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 The effect of first nonsingular stress term of elastic stress field on fracture toughness around bi-
material notch tip is studies in this paper.  First, a modified maximum tangential stress criterion 
(MMTS) is proposed for determination of the fracture toughness at the tip of the interface 
notches. The proposed criterion takes into account the effect of first nonsingular stress term as 
well as the singular stress terms.  Then, the effect of I-stress on determination of the fracture 
toughness is studied analytically. Finally, the proposed criterion is applied on a finite element 
(FE) simulated laboratory specimen. A very good correlation was observed between the FE 
results and theoretical predictions. 
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1. Introduction 

      Bi-material joints can be seen in many engineering applications ranging from civil and 
mechanical engineering to the microelectronics industries (Chen et al., 1997; Dunn et al,. 2000; 
Labossierea et al., 2002; Lu et al., 2002). For instance, ceramic/ metal/ ceramics and ceramic/ ceramic 
bonded joints are extensively used in airplane and aircraft bodies. At the interface of these bonded 
joints, stress singularities exist as a result of geometrical configuration and/ or material discontinuity. 
Therefore the study of stress field around bi-material notch tip is very important. 

According to the linear elastic fracture mechanics (LEFM), the elastic stress field near the bi-material 
notch tip could be expressed as a series expansion containing singular and nonsingular terms. The 
first, and sometimes the second, terms are singular which means that the eigenvalues of the 
characteristic equation are less than one. Excluding the singular terms, the rest of the series expansion 
terms are considered as nonsingular stress terms. The elastic stress field near bi-material notch tip is 
studied in the past by many researchers (Ayatollahi et al., 2010 a,b, 2011; Mirsayar et al., 2014a; 
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Arabi et al., 2013; Mirsayar and Samaei 2013, 2014; Mirsayar, 2013). The effect of first nonsingular 
stress field around the bi-material notch tip on the photoelastic fringe patterns is studied by Ayatollahi 
et al. (2011). Also, the effect of first nonsingular stress term of elastic stress field around bi-material 
and simple cracks and simple notches has also been investigated by many researchers (Mirsayar, 
2014a,b; Ayatollahi et al., 2006, 2013; Ayatollahi and Aliha, 2007 Ayatollahi and Mirsayar, 2011).  

      Fig. 1 illustrates a typical bi-material notch at the interface of two homogeneous linear elastic 
solids. The area 

10    belongs to material 1 and the area 
20    represents the material 2. The 

elastic stress field near the bi-material notch tip can be expressed as: 
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where (i, j) ≡ (r, θ) are the polar coordinates with the origin at the bi-material notch tip, m=1, 2 
denotes the material number and λk corresponds to the kth eigenvalue of the problem. Also in Eq. (1), 
fijk and gik are functions of elastic properties of the materials, eigenvalues λk, the local edge geometry 
characterized by the angles θ1 and θ2 and the polar coordinate θ. The eigenvalues of a bi-material 
problem are obtained by solving numerically a characteristic equation and, contrary to the 
homogeneous notch eigenvalues, they depend not only on the edge geometrical configuration 
characterized by θ1 and θ2 but also on the elastic properties of the two materials. Although λk could be 
either a real or a complex number depending on the general configuration of the bi-material notch, 
Eq. (1) is valid only for positive real values of λk. In addition, Hk is the unknown coefficient of the 
stress field corresponding to the eigenvalue λk and is called the bi-material notch stress intensity 
associated with the eigenvalue λk. The calculation process for determination of the eigenvalues and 
stress intensities are given in details in Ayatollahi et al., (2010a). 

Fig. 1. General configuration of the bi-material notch made of materials 1 and 2. 

