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 This paper presents two parameter foundation models for free vibration analysis of non-
homogeneous orthotropic rectangular plate resting on elastic foundation whose concept is 
extensively used in engineering practice. Following Lévy approach i.e. the two parallel edges 
are simply supported, the fourth order differential equation governing the motion of such plates 
of non-linear varying thickness in one direction has been solved by using an efficient and rapid 
convergent numerical approximation technique that is called differential quadrature method 
(DQM). Appropriate boundary conditions accompany the differential quadrature method to 
transform the resulting differential equation into an eigenvalue problem. The effects of 
thickness variation, foundation parameters and other plate parameters with boundary 
conditions on frequency are examined. The numerical results show that the method converges 
significantly irrespective of parameters involved. 
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1. Introduction 
 
     The analysis of vibration of a plate on elastic foundation is of considerable interest and widely used 
in engineering structures such as railroad, pipeline, aerospace, biomechanics, petrochemical, marine 
industry, civil and mechanical engineering applications. Many problems in the engineering related to 
soil-structure interaction can be modeled by means of a beam and plate on an elastic foundation. In this 
context, Hetenyi (1966), Vlasov and Leontev (1966) investigated the effect of elastic foundation on the 
dynamic behavior of beams and plates. Various models approximating the supporting medium (i.e. 
foundation) such as Vlasov by Bhattacharya (1977), Pasternak by Wang and Stephens (1977) and 
Winkler by Chonan (1980) were proposed in the literature. Winkler foundation model is extensively 
used by engineers and researchers because of its simplicity and are reported in references (Gupta & 
Lal, 1978; Selvadurai, 1979; Liew et al., 1996; Gupta et al., 2012; Samaei et al., 2015).  
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      The free vibration analysis of rectangular orthotropic non- homogeneous plate on elastic foundation 
has been investigated by many researchers for the past forty years. Most of the studies on the dynamic 
behavior of rectangular plates resting on elastic foundation are devoted to Winkler foundation (Lal et 
al., 2001; Gupta et al., 2012). In Winkler model the foundation is assumed to be replaced by a series of 
unconnected closely spaced vertical elastic springs, but the main disadvantage of the Winkler model is 
the displacement discontinuity. To overcome the deficiency of Winkler model, various models have 
been proposed in the literature by different researchers. Kerr (1964) gave an excellent discussion about 
these models. Of these, the most natural extension of the Winkler model is the Pasternak model (two 
parameter foundation) as it takes into account not only its transverse reaction but also the shear 
interaction between the spring elements.  
 
      Numerous studies have appeared in the literature to analyze the effect of two parameter foundation 
on the static and dynamic behavior of rectangular plates. The prominent references are: Xiang et al. 
(1994), Omurtag and Kadioglu (1998) and Gupta et al. (2014). The numerical methods to study the 
vibrational behavior of uniform/variable thickness plates resting on elastic foundation have been 
discussed in prominent references are: Frobenious method presented by Jain and Soni (1973), finite 
difference for rectangular plates of exponentially varying thickness by Sonzogni et al. (1990), 
Rayleigh-Ritz method for free  and  forced  vibration  analysis  of  moderately  thick isotropic 
rectangular plates resting on Pasternak foundation employing by Shen  et  al. (2001). Malekzadeh and 
Karami (2004) obtained a differential quadrature solution for free vibration analysis of isotropic 
non-uniform thick rectangular plates resting on Pasternak foundation. Civalek and Acar (2007) used 
discrete singular convolution method for the bending analysis of Mindlin plates on Pasternak 
foundation. Lal and Dhanpati (2007) applied Quintic spline technique to study the transverse vibration 
of non-homogeneous orthotropic rectangular plates of variable thickness. Furthermore, a global transfer 
matrix and Durbin’s numerical Laplace inversion algorithm were employed by Hasheminejad and 
Gheshlaghi (2012) to study the transient vibration of simply supported, functionally graded rectangular 
plates resting on a linear Winkler–Pasternak viscoelastic foundation. Differential quadrature method 
(DQM) requires less grid points for desired accuracy as compare to finite difference method, finite 
element method, quintic splines, and characteristic orthogonal polynomials and Frobenius method. 
DQM was introduced by Bellman et al. (1972) and generalized and simplified subsequently by Quan 
and Chang (1989).  
 
