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 In the present study, the nonlinear forced vibration of symmetric laminated 
rectangular plates, including Glare fiber metal laminated rectangular plate, is 
investigated based on the first order shear deformation theory. The boundary 
condition is considered to be immovable simply support. The Galerkin method is used 
to obtain the nonlinear ordinary differential equation in terms of an unknown time 
function. The obtained equation is solved analytically by the multiple time scales 
method. The obtained results are compared with the numerical solution of the 
nonlinear ordinary differential equation of motion and a good agreement is found 
between them. 
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1. Introduction 

       The composite materials are good alternatives to metals because of their low weight, high 
strength and stiffness, and environmental resistance. Fiber metal laminates (FMLs) are hybrid 
materials comprising interleaved metal sheets and fiber-reinforced polymer layers. They were 
developed as lightweight alternatives to structural metals (Langdon et al., 2009). One of the 
advantages of FML materials when compared with conventional carbon fiber/epoxy composites is the 
low moisture absorption, due to the barrier of the outer aluminum layers (Botelho et al., 2006). The 
only commercially used FML is Glare, which comprises thin aluminum sheets and glass-fiber-
reinforced epoxy. Although the initial use of Glare in aircraft was to improve the fatigue properties of 
aircraft components, Glare has also been used because of its improved impact properties, relative to 
aluminum of the same areal density. Presently, there is a motivation in the aerospace industry to 
produce lighter aircraft, as the costs of fuel increase. Glare is currently used as a material in the upper 
fuselage and leading edges of the Airbus A380 (Langdon et al., 2009). 
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      Nowadays, Glare materials are commercialized in six different standard grades; for the Glare 1, 
Glare 2, Glare 4 and Glare 5 the composite laminae are stacked symmetrically. In the case of Glare 3 
composite, the composite lamina have a cross-ply fiber layer stacked to the nearest outer aluminum 
layer of the laminate, in relation to the rolling direction of the aluminum. For the Glare 6 composite, 
the composite layers are stacked at + 45° and – 45° (Botelho et al., 2006).  

      Rashidi et al. (2012) used homotopy perturbation method to study the nonlinear free vibration of 
rectangular isotropic plates. Zhang and Zhao (2012) investigated the nonlinear vibrations of a 
composite laminated cantilever rectangular plate subjected to thin-plane and transversal excitations. 
They used Reddy’s third-order plate theory along with Galerkin method to obtain the equations of 
motion and used the method of multiple scales to solve these equations. Asymptotic numerical 
method is used to study the nonlinear forced vibration of thin isotropic rectangular plates by 
Boumediene et al. (2009). Wei et al. (2012) studied the nonlinear free vibration of hybrid composite 
plate with an initial stress on elastic foundations. They used Mindlin plate theory to model the 
problem and after implementing the Galerkin method to reduce the governing nonlinear partial 
differential equations to ordinary nonlinear differential equations, they employed the Runge–Kutta 
method to obtain the nonlinear frequencies.  

      Ribeiro (2004) used the hybrid finite element method (HFEM) based on the first order shear 
deformation theory to study nonlinear forced vibration of isotropic beams and plates. Amabili(2004) 
investigated nonlinear forced vibration of isotropic rectangular plates numerically. Ribeiro (2005) 
studied the nonlinear forced vibration of simply supported rectangular plates and obtained the 
backbone curves and the nonlinear mode shapes for three first modes. Abe et al. (1998) studied the 
sub-harmonic resonance of moderately thick anti-symmetric angle-ply laminated rectangular plates 
by using the multiple scales method. Ribeiro (2006) studied the nonlinear forced vibration of 
laminated rectangular, taking into account the rotary inertia term and transverse shear deformation. 
Singha and Daripa (2009) used the finite element method for studying nonlinear forced vibration of 
composite rectangular plates. Amabili and Farhadi (2009) studied nonlinear forced vibration of 
simply supported rectangular plates and laminated plates by using Lagrange method. Harras et al. 
(2004) investigated the linear and nonlinear dynamic of a five-layered Glare 3 rectangular plate both 
experimentally and theoretically. Shooshtari and Razavi (2010) investigated linear and nonlinear free 
vibration of laminated and FML rectangular plates. 

       It is seen that in most of the published papers, the obtained equations are solved numerically. 
Moreover, there is not sufficient study about the nonlinear forced vibration of Glare rectangular 
plates. Thus, it is needed to find an analytical relation for the frequency response of laminated 
composite and Glare rectangular plates in order to determine the effects of various lamination and 
plate parameters on the steady-state motion in the primary and secondary resonances. 

      In the present study, the nonlinear forced vibration in the primary and secondary resonances is 
investigated. The analytical relations of the frequency response equations in the steady-state motion 
are obtained by using the multiple time scales method. The present procedure is only valid for finite 
amplitude vibrations.  The effects of layup scheme, aspect ratio, moduli ratio, length-to-thickness 
ratio, and number of layers on the frequency responses of symmetric laminated and Glare FML 
rectangular plates are studied. The nonlinear forced vibration of various grades of Glare rectangular 
plates is also investigated. 

2. Formulation of nonlinear differential equation of motion in the forced vibration case 

       Equations of motion of rectangular plates, based on the first order shear deformation theory are 
(Reddy, 2004): 

௫ܰ,௫  ௫ܰ௬,௬ ൌ ,௧௧ݑܫ   ଵ߶௫,௧௧ (1)ܫ
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௫ܰ௬,௫  ௬ܰ,௬ ൌ ,௧௧ݒܫ   ଵ߶௬,௧௧ (2)ܫ

ܳ௫,௫  ܳ௬,௬ ࣨሺݓሻ  ݍ ൌ  ,௧௧ (3)ݓܫ

௫,௫ܯ  ௫௬,௬ܯ െ ܳ௫ ൌ ଶ߶௫,௧௧ܫ   ,௧௧  (4)ݑଵܫ

௫௬,௫ܯ  ௬,௬ܯ െ ܳ௬ ൌ ଶ߶௬,௧௧ܫ   ,௧௧  (5)ݒଵܫ

where subscript ‘,’ denotes partial differentiation with respect to the following parameter (or 
parameters).ݑ, ݒ, and ݓ are the displacements of a material point on the mid-surface along ݔ െ, 
ݕ െ , and ݖ െaxes, respectively. ߶௫and߶௬ are the rotations of a transverse normal about the ݕ െ and 
ݔ െaxes, respectively. ௫ܰ, ௬ܰ, and ௫ܰ௬ are the in-plane force resultants,ܳ௫ and ܳ௬ are the transverse 
force resultants, ܯ௫, ܯ௬, and ܯ௫௬ are the moments resultants and ܫ, ܫଵ, and ܫଶ are the mass moments 
of inertia. ݍis the applied transverse force which is harmonic in time (i.e., ݍ ൌ ݍ cosሺΩݐሻ), with ݍ 
and Ωhaving constant values. ࣨሺݓሻis in the following form: 

