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 An analytical and numerical solution is developed for a transient heat conduction equation in 
which a plane slab is heated by a bimodal distribution beam over the upper surface. In laser 
heat treatment of steel few methods are used to produce a wider and nearly uniform average 
irradiance profile. This may be achieved by a bimodal (TEM11) shaped laser beam. In this 
paper, Green function method is employed to derive an analytical solution for thermal field 
distribution induced by laser forming process. Then 3-D finite element modeling of a slab in 
the ANSYS code is used to model the thermal field of laser forming with bimodal beam 
distribution. The results show that bimodal beam is useful for obtaining a uniform heat intensity 
distribution. 
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1. Introduction         
 
        Laser forming is a novel technique, where a laser beam causes thermal expansion locally, and 
deformation is achieved by scanning the laser beam across one side of the material. In laser heat 
treatment of steel, bimodal distribution beam (Fig. 1) is used to produce a wider and nearly uniform 
average irradiance profile. The temperature gradients that are developed through the material induce 
distortion because the temperature is changed with thickness and thus causes different expansion of 
adjoining layers. Laser forming is currently used because of its technical benefits such as no need to 
external forces, reduction in cost and increase in flexibility. In past years, considerable attentions have 
been paid to the comprehending the laser forming mechanisms and the investigation of the effects of 
laser forming parameters on the deformed shape and mechanical properties of the formed parts 
(Vollertsen, 1994; Holzer et al., 1994; Shi et al. 2006). In recent years, considerable research are still 
performed on computer modeling of the laser forming process of plates (Shen et al., 2006; Liu et al., 
2007; Yao et al. 2007). In this paper the thermal field distribution of a bimodal laser forming is 
investigated and compared theoretically and numerically and the good agreements of both methods is 
demonstrated.   
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Fig. 1. Schematic of bimodal distribution beam 

2. Analytical model 

An analytical model, based on the renowned transient heat conduction equation, was used to establish 
the temperature rise as a function of time and step T(r,t) in the material under the action of a laser 
beam: 

( )2 ,1 f r tT T
t Kα

∂
− ∇ =

∂
, 

)1( 

 
where /  pK cα ρ= is the thermal diffusivity (ρ= the density, K= thermal conductivity and cp= specific 
heat) of the material. The internal heat generation term f(r,t), at the right side of Eq. (1), is identified as 
the energy distribution of the laser beam. 
 
       In the case of three-dimensional transient, nonhomogeneous heat conduction problem (given by 
Eq. (1)), the solution for T(r,t) is expressed in terms of the three-dimensional Green’s function 
(Polyanin, 2001): 
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where F(r ') is the initial temperature distribution. 
 
       The three-dimensional Green’s function can be obtained from the product of the three one-
dimensional Green’s function in rectangular coordinates: 
 

( ) ( ) ( ) ( ), , , | , , , 1 , | , . 2 , | , . 3 , | ,G x y z t x y z G x t x G y t y G z t zτ τ τ τ′ ′ ′ ′ ′ ′= , (3) 

 
where each of the one-dimensional Green’s functions G1, G2 and G3 depends on the extent of the 
region (i.e., finite, semi infinite, or infinite) and the boundary conditions. The one-dimensional infinite 
medium Green’s function is obtained as (Polyanin, 2001): 
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and the semi infinite medium Green’s function when the boundary at z=0 is of the second kind (insulate) 
is obtained as (Polyanin, 2001): 
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Substituting G1(x, t | x ',t ) , G2( y, t | y ',t ) and G3(z, t | z ',t ) , in Eq. (3) yields the three-dimensional 
Green’s function, for z ' = 0, 
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Substituting x ' = x - r cosθ, y ' = y - r sinθ and G (r,t | r ',t ) from Eq. (6) into Eq. (2) the temperature 
distribution is obtained as: 
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If a piece of finite depth, L, is considered the three-dimensional Green’s function for a slab with finite 
depth becomes: 
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(8) 

and from Eq. (2) with the substitution x ' = x - r cosθ, y ' = y - r sinθ, the temperature distribution for a 
piece of finite depth, L, can be expanded as: 
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(9) 

 
In Eq. (7) and Eq. (|9), f(x-rcosθ,y-rsinθ,τ) is the heat intensity distribution. 
 
