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 In this article, mathematical modelling of torsional vibrations of a truncated circular conical shell 
located in an elastic medium is carried out. It is believed that the shell is exposed to external dynamic 
loads, and its material is homogeneous and isotropic. Based on the exact mathematical formulation of 
the problem, general equations of nonstationary torsional vibrations of a truncated conical shells have 
been developed, from which, in particular cases, the equations of vibration of a truncated conical rod, 
as well as a circular cylindrical shell and a round rod follow. The desired functions found by solving 
the vibrational equations are used to construct a method for computing the stress-strain state of any 
point in the system under investigation. As an example, the problem of propagation of harmonic 
torsional waves in a truncated conical rod is solved. The effects of the interacting medium, the angle 
of attack and other physic-mechanical parameters of the rod material on the “frequency-wave number” 
dependence are estimated.  
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1. Introduction 
      

      In many areas of science and technology, conical shell structures are well used, which puts forward studying of vibratory 
processes in such systems to ensure the safety and stability. They are one of the main structural parts of various aircraft, 
submarines, protective tanks and reservoirs (Khudoynazarov, 2024; Sofiyev, 2014). In the case of shell points deformations 
are small-scale compared to its thickness, then calculations and analysis of shell structures were carried out based on the linear 
theory (Filippov & Kudainazarov, 1998; Khudoynazarov & Yalgashev, 2021). In certain practical applications of vibrating 
systems, to gain better exactness it is required to apply the nonlinear theory (Alijani & Amabili, 2014; Sofiyev, 2012). This 
approach investigates nonlinear vibrations of TCS, including those constructed from functionally graded material (FGM). 
 
      Nonstationary vibrations of truncated conical shells (TCS) receive significantly less focus than vibrations of cylindrical 
shells and rods (Khudoynazarov et al., 2022). In an article by Khudoynazarov and Ismoilov (2023) a model of nonstationary 
TV of a truncated conical elastic layer of arbitrary thickness located in a deformable medium is proposed. Refined equations 
of torsional vibrations (TV) of a truncated conical layer, the material of which is assumed homogeneous and isotropic, are 
derived. Developed an algorithm that enables the unique determination of the stress-strain state at any location within the 
cross-section of the layer under consideration by spatial and temporal coordinates utilizing the field of the desired functions. 
Additionally, the research included various limiting and special cases derived from these results. 
 
     The study focuses on the investigation of forced vibration in layered composite conical shells in layered composite conical 
shells. The higher –order shear deformation theory is employed, which takes into account rotational inertia and geometric 
nonlinearity in all kinematic parameters (Marco & Prabakaran, 2020).  
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      This paper focuses on the use of the generalized coordinate method to derive the equation of movement and develop the 
amplitude equation for nonlinear vibrations of conical shells (Bakhtiari & Lakis, 2020). Have been found solutions of the 
equation of amplitude for isotropic materials in three different shell theories. It made it possible to find differences and 
similarities of simplifying assumptions of these theories. In addition, research is done on the resonance analysis and harmonic 
vibration of FGM TCS under harmonic excitation  (Aris & Ahmadi, 2020). Using the theory of Karman–Donnell and huge 
strain theory, the governing equations for FGM TCS are derived. The several scaling approach is used to determine the 
principal resonance and the effects of cone angle and excitation amplitude variations are investigated using simulations. 
 
      In the research work (Shekari et al., 2017) developed a higher order theory to explore the free oscillation of turn around 
truncated multilayer conical shells. The conditions of continuous displacement at the interface were taken into account. When 
studying the dynamic behaviour of shells and rods, one of the main problems is the choice of vibration equations. In most 
cases, researchers, based on the certain physical and mechanical characteristics of the material, develop the necessary vibration 
equations using various methods (Kushnarenko & Beridze, 2000; Beridze, 1999). Using general solutions in transformations 
of three-dimensional elasticity theory issues is one of these techniques (Khudoynazarov, 2003; Khalmuradov et al., 2022). 
The kernel of the used solving algorithm is that solutions have been found for different external influences. 
 