      Many of fracture criteria have been proposed so far for determining the fracture toughness near 
the bi-material notch tip. Labossierea et al. (2002) and Dunn et al. (2000) proposed a stress intensity 
based fracture criterion for estimation of the fracture initiation at the tip of interface notches. 
Mirsayar (2014b), proposed a fracture criterion for bi-material cracks taking into account the effect of 
T-stress. Some researchers proposed a fracture criterion for determination of the kinking angle and 
fracture toughness at the bi-material notch tip based on strain energy density concept considering 
only the effect of singular stress terms (Klusak and Knsel, 2007; Spyropoulos, 2003). Many of the 
recently published papers demonstrated that the first nonsingular stress term of the elastic stress field 
may significantly affect the stress distribution around the bi-material notch tip. Mirsayar et al. 
(2014b), proposed a fracture criterion for determination of the kinking angle at the interface notch tip 
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introducing the modified maximum tangential stress (MMTS) criterion. In this paper, the MMTS is 
applied on a FE specimen and the fracture toughness is predicted using the MMTS criterion and 
compared with the FE results. It is shown that the MMTS prediction is in a very good consistency 
with the FE results. 

2. Tangential stress based criteria 

2.1 MTS criterion 

      One of the most well–known fracture criteria which has been widely used so far for simple cracks 
and notches is the maximum tangential stress (MTS) criterion. Although the MTS is not widely used 
for bi-material systems, it utilizes a simple idea for the fracture phenomenon especially in brittle 
materials and is extended well for simple cracks (Awaji and Sato 1978; Shetty et al. 1987; Singh and 
Shetty 1989; Tikare and Choi 1997; Aliha and Ayatollahi 2008, 2009, 2012; Ameri et al. 2012;  
Ayatollahi and Aliha 2011, Aliha et al. 2008, 2012; Yamauchi et al. 2011). According to this 
criterion, fracture occurs at the notch tip when the maximum tangential stress reaches its critical value 
(c) at a critical distance, d, around the notch tip in one of the materials. Using this definition, the 
fracture toughness at the interface could be represented as: 
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      In Eq. (2), 
ICmMK )(  is the fracture toughness of the material in which the crack propagates. Also, 
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21 H

H
  and 0 represents the fracture initiation angle at the interface corner. The 0 is the direction 

where the tangential stress reaches to its critical value at the critical distance, d, around the bi-
material notch tip and could be calculated as: 
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      In Eq. (3), only the singular stress terms are considered and the effect of nonsingular stress terms 
is not considered. As mentioned before, the first nonsingular stress term (I-stress) sometimes plays an 
important role in stress distribution around the interface notch tip. Therefore the effect of I-stress on 
fracture toughness needs to be studied. 

 2.2 Modified MTS (MMTS) criterion 

      The Eq. (2) and (3) can be rewritten by taking into account the I-stress term as well as the singular 
stress terms as: 
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materials, the elastic mismatch parameters are selected as =0.2 and =/4. In fact, /4 path in 
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least-squares method. More details about this numerical method could be found in Ayatollahi et al., 
(2010a). 

      The finite element results as well as the MTS and MMTS predictions are given in Table 1 at the 
critical distance of d = 0.5mm. It can be seen that MMTS criterion provides more accurate prediction 
of the fracture toughness and kinking angle than the conventional MTS criterion. 

Table 1. Estimation of the fracture initiation condition using MTS and MMTS 
H1c /KIc Deg(d=0.5mm) 

0.82 -8 -0.33 0.17 MTS 
1.15 -13.5 - - MMTS 
1.15 -13.5 - - FEM 

4. Conclusion 
 
       The effect of I-stress on fracture toughness at the bi-material notch tip was studied. The MTS and 
MMTS criterion were introduced and the effect of sign and value of the I-stress in prediction of the 
fracture toughness was studied. It was shown that the MTS criterion estimates the fracture toughness 
less than MMTS when the I-stress is negative and vice versa. A numerical simulation is done on a 
laboratory specimen and MTS, MMTS and numerical results were compared with each other. It was 
shown that MMTS provides more accurate results than the MTS in prediction of the fracture 
toughness and fracture initiation angle. 
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