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 In this paper, harmonic forced vibration of circular functionally graded plate integrated with 
two uniformly distributed actuator faces made of piezoelectric material is studied. The material 
properties of the functionally graded substrate layers are assumed to be graded in the thickness 
direction according to the power-law distribution, also the distribution of electric potential field 
along the thickness direction of piezoelectric layers is modeled by a quadratic function. The 
governing equations are solved for simply supported boundary condition of the sandwich 
circular plate and the solutions are presented by elementary Bessel functions. The performance 
of the present model is compared with that of finite element analyses as well as other available 
literature by the presentation of comparative results obtained for several examples 
encompassing different power indexes and vibration modes. The results show that thickness of 
piezoelectric layer and changing the power index in FG material has a significant influence on 
the deflection and natural frequencies of system. 

 

 

© 2014 Growing Science Ltd.  All rights reserved. 

Keywords: 
Functionally graded material 
Piezoelectric  
Circular plate  
Classical plate theory  
Forced vibration 
 

 

 

 

1. Introduction 

     The well-regulated vibrational properties of piezoelectric materials are broadly known as one of 
the most significant resources for the improvement in the smart structures. Intelligent self-monitoring 
and self-adaptive structures, incorporating piezoelectric patches, are now extensively used in the 
active and passive vibration control, in micro-electromechanical systems, in medical apparatus and in 
measuring devices. A metal substrate surface embedded or bonded by a piezoelectric sheet has 
received significant attention during last years for applied designs of actuators and sensors due to the 
electromechanically coupling characteristics. 
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      In recent times, functionally graded (FG) materials which exhibit smooth variation of material 
properties have been studied for developing intelligent functionally graded structures. By employing 
piezoelectric materials as sensors or actuators, intelligent FG structures have been made with 
proficiencies of self-monitoring and self-controlling. The design of systems including active 
piezoelectric materials requires comprehensive modeling of the mechanical, electrical and coupling 
properties of the piezoelectric elements, the host structure and their interactions. In the following 
recent progresses and findings in modeling of smart FG structures will be discussed. 
         
       Batra and coworkers (Batra & Liang 1997; Vel & Batra 2001) studied the vibration problem of a 
rectangular laminated plate with embedded piezoelectric actuators and sensors subjected to transient 
thermal loading. Batra and Geng (2002) considered a FG viscoelastic layer with a homogeneous PZT 
constraining layer and carried out the 3D transient analysis of the structure with the finite element 
method. He et al. (2001) proposed a FE formulation based on the classical laminated plate theory 
(CLPT) for the vibration and shape control of the FG material plates with integrated piezoelectric 
actuators and sensors and used a feedback control algorithm for the active control of the dynamic 
response of the plate through closed loop control. A FE formulation was proposed by Liew et al. 
(2002) for modeling and control of piezoelectric shell laminates under coupled temperature, 
displacement and electric potential fields. The base shell has been made of FG material which 
consists of combined metal– ceramic materials with different mixing ratios. Ootao and Tanigawa 
(2000) and Tanigawa (2001) investigated the FG simply supported plate integrated. A study on the 
nonlinear vibration and dynamic response of a FG material plate with surface-bonded piezoelectric 
layers in thermal environments was developed by Huang and Shen (2006). The nonlinear 
formulations were based on the higher-order shear deformation plate theory (HSDT) including 
thermo-piezoelectric effects. In this study, they accounted to heat conduction and temperature-
dependent material properties, and it was assumed a variation through the plate thickness both for the 
temperature field and for the electrical field intensity.  
 
       A study on FG beams with surface integrated piezoelectric actuators and sensors based on a state 
space formulation was carried out by Bian et al. (2006). In their study, the bonding adhesive between 
the host beam and the piezoelectric layers was modeled by a spring layer in order to consider its 
effect. The bonding conditions were simulated through the consideration of different spring layer 
parameters. Free axisymmetric vibration problem of piezoelectric coupled thin circular and thin 
annular FGM plates has been carried out by Ebrahimi and Rastgoo (2008 a,b). Also Ebrahimi et al. 
(2009) suggested an analytical solution to analysis of smart moderately thick shear deformable and 
circular FG plate based on the Mindlin’s plate theory. Wang and Quek (2001) studied free vibration 
of a circular plate surface bonded by two piezoelectric layers, based on the Kirchhoff theory. They 
have shown the mode shape of the electric potential obtained from free vibration analysis is generally 
to be non-uniform in the radial direction in contrast to what is commonly assumed. A study on the 
performance of vertically reinforced 1–3 piezoelectric composite distributed actuator in the active 
constrained layer damping system bonded to a FG plate was carried out by Ray and Batra (2007). 
They modelled the deformations of each layer by the first-order shear deformation theory. 
Jandaghian et al. (2013) suggested an analytical solution to investigate the transient motion of a 
circular plate surface bonded by two piezoelectric layers. By applying high-order sandwich panel 
theory (HSAPT) Rahmani et al. (2009) studied the free vibration of sandwich structure with a 
flexible functionally graded syntactic core.  Yapeng (2003) presented an exact analysis of the free 
vibration of a functionally gradient piezoelectric plate. The solution of the derived governing 
differential equations was obtained through the power series expansion method. The natural 
frequencies and the modal distributions of free vibration of a functionally gradient piezoelectric plate 
were investigated. 
 