      In addition, it is possible to specify a number of articles committed to the research of vibratory procedures in conical shells 
based on the Timoshenko type theory (Meish & Belova, 2020; Lugovyi & Skosarenko, 2022; Meish et al., 2014; Zeighampour 
et al., 2015). At the same, linear equations (Meish & Belova, 2020) of the concept of conical shells of Timoshenko type in a 
orthogonal curved coordinate system are derived, shell theories and Timoshenko hypotheses (Lugovyi and Skosarenko, 2022) 
are used to develop a method for figuring out the character of oscillations. The stress-strain state of orthotropic ribbed conical 
shells, problems (Meish et al., 2014) on non-axisymmetric vibrations of a non uniform a conical shell of variable thickness 
under unstable load using the theory of Timoshenko-type shells. An example of using the shear shell model to acquire the 
resolving equations of the conical shell vibration is the article (Zeighampour et al., 2015). Lately, numerous research projects 
have been completed on the study of vibrations of conical shells based on frequency analysis (Xiaohan & Yiling, 2020), a 
vibrational approach (Yegao et al., 2013), as well as taking into account the influence of rotation (Lam & Hua, 1997; Sarkheil 
& Mahmoud, 2016; Qinkai & Fulei, 2013). 
  
     Thus, based on the above brief overview of the scientific bibliography on the dynamics of conical shells, it can be concluded 
that at present the study of nonstationary TV of TCS interacting with the surrounding deformable medium is an urgent task. 
Therefore, this work is dedicated to the derivation of equations of nonstationary TV of a reduced conical shell located in a 
deformable medium, the creation of an algorithm to determine the shell’s VAT across the specified functions field, the analysis 
of restricting and unique situations of the results achieved, as well as tackling the issue of harmonic vibrations of a truncated 
conical rod. 

2. Formulation of the task 

The problem of TV of a TCS with an angle of inclination is considered  forming a cone to the axis of symmetry (angle of 
attack) of the cone, located in an infinite deformable medium (Fig.1). The materials of the shell and the medium are assumed to be 
elastic, homogeneous and isotropic, and the length of the shell is unlimited. The shell is assigned to an orthogonal coordinate system 
in cylinders (𝑟𝑟,𝜃𝜃, 𝑧𝑧), its beginning is situated on the left end, and the axis is straight the horizontal Oz of symmetry of the shell. It 
is presumed the case 𝑟𝑟1, 𝑟𝑟2 − radius of the shell are linear functions of the longitudinal coordinate in the form. 𝑟𝑟1 = 𝑟𝑟0 + 𝑓𝑓𝑓𝑓,   𝑟𝑟2 =
𝑟𝑟0 + ℎ + 𝑓𝑓𝑓𝑓, where 𝑟𝑟0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ℎ −is the shell thickness; 𝑓𝑓 = tan𝜑𝜑.  

In the future, when deriving the vibration equations, probably the TCS, its equations of motion characterize it as a conical three 
– dimensional entity that adheres rigorously to the mathematical linear theory of elasticity. When addressing axisymmetric non-
stationary vibration problems involving circular, cylindrical, and conical structures, the problem of their TV can be taken into 
account separately from the difficulty of their longitudinal-radial oscillations. In the case of TV of a truncated conical layer, 
conversing with a deformable elastic medium. Because of the symmetry in the issue relative to the symmetry axis of the conical 
layer, the components of the stress and deformation tensors are unrelated on the angular coordinate and just the stress component 
𝜎𝜎𝑟𝑟𝑟𝑟𝑚𝑚 ,𝜎𝜎𝑧𝑧𝑧𝑧𝑚𝑚 , 𝑚𝑚 = 0,1   and the corresponding deformation components will be nonzero 𝜀𝜀𝑟𝑟𝑟𝑟𝑚𝑚 , 𝜀𝜀𝑧𝑧𝑧𝑧𝑚𝑚 ,𝑚𝑚 = 0,1.  Only the torsional 
components 𝑈𝑈𝜃𝜃

(𝑚𝑚) of the displacement vectors of the conical layer (𝑚𝑚 = 0) and the medium (𝑚𝑚 = 1), will be nonzero, that are 
articulated in using of the components Ψ𝑚𝑚 of the vector potential of transverse waves (Khudoynazarov et al., 2022) 

𝑈𝑈𝜃𝜃
(𝑚𝑚) = −

𝑑𝑑
𝑑𝑑𝑑𝑑
Ψ𝑚𝑚,    𝑚𝑚 = 0,1. 