      In the present study, differential quadrature method (DQM) is applied for computation of the free 
vibration analysis of rectangular orthotropic non-homogeneous plate of non-linear thickness variation 
embedded in two parameter foundation. The choice of Lévy approach reduces the complexity of 
governing fourth order differential equation with variable coefficients to one dimension. The effect of 
various plate parameters for a Huber type orthotropic plate material ‘ORTHO1’ (Biancolini et al., 2005) 
has been studied on the natural frequencies for the first three modes of vibration for different boundary 
conditions. Convergence studies have also been made to achieve four decimal place exactitude in 
frequencies. Frequencies and mode shapes for the first three modes of vibration are computed for 
specified plates. A close agreement of our results with those available in the literature shows the 
versatility of the DQM. 
 
2. Mathematical Formulation 
 

      Following Gupta et al. (2014), the differential equation describing the motion of a non-
homogeneous orthotropic rectangular plate of linear variation in thickness resting on two parameter 
foundation is given as follows: 
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where 
22222 /bap   and primes denote differentiation with respect to X. 

      For non-linear (parabolic) variation in thickness i.e. 
_

h= 0h (1+ α X 2) and following references (Jain 

& Soni; 1973; Malekzadeh & Karami, 2004; Gupta et al., 2014) for non-homogeneity of the plate 
material in X direction as follows: 
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      The solution of Eq. (3) in conjunction with boundary conditions at the edges 0X and 1X  
yields a two-point boundary value problem with variable coefficients whose close form solution is not 
possible. An approximate solution is obtained by employing Differential Quadrature Method. 
 
3. Method of Solution: Dirrerential Quadrature Method 
 
      Let X1, X2, …. , Xm be the m grid points in the applicability range [0, 1] of the plate. According to 
the DQM, the nth order derivative of W(X) w.r.t. X can be expressed discretely at the point Xi as 
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where )(n
ijc  are the weighting coefficients associated with the nth order derivative of W(X) with respect 

to X at discrete point Xi. Following Shu (2000), the weighting coefficients in Eq. (4) are given by 
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       Discretizing Eq. (3) at grid points Xi,  i = 3, 4,…, m-2, it reduces to, 
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        The satisfaction of Eq. (10) at (m-4) nodal points Xi, i = 3, 4 …... (m-2) provides a set of (m-4) 

equations in terms of unknowns ,,,2,1,))(( mjXWW jj   which can be written in the matrix form 

as 
[B][W*]=[0], (11) 

 
where B and W* are matrices of order (m-4) × m and (m × 1) respectively. 
 
      Here, the (m-2) internal grid points chosen for collocation, are the zeros of shifted Chebyshev 
polynomial of order (m-2) with orthogonality range [0, 1] given by 
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4. Boundary Conditions and Frequency Equations 
 
      The two different combinations of boundary conditions namely, C-C, C-S have been considered 
here, where C, S stand for clamped and simply supported respectively and first symbol denotes the 
condition at the edge X=0 and second symbol at the edge X=1.By satisfying the relations. 
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for clamped and simply supported  conditions, respectively, a set of four homogeneous equations in 
terms of unknown Wj are obtained. These equations together with field Eq. (11) give a complete set of 
m homogeneous equations in m unknowns. For C-C plate this set of equations can be written as 
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where BCC is a matrix of order 4m. 
For a non-trivial solution of Eq. (13), the frequency determinant must vanish and hence, 
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Similarly for C-S plate, the frequency determinants can be written as 
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5. Numerical Results and Discussion                                     
 