      In another study, Kargarnovin et al. (2007) investigated the active vibration control of FG 
material plates using piezoelectric sensor/actuator patches, using classical laminated plate (CLP) 
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theory. In their work the effect of the feedback gain and the volume fraction on the plate frequency 
and displacement was studied. Es’haghi et al. (2011) presented an analytical solution for vibration 
study of piezoelectric coupled FG Mindlin plates those have open circuit piezoelectric patches and 
have been used as sensors. Fakhari et al. (2011) suggested a FE formulation based on HSDT plate 
theory to investigate the nonlinear natural frequencies, time and frequency responses of FG plate with 
surface-bonded piezoelectric layers under thermal, electrical and mechanical loads. Numerical results 
have been presented to study the effects of the volume fraction exponent, the applied voltage in 
piezoelectric layers, the thermal load and the vibration amplitude on nonlinear natural frequencies 
and time response of the plate with integrated piezoelectric layers was studied.  
 
     Hashemi et al. (2012) developed an analytical solution for the free vibration of piezoelectric 
coupled FG thick circular/annular plates on the basis of the Mindlin’s FSDT theory and studied the 
effects of coupling between in-plane and transverse displacements on the frequency parameters. Loja 
et al. (2012) studied the static and free vibration behavior of functionally graded sandwich plate type 
structures, using B-spline finite strip element models based on different shear deformation theories. 
Geometrical nonlinear static and free vibration analyses of FG piezoelectric plates using FEM were 
studied by Behjat and Khoshravan (2012). On their work different sets of mechanical and electrical 
loadings were considered. The plate with FG piezoelectric material was considered to vary gradually 
through the thickness by a power law distribution. The electric potential was assumed to vary in a 
quadratic way through the thickness and was considered to be a nodal degree of freedom.  
 
       Liew et al (2003) presented a FE model for the static and dynamic piezothermoelastic analysis 
and control of FGM plates under temperature gradient environments using integrated piezoelectric 
sensor/actuator layers. They also applied a feedback control algorithm that couples the direct and 
inverse piezoelectric effects to provide active control of the integrated FGM plate in a closed loop 
system.  
 
     Along with the carried out literature review and to the best knowledge of authors there is no 
references for the forced vibration of FG circular plate integrated with piezoelectric material. In this 
study, the forced harmonic vibration of a FG thin circular plate integrated with piezoelectric layers is 
investigated for different boundary conditions. Both top and bottom layers of each piezoelectric layer 
are fully covered by electrodes which are shortly connected. The thickness of electrodes is considered 
to be extremely small compared to the plate thickness. Thus, in the following formulation, the 
mechanical effects of the electrodes are neglected. The properties of the substrate layers were graded 
in the thickness direction according to a volume fraction power law distribution. The distribution of 
electric potential field in the thickness direction of the piezoelectric layers is simulated by a quadratic 
function and the solutions are presented in terms of a single, elementary Bessel function. A consistent 
formulation based on the classical plate theory (CPT) that satisfies the Maxwell static electricity 
equation is presented for piezoelectric layers. The results are validated by those obtained from FEA 
and other available literature. 
 
2. Modeling of functionally graded properties 
 
       The properties of the circular plate are considered to vary through the thickness of the plate with 
a power-law distribution of the volume fractions of the two materials in between the two surfaces. In 
fact, the top surface (z = h) of the plate is ceramic-rich whereas the bottom surface (z = -h) is metal-
rich. Poisson’s ratio ν is assumed to be constant throughout the analysis. Young’s modulus and mass 
density are assumed to vary continuously through the plate thickness as 
 

( ) ( ) ( )c m f mE z E E V z E   , (1) 

( ) ( ) ( )c m f mz V z      , (2) 
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where the subscripts m and c represent the metallic and ceramic constituents, respectively, E and ρ 
are modulus of elasticity and density, respectively and the volume fraction Vf may be given by 
 

, 0,
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z h
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(3) 

where g is the power law index and takes only positive values. For g = 0 and g =1, the plate is fully 
ceramic and metallic, respectively; whereas the composition of metal and ceramic is linear for g = 1. 
 