 

Hence it follows, that the TV of the truncated conical layer (m=0) and the deformable medium surrounding it (𝑚𝑚 = 1) are 
described by wave equations with respect to potentials Ψ𝑚𝑚,𝑚𝑚 = 0,1 

 

𝜇𝜇(ΔΨ𝑚𝑚) = 𝜌𝜌Ψ̈𝑚𝑚 ;  𝑚𝑚 = �0, 𝑎𝑎𝑎𝑎    𝑟𝑟1 ≤ 𝑟𝑟 ≤ 𝑟𝑟2,
1, 𝑎𝑎𝑎𝑎   𝑟𝑟2 ≤ 𝑟𝑟 < ∞.  

(1) 
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To create the boundary conditions on the layer’s conical surface, formulated introducing an orthogonal coordinate system at 
an arbitrary point (𝑛𝑛, 𝑠𝑠1, 𝑠𝑠2) on its surface (Fig. 1), where 𝑛𝑛 is normal vector; 𝑠𝑠1, 𝑠𝑠2 − perpendicular to the normal, coordinates 
in the plane of tangent of the layer attracted to its exterior at the selected point (Khudoynazarov, Kholikov et al., 2022). At 
the same time, 𝑠𝑠1 is directed in the circumferential direction, and 𝑠𝑠2 in the longitudinal direction. To formulate boundary 
conditions at points on a conical surface in an orthogonal coordinate system (𝑛𝑛, 𝑠𝑠1, 𝑠𝑠2), tangential stresses 𝜏𝜏𝑛𝑛𝑛𝑛1  and 𝜏𝜏𝑛𝑛𝑛𝑛2  are 
expressed in terms of stress components in a cylindrical(𝑟𝑟, 𝜃𝜃, 𝑧𝑧) systems.  In addition, it is believed (Khudoynazarov & 
Ismoilov, 2023), that TV of the rod are energized by dynamic outside forces 𝑓𝑓𝑛𝑛𝑠𝑠1

(𝑖𝑖) , (𝑖𝑖 = 1,2), acting on the shell’s surfaces, 
that is, in the system  (𝑛𝑛, 𝑠𝑠1, 𝑠𝑠2) there are: boundary condition 

 

𝜎𝜎𝑟𝑟𝑟𝑟
(0) − 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧

(0) = �1 + 𝑓𝑓2𝑓𝑓𝑛𝑛𝑠𝑠1
(1)(𝑧𝑧, 𝑡𝑡),    𝑎𝑎𝑎𝑎  𝑟𝑟 = 𝑟𝑟1 (2) 

 
     dynamic contact condition on the interface of media 

 
𝜎𝜎𝑟𝑟𝑟𝑟

(0) − 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧
(0) = 𝜎𝜎𝑟𝑟𝑟𝑟

(1) − 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧
(1) + �1 + 𝑓𝑓2 𝑓𝑓𝑛𝑛𝑠𝑠1

(2)(𝑧𝑧, 𝑡𝑡), 𝑎𝑎𝑎𝑎  𝑟𝑟 = 𝑟𝑟2    
   

  
(3) 

and kinematic contact condition  
 

𝑈𝑈𝜃𝜃
[0]�

𝑟𝑟=𝑟𝑟2
= 𝑈𝑈𝜃𝜃

[1]�
𝑟𝑟=𝑟𝑟2

 (4) 

 
It is assumed that the initial circumstances are zero.  
 
 

 
Fig. 1. Conical shell in an elastic medium 

 

3. Vibration equations 
 
     In order to resolve the wave Eq. (1), the functions of external influences 𝑓𝑓𝑛𝑛𝑠𝑠1

(𝑖𝑖) (𝑧𝑧, 𝑡𝑡), (𝑖𝑖 = 1,2), will be regarded as a member of 
the class of functions that may be represented in the form of in the boundary and contact criteria (2)-(4). 
 

𝑓𝑓𝑛𝑛𝑠𝑠1
(𝑖𝑖)(𝑧𝑧, 𝑡𝑡) = � sin𝑘𝑘𝑘𝑘

− cos 𝑘𝑘𝑘𝑘� 𝑑𝑑𝑑𝑑 � 𝑓𝑓𝑛̅𝑛𝑠𝑠1
(𝑖𝑖)

(𝑙𝑙)

∞

0

(𝑘𝑘, 𝑝𝑝)𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑,   (𝑖𝑖 = 1,2) 
 

(5) 

 
where (l) - open contour within the plane p, next to the imaginary axis’s segment (−𝑖𝑖𝜔𝜔0, 𝑖𝑖𝜔𝜔0) on the right. Furthermore, the functions 
𝑓𝑓𝑟̅𝑟𝑟𝑟

(𝑖𝑖)(𝑘𝑘, 𝑝𝑝)  are negligible outer the region 𝑘𝑘 ≤ 𝑘𝑘0,   |Im𝑝𝑝| ≤ 𝜔𝜔0 , which are required in order to obtain the vibration equations 
(Khudoynazarov, 2003). 

