure (p) boundary conditions, the radial, tangential and shear components of 
constant stress term can be given as; 
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where, the coefficient A01 is presented as; 

 01 4 1 sin(2 ) cos(2 )A p       . (4)

       Therefore, the stress field around the notch tip in presence of the hydrostatic pressure on the edges 
of the notch can be presented in terms of summation of the general solution, Eq.(1), and the particular 

solution, Eq. (3). In Eq. (1), the terms corresponding to eigenvalues , 1n
I II   are called singular terms 

because these terms approach infinity when r→0. That means the singular terms play more important 
role than higher order terms in stress and strain distribution around the notch tip.  

3. Maximum tangential strain fracture criterion 

       In this study, the maximum tangential strain fracture criterion (MTSN), proposed by Chang (1981), 
is employed to investigate fracture initiation angle around the notch tip. According to MTSN criterion, 

fracture occurs in the direction, 0, where the tangential strain, , reaches its maximum value,  at 
a critical distance, rc, from the notch tip. The criterion could simply be represented as: 
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where, T is the tensile fracture strength and E is the Young’s modulus of material. The critical distance 
rc could be considered as damaged zone around the notch tip which is a material property (Taylor, 2008; 
Ayatollahi & Aliha 2008). Because we are using LEFM assumptions (which is a valid for brittle 
materials), the strain field around notch tip can be obtained using Hook’s law as follows;  

(7)  
)(
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rrE

   , 

where  is the Poisson’s ratio of the material. Using Eq. (1), Eq. (3) and Eq. (7), it can be concluded 
that constant “stress” term leads to a constant “strain” term.  

4. Numerical example and discussion 

       In order to study the effect of constant strain term, induced from surface hydrostatic pressure on 
the tangential strain distribution as well as fracture propagation angle, a finite element (FE) simulation 
is performed on a V-notched semi-circular specimen. The specimen, shown in Fig. 2(a), is a centrally 
notched semicircular disc of radius R = 40mm with notch depth of h = 20mmand notch angle of  
( = 360o- ). The specimen is subjected to hydrostatic pressure, p = 1 MPa, normal to the notch edges 
as well as one of its sides. The detailed loading and boundary conditions is shown in Fig. 2 (b).  
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Fig. 2. Semicircular notched specimen a) general configuration, b) loading and boundary 
conditions 

 

       Fig. 3 shows the typical FE mesh used for modeling the specimen and the closer view of the 
elements adjacent the notch tip. A very fine mesh was utilized in the region near the tip due to high 
stress/ strain gradient in that area. In the FE analyses, 6-node quadratic triangular elements were used 
for the first row of elements surrounding the notch tip and 8-node quadratic quadrilateral elements were 
utilized for the rest of the model. The plane strain conditions and the thickness of unity were assumed. 
The stress intensity factors corresponding to the singular term associated with ( = 0.51) was 
calculated using finite element over-deterministic (FEOD) approach. This method has successfully 
been used for calculation of the stress intensity factors of cracks and notches in both homogeneous and 
bi-material media (Ayatollahi et al., 2010; Ayatollahi & Nejati, 2011).  

Fig. 3. A typical FE mesh used for modeling of V-notched semicircular specimen with  = 30o 
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       Fig. 4 shows the distribution of the tangential strain field throughout deformed shape of the 
specimen. The closer view of this contour of plot reveals that a high concentration in strain field exists 
at the notch tip.  

 

Fig. 4. Contour of plots for tangential strain distribution throughout the deformed shape of 
semicircular notched disc specimen together with a closer view around notch tip 

 
       The asymmetry in deformation of nodes at the notch tip is in agreement with asymmetry in loading 
and boundary condition. It can be seen from Fig. 4 that maximum tangential strain occurs around notch 
tip in direction 0<0o. However, according to Eq. (5), the direction of the fracture initiation depends on 
the critical distance, rc, where the tangential strain component is evaluated. According to the literature 
(Ayatollahi & Aliha, 2008, 2011; Aliha et al., 2010, 2012; Aliha & Ayatollahi, 2012, 2013, 2014, 
Akbardoost et al., 2014; Ayatollahi et al.,  2006, 2011b), the critical distance parameter may have 
different values for different brittle and quasi-brittle materials like, ceramics (within the range of 0.068 
mm and 0.5 mm), brittle polymers (e.g. PMMA with rc in the range of 0.05 and 0.2 mm), graphite (rc 
= 0.35 mm and rc = 0.47 mm for graphite 7477and graphite SA, respectively) or rocks (rc = 2 to 6 mm). 
In the present work, a typical critical distance of 0.18 mm is selected. In other words, it is assumed that 
crack propagates at a critical distance of 0.18 mm from notch tip. Fig. 5 illustrates the variations of 
tangential strain versus tangential direction of  at a circular path of radius r = 0.18 mm from the notch 
tip. It can be seen that considerable errors exist between the strain distributions calculated by 
considering only singular solution and those of directly obtained from FE analysis (which considers all 
terms of the Williams series expansion given in Eq. (1)). The predicted values for angle of the fracture 
initiation, 0, at the critical distance of r = 0.18 mm are also shown in Fig. 5. A substantial difference 
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can be seen between fracture initiation angles estimated by only considering singular strain field (-1.7o) 
and FE results (-19.2o). However, by adding the constant strain field to the singular solution, a very 
good consistency can be observed between the theoretical predictions and FE analysis for distribution 
of the tangential strain field as well as the estimated fracture initiation angle. The distribution of the 
tangential strain field along radial direction of 0 = - 19.2ois also shown in Fig. 6. It is seen that constant 
strain term significantly influences on the strain field even in the very near the notch tip. It can also be 
realized that the higher nonsingular strain terms (corresponding to >1) have no effect on the strain 
distribution for radial distances less than 1 mm from notch tip. Finally, it can be concluded that the 
constant strain term may play an important role in prediction of the fracture initiation direction as well 
as the strain field distribution around notch tip. 
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Fig. 5. Variation of tangential strain fields versus   at a circular path of radius r = rc = 0.18 mm 
from the notch tip 
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Fig. 6. Variation of tangential strain fields versus radial distance along  = -19.2o 

 
 

5. Conclusions 

       The fracture initiation in V-notched components subjected to hydrostatic pressure was studied in 
this paper. It was shown that the constant strain term, which causes as a result of hydrostatic pressure 
along the notch edge, significantly influences on the tangential strain distribution around the notch tip. 
The remarkable effect of constant strain term on the evaluation of the fracture initiation angle using the 
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MTSN criterion was also indicated. Finally, it was concluded that one should consider the effect of 
constant strain term when studying fracture initiation in under water structures containing V-notched 
components. Since no recommendation is currently given in standards for the studied problem, the 
results of this work can be useful for standardization of the underwater notched structures. 
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