      The frequency Eqs. (14-15) have been solved to obtain the values of the frequency parameter  for 
C-C and C-S plates vibrating in first three modes of vibration. The effect of non-homogeneity together 
with foundation, orthotropy, thickness variation and aspect ratio on the frequency parameter  for p = 
1 has been investigated. The values of various plate parameters are taken as follows: Winkler stiffness 
parameter K = 0.0 (0.01) 0.1, shear stiffness parameter G = 0.0 (0.001) 0.01, non-homogeneity 
parameter  = -0.5 (0.1) 1.0, density parameter   = -0.5 (0.1) 1.0, taper parameter  = -0.5 (0.1) 1.0 
and aspect ratio a/b = 0.5 (0.5) 2.0. The elastic constants for the plate material ‘ORTHO1’ are taken as 

,101 10
1 MPaE   1.0,2.0,105 9

2  yxMPaE  . The thickness 0h  at the edge X = 0 has been 

taken as 0.1. To choose the appropriate number of collocation points m, convergence studies have been 
carried out for different sets of parameters. For a specified plate, graphs are shown in figures 1(a, b) for 
 = 0.5,  = 0.5,  = -0.5, K = 0.02, G = 0.001 and a/b = 1 for C-C and C-S plates, respectively. For 
this data, maximum deviations were observed. In all the computations we have fixed m = 18 because 
further increase in m does not improve the results even in the fourth place of decimal in the third mode 
of vibration for all the plates. 
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    (a) m (number of nodes) →                              (b)  m (number of nodes) → 
   

      Fig. 2(a) shows the effect of non-homogeneity parameter   on the frequency parameter  for taper 
parameter  = 0.5, aspect ratio a/b =1, density parameter β = -0.5, 0.5, Winkler stiffness parameter K = 
0.0, 0.02 and shear stiffness parameter G = 0.0, 0.002 for C-C and C-S plates vibrating in fundamental 
mode. The frequency parameter  is found to increase with the increasing values of non-homogeneity 
parameter  . The rate of increase of  with  is smaller for a C-S plate than that for a C-C plate. This 
rate decreases with the increase in the value of density parameter  and foundation parameters K as well 
as G.  A similar behavior is observed for the plate vibrating in second and third modes of vibration 
(Figs. 2(b, c)). The rate of increase of  with  gets pronounced with the increasing number of modes. 
 

           

       
  Fig. 2. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and 
              (c) third mode for  α = 0.5, a/b = 1. , C-C; ----------, C-S. , , β = -0.5, K=0.0 ; ♦,◊,  
              β = 0.5, K=0.0; , , β = -0.5, K=0.02; ,, β = 0.5, K=0.02. , ♦, ,, G=0.0; ,◊, ,, G = 0.002. 
 
      Figs. 3(a, b, c) show the variation of frequency parameter  with density parameter  for µ = 0.5, 
a/b =1, α = -0.5, 0.5, K= 0.0, 0.02 and G = 0.00, 0.002 for C-C and C-S plates vibrating in the 
fundamental, second and third modes, respectively. It is observed that frequency parameters () 
decreases with the increasing values of density parameter   irrespective of the values of other plate 
parameters. The rate of decrease of frequency parameter  with  increases with the increase in the 
values of α, K as well as G. This rate of decrease is greater for a C-C plate than that for a C-S plate. 
Also, the rate of decrease in frequency parameter  increases with the increase in the number of modes. 
The effect of taper parameter  on the frequency parameter  for C-C and C-S plates has been shown 
in Figs. 4(a-c) for a/b = 1, β = -0.5, µ = -0.5, 0.5, K = 0.0, 0.02 and G =0.0, 0.002 for fundamental, 
second and third modes of vibration, respectively. It is observed that the frequency parameter  
increases with the increasing values of taper parameter  for C-C and C-S plates for all the three modes 
except in case of C-S plate vibrating in fundamental mode for µ = 0.5, K = 0.02 and G = 0.00. In this 
case the frequency parameter   first decreases and then  increases  with  the  increasing values of   
with a  local  minima in  the  vicinity  of  = 0.1. The rate of increase of frequency parameter  increases 
with the increasing values of µ, K as well as G.  This rate of increase of  is more prominent in case of 
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C-C plate as compared to C-S plate in all the modes of vibrations. Also, this rate of increase of  with 
α increases with the increasing number of modes. 