 
According to the illustrations of the roles played by outside factors (5), we represent the potentials Ψ𝑚𝑚 and displacements 𝑈𝑈𝜃𝜃

(𝑚𝑚) 
as well as Eq. (5) 

 

�𝑈𝑈𝜃𝜃
(𝑚𝑚),Ψ𝑚𝑚� = � sin𝑘𝑘𝑘𝑘

− cos𝑘𝑘𝑘𝑘� 𝑑𝑑𝑑𝑑 ��𝑈𝑈�𝜃𝜃
(𝑚𝑚),Ψ�𝑚𝑚

(0)�
(𝑙𝑙)

∞

0

𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑,       𝑚𝑚 = 0,1, 
 

(6) 

 
here through 𝑈𝑈�𝜃𝜃

(𝑚𝑚)(𝑟𝑟,𝑘𝑘,𝑝𝑝)  and Ψ�𝜃𝜃
(𝑚𝑚)(𝑟𝑟,𝑘𝑘, 𝑝𝑝)  denote the images of the potential of displacements  

𝑈𝑈𝜃𝜃
(𝑚𝑚)(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) and potentials Ψ𝑚𝑚(𝑟𝑟, 𝑧𝑧, 𝑡𝑡). Substituting representations (6) to equations (3), ordinary differential Bessel equations are 

obtained, the overall solutions of which, taking into account the roundedness of solutions at infinity, are equal to 
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Ψ�0
(0) = 𝐴𝐴1𝐼𝐼0(𝛽𝛽0𝑟𝑟) + 𝐴𝐴2𝐾𝐾0(𝛽𝛽0𝑟𝑟),   𝑎𝑎𝑎𝑎  𝑟𝑟1 ≤ 𝑟𝑟 ≤ 𝑟𝑟2,

Ψ�1
(0) = 𝐵𝐵𝐾𝐾0(𝛽𝛽1𝑟𝑟),                            𝑎𝑎𝑎𝑎  𝑟𝑟2 ≤ 𝑟𝑟 < ∞.

 
 

(7) 

 
where 𝐼𝐼𝑜𝑜and 𝐾𝐾𝑜𝑜 −are modified Bessel functions: 𝐴𝐴1,𝐴𝐴2 and 𝐵𝐵 −are integration constants; 
 

𝛽𝛽𝑚𝑚2 =
𝑝𝑝2

𝑏𝑏𝑚𝑚2
+ 𝑘𝑘2,    𝑏𝑏𝑚𝑚2 =

𝜇𝜇𝑚𝑚
𝜌𝜌𝑚𝑚

,   𝑚𝑚 = 0,1. 
 

(8) 
 

Let us express the image of the movement of points of the TCS 𝑈𝑈�𝜃𝜃
(0)(𝑟𝑟,𝑘𝑘,𝑝𝑝) through the general solution for Ψ�𝜃𝜃

(0) in (7) and 
highlight its main parts. For this purpose, we substitute solution from Rq. (7) for the shell into the expression for 𝑈𝑈𝜃𝜃

(𝑚𝑚) at 𝑚𝑚 = 0, 
having previously transformed the displacement according to Eq. (6) and using standard expansions of the modified Bessel functions 
𝐼𝐼1 and 𝐾𝐾1 in powers of the radial coordinate r into power series, we obtain 

 

𝑈𝑈�𝜃𝜃
(0) =

1
𝑟𝑟
𝐴𝐴2 −�𝛽𝛽02𝑛𝑛+2

∞

𝑛𝑛=0

�𝐴𝐴1 − 𝐴𝐴2 �𝑙𝑙𝑙𝑙
𝛽𝛽𝛽𝛽
2
−

1
2

[𝜓𝜓(𝑛𝑛 + 1) + 𝜓𝜓(𝑛𝑛 + 2)]��
(𝑟𝑟 2⁄ )2𝑛𝑛+1

𝑛𝑛! (𝑛𝑛 + 1)!
, 

 
(9) 

 
This is 𝜓𝜓(n)- derivative of the Gamma function with logarithmic. 

 
      Now, as the main required quantities, we calculate the point displacements of the conical shell’s intermediate surface, the radius 
of which is determined by the formula (Khudoynazarov & Ismoilov, 2023). 
 
