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 This paper deals with the investigation of thermo-vibrational convection induced by harmonic 
vibrations of the temperature boundary conditions in a square cavity heated from bellow and 
containing a low Prandtl number fluid. The governing equations are solved by using a finite 
volumes method. Effects of thermal modulation on the all regimes occurring in the cavity when 
convection intensity increases are analyzed. A characteristic modulation frequency allowing the 
reduction of the average intensity of the flow and heat transfer at the cold wall has been 
identified. The effect of phase difference between hot and cold temperature is also studied. 
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NOMENCLATURE 

  thermal diffusivity 

  expansion coefficient 

  kinematic viscosity of fluid 
  density of fluid 

 dimensionless stream function 
SUBSCRIPT 
c  critic 
C  cold 
H  hot 
max  maximum 
S solutal 
T thermal 
0  reference 
SUPERSCRIPT 

C dimensionless concentration 

D  mass diffusivity 
g  gravitational acceleration 

H  height of the enclosure 

k  thermal conductivity 

Le  Lewis number, = D  

N  buoyancy ratio, = 'C TC T      

Nu  Nusselt number, see Eq (9) 
Pr Prandtl number, =   

Ra  thermal Rayleigh number, = 3
Tg T H   ' /  

Sh  Sherwood number 
t  time 
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   ′  dimensional variable    T   temperature 
,x y  coordinate system 

,u v x, y velocities  
 

1. Introduction 
 
Convective flows generated by the buoyancy forces were the subject of several numerical and 

experimental studies. The control of these movements and the optimization of the heat transfer in 
these configurations is a significant challenge in the research works oriented to themo-fluid 
engineering. In recent years, attention has been given to natural convection in enclosures with time 
dependent thermal boundary conditions (Antohe & Lage, 1996a, 1996b; de Vahl Davis, 1983; Hyun, 
1994). This interest is from the importance of these problems in many engineering applications such 
as convective heat loss from solar collectors, thermal comfort of buildings, building structure, air 
conditioning, electronic cooling, the crystal growth from the melt manufacturing, and nuclear 
engineering (Lin & Violi, 2010). 

 
Numerical simulations and experiments showed that the buoyancy-driven convective activity in the 

cavity is intensified at certain discrete frequencies of the oscillation of the thermal boundary 
condition. This has been termed resonance, which is characterized by attaining the maximum 
amplitude of heat transfer rate through the vertical midplane of the cavity (Larroude et al., 1994). 
Antohe and his co-worker (Lage & Bejan, 1993; Antohe & Lage, 1996a, 1996b) investigated the 
effects of heating amplitude and frequency on the heat and flow transfer phenomena considering 
enclosures filled with a clear fluid and a fully saturated porous medium under time periodic square 
wave heating in the horizontal direction for a liquid with Pr=0.7. It was underlined that periodic 
heating is very important since flow resonance appears as the heating frequency matches the natural 
frequency of the flow inside the enclosure. It was shown that resonance frequency is independent of 
the heating amplitude for both the clear fluid and porous medium cases.  

 
Kwak and Hyun (1996) studied numerically the effects of the amplitude and frequency of the hot 

side sinusoidal wall oscillation on the enhancement of heat transfer in a square cavity with fixed 
thermal Rayleigh number (Ra = 107) and Prandtl number (Pr = 0.7). Once more it was observed that 
the maximum increase of the time-averaged heat transfer rate occurs at a resonance frequency 
between natural frequency of the flow and the modulation frequency. Semma et al. (2005) presented 
results on the effect of thermo-vibrational convection in a vertical Bridgman cavity and studied the 
frequency dependence of the flow intensity and solid/liquid interface deformation acting on the 
steady and oscillatory basic states. It was shown that with the stationary basic regime, the solid/liquid 
interface deformation can be affected at low frequencies. However, for high frequencies, the flow and 
interface deformation converges toward their free state value. Saravanan and Sivakumar ( 2010) 
recently studied the effect of vibration with arbitrary amplitude and frequency in a porous horizontal 
saturated fluid heated from below. They demonstrated that these vibrations can produce stabilization 
or destabilization in function of the chosen amplitude and frequency. 