 

        
    Fig. 3. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  
              (c) third mode, for μ = 0.5, a/b = 1. , C-C; ------------, C-S; , ,  = -0.5, K=0.0 ; ♦,◊,  
               = 0.5, K=0.0; , , = -0.5, K=0.02; ,, = 0.5, K=0.02. , ♦, ,, G=0.0; ,◊, ,, G=0.002. 

 
    
Fig. 4. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  
           (c) third mode for β = 0.5, a/b = 1. , C-C; ----------, C-S; , , µ = -0.5, K=0.0; ♦,◊, µ = 

0.5, K=0.0; , , µ= -0.5, K=0.02; ,, µ= 0.5, K=0.02. , ♦, ,, G=0.0;  ,◊, ,, G = 0.002. 
 

       Figs. 5(a-c) show the behavior of frequency parameter  with aspect ratio a/b for  = -0.5, 0.5, K 
=0.0, 0.02, G =0.0, 0.002, µ = 0.5 and α = -0.5 for C-C and C-S plates vibrating in fundamental, second 
and third mode of vibration, respectively. It is observed that the frequency parameter  increases with 
the increasing values of aspect ratio a/b whatever are other plate parameters. The rate of increase of  
with a/b is much pronounced for a/b >1 than that for a/b < 1. This rate of increase decreases with the 
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increasing values of  , K as well as G. Also, The rate of increase of  with a/b is greater in case of C-
C plate as compared to C-S plate. The rate of increase decreases for higher and higher modes. 

                
 
        
Fig. 5. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  

     (c) third mode for   = -0.5, µ = 0.5.  , C-C; ----------, C-S. , ,  = -0.5, K=0.0 ; ♦,◊,  
       = 0.5, K=0.0; , ,  = -0.5, K=0.02; ,,  = 0.5, K=0.02. , ♦, ,, G = 0.0; ,◊, ,, G = 

0.002. 

 
 
        
Fig. 6. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and 
           (c) third mode for β = 0.5, a/b = 1. , C-C; ----------, C-S;  , , α = -0.5, µ = -0.5 ; ♦,◊,  
           α = -0.5, µ = 0.5; , , α = 0.5, µ = -0.5; ,, α = 0.5, µ = 0.5. , ♦, ,, G=0.0; ,◊, ,, G = 

0.002. 
 
       Figs. 6(a-c) show the plots of the frequency parameter  versus Winkler foundation stiffness K for α 
= -0.5, 0.5, µ = -0.5, 0.5, G =0.00, 0.002, β =0.5 and a/b=1 for C-C and C-S plates vibrating in 
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fundamental, second and third mode, respectively. It is seen that the frequency parameter  increases with 
the increasing values of K. The rate of increase of frequency parameter  with K is smaller for a C-S plate 
than that for a C-C plate. The rate of increase of  with K decreases with the increasing number of modes.  
Figure 7(a) depicts the variation of frequency parameter  with shear stiffness parameter G for α = -0.5, 
0.5,  = -0.5, 0.5, K=0.0, 0.02,  = 0.5 and a/b=1 for C-C and C-S plates vibrating in fundamental mode. 
The frequency parameter  increases with the increasing values of shear stiffness parameter G. The rate 
of increase of frequency parameter  with G is higher for a C-C plate than that for a C-S plate. A similar 
inference can be drawn from Figs. 7(b, c), when the plate is vibrating in second and third mode of 
vibration, respectively, with the exception that the rate of increase in  with shear stiffness parameter G 
increases with the increasing number of modes. 
 