𝜉𝜉 =

𝑟𝑟1
2
�𝜒𝜒 −

𝑟𝑟1
𝑟𝑟2
� ,     

𝑟𝑟1
𝑟𝑟2

+ 2 ≤ 𝜒𝜒 ≤
𝑟𝑟1
𝑟𝑟2

+ 2
𝑟𝑟2
𝑟𝑟1

  
(10) 

 
      In this case, the radius 𝜉𝜉 based on the values of the constant 𝜒𝜒 able to take on the values of the radius of the shell’s middle, outer, 
or surface. Next, we substitute into Eq. (9) 𝑟𝑟 = 𝜉𝜉 and confine ourselves to the zero approximation in infinite series. Let's introduce 
the following new desired functions by the formulas 
 

𝑈𝑈�𝜃𝜃,0
(0) = −

1
2
𝛽𝛽02 �𝐴𝐴1 − 𝐴𝐴2 �𝑙𝑙𝑙𝑙

𝛽𝛽0𝜉𝜉
2

− 𝜓𝜓(1) −
1
2
�� , 𝑈𝑈�𝜃𝜃,1

(0) =
1
𝜉𝜉
𝐴𝐴2. 

  
(11) 

 
Substituting Eq. (11) into Eq. (9) for the transformed displacement 𝑈𝑈�𝜃𝜃

(0), yields the following, 
 

𝑈𝑈�𝜃𝜃
(0)(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) = 2𝐿𝐿𝑟𝑟

(1)(𝛽𝛽02𝑛𝑛)𝑈𝑈�𝜃𝜃,0
(0) + 𝜉𝜉 �

1
𝑟𝑟

+ 𝐿𝐿𝑟𝑟
(1)�𝜂𝜂1,𝑛𝑛(𝑟𝑟)𝛽𝛽02𝑛𝑛+2�� 𝑈𝑈�𝜃𝜃,1

(0),  
(12) 

 
where 
 

𝐿𝐿𝑟𝑟
(𝑘𝑘)(𝜑𝜑) = �𝜑𝜑

(𝑟𝑟 2⁄ )2𝑛𝑛+𝑘𝑘

𝑛𝑛! (𝑛𝑛 + 𝑘𝑘)!
;   (𝑘𝑘 = 1,2),

∞

𝑛𝑛=0

 𝜂𝜂1,𝑛𝑛(𝑟𝑟) = ln (
𝑟𝑟
𝜉𝜉

) +
𝑛𝑛

2𝑛𝑛 + 2
− �

1
𝑚𝑚

𝑛𝑛

𝑚𝑚=1

. 
 

(13) 

 
Now let us explain the stress components in terms of the new functions introduced by formulas (11). To do this, we first represent 

the stresses also in the form Eq. (6), then determining the constant B from the contact condition in Eq. (4) and applying Eq. (14) and 
Eq. (6) to the stress expressions through potential functions Ψ𝑚𝑚(𝑟𝑟) and substituting Eq. (7) into the resulting formulas, we will have 
expressions for the transformed stress components 𝜎𝜎�𝑟𝑟𝜃𝜃

(𝑚𝑚) and 𝜎𝜎�𝑧𝑧𝜃𝜃
(𝑚𝑚), through common solutions. Further, decomposing the modified 

Bessel functions included in the expressions obtained in this way into power series by degrees of the radial coordinate, as well as 
excluding constants 𝐴𝐴1 and 𝐴𝐴2 according to formulas (11), we obtain 