      For a bimodal distribution on a circular disc heat source; the heat release intensity q(r) is a function 
of r. The bimodal distribution which the distance from the center of the distribution curve to one of its 
peaks on the ri-axis is 0.24 ro can be expressed by the following equation, 
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       So, for bimodal distribution that moves along a straight line the function f(x-rcosθ, y-rsinθ, τ) takes 
the form, 
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3. Finite element model 

      The basic heat-transfer equation considered is: 
( )F KT= ∇ −  (12a) 

which relates the heat flux F to thermal gradient 
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     This equation applies to unsteady-state heat conduction, where again ρ is the density, cp: the specific 
heat, T: the temperature, t: the time , K: the thermal conductivity and G: the internal generation of heat. 
G is zero where the incident laser power is modeled as a heat flux. 
 
      In this model the time during which the laser beam continuous irradiation is divided to n increments 
∆t, and during each increment ∆t, it can be assumed that the laser beam does not move. The created 
program determines the thermal load for each node on the heated surface which depends on the laser 
beam position, heat intensity distribution and the node position. Laser beam position depends on its 
moving path, speed and time thus the value of load for every node on the heated surface is a function 
of time and place. 
 
       In each increment an implicit 3-D finite element model is used to compute the solution of the heat 
transfer of Eq. (12). The result of each increment was used as the initial condition of the next time 
increment. For small ∆t, one can assume that the laser moves continuously. The flow chart of the finite 
element simulation is shown in Fig. 2. 
 
        In this model, it is necessary to make a decision about the element size and shape, time increment 
and number of step n∗  for each increment with the help of the analytical model. Since these quantities 
are not independent, the following relation can be written: 
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         The Fourier number Fo, which includes material thermo-diffused efficiency α , time step ∆t* and 
node spacing ∆x should be lesser than 2. For small time increment every load step can be solved by one 
sub step ( n 1∗ = or ∆t = ∆t*). 
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Fig. 2. Flow chart of thermal modeling during laser hardening using a finite element method 

 
4. Results and discussion 
 
      The 3-D models developed in Fig. 3, is a typical example for investigating the laser forming of a 
stainless steel plate (AISI 304L). A slab of 30 × 30 mm and 4 mm thickness was used for this 
investigation. A summary of the processing parameters which are used in this investigation is given in 
Table 1. The material was assumed to be homogenous and isotropic. The ambient temperature was set 
at 25 oC.  
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Fig. 3. The 3D model that has been discretized by cubic elements 

 
Table 1. Laser forming parameters 
Laser power, q (w) 278 
Beam diameter, d (mm) 4 
Scan speed (mm.sec-1) 30 
Absorptivity 0.72 
Thermal conductivity, k (Wm-1 K-1) 20 
Heat capacity c (J kg-1 K-1) 552 
Thermal diffusivity α (m2 s-1) 4.61e-6 

 
       Fig. 4 shows a comparison between analytical and FEM results for different mesh sizes. This figure 
shows the temperature history of a point on the heated surface at x=3.1mm, y=0.48mm during laser 
forming with a bimodal beam. In this comparison the model has been discretized by cubic elements, in 
order to improve efficiency and reduce calculation dense meshes are used around the heated region. 
Mesh 1 relates to a meshing which the distance between nodes on the heated surface and around the 
heated region is 0.25 mm. This mesh under the laser is such that it has sufficient number of elements 
to capture the inflection of the bimodal distribution (Fig. 3). The number of elements for this mesh is 
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84906. As it is obvious for this case we found a good agreement between FEM result and analytical 
result. Mesh 2 relates to a meshing which the distance between nodes on the heated surface and around 
the heated region is 0.5 mm and 8 elements were used along the z-direction (in thickness direction) and 
mesh 3 relates to a meshing which the distance between nodes on the heated surface and around the 
heated region again is 0.5 mm but 4 elements were used along the z-direction (in thickness direction). 
 
 
 
 

 

 
Fig. 4. Comparison of 3-D finite element model and analytical model results for laser forming with 

bimodal distribution 
 
The mesh 1 is in a good agreement with the analytical model although there is few difference 

between the analytical and numerical model but if the number of the meshes increase the error dose not 
decrease considerably and the time of solve increase drastically. Fig. 5 shows the temperature change 
with time at various points on the heated surface for the bimodal beam model. This Figure shows the 
maximum temperature occurs on the center line and as the distance increase from the center line the 
temperature falls precipitously. 
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Fig. 5. Temperature history at various points on the heated surface 
 
5. Conclusions 
        
      The thermal fields in laser forming with bimodal beam were modeled. Green function method has 
been employed to derive an analytical solution and also a FEM model has been developed to simulate 
the body temperature. The FEM results are in reasonable agreement with analytical results. The results 
can be used to design a laser forming process using bimodal heat distributions. The result can be also 
used for prediction of process parameters (Komanduri & Hou, 2004). 
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