 
The whole of the work which treated the thermal vibration problems considered only the active 

wall temperature variable. However, the cold temperature can be also variable or varied to increase 
the heat control. The objective of this study is the numerical investigation on the heat transfer of 
natural convection in a square cavity subjected to thermal boundary condition. In addition, the 
temperatures are time dependent at both hot and cold walls. The study is focused on periodic 
variations and a special attention is given to the effect of the amplitude, of the period, and of the 
dephasing of the exciting temperatures on the enhancement of heat transfer and fluid circulation 
inside the cavity. 
 

2. Model and solution method 

2.1. Mathematical model 

The studied configuration, depicted in Figure 1, is a square cavity heated from below and cooled 
from the top as is shown schematically in Figure 1-a. The lateral walls in the hot zone (at TH ), and 
the cold zone (at TC) are separated  by an adiabatic zone of length HΔT.  
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The problem can become dimensionless using H, the height of the cavity, as the scale factor for 
length; H2/α and ρα2/H2 as the scaling factors for time and pressure respectively. The dimensionless 

temperature is    ' ' ' '/C H CT T T T T   . The cavity is filled with a Newtonian and incompressible fluid at low 

Prandtl (Pr=0.01). The sinusoidal hot and cold temperature are characterised respectively by their 
amplitudes εH and εC and their frequencies fH and fC. The dephasing between the two temperatures is 
φAll properties of the fluid are constant except the density that is assumed to be a linear function of 
temperature, 

� = ��[1 − ��(� − ��)] (1) 

  

Fig. 1. Sketch of the flow configuration with boundary condition 

The governing equations are the continuity, momentum and energy conservation.  Corresponding 
Partial Differential Equations (PDE), written in Cartesian coordinates in non-dimensional form are as 
following: 

Continuity: 

(2)  ∇. � = 0 

Momentum: 

(3)  ∂�

∂�
+ (�. ∇)� = −∇� + ��∆�+ ����	

g

||g||
	�  

Energy: 

(4)  ��

��
+ (�. ∇)� = ∆� 

Eq. (1) to Eq. (3) are subjected to the following boundary conditions: 

(5)  sin(2 )C C f     , 1y   at 0 vu   

(6)  1 sin(2 )H H f    , 0 vu at  0   0 1  and  0  0 75; , , .y x y    

0




x

T  ,  0 vu      

at       0 1  and  y 0.75 , 1.0,x     (7) 
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In order to study the effect of the oscillations of hot and cold wall temperature on the heat transfer, 
the following quantities are introduced in the manner described by Kwak and Hyun (1996). 
Following functions are based on variable   which can be either Nusselt number, Nu or 
dimensionless stream function, . Therefore, the relative values for periodic regimes can be defined 
as: 

0 0

f
G

 





( , )
( )

( , )
 

(8) 

0 0
max min( , ) ( , )

( )
( , )

f f
A

   





  (9) 

In the above equations,   stands for an arbitrary physical variable and   its average value. 

2.2. Numerical Method 

For numerical approximations of the considered problem a finite volume method has been used 
(Patankar, 1980). The conductive terms have been discretized with a central scheme and the 
convective one by using a third order QUICK scheme subjected to a flux limiter developed by 
Leonard (1979,1991). To resolve the velocity - pressure coupling, the SIMPLEC algorithm has been 
used (Van Doormaal & Raithby, 1984). The temporal discretization is done using a second order 
Euler scheme. The governing equations are solved on a staggered grid. All the boundary conditions 
are treated by using second order differencing to maintain the same accuracy in the whole 
computational domain. 

Extensive validation of the performance of the present code with and without phase change has 
been done elsewhere (Semma et al., 2005).  A study of grid was carried out and showed that spatial 
resolution 64×64 and time step Δt=10-4 allow an accurate description of the development of thermo 
convective phenomena within the cavity. Grid convergence tests have been carried out by increasing 
number of mesh points from 32x32 to 128x128; the computed results obtained for these meshes 
differed by less than 0.2%. The convergence of the solution was declared at each time step when the 
maximum relative change between two consecutive iteration levels fell below 10-6 for velocity u,v 
and temperature T. 