 
𝜎𝜎�𝑟𝑟𝑟𝑟

(0) = 𝜇𝜇0 �𝐿𝐿𝑟𝑟
(2)�𝛽𝛽02𝑛𝑛+2�2𝑈𝑈�𝜃𝜃,0

(0) + 𝜉𝜉𝜂𝜂2,𝑛𝑛(𝑟𝑟)𝛽𝛽02𝑈𝑈�𝜃𝜃,1
(0)�� + 𝜉𝜉

2
�𝛽𝛽02 −

4
𝑟𝑟2
�𝑈𝑈�𝜃𝜃,1

(0)�,   

𝜎𝜎�𝑧𝑧𝑧𝑧
(0) = 𝜇𝜇0 �𝐿𝐿𝑟𝑟

(1)�𝛽𝛽02𝑛𝑛�2𝑘𝑘𝑈𝑈�𝜃𝜃,0
(0) + 𝜉𝜉𝜂𝜂1,𝑛𝑛(𝑟𝑟)𝑘𝑘𝛽𝛽02𝑈𝑈�𝜃𝜃,1

(0)�� +
𝜉𝜉
𝑟𝑟
𝑘𝑘𝑈𝑈�𝜃𝜃,1

(0)�, 
 

𝜎𝜎�𝑟𝑟𝑟𝑟
(1) = 𝜇𝜇1𝑅𝑅� �𝐿𝐿𝑟𝑟

(1)�𝛽𝛽02𝑛𝑛�2𝑈𝑈�𝜃𝜃,0
(0) + 𝜉𝜉𝜂𝜂1,𝑛𝑛(𝑟𝑟)𝛽𝛽02𝑈𝑈�𝜃𝜃,1

(0)�� +
𝜉𝜉
𝑟𝑟
𝑈𝑈�𝜃𝜃,1

(0)�, 
(14) 

𝜎𝜎�𝑧𝑧𝑧𝑧
(1) = 𝜇𝜇1 �𝐿𝐿𝑟𝑟

(1)�𝛽𝛽02𝑛𝑛�2𝑘𝑘𝑈𝑈�𝜃𝜃,0
(0) + 𝜉𝜉𝜂𝜂1,𝑛𝑛(𝑟𝑟)𝑘𝑘𝑘𝑘02𝑈𝑈�𝜃𝜃,1

(0)�� +
𝜉𝜉
𝑟𝑟
𝑘𝑘𝑈𝑈�𝜃𝜃,1

(0)� 
 

 
where 𝜇𝜇𝑖𝑖(𝑖𝑖 = 0,1)- shear coefficients of the layer and medium materials, accordingly; 

 

𝑅𝑅� = 𝛽𝛽1
𝐾𝐾2���(𝛽𝛽1𝑟𝑟2)
𝐾𝐾1���(𝛽𝛽1𝑟𝑟2) ;     𝜂𝜂2,𝑛𝑛(𝑟𝑟) = 𝑙𝑙𝑙𝑙

𝑟𝑟
𝜉𝜉

+
𝑛𝑛2 + 𝑛𝑛 − 1

2(𝑛𝑛2 + 3𝑛𝑛 + 2)
−�

1
𝑗𝑗

;
𝑛𝑛

𝑗𝑗=1

 
     

(15) 
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      Next, we introduce functions 𝑈𝑈𝜃𝜃,𝑖𝑖
(0)(𝑟𝑟, 𝑧𝑧, 𝑡𝑡), (𝑖𝑖 = 0,1) and operators 𝜆𝜆0𝑛𝑛 ,𝑛𝑛 = 0,1,2, … according to the following formulas 

 

𝑈𝑈𝜃𝜃,𝑖𝑖
(0)(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) = � sin𝑘𝑘𝑘𝑘

−cos𝑘𝑘𝑘𝑘�
∞

0

𝑑𝑑𝑑𝑑 � 𝑈𝑈�𝜃𝜃,𝑖𝑖
(0)(𝑟𝑟,𝑘𝑘, 𝑝𝑝)𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑

∞

(𝑙𝑙)

,    (𝑖𝑖 = 0,1), 
 

(16) 

𝜆𝜆𝑚𝑚𝑛𝑛 (𝜁𝜁) = � sin𝑘𝑘𝑘𝑘
−cos𝑘𝑘𝑘𝑘�

∞

0

𝑑𝑑𝑑𝑑 �(𝛽𝛽𝑚𝑚2𝑛𝑛𝜁𝜁)̅𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
∞

(𝑙𝑙)

,   𝑚𝑚 = 0,1;𝑛𝑛 = 0,1,2, … 
 

(17) 

 
here 𝜁𝜁  ̅is one of functions 𝑈𝑈�𝜃𝜃,𝑖𝑖

(0)(𝑟𝑟,𝑘𝑘, 𝑝𝑝), (𝑖𝑖 = 0,1). Applying Eqs. (16-17) to Eq. (14) and substituting into the boundary-(2) and 
contact-(3) conditions, we obtain 
 
𝐿𝐿𝑟𝑟1

(1) �𝜆𝜆0𝑛𝑛 �
𝑟𝑟1
𝑛𝑛+2

𝜆𝜆0 − 𝑟𝑟1𝑓𝑓
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,0

(0) + 𝜉𝜉𝜆𝜆0𝑛𝑛+1 �
𝑟𝑟1

2(𝑛𝑛+2)
𝜂𝜂2,𝑛𝑛(𝑟𝑟1)𝜆𝜆0 − 𝜂𝜂1,𝑛𝑛(𝑟𝑟1)𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,1