3. Basic equations of FG sandwich circular plate with piezoelectric layers 
 
       Consider a flat, thin FG sandwich circular plate, including one host layer in the middle and two 
identical piezoelectric faces bonded perfectly to the upper and lower surfaces of the host layer, with 
host plate thickness 2h and piezoelectric layer thickness h1, radius r, as illustrated in Fig. 1. 

 
Fig. 1. Cross section of FGM circular plate with two piezoelectric layers mounted on its upper and 

lower surfaces 
 
       The constitutive equations for an piezoelectric layer in reference coordinate system (z,r,θ) are 
(Tiersten, 1969): 
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and εz for plane stress is obtained from Eq. (6) 
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Substituting Eq. (7) into Eq. (4)  and Eq. (5) gives  
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EC11  and EC12  are the elastic modulus of the piezoelectric material in the radial and tangential 

directions, measured at constant electric field; and e31 is the piezoelectric constant of the piezoelectric 
layer. 
The stress components in the FG plate are expressed as (Timoshenko et al., 1959) 
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0 r . (12) 

 
When the two major surfaces of the piezoelectric layer are held at zero voltage (i.e., closed circuit or 
boundary conditions), in this study we decided to adopt the following electric potential function 
which is appropriate for the proposed system (Wang et al., 2001):  
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(13) 

where, z is measured from the mid-plane of the plate in the global z-direction, h1 is the thickness of 
the piezoelectric layer, and φ(r,t) is the electric potential on the mid-surface of the piezoelectric layer. 
For boundary condition the electrodes on each piezoelectric layer are short-circuit and also, zero 
electrical potential at r = a is obtained by connecting piezoelectric layers to ground. It is seen from 
Eq. (13) that the electric boundary condition of the short-circuit ( 0 ) at the internal surfaces 

hz   and the external surfaces )( 1hhz  of each piezoelectric layer is completely satisfied. The 

components of electric field intensity E and electric flux density D is written as (Wang et al., 2001) 
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Er , Eθ and Ez are the electric field intensity in the r,θ and z directions, respectively; Dr , Dθ and Dz are 
the corresponding electric displacement; 11  and 33  are the dielectric constants of the piezoelectric 

layer; where 11 and 33  are reduced dielectric constants of the piezoelectric layer for the plane stress 

problem, which are given by 1111  , )/( 33
2
333333

ECe .  

 
4. Governing equations 
 
Afterward the resultant shear force is derived as: 
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In addition, resultant components of sandwich circular plate are obtained as following: 
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where the thickness of the main plate is 2h; the piezoelectric layer extends from z = h to  
z = h + h1. Substituting Eq. (17) into Eq. (18) and Eq. (16) and substituting the final results into the 
governing equation for the Kirchhoff plate 
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where f = f(r,t) is the external load will result in the equation for the piezoelectric sandwich FG 
circular plate: 
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where ρf(z) and ρp are material densities of the FG plate and piezoelectric layer, respectively. Also 
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It should be noted that all of the electrical variables must satisfy Maxwell’s equation which requires 
that the divergence of the electric flux density vanishes at any point within the media. This condition 
can be satisfied approximately by enforcing the integration of the electric flux divergence across the 
thickness of the piezoelectric layers to be zero for any r and z as (Wang et al., 2001) 
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Substituting Eqs. (15) into above equation yields 
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Finally, the problem leads to find the solution of two coupled PDEs (Eqs. 20 and 23) in association 
with the following electrical and mechanical boundary conditions and for fully grounded 
piezoelectric coupled, simply supported, plate  
 

hz  : φ = 0,  

)( 1hhz  : φ = 0 (24) 

r = a: φ = 0, w = Mr = 0,  
 
5. Forced vibration analysis 
 
The forcing function, f(r,t), is assumed to be harmonic, with frequency ω, as 
 
f(r,t) = F(r)eiωt (25) 
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Thus, solutions of Eq. (20) and Eq. (23) are assumed to be of  the form  
 
w(r,t) = W(r)eiωt, (26) 
φ(r,t) = φ(r)eiωt, (27) 
 
where W(r) is the amplitude in z direction as a function of radial displacement only. φ(r,t) is the 
electric potential on the mid-surface of the piezoelectric layer. Substituting Eq. (25) and Eq. (26) into 
Eq. (20) and Eq. (23) leads to 
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The final solution is combined of two solutions: (i) for the plate under the action of F(r) and (ii) for 
the plate under the action of a radial bending moment applied at the edge. The complete solution is a 
suitable superposition of the two solutions, ensuring that the condition Mr = 0 holds at r = a. The 
solution is therefore written in the form  
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In the following, F(r) is expanded into a series in terms of Bessel functions, as 
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In Eq. (32), Eq. (33) and Eq. (34) , J0(αr) and J1(αr) are Bessel functions of first kind of order zero 
and one, respectively, (Abramowitz & Stegun 1964) , and αj are the positive roots of  
 
J0(αa) = 0. (36) 
 
Substituting Eqs. (32), (33) into Eq. (23) gives  
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Substituting Eq. (32) , Eq. (33) and Eq. (34) into Eq. (28) gives 
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with D = D1 + D2, and 
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The solutions of )(
~

rW  and )(rW  satisfy the boundary condition of W(r = a) = 0, on the other hand 

they don’t satisfy the boundary condition of  Mr = 0 at r = a separately, but sum of them satisfy both 

conditions. Let the second solution, )(rW  have the form:  
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where constant C and function W1(r) have to be calculated. Substituting Eq. (40) into Eq. (35) and 
Eq. (36) with F(r) = 0, it is found that W1(r) and )(r  must satisfy the following equations: 
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The second solutions are expanded in the similar way as the first solutions. 
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Following similar steps than those used to derive Aj and Bj, one gets  
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The second solution )(
~

rW  and )(~ r  satisfies Eqs. (28) and (29) with F(r) = 0, and (24), except the 

boundary condition Mr = 0 at r = a. substituting )(rW  and ( )W r  in this boundary condition 
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Results in a linear, algebraic equation for C, whose value can easily be determined. Hence, the 

function  )()(
~

)( rWrWrW   and )()(~)( rrr   are known and describe the exact, complete 

solution. Therefore the functions W(r) and φ(r) are known and describes the complete solution of the 
clamped boundary condition. Moreover, the final values of w(r,t) and φ(r,t) are: 
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 6. Numerical results and discussion 
 
In the following vibrational response of simply supported circular sandwich plate subjected to a 
uniformly harmonic pressure all over the surface area is considered. The amplitude of external load is 
1 kPa and its frequency, ω, is 100(rad/s). The material parameters have been given in Table 1. The 
thickness ratio of the piezoelectric layer and main plate (h1/h) is 1/10. The radius of circular plate is 
equal to 0.6 m and the thickness of FG host is 0.01 m. 

 
Table 1. Material properties and geometric size of the piezoelectric coupled FGM plate (Wang. et al. 2001) 

Host FG plate 
Ec = 205(GPa) ρc = 7800 (kg/m3) 
Em = 200(GPa) ρm = 8900 (kg/m3) 

PZT 
EC11  = 132 × 109 EC12  = 71 × 109 
EC33  = 115 × 109 EC13  = 73 × 109 

e31 = -4.1(C/m2) e33 = 14.1(C/m2) 

11  = 7.124 × 10-9 (F/m) 33  = 5.841 × 10-9 (F/m) 

 ρ2 = 7500 (kg/m3) 
 
Fig.2. shows the radial bending moment of plate of plate and Fig. 3 shows the radial distribution of 
the deflection at time t = 0.2(s) for g = 0 (isotropic plate). The curves in Figs. 2 and 3 show that 
boundary conditions at r = a : w =Mr = 0 are satisfied. Since there were no published results for 
forced vibration of piezo-FG circular sandwich plate, the obtained results have been verified with 
those obtained from Abaqus results. Fig. 4 shows the vibration of compound piezo-plate centre 
respect to time. As seen from Fig. 2 and Fig. 4 there is a good agreement between curve obtained 
from our method and curve obtained from FEM.  
 

  
Fig. 2. Radial distribution of deflection of Piezo-
FG plate at t = 0.2(s) for g = 0 

Fig. 3. Radial bending moment of Piezo-FG 
plate at t = 0.2(s) for g = 0 
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      Table 2 shows the centre deflection of piezo-FG plate at time t = 0.7 s for different g under the 
same value of mechanical load. As seen from Table 2 the deflection of piezo-plate decreases by 
increasing of g and obtained results from our method correspond with the results of FEM solution. In 
order to see better the effect of g variations on the deflection of plate, Fig. 5 also illustrate these 
variations.  