ࣨሺݓሻ ൌ ൫ ௫ܰݓ,௫  ௫ܰ௬ݓ,௬൯,௫  ൫ ௫ܰ௬ݓ,௫  ௬ܰݓ,௬൯,௬ (6a) 

The immovable boundary condition is expressed by: 

ݓ ൌ ௫௫,ݓ ൌ ,߰௫௬ ൌ ݑ ൌ 0 					ሺݔ ൌ 0, ܽሻ 

ݓ ൌ ௬௬,ݓ ൌ ,߰௫௬ ൌ ݒ ൌ 0 					ሺݕ ൌ 0, ܾሻ 
(6b) 

where߰ is force function and defined by:  

௫ܰ ൌ ,߰௬௬,					 ௬ܰ ൌ ,߰௫௫,		 ௫ܰ௬ ൌ െ ,߰௫௬.  (7) 

      Assuming the density of plate material (ߩ) as an even function of thickness ሺݖሻ	and neglecting 
in-plane inertia effects (ݑ,௧௧	and ݒ,௧௧), Eq. (1) to Eq. (5) reduce to the following equations, which are 
written in terms of the displacements and the force function: 

௬௬,ݓସସ൫ܣൣܭ  ߮௬,௬൯  ௫௫,ݓହହ൫ܣ  ߮௫,௫൯൧  ,߰௬௬ݓ,௫௫  ,߰௫௫ݓ,௬௬ െ 2 ,߰௫௬ݓ,௫௬  ݍ cosΩݐ ൌ ሷݓܫ , (8) 

ଵଵ߮௫,௫௫ܦ  ଵଶ߮௬,௫௬ܦ  ൫߮௫,௬௬ܦ  ߮௬,௫௬൯ െ ௫,ݓହହ൫ܣܭ  ߮௫൯ ൌ ଶܫ ሷ߮௫, (9) 

ଵଶ߮௫,௫௬ܦ  ଶଶ߮௬,௬௬ܦ  ൫߮௫,௫௬ܦ  ߮௬,௫௫൯ െ ௬,ݓସସ൫ܣܭ  ߮௬൯ ൌ ଶܫ ሷ߮௬. (10) 

     Along with a compatibility equation in the following form (Chia, 1980): 

ଶଶܣ
∗

,߰௫௫௫௫  ሺ2ܣଵଶ
∗  ܣ

∗ ሻ ,߰௫௫௬௬  ଵଵܣ
∗

,߰௬௬௬௬ ൌ ௫௬ଶ,ݓ െ  ௬௬, (11),ݓ௫௫,ݓ

where	ܭ is the shear correction factor,ܣis the component of extensional stiffness matrix, andܦis 
the component of bending stiffness matrix. The constant coefficients of Eq. (11) are obtained by: 

ଵଵܣ 
∗ ൌ ଶଶܣଵଵܣଶଶሺܣ െ ଵଶܣ

ଶ ሻିଵ, ଵଶܣ
∗ ൌ െܣଵଶሺܣଵଵܣଶଶ െ ଵଶܣ

ଶ ሻିଵ, ଶଶܣ
∗ ൌ ଶଶܣଵଵܣଵଵሺܣ െ ଵଶܣ

ଶ ሻିଵ, ܣ
∗ ൌ

ሺܣሻିଵ(Chia, 1980). 

Eq. (9) and Eq. (10) lead to a set of equations with two unknown parameters which are߮௫ and ߮௬. 
This set of equations gives ߮௫and ߮௬ in the following form: 
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߶௫ ൌ ൦
ହହܣܭ

డ
డ௫ ቀܦ

డమ

డ௫మ
 ଶଶܦ

డమ

డ௬మ
െ ଶܫ

డమ

డ௧మ
െ ସସቁܣܭ െ ସସܣܭ

డ
డ௬ ൬ሺܦଵଶ  ሻܦ

డమ

డ௫డ௬൰

ቀܦଵଵ
డమ

డ௫మ
 ܦ

డమ

డ௬మ
െ ଶܫ

డమ

డ௧మ
െ ହହቁܣܭ ቀܦ

డమ

డ௫మ
 ଶଶܦ

డమ

డ௬మ
െ ଶܫ

డమ

డ௧మ
െ ସସቁܣܭ െ ହହܣସସܣଶܭ

డమ
డ௫డ௬

൪ݓ (12a) 

߶௬ ൌ ൦
ସସܣܭ

డ
డ௬ ቀܦଵଵ

డమ

డ௫మ
 ܦ

డమ

డ௬మ
െ ଶܫ

డమ

డ௧మ
െ ହହቁܣܭ െ ହହܣܭ

డ
డ௫ ൬ሺܦଵଶ  ሻܦ

డమ

డ௫డ௬൰

ቀܦଵଵ
డమ

డ௫మ
 ܦ

డమ

డ௬మ
െ ଶܫ

డమ

డ௧మ
െ ହହቁܣܭ ቀܦ

డమ

డ௫మ
 ଶଶܦ

డమ

డ௬మ
െ ଶܫ

డమ

డ௧మ
െ ସସቁܣܭ െ ହହܣସସܣଶܭ

డమ
డ௫డ௬

൪ݓ (12b) 

Substituting the obtained	߮௫ and ߮௬ into Eq. (8) gives the following nonlinear partial differential 
equation in terms of ݓ	and ߰:  