 
 
        
Fig. 7. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  
            (c) third mode for β = 0.5, a/b = 1. , C-C; ----------, C-S; , , α = -0.5, K=0.02;  
            ,, α = 0.5, K=0.02. ,, µ = -0.5; ,, µ = 0.5. 
 

 
(a)                                                                    (b) 

  Fig. 8. Normalized displacements for the first three modes of vibration for (a) C-C and  (b) C-S plates, 
            for a/b=1.0, α =0.5, K = 0.02,G =0.001.                  , first mode; ………, second mode;  
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            ----------, third mode. , μ = -0.5; ○, μ = 0.5; , ●, β = -0.5; ,○, β = 0. 
 
       Mode shapes for a square plate i.e. a/b=1 have been computed for β = 0.5, K = 0.02, G=0.001,  = 
-0.5, 0.5 and α = -0.5, 0.5. Normalized displacements for first three modes of vibration are shown in 
Figs. 8 (a, b) for C-C and C-S plates, respectively. It is observed that the nodal lines shift towards the 
edge X = 0, as α increases from -0.5 to 0.5. Also, the radii of nodal circle decrease as  increases from 
-0.5 to 0.5. A comparison of results for isotropic (E2/E1=1), homogeneous ( = = 0), uniform thickness 
( = 0.0) plates with Chebyshev collocation technique (Lal et al. 2001), quintic splines technique (Lal 
& Dhanpati, 2007), finite element method, Frobenius method (Jain & Soni, 1973) and exact solutions 
by (Leissa, 1969) for two values of aspect ratio a/b=0.5 and 1.0,  = 0.3 and p = 1 has been presented 
in Table 1. A close argument between the results is found, which shows the versatility of DQM.  
 
Table 1.  Comparison of frequency parameter Ω for isotropic (E2/E1=1), homogeneous  
                ( = = 0), C-C and C-S plates for υ= 0.3.  
Boundary Mode                 K= 0.0                K= 0.01      
Condition   a/b = 0.5   a/b = 1.0  a/b = 0.5   a/b = 1.0 

   23.8156   28.9509   26.2142    30.9540  
 I  23.820a  28.950a 26.219a    30.953a

   23.816b  28.951b 26.214b    30.954b

      28.946c         
C-C   23.816d  28.951d         

 II  63.5345   69.3270   64.4720    70.1872  
   63.603a  69.380a 64.539a    70.239a

   63.635b  69.327b 64.472b    70.187b

      69.320c         
   63.535d   69.327d         
 I  17.3318   23.6363   20.5034    26.0605  
   17.335a  23.647a 20.506a    26.061a

   17.332b  23.646b 20.503b    26.060b

      23.646c         
C-S   17.332d   23.646d         

 II  52.0979   58.6464   53.2372    59.6607  
   52.150a  58.688a 53.288a    59.702a

   52.098b  58.646b 53.237b    59.661b

      58.641c         
   52.097d   58.646d         

(a).Values from Spline technique ( b).Values by Chebyshev collocation technique (c). Exact values from Liessa (1969) (d). Frobenius method (e). Values 
from finite element method.  

 
6. Conclusion  

      The present work emphases on the application of differential quadrature method. For this purpose, 
the effects of plate parameters on natural frequencies of rectangular orthotropic plates of non-linearly 
varying thickness resting on two parameter foundation (Pasternak foundation) have been studied on the 
basis of classical plate theory. It is observed that frequency parameter   increases with the increase 
in non-homogeneity parameter   and aspect ratio a/b keeping other plate parameters fixed. Further Ω 
is found to decrease with the increasing value of density parameter β keeping all other plate parameters 
fixed for all the three boundary conditions. However, its behavior with taper parameter α is not 
monotonous. It is appeared that the parameter K and G of the Winkler and Pastenak foundation has 
been found to have a significant influence on the displacements of the plates. In fact, similar results 
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were previously found. Consequently, by comparing the computed results with those available in 
published works, the present analysis by the DQM is examined and a very good agreement is observed. 
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