 
Table 2. Effect of power index (g) on the deflection of plate 

W(m)  
Power 

Index (g) Diff (%) FEM Present 
 
 

-0.61 4.345E-07 4.319E-07  0 
-0.47 4.300E-07 4.280E-07  1 
-0.21 4.280E-07 4.271E-07  3 

-0.19 4.275E-07 4.267E-07  5 

-0.16 4.270E-07 4.263E-07  7 
-0.14 4.266E-07 4.260E-07  9 

-0.14 4.265E-07 4.259E-07  10 

 
Note that as the forcing frequency, ω, approaches the j th frequency of vibration of the plate, 
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, in Equations (30) and (35) the deflection of the plate W(r) 

, thereby causing resonance. Table 3 shows the first three axisymmetric natural frequencies of piezo-
FG plate for different values of g. The obtained results in Table 3 indicate that by increasing the 
value of g, the frequency of system decreases. Moreover, this decreasing trend of frequency for 
smaller values of g is more pronounced, for example by increasing the value of g from 1 to 3 (~ 
200%), the frequency of the first mode for the compound plate decreases by 1.32% but by increasing 
g from 3 to 9 (~ 200%) of the same plate and for the same mode, the frequency decreases by 0.71%. 
In order to see better the effect of g variations on the natural frequency of the different plates, Figs. 6 
to 8 also illustrate these variations for the first three mode shape.  
 

   
Fig. 4.  Dynamic deflection of plate at r 
= 0 for g = 0 

Fig 5. Effect of power index (g) on 
deflection 

Fig. 6. Effect of power index on the 
natural frequency (First mode) 

 
 

Fig. 7. Effect of power index on the natural frequency (second 
mode) 

Fig. 8. Effect of power index on the natural frequency 
(Third mode) 
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Table 3. The First three modes resonance frequencies for Piezo-FG plate for various values of power 
index 

Power Index 
(g) 

Mode no. Present (Hz) Ebrahimi and Rastgo (2008a) Diff (%) Wang et al. (2001) 

0 
1 69.52 69.37 0.22 69.33 
2 418.99 417.86 0.27 418.03 
3 1029.74 1039 -0.9 1038.2 

1 
1 67.51 67.88 -0.55 - 
2 408.38 406.83 0.38 - 
3 1003.65 1001.51 0.21 - 

3 
1 66.49 67.07 -0.87 - 
2 403.01 402.23 0.19 - 
3 990.45 983.5 0.19 - 

5 
1 66.17 66.81 -0.97 - 
2 401.33 400.71 0.15 - 
3 986.33 982.2 0.42 - 

7 
1 66.02 66.72 -1.06 - 
2 400.55 397.32 0.81 - 
3 984.42 980.4 0.41 - 

9 
1 65.94 66.61 -1.02 - 
2 400.12 396.81 0.83 - 
3 983.36 979.02 0.44 - 

10 
1 65.91 66.59 -1.03 - 
2 399.67 396.5 0.79 - 
3 982.98 978.1 0.5 - 

 
      As seen from Fig. 7, the behavior of the system follows the same trend in all different cases, i.e. 
the natural frequency of the system decrease by increasing of g and stabilizes for g values greater 
than 7. In fact for g >> 1, the FGM plate becomes a ceramic plate and the compound plate transforms 
into a laminated plate with ceramic core as s host plate. Table 4 shows the effect of piezoelectric 
layer on the natural frequency system. As seen from Table 4 by increasing piezoelectric layer, the 
natural frequency increases and the effect of adding piezoelectric layers is more obvious when there 
is a thicker piezoelectric layer on the main plate. 

 
Table 4. Effect of piezoelectric layer on resonance frequencies 

Third mode  Second mode  First mode  Thickness ratio  
1026.62  417.62  68.65  1/12  
1029.74  418.99  69.52  1/10  
1034.82  420.96  71.52  1/8  
1052.90  428.44  73.68  1/5  

 
7. Conclusion 
 
       A model for the analysis the forced vibration of a piezoelectric coupled FG circular plate 
structure is proposed. The equation of motion achieved based on the CPT for harmonic vibration. 
The solutions are given in terms of elementary Bessel functions and validation is done using the 
results from present method and those from FEA. It is shown that the thickness of piezo-layer has 
significant effect on the deflection amplitude and natural frequency of piezo-FG plate. Also power 
index (g) has significant effect on the deflection amplitude and natural frequency of piezo-FG 
sandwich plate. 
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