ቄܭ ቂܣହହ
డ
డ௫
ሺܮଶ

∗ ܮ
∗ െ ଷܮ

∗ ହܮ
∗ ሻ  ସସܣ

డ
డ௬
ሺܮଷ

∗ ସܮ
∗ െ ଵܮ

∗ ܮ
∗ ሻ  ቀܣହହ

డమ

డ௫మ
 ସସܣ

డమ

డ௬మ
ቁ ሺܮଶ

∗ ସܮ
∗ െ ଵܮ

∗ ହܮ
∗ ሻቃ

 ቀడ
మట
డ௬మ

∙
డమ

డ௫మ
 డమట

డ௫మ
∙
డమ

డ௬మ
െ 2 డమట

డ௫డ௬
∙
డమ

డ௫డ௬
െ ܫ

డమ

డ௧మ
ቁ ሺܮଶ

∗ ସܮ
∗ െ ଵܮ

∗ ହܮ
∗ ሻቅݓ

 ሺܮଶ
∗ ସܮ

∗ െ ଵܮ
∗ ହܮ

∗ ሻݍ cosΩݐ ൌ 0 

(13) 

where	ܮ
∗ሺ݅ ൌ 1, … ,6ሻ are the partial differential operators and are given in Appendix A.	ݓ	and	߰ for 

the immovable simply-supported boundary condition can be written in the form of (Chia, 1980): 

ݓ ൌ ݄݂ሺݐሻ sin ቀగ௫

ቁ sin ቀగ௬


ቁ,  (14) 

߰ ൌ ݇ଵݔଶ  ݇ଶݕଶ 
మమሺሻ

యమ
ቄሺೌ ್⁄ ሻమ

ಲమమ
∗ cos൫మഏೣ

ೌ
൯  ሺ್ ೌ⁄ ሻమ

ಲభభ
∗ cos൫మഏ

್
൯ቅ, 

݇ଵ ൌ െమమሺ௧ሻ

ଵ
ቂ൫ഏ

ೌ
൯
ଶ
ଵଶܣ
∗ െ ൫ഏ

್
൯
ଶ
ଵଵܣ
∗ ቃ ൫ܣଵଵ

∗ ଶଶܣ
∗ െ ଵଶܣ

∗ ଶ൯
ିଵ

, 

݇ଶ ൌ
మమሺሻ

భల
ቂ൫ഏ

ೌ
൯
ଶ
ଶଶܣ
∗ െ ൫ഏ

್
൯
ଶ
ଵଶܣ
∗ ቃ ൫ܣଵଵ

∗ ଶଶܣ
∗ െ ଵଶܣ

∗ ଶ൯
ିଵ

, 

(15) 

where ܽ, ܾ, and ݄ are the length, width, and thickness of the plate, respectively and ݂ሺݐሻ is an 
unknown time function. 
 

The Galerkin method is applied by using∬ ܮ ∙ ݕ݀ݔ݀ݓ ൌ 0 , in which ܣ is the area of the rectangular 
plate and ܮ is the left hand of Eq. (13). This transforms the nonlinear partial differential equation of 
Eq. (13) to the following nonlinear ordinary differential equation in terms of the unknown time 
function: 

ܼଵ݂ሷ  ܼଶ݂  ܼଷ݂ଷ  ܼସ ሷ݂݂ଶ  ܼହ ሶ݂ଶ݂ ൌ ොݍ cosሺΩݐሻ.  (16) 

where ݍො ൌ ሾܫଶΩଶܭሺܣସସ  ହହሻܣ െ ܼሺ݅	, andݍହହሿܣସସܣଶܭ ൌ 1,… ,5ሻ are constant coefficients which 
are functions of plate parameters (i.e., length, width, thickness, and density) and stiffness 
components. These coefficients are obtained in terms of plate parameters and stiffness components, 
and are given in Appendix B, in which it is seen that ܼହ ൌ 2ܼସ. 

According to Appendix B, the units of ܼଵ, ܼସ, and ܼହ are kg3mms-4, while the units of ܼଶ and ܼଷ are 
kg3mms-6. Since the coefficients of ݂ሷ, ݂ሷ݂ଶ, and ݂ሶଶ݂ are from the same dimension,all of them are 
inertia terms. On the other hand, ݂ሷ݂ଶ and ݂ሶଶ݂ are nonlinear terms. Therefore, ݂ሷ݂ଶ and ݂ሶଶ݂ are called 
nonlinear inertia terms. 

Adding on the viscous damping effect (Abe et al. 1998) and assuming the dimensionless time to be in 
the form of ߬ ൌ భ

ೌమ
√Λݐ,the dimensionless form of Eq. (16) is: 
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,݂ఛఛ  ߱ߦ2 ,݂ఛ  ߱ଶ݂  ଵߙ
ଶ݂ଷ  ଵߚ

ଶ
,݂ఛఛ݂ଶ  ଵߛ

ଶ
,݂ఛ
ଶ݂ ൌ ܳ cosሺΩΛഥ߬ሻ,  (17) 

where	ߦ is the damping ratio,	߱ is the dimensionless natural frequency, ߙଵ
ଶ is the coefficient of 

nonlinear stiffness term because it only contains stiffness components, and ߚଵ
ଶ and ߛଵ

ଶ are the 
coefficients of nonlinear inertia terms because they contain density term in addition to stiffness 
components. It is simply noticed from Eq. (16) and Eq. (17) that, ߚଵ

ଶ ൌ ܼସ ܼଵ⁄ , and ߛଵ
ଶ ൌ

ܼହ ܼଵ⁄ .Considering ܼହ ൌ 2ܼସ, it is obtained that ߛଵ
ଶ ൌ ଵߚ2

ଶ which is utilized throughout the paper. 

For cross-ply laminated rectangular plates,Λ ൌ ሺܧଶ݄ଶ ⁄ߩ ሻ, and for the FML plates,Λ ൌ ଵଵܦ
∗ ⁄ܫ  are 

defined (Shooshtari & Razavi, 2010).The other unknown parameters of Eq. (17) are defined by 
following equation: 
 
ܳ ൌ ሾܽସݍොሿ ሺܼଵΛሻ⁄ ,   Λഥ ൌ ܽଶ √Λ⁄ .  (18) 

The present method is only valid for finite amplitude vibrations, since in large amplitude vibrations 
even combination or internal resonances can occur at excitation frequencies other than Ω ൌ ߱ଵଵ. 