Validation of the code to predict the velocity and temperature fields in a square cavity was 
performed by comparing results against the benchmark solution for the laterally heated/cooled square 
cavity(de Vahl Davis, 1983). With the computational mesh selected, the vertical velocity v is hardly 
affected by changes in the grid size. At a relatively high at RaH = 106 the maximum value of the 
dimensionless vertical velocity Vmax=220.60 is within five percent of the benchmark results of 217.36 
(de Vahl Davis, 1983). Agreements to less than 1% of the mean Nusselt number Nu H were found for 
RaH = 106, namely 8.72 in this work and 8.799 in (de Vahl Davis, 1983). 
 

3. Results and discussion 

Without modulation, the various flow structures and the transition thresholds from steady to 
unsteady regime for the same configuration are available in the literature. It has been shown that for 
the low Ra, the solution is stationary and composed of two symmetric counter-rotating cells (called 
SS) with respect to the centerline (x=1/2) in which the fluid rises from the vertical walls of the cavity 
towards the center. The heat transfer is dominated by the diffusive regime. The first transition occurs 
from symmetrical solution (SS) to asymmetrical one (called SAS) for Ra=3500 indicating the 
development of the convective regime. The next transition to the oscillatory flow occurs around 
Ra=17500 and leads to a periodic solution (P1) with a dimensionless internal frequency fi=6.67. The 
asymmetric solution is retained with the same flow structure dominated by a one-cell flow varying 
between a quasi-circular to a deformed shape because of the competition with the secondary cells 
developing near the corners. The frequency of the oscillations increases with Ra. Increasing Ra to 
8.5104, the flow becomes P2 type characterized by the frequencies f and f/2 (f = 33.33). The quasi-
periodic regime (QP) which starts around Ra = 1.75105 exhibits complex non-periodic oscillation. 

The stationary solution corresponding to Ra=104 is fixed as basic solution and modulation applied 
to both hot and cold temperatures.  This application of a double modulation modifies the evolution of 
the flow structure that depends on the frequency, the amplitude and the phase-difference. In the first, 
we keep C constant equal to 1, the phase difference equal to  and we vary the frequency f for 
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various amplitude values of the hot temperature H. We identify the presence of a critical frequency 
for which the intensity of flow reaches minimal relative value which passes from 0.87 for H=0 to 
0.61 for H=1. This frequency is practically independent of the value of the amplitude H (Fig. 2). 

 

Fig. 2. Variation of relative value of maximal intensity G(ψmax) according to the frequency f (Ra=104) 

For high frequency values, the relative value of maximal flow intensity tends to 1. This change 
recorded in the flow intensity for low frequencies strongly influences the behavior of the heat transfer 
who falls for the critical frequency. 

For high frequencies, the value of the relative Nusselt number tends towards 0 but the value of its 
amplitude increases according to the following correlations for : 

A(Nu)=a(xf b(

 

 a=1.659, b=0.536 

 a=1.282, b=0.543 

 a=9.96, b=0.556 

 a=9.78, b=0.557 

 a=9.422, b=0.587 

 Fig. 3. Variation of relative value of Nusselt number amplitude A(Nu) according to the frequency f for different 
values of εH (Ra=104) 

The effect of the phase difference between the hot and cold temperature is investigated. This 
parameter influences the instantaneous variation between cold and hot temperature walls. 

For low frequencies, the heat transfer is very sensitive to the dephasing between the two boundary 
temperatures (Fig. 4). For high frequencies, the asymptotic behavior of heat transfer does not depend 
on the dephasing value. We notice that the critical frequency increases linearly with the difference 
phase according to the following relation:   

fC=0.4x+3.22  for≤≤  



  144

 

Fig.  4. Variation of the relative value of average and amplitude of the Nusselt number according to the frequency 
for different values of φ (Ra=104). 

4. Conclusion 

The effect of double thermal modulation on heat transfer and flow structure is studied; the 
existence of a characteristic modulation frequency allowing the reduction of the average intensity of 
the flow and heat transfer at the cold wall is noticed. The effect of the dephasing between the hot and 
cold temperature on heat transfer is analysed; correlation between critical frequency and phase 
difference is identified. The present work can be considered as a step to quantify dephasing 
modulation effects between the hot and the cold walls. For the future work, the different shape and 
geometry, and the effect of oscillatory convection can be considered. 
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