(0)� +

�𝜉𝜉
2
�𝜆𝜆0 −

4
𝑟𝑟12
� − 𝜉𝜉

𝑟𝑟1

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,1

(0) = Δ0
𝜇𝜇0
𝑓𝑓𝑛𝑛𝑠𝑠1

(1)(𝑧𝑧, 𝑡𝑡),     𝑟𝑟1 = 𝑟𝑟0 + 𝑓𝑓𝑓𝑓,  

 

𝐿𝐿𝑟𝑟2
(1) �𝜆𝜆0𝑛𝑛 �

𝑟𝑟2
𝑛𝑛+2

𝜆𝜆0 − 𝑟𝑟2𝑓𝑓
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,0

(0) + 𝜉𝜉𝜆𝜆0𝑛𝑛+1 �
𝑟𝑟2

2(𝑛𝑛+2)
𝜂𝜂2,𝑛𝑛(𝑟𝑟2)𝜆𝜆0 − −𝜂𝜂1,𝑛𝑛(𝑟𝑟2)𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,1

(0)� +

�𝜉𝜉
2
�𝜆𝜆0 −

4
𝑟𝑟22
� − 𝜉𝜉

𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,1

(0) =  

(18) 

= 𝜇𝜇1
𝜇𝜇0
�𝑅𝑅 − 𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
� �𝐿𝐿𝑟𝑟2

(1)�2𝜆𝜆0𝑛𝑛𝑈𝑈𝜃𝜃,0
(0) + 𝜉𝜉𝜆𝜆0𝑛𝑛+1𝜂𝜂1,𝑛𝑛(𝑟𝑟2)𝑈𝑈𝜃𝜃,1

(0)� + 𝜉𝜉
𝑟𝑟2
𝑈𝑈𝜃𝜃,1

(0)� + + Δ
𝜇𝜇0
𝑓𝑓𝑛𝑛𝑠𝑠1

(2)(𝑧𝑧, 𝑡𝑡),       𝑟𝑟2 =

𝑟𝑟0 + ℎ + 𝑓𝑓𝑓𝑓,Δ0 = �1 + 𝑓𝑓2 ;𝑅𝑅 ≈ 2
𝑟𝑟2

+ (1 − 𝛾𝛾)𝑟𝑟2𝜆𝜆1;  

 

 
here operator 𝑅𝑅 - is the original image operator 𝑅𝑅� . As follows from the form (18) of operator 𝑅𝑅, it represents a dynamic reaction of 
an elastic medium to vibrations of a TCS. 
 
     Based on Eq. (16) and Eq. (17), from Eq. (12) we obtain a formula expressing the displacement 𝑈𝑈�𝜃𝜃

(0)(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) through the functions 
𝑈𝑈𝜃𝜃,0

(0) and 𝑈𝑈𝜃𝜃,1
(0) 

 

𝑈𝑈𝜃𝜃
(0)(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) = 2𝐿𝐿𝑟𝑟

(1)(𝜆𝜆0𝑛𝑛)𝑈𝑈𝜃𝜃,0
(0) + 𝜉𝜉 �

1
𝑟𝑟

+ 𝐿𝐿𝑟𝑟
(1)�𝜂𝜂1,𝑛𝑛(𝑟𝑟)𝜆𝜆0𝑛𝑛+1�� 𝑈𝑈𝜃𝜃,1

(0),  
(19) 

 
for 𝑟𝑟 = 𝜉𝜉 and 𝑛𝑛 = 0 it follows from Eq. (19) that 

 
𝑈𝑈𝜃𝜃

(0)(𝜉𝜉) = 𝑈𝑈𝜃𝜃,1
(0) + 𝜉𝜉𝜉𝜉𝜃𝜃,0

(0),  
 

which shows that the introduced new functions are the primary components of the conical layer’s intermediate surface’s torsional 
displacement and, in this case, the function 𝑈𝑈𝜃𝜃,1

(0) has the dimension of displacement, and the function 𝑈𝑈𝜃𝜃,0
(0) has the dimension of 

deformation. 
 
From representations (8) for 𝛽𝛽𝑚𝑚2 ,𝑚𝑚 = 0,1,  it is easy to see that the previously introduced operators 𝜆𝜆𝑚𝑚𝑛𝑛  variables (𝑧𝑧, 𝑡𝑡) get the 

following form (Filippov and Kudajnazarov, 1998) 
 

𝜆𝜆𝑚𝑚𝑛𝑛 (… ) = �
1
𝑏𝑏𝑚𝑚2

𝜕𝜕2

𝜕𝜕𝑡𝑡2
−
𝜕𝜕2

𝜕𝜕𝑧𝑧2
�
𝑛𝑛

, 𝑏𝑏𝑚𝑚 = �
𝜇𝜇𝑚𝑚
𝜌𝜌𝑚𝑚

,   𝑚𝑚 = 0,1;  𝑛𝑛 = 0,1,2, … 
 

(20) 

 
It follows that the operators 𝜆𝜆𝑚𝑚(… ), 𝜆𝜆𝑚𝑚2 (… ), . . .. are differential operators of the second, fourth, and so on orders, and the 

operators 𝜆𝜆𝑚𝑚0 (… ) = 1. Equations (18) in accordance with expression (20) for operators 𝜆𝜆𝑚𝑚𝑛𝑛  there is a system of differential equations 
for the main parts 𝑈𝑈𝜃𝜃,0

(0) and 𝑈𝑈𝜃𝜃,1
(0) torsional displacement of a TCS. It represents the general equations of nonstationary TV of a 

truncated conical elastic shell, which are dependent upon the operators  n
mλ  and the primary components of the torsional displacement 

of the layer’s intermediate surface locations. 

4. Particular cases of equations of vibration of a TCS 
 

The obtained general Eq. (18) of TV of a TCS allow some cases of a particular form, namely. From them, it is possible to obtain 
the equations of TV of a truncated conical thin-walled shell, a truncated conical rod and a circular cylindrical layer with the 
corresponding particular types (round rod and circular cylindrical thin-walled shell). Listed below are some of the indicated particular 
types of Eq. (18) (Yalgashev et al., 2022). 
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4.1 Estimate TCS equations vibration.  
 
Thus, it follows that restricting the number of terms in the system of Eq. (18), i.e. constrain them to (𝑛𝑛 = 0), (𝑛𝑛 = 1), (𝑛𝑛 = 2), etc. 
approximations. Assuming that the conditions for the convergence of infinite series consisting of operators (13) -𝐿𝐿𝑟𝑟𝑖𝑖

(𝑚𝑚), (𝑖𝑖,𝑚𝑚 = 1,2), 
i.e. the conditions (Khudoynazarov, 2003), are met regarding the range of application of the formulas “truncated” in this way, let us 
analyse their zero approximation. Assuming (𝑛𝑛 = 0) in system (18), we will have approximate equations for nonstationary TV of a 
TCS located in an elastic medium 
 
𝑟𝑟1 �

𝑟𝑟1
4
𝜆𝜆0 − 𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑈𝑈𝜃𝜃,0

(0) + 𝜉𝜉 �1
2
𝜆𝜆0 −

2
𝑟𝑟12
− 𝑓𝑓

𝑟𝑟1

𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑟𝑟1
2
𝜆𝜆0 �𝜂𝜂2,0(𝑟𝑟1) 𝑟𝑟1

4
𝜆𝜆0 −

−𝑓𝑓𝜂𝜂1,0(𝑟𝑟1) 𝜕𝜕
𝜕𝜕𝜕𝜕
�� 𝑈𝑈𝜃𝜃,1

(0) = [1 + 𝑓𝑓2]𝜇𝜇0−1[𝑓𝑓𝑛𝑛𝑠𝑠1
(𝑖𝑖) (𝑧𝑧, 𝑡𝑡)];   

𝑟𝑟2 �
𝑟𝑟2
4
𝜆𝜆0 −

𝜇𝜇1
𝜇𝜇0
�𝑅𝑅 − 𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
� − 𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑈𝑈𝜃𝜃,0

(0) + 𝜉𝜉 �1
2
𝜆𝜆0 −

2
𝑟𝑟22
− 1

𝑟𝑟2

𝜇𝜇1
𝜇𝜇0
�𝑅𝑅 − 𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
� − − 𝑓𝑓

𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

+

𝑟𝑟2
2
𝜆𝜆0 �𝜂𝜂2,0(𝑟𝑟2) 𝑟𝑟2

4
𝜆𝜆0 − 𝑓𝑓𝜂