3. Primary resonance 

3.1 Solution of the primary resonance by using the method of multiple scales  

In the primary resonance, excitation force and nonlinear terms are of the same order (Nayfeh &Mook, 
1995). So if the small, positive and dimensionless parameter ߝ is taken to be ሺ݄ ܽ⁄ ሻଶ(Shooshtari & 
Razavi, 2010), Eq. (17) is rewritten in the following form: 
 

,݂ఛఛ  ߱ଶ݂  ߤ൫2ߝ ,݂ఛ  ଶ݂ଷߙ  ଶߚ ,݂ఛఛ݂ଶ  ଶߛ ,݂ఛ
ଶ݂ െ ܳ cosሺΩΛഥ߬ሻ൯ ൌ 0,  (19) 

where ߙଶ ൌ ଵߙ
ଶ ൈ ሺܽ ݄⁄ ሻଶ,   ߚଶ ൌ ଵߚ

ଶ ൈ ሺܽ ݄⁄ ሻଶ,   ߛଶ ൌ ଵߛ
ଶ ൈ ሺܽ ݄⁄ ሻଶ, ܳ ൌ ܳ ⁄ߝ , and ߤ ൌ ߱ߦ ⁄ߝ . 

In the primary resonance, a detuning parameterߪ, which is used to show the nearness of natural 
frequency to excitation frequency, is defined as (Nayfeh & Mook, 1995): 
 
Ω ൌ ߱   (20)  ߪߝ

where	߱ is the circular natural frequency in rads-1. 

Substituting Eq. (20) into Eq. (19) results in 

,݂ఛఛ  ߱ଶ݂  ߤ൫2ߝ ,݂ఛ  ଶ݂ଷߙ  ଶߚ ,݂ఛఛ݂ଶ  ଶߛ ,݂ఛ
ଶ݂ െ ܳ cosሺ߱ ܶ  Λഥߪ ଵܶሻ൯ ൌ 0,  (21) 

where	 ܶ and ଵܶ are independent time variables and are defined by Nayfeh and Mook (1995): 

ܶ ൌ ݊						ݎ݂					߬ߝ ൌ 0,1, …  (22) 

݂can be writtenin the following form: 

݂ሺ߬; ሻߝ ൌ ݂ሺ ܶ, ଵܶሻ  ߝ ଵ݂ሺ ܶ, ଵܶሻ  ⋯  (23) 

     The derivatives with respect to ߬ can be written in terms of partial derivatives of ܶ according to: 

ௗ

ௗఛ
ൌ ܦ   ,ଵܦߝ

ௗమ

ௗఛమ
ൌ ܦ

ଶ   ,ଵܦܦߝ2
 (24) 
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where	ܦ and ܦଵ denote ߲ ߲ ܶ⁄  and ߲ ߲ ଵܶ⁄ , respectively. 

Substituting Eq. (23) and Eq. (24) into Eq. (21) and equating the coefficients of ߝ and ߝଵ to zero, 
gives: 

ܦ
ଶ
݂  ߱ଶ

݂ ൌ 0, (25) 

ܦ
ଶ
ଵ݂  ߱ଶ

ଵ݂ ൌ െ2ܦܦଵ ݂ െ ܦߤ2 ݂ െ ଶߙ ݂
ଷ െ ଶߚ ݂

ଶሺܦ
ଶ
݂ሻ െ ଶߛ ݂ሺܦ ݂ሻଶ  ܳ cosሾ߱ ܶ  Λഥߪ ଵܶሿ. (26) 

General solution of Eq. (25) is: 

݂ ൌ ଶሺܣ ଵܶሻexpሺ݅߱ ܶሻ  ܿܿ,  (27) 

where	ܣଶ is an unknown complex function of ଵܶ and cc denotes the complex conjugate of the 
preceding terms. 

Substituting Eq. (27) into Eq. (26) and by using the complex form of ܳ cosሾ߱ ܶ  Λഥߪ ଵܶሿ, Eq. (26) 
becomes: 

ܦ
ଶ
ଵ݂  ߱ଶ

ଵ݂ ൌ ቂെ2݅߱ܣଶ
ᇱ െ ଶܣ3

ଶ̅ܣଶߙଶ െ ଶܣߤ2݅߱  ߱ଶܣଶ
ଶ̅ܣଶߚଶ

 ଵ
ଶ
ܳexpሺ݅Λഥߪ ଵܶሻቃ expሺ݅߱ ܶሻ  ሺ3߱ଶߚଶ െ ଶܣଶሻߙ

ଷexpሺ3݅߱ ܶሻ  ܿܿ, 
(28a) 

where superscript (′) denotes ߲ ߲ ଵܶ⁄ . Coefficients of expሺ݅߱ ܶሻ, which are called secular terms, lead 
to non-periodic solution. In order to have a periodic solution, the secular terms must be equated to 
zero: 

ൣെ2݅߱ܣଶ
ᇱ െ ଶܣ3

ଶ̅ܣଶߙଶ െ ଶܣߤ2݅߱  ߱ଶܣଶ
ଶ̅ܣଶߚଶ 

భ
మ
ܳexpሺ݅Λഥߪ ଵܶሻ൧ ൌ 0.  (28b) 

Eq. (28b) is called the solvability condition. 

If ܣଶ is defined in the polar form of (i.e.,ܣଶ ൌ
భ
మ
 ሻ and is substituted in the solvabilityݏexpሺ݅ݎ

condition, first approximation of ݂ can be written in the following form: 

݂ ൌ ݎ cosሺ߱߬  ሻݏ  Οሺߝሻ,  (29) 

where the amplitude ሺݎሻ and phase ሺݏሻ are obtained by: 

ᇱݎ ൌ െݎߤ  ொ

ଶఠ
sinሺΛഥߪ ଵܶ െ  ሻ,  (30a)ݏ

ᇱݏݎ ൌ ଵ

଼
ቀଷ
ఠ
ଶߙ െ ଶቁߚ߱ ଷݎ െ ொ

ଶఠ
cosሺΛഥߪ ଵܶ െ  ሻ.  (30b)ݏ

For an autonomous system, by defining	ߟ ൌ Λഥߪ ଵܶ െ  :Eq. (30a) and Eq. (30b) are transformed to ,ݏ

ᇱݎ ൌ െݎߤ  ொ

ଶఠ
sin  (31a)  ,ߟ

ᇱߟݎ ൌ Λഥߪݎ െ ଵ

଼
ቀଷ
ఠ
ଶߙ െ ଶቁߚ߱ ଷݎ  ொ

ଶఠ
cos  (31b)  .ߟ
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3.2 Steady-state motion 

Steady-state motion occurs when ݎᇱ ൌ ᇱߟ ൌ 0, which corresponds to the singular points of Eq. (31a) 
and Eq. (31b) (Nayfeh & Mook, 1995). Thus: 

ݎߤ ൌ ொ

ଶఠ
sin  (32a)  ,ߟ

െߪݎΛഥ 
1
8
൬
3
߱
ଶߙ െ ଶ൰ߚ߱ ଷݎ ൌ

ܳ

2߱
cos  .ߟ

 (32b) 

Squaring and adding Eq. (32a) and Eq. (32b) gives the frequency response equation: 

ߤଶ  ቀଵ
଼ ଵܲݎଶ െ Λഥቁߪ

ଶ
൨ ଶݎ ൌ ொమ

ସఠమ, 
(33) 

where ଵܲ ൌ
ଷఈమିఉమఠమ

ఠ
. 

4. Secondary resonance 

In the secondary resonance, the amplitude of excitation is hard (Nayfeh and Mook, 1995). So Eq. (17) 
is transformed to: 

,݂ఛఛ  ߱ଶ݂  ߤ൫2ߝ ,݂ఛ  ଶ݂ଷߙ  ଶߚ ,݂ఛఛ݂ଶ  ଶߛ ,݂ఛ
ଶ݂൯ ൌ ܳ cosሺΩΛഥ߬ሻ  (34) 

     Substituting Eq. (23) into Eq. (34) and equating the coefficients of ߝ and ߝଵ on both sides, it is 
obtained that: 

ܦ
ଶ
݂  ߱ଶ

݂ ൌ ܳ cosሺΩΛഥ߬ሻ,  (35) 

ܦ
ଶ
ଵ݂  ߱ଶ

ଵ݂ ൌ െ2ܦܦଵ ݂ െ ܦߤ2 ݂ െ ଶߙ ݂
ଷ െ ଶߚ ݂

ଶሺܦ
ଶ
݂ሻ െ ଶߛ ݂ሺܦ ݂ሻଶ.  (36) 

     Complete solution of Eq. (35) is: 

݂ ൌ ଶሺܣ ଵܶሻexpሺ݅߱ ܶሻ  ෨ܳexpሺ݅ΩΛഥ ܶሻ  ܿܿ (37) 

where ෨ܳ ൌ భ
మ
ܳሾ߱ଶ െ ሺΩΛഥሻଶሿିଵ. 

     Substituting Eq. (37) into Eq. (36), results in two cases of secondary resonance depending on the 
definition of detuning parameter. That is, the secondary resonance may be either super-harmonic or 
sub-harmonic depending on the definition of the detuning parameter. 

4.1. Super-harmonic resonance 

      In the super-harmonic resonance, the detuning parameter is defined by3Ω ൌ ߱   So the .ߪߝ
solvability condition of Eq. (36) becomes: 

ଶܣଶ߱ଶ൫ߚ
ଶ̅ܣଶ  2 ෨ܳଶܣଶ൯ െ ൫3ߙଶܣଶ

ଶ̅ܣଶ  ଶܣଶߙ6 ෨ܳଶ  ଶܣ2݅߱
ᇱ  ଶ൯ܣߤ2݅߱ 

ሾ3ߚଶሺΩΛഥሻଶ െ ଶሿߙ ෨ܳଷexpሺ݅Λഥߪ ଵܶሻ ൌ 0. 

 (38) 

     Substituting ܣଶ ൌ
భ
మ
 :ሻ into Eq. (38) givesݏexpሺ݅ݎ

ᇱݎ ൌ െݎߤ 
ଶሺΩΛഥሻଶߚ3 െ ଶߙ

߱
෨ܳଷ sinሺΛഥߪ ଵܶ െ  ሻ,  (39)ݏ
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ᇱݏݎ ൌ ଷఈమିఉమఠమ

ఠ
൫ ෨ܳଶ  భ

ఴ
ݎଶ൯ݎ െ ଷఉమሺஐஃഥሻమିఈమ

ఠ
෨ܳଷ cosሺΛഥߪ ଵܶ െ  .ሻݏ

 (40) 

     Defining a new parameter as ߟ ൌ Λഥߪ ଵܶ െ  :results in ݏ

ᇱݎ ൌ െݎߤ  ଷఉమሺஐஃഥሻమିఈమ

ఠ
෨ܳଷ sin  (41a)  ,ߟ

ᇱߟݎ ൌ Λഥߪݎ െ ଷఈమିఉమఠమ

ఠ
൫ ෨ܳଶ  భ

ఴ
ݎଶ൯ݎ  ଷఉమሺஐஃഥሻమିఈమ

ఠ
෨ܳଷ cos  (41b)  .ߟ

     In the steady-state motion Eq. (41a) and Eq. (41b) are changed to: 

ݎߤ ൌ
ଶሺΩΛഥሻଶߚ3 െ ଶߙ

߱
෨ܳଷ sin  ߟ

(42a) 

െߪݎΛഥ 
ଶߙ3 െ ଶ߱ଶߚ

߱
ቀ ෨ܳଶ  ଵ

଼
ଶቁݎ ݎ ൌ

ଶሺΩΛഥሻଶߚ3 െ ଶߙ

߱
෨ܳଷ cos  ߟ

(42b) 

from which the frequency response equation is obtained: 

ߤଶ  ቂ ଵܲ ෨ܳଶ 
ଵ
଼ ଵܲݎଶ െ Λഥቃߪ

ଶ
൨ ଶݎ ൌ ଶܲ ෨ܳ  (43) 

where ଶܲ ൌ ቂଷఉ
మሺஐஃഥሻమିఈమ

ఠ
ቃ
ଶ
. 

4.2. Sub-harmonic resonance 

      In the sub-harmonic resonance, the detuning parameter is defined by Ω ൌ 3߱   which gives ,ߪߝ
the following solvability condition: 

ଶܣଶ߱ଶ൫ߚ
ଶ̅ܣଶ  2 ෨ܳଶܣଶ൯ െ ൫3ߙଶܣଶ

ଶ̅ܣଶ  ଶܣଶߙ6 ෨ܳଶ  ଶܣ2݅߱
ᇱ  ଶ൯ܣߤ2݅߱ െ ሾ3ߙଶ 

ଶሺ4߱ΩΛഥߚ െ 4߱ଶ െ ሺΩΛഥሻଶሻሿ ෨ܳ̅ܣଶ
ଶexpሺ݅Λഥߪ ଵܶሻ ൌ 0. 

 (44) 

      By a similar procedure which is introduced in the primary and the super-harmonic resonances, the 
following equations for free vibration amplitudeሺݎሻ and phaseሺߟሻ of an autonomous system are 
obtained: 

ᇱݎ ൌ െݎߤ  యொ෨

ସఠ
ଶsinݎ  ,ߟ

 (45a) 

ᇱߟݎ ൌ Λഥߪݎ െ 3 ଵܲ ቀ ෨ܳଶ 
ଵ

଼
ଶቁݎ ݎ  ଷయொ෨

ସఠ
ଶcosݎ  ,ߟ

 (45b) 

where ଷܲ ൌ െ3ߙଶ െ ଶሾ4߱ΩΛഥߚ െ 4߱ଶ െ ሺΩΛഥሻଶሿ. 

 

Eq. (45a) and (45b) give the frequency response equation: 

ଶߤ9  ߪΛഥ െ 3 ଵܲ ෨ܳଶ െ
3
8 ଵܲݎଶ൨

ଶ

ൌ ቆ
3 ଷܲ ෨ܳ

4߱
ቇ
ଶ

 ଶݎ
 (46) 
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5. Numerical study 

     The determination of the shear correction coefficient ܭ for laminated structures is still an 
unresolved issue (Reddy, 2004). For moderately thick ሺܽ ݄⁄  10ሻ laminated plates ܭ	 ൌ 	5/6 gives 
fairly accurate results (Ribeiro, 2009). So, due to the thinness of the analyzed plates in this paper, 
	ܭ ൌ 	5/6 is used in the frequency response equations. 

     In this study,	Ω is approximated to	߱, భ
య
߱, and 3߱ in primary, super-harmonic, and sub-

harmonic resonances, respectively. This is approved by Fig. 1 for a five-layered Glare 3 square plate 
in the primary and secondary resonances, where the dimensionless excitation amplitude ( ݂ ൌ

బೌ
ಶమ

) is 

taken to be 56. It is noticed that, because the curves are too similar, the pictures do not succeed in 
showing the difference. So the proposed approximation of Ωare acceptable. 

Fig. 1. Comparison of exact and approximate frequency response curves of a five-layered square 
Glare 3 plate in the: (a) primary resonance, (b) super-harmonic resonance, and (c) sub-harmonic 
resonance; ——— exact frequency response curve, -------- approximate frequency response curve 
 

    The total thickness and length of plates are taken to be 1 mm and 100 mm, respectively. The 
thicknesses of aluminum sheets and each fiber-reinforced layer of studied FML rectangular plates are 
given in Table 1. Table 2 gives the material properties of studied plates. 
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Table 1. Glare grades studied in this paper (Botelho et al., 2006) 

Glare grade 
Al sheet 
thickness (mm) 

Each fiber layer 
thickness (mm) 

Prepared orientation in 
each fiber layer 

Main characteristic 

Glare 2B 0.3 (2024-T3) 0.1 90°/90° fatigue, strength 

Glare 3 0.3 (2024-T3) 0.1 0°/90° fatigue, impact 

Glare 4B 0.7/3 (2024-T3) 0.1 90°/0°/90° fatigue, strength in 0o direction 

Glare 5 0.2 (2024-T3) 0.1 0°/90°/90°/0° shear, off-axis properties 

Table 2. Material properties of the aluminum alloy (Botelho et al., 2006) and GFRC (Lu & Li, 2009) 
Materials E (GPa) G (GPa) ߩ (kgm-3) ߥ 
Aluminum alloy 2024-T3 72.4 28 2700 0.33 

GFRC 
ଵܧ ൌ 55.8979 
ଶܧ ൌ 13.7293 

ଵଶܩ ൌ 5.5898 
ଵଷܩ ൌ 5.5898 
ଶଷܩ ൌ 4.9033

2550 0.277 

 

5.1 Primary resonance 
 
     To verify the accuracy of the proposed method, the frequency response curve of an isotropic 
square plate in the primary resonance is obtained and compared with the published results (Fig. 2). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Frequency response curve of an isotropic square plate by using several methods 
 
     It is seen that there is an acceptable agreement between the results of the present approach and the 
published ones.  The variations of dimensionless amplitude of motion with respect to excitation 
frequency (i.e., the frequency response curve) of a laminated square GFRC plate with different 
number of layers and layup is studied and the results are shown in Fig. 3, where it is seen that there is 
a very small different between these curves. Eq. (47), which is obtained by using Eq. (33), verifies 
this claim. 
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ߪ ൌ ଶݎ359266.829 േ 13812.172ሾሺݍ ⁄ݎ ሻଶ െ 67.378ሿଵ ଶ⁄ for ሾ0°/90°/0°ሿ 

ߪ ൌ ଶݎ359289.571 േ 13811.493ሾሺݍ ⁄ݎ ሻଶ െ 67.390ሿଵ ଶ⁄ 		for						ሾ0°/90°/0°/90°/0°ሿ 

ߪ ൌ ଶݎ359291.189 േ 13811.387ሾሺݍ ⁄ݎ ሻଶ െ 67.391ሿଵ ଶ⁄ for ሾ0°/90°/90°/90°/0°ሿ 

 (47) 

 
     It is also seen that the responses of ሾ0°/90°/0°ሿ and ሾ0°/90°/0°/90°/0°ሿare the same as those of 
ሾ90°/0°/90°ሿ and ሾ90°/0°/90°/0°/90°ሿ layups, respectively. 
 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Frequency response curve of a laminated GFRC square plate for different lamination schemes 
with dimensionless excitation amplitude being 72.8 and ߦ ൌ 0.2 

     The effects of excitation amplitude and aspect ratio on the frequency response curve of a 
rectangular plate are studied and the results are shown for a five-layered rectangular Glare 3 plate in 
Figs. 4(a) and 4(b), respectively. Although for higher excitation amplitudes, the maximum amplitude 
of motion ሺݎሻ increases, there is not any change in the degree of hardening nonlinearity. It is also 
seen that higher aspect ratios result in smaller amplitudes of motion. The frequency responses of five-
layered Glare 3, GFRC, Glare 2B, and Glare 4Bsquare plates are studied and the resulted curves are 
shown in Figs. 4(c) and 4(d). It is observed that for GFRC plate, amplitude of motion is bigger than 
that of the Glare 3 plate and the degree of hardening nonlinearity is a little higher for the GFRC plate. 
This arises from the fact that the used aluminum sheets in Glare plates have higher elasticity module 
compared with GFRC layers, which simply results in lower transverse deflection in Glare plates. Fig. 
4(d) shows that the frequency responses of Glare 3 and Glare 2B plates are almost the same, where 
the amplitude of motion for the Glare 4B plate increases with higher rate compared with those of the 
Glare 2B and Glare 3 plates. The layups of studied Glare 2B, Glare 3, and Glare 4B plates are in the 
following form, respectively (Botelho et al., 2006): 

Al (2024-T3) / [90°/90°] GFRC / Al (2024-T3) / [90°/90°] GFRC / Al (2024-T3), 
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 Al(2024-T3) / [0°/90°] GFRC / Al (2024-T3) / [90°/0°] GFRC / Al (2024-T3), 
 
Al (2024-T3) / [90°/0°/90°] GFRC / Al (2024-T3) / [90°/0°/90°] GFRC / Al (2024-T3). 

     This is obvious from the layups of Glare plates, that the responses of Glare 2B and Glare 3 are 
nearly the same, but because the ratio of the GFRC layers is less in Glare 4B, the amplitude of motion 
is increased comparing with those of the Glare 2B and Glare 3 plates. The effects of length-to-
thickness ratio (ܽ ݄⁄ ) and moduli ratio (ܧଵ ⁄ଶܧ ) on the frequency response are investigated and the 
results are shown in Figs. 5(a) and 5(b), respectively. Fig. 5(a) shows that the backbone curves(which 
represent the relation between the free-vibration amplitude and the natural frequency) of different 
length-to-thickness ratios are the same, which means that there is not any change in the degree of 
hardening nonlinearity for different length-to-thickness ratios. Moreover, it is seen that when the 
length-to-thickness ratio increases, the frequency response curves bends away from theߪ ߱⁄ ൌ 0 
axis.It is seen from Fig. 5(b) that the higher is moduli ratio, the greater are the coefficients of 
nonlinear terms in the equation of motion  (i.e., Eq. (17)), and subsequently frequency response 
curves bends away more from the ߪ ߱⁄ ൌ 0. In Figs. 5(c) and 5(d) the frequency responses of five-
layered Glare 3 and Glare 5 square plates are compared for h = 1.4 mm, while the thickness of all 
GFRC layers are 0.1 mm. The layup of Glare 5 plate is in the following form (Botelho et al., 2006): 

Al (2024-T3) / [0°/90°/90°/0°] GFRC / Al (2024-T3) / [0°/90°/90°/0°] GFRC / Al (2024-T3). 
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Fig. 4. Frequency response curve of: (a) a five-layered square Glare 3 for two excitation 
amplitudes, (b) a five-layered Glare 3 panel for two aspect ratios ( ݂ ൌ 56), (c) two types of 
five-layered square plates ( ݂ ൌ 56), and (d) three grades of five-layered square Glare plates 
( ݂ ൌ 56), for ߦ ൌ 0.05 
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     Fig. 6 shows the effects of several parameters on the variation of the amplitude of response in 
terms of the excitation amplitude, which is called amplitudes curve hereafter for brevity. The jump 
phenomenon only occurs at excitation frequencies, which are greater than natural frequencies of 
plates. For example, for a five-layered Glare 3 square plate, ߪ ߱⁄  0causes jump in the amplitudes 
curvewhich is shown in Fig. 6(a). The amplitudes curves of five-layered Glare 3 and GFRC square 
plates are compared with each other and shown in Fig. 6(b). As it is predictable, it is noticed that by 
increasing the excitation amplitude, the response amplitude of the GFRC plate increases with higher 
rate. It is seen from Fig. 6(c) that for higher aspect ratios, by increasing the excitation amplitude, the 
response amplitude increases with lower rate. 
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Fig. 5. Frequency response curve of a three-layered GFRC for: (a) two a/h ratios, ( ݂ ൌ 72.8), 
and (b) two E1/E2 ratios, ( ݂ ൌ 72.8). (c) Frequency response curve for five-layered square Glare 
3 and Glare 5 plates ( ݂ ൌ 52 and BEC stands for backbone curve), and (d) amplitude of the 
response as a function of amplitude of the excitation for five-layered square Glare 3 and Glare 5 
plates, (ߪ ߱⁄ ൌ 500), and for all cases ߦ ൌ 0.05 
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    Fig. 6 shows the effects of several parameters on the variation of the amplitude of response in 
terms of the excitation amplitude, which is called amplitudes curve hereafter for brevity. The jump 
phenomenon only occurs at excitation frequencies, which are greater than natural frequencies of 
plates. For example, for a five-layered Glare 3 square plate, ߪ ߱⁄  0causes jump in the amplitudes 
curvewhich is shown in Fig. 6(a). The amplitudes curves of five-layered Glare 3 and GFRC square 
plates are compared with each other and shown in Fig. 6(b). As it is predictable, it is noticed that by 
increasing the excitation amplitude, the response amplitude of the GFRC plate increases with higher 
rate. It is seen from Fig. 6(c) that for higher aspect ratios, by increasing the excitation amplitude, the 
response amplitude increases with lower rate. Fig. 6(d) shows that for un-damped rectangular plates, 
one of the bifurcation points is located on the r-axis indicating that the response amplitude never 
decays during vibration. The effects of moduli ratio on the amplitudes curve is similar to the effect of 
aspect ratio on this curve which can be noticed by comparing the curves of Figs. 6(c) and 6(e).Fig. 
6(f) shows that for rectangular plates with higher length-to-thickness ratios (ܽ ݄⁄ ), the response 
amplitude is larger for specific excitation amplitude. Equation of motion in time domain (i.e., Eq. 
(17)) is solved numerically for a five-layered Glare 3 square plate by using the Rung-Kutta method.            
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Fig. 6. Variation of the amplitude of response with respect to the excitation amplitude 
(amplitudes curve) of: (a) a square Glare 3 plate for different excitation frequencies (ߦ ൌ
0.05), (b) two different square plates (ߦ ൌ 0.05), (c) a square Glare 3 plate for two aspect 
ratios (ߦ ൌ 0.05), (d) a square Glare 3 for three different damping ratios, (e) two three-
layered GFRC plates with different moduli ratios (ߦ ൌ 0.05), and (f) two three-layered 
GFRC plates with different aspect ratios (ߦ ൌ 0.05)  
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The numerical solution is compared with the analytical solution (i.e., Eq. (33)) and shown in Fig. 7. It 
is observed that there is a good agreement between the numerical and analytical solutions of 
nonlinear ordinary equation of motion. 

5.2 Super-harmonic resonance 

     The effects of various parameters on the frequency responses of laminated rectangular plates are 
investigated and the results are shown in Fig. 8. The number of layers has negligible effect on the 
frequency response of laminated rectangular plates. This is shown in Fig. 8(a). Fig.8(b) shows that 
Glare 2B and Glare 3 plates have almost the same frequency response curves, but unlike the primary 

resonance, in the super-harmonic resonance the Glare 4B plate has smaller peak amplitude than the 
peak amplitudes of Glare 2B and Glare 3 plates. It is seen from Fig. 8(c) that for higher excitation 
amplitudes, the frequency response curves bend away more from the vertical axis and unstable region 
occurs at larger detuning parameters. The effects of the aspect ratio on the frequency response curve 
are shown in Fig. 8(d). It is noticed that by increasing the aspect ratio, the degree of hardening 
nonlinearity and the peak amplitude decrease. Fig. 8(e) shows the effect of moduli ratio on the 
frequency response of a five-layered GFRC square plate. It is observed that for higher moduli ratios, 
the peak amplitude decreases. The comparison between numerical and analytical solutions is also 
done and shown in Fig. 8(f) in which it is seen that there is a good agreement between them. 
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     It is seen from Fig. 9 that after the jump, the amplitude of the response decreases firstly. Then it 
increases as the amplitude of the excitation increases. This can also be seen by comparing Eq. (33) 
with Eq. (43); in Eq. (43) there is an extra term multiplying the amplitudeሺݎሻ, ଵܲ ෨ܳଶ.As ݂ is increased 
for specificߪ ߱⁄ , the effect is to decrease the apparent detuning. Thus when ݂ increases, there are 
two influences competing simultaneously: one tends to increase the amplitude of the response while 

0 10000 20000
0

0.5

1

/
L

r

 

 

1-layered
5-layered

0 50 100
0

0.05

0.1

/
L

r

 

 

Glare 2B
Glare 3
Glare 4B

0 100 200
0

0.05

0.1

0.15

0.2

/
L

r

 

 

f
i
 = 56

f
i
 = 72.8

0 50 100
0

0.05

0.1

/
L

r

 

 

a/b = 1
a/b = 1.2

0 10000 20000
0

0.2

0.4

0.6

0.8

/
L

r

 

 

E
1
/E

2
 = 4

E
1
/E

2
 = 10

0 20 40 60
0

0.05

0.1

/
L

r

Fig. 8. Frequency response curve of: (a) two square GFRC plates with different number of layers 
( ݂ ൌ 72.8), (b) several five-layered square Glare plates ( ݂ ൌ 56), (c) a five-layered square Glare 3 
plate for different excitation amplitudes, (d) a five-layered rectangular Glare 3 plate for different 
aspect ratios ( ݂ ൌ 56), (e) a five-layered square GFRC plate for different moduli ratios ( ݂ ൌ 72.8), 
and (f) a five-layered square Glare 3 plate with numerical solution compared with it ( ݂ ൌ 56), and 
for all cases ߦ ൌ 5 ൈ 10ିସ 

(a)  (b) 

(c)  (d) 

(f) (e) 



A. Shooshtari and S. Razavi  / Engineering Solid Mechanics 2 (2014) 
 

225

the other tends to decrease the amplitude of the response (Nayfeh & Mook, 1995). The effects of the 

excitation frequency on the amplitudes curve are shown in Fig. 9(a). Fig. 9(b) shows that after initial 
decrease, the response amplitude of lower aspect ratios increases with higher rate. It is also seen that 
jump phenomenon in plates with lower aspect ratios occurs at smaller amplitudes of excitation. It can 
be understood from Fig. 9(c) that the jump phenomenon in the GFRC plate occurs in smaller 
excitation amplitudes comparing with the Glare 3 and Glare 4B plates. Therefore, GFRC plate 
reaches unstable region in smaller excitation amplitudes. Fig. 9(d) shows that changing of the 
damping ratio only changes the locus of one of bifurcation points. It is seen that for ߦ ൌ 0, this point 
is located on the ݎ-axis, meaning that the plate continues to vibrate in the un-damped case even after 
elimination of the external force. 

5.3 Sub-harmonic resonance 

     The effects of several parameters on the frequency response of laminated rectangular plates are 
investigated and the results are shown in Fig. 10. Similar to primary and super-harmonic resonances, 
the number of layers has negligible effect on the frequency response curve, which is shown in Fig. 
10(a). Fig. 10(b) shows that the frequency responses of the Glare 2B and Glare 3 rectangular plates 
are almost the same. Fig. 10(c) shows the effects of excitation amplitude on the frequency response of 
laminated rectangular plates in which it is seen that for higher excitation amplitudes, smaller 
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excitation frequencies are needed to have a steady-state motion. It is seen from Fig. 10(d) that for 
lower aspect ratios, smaller excitation frequencies are needed to have a steady-state motion. Fig. 
10(e) shows that for higher moduli ratios response amplitude increases with lower rate. Numerical 
and analytical solutions of nonlinear ordinary differential equation of motion are compared with each 
other and the results are shown in Fig. 10(f). 

6. Conclusion 

      Nonlinear forced vibration of symmetric laminated composite and Glare rectangular plates, with 
immovable simply supported boundary conditions is studied analytically by using the first order shear 
deformation theory, Galerkin method, and the method of multiple scales. The frequency response 
equations in steady-state motion of primary and secondary resonances are obtained. The effects of 
lamination parameters and plate properties on the steady-state motion of symmetric rectangular plates 
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are investigated. It is seen that the number of layers and layup scheme have negligible effects on the 
frequency response of symmetric rectangular plates. It is also apparent that due to the presence of 
aluminum layers in Glare plates, these plates have smaller response amplitudes comparing with the 
same-sized GFRC plates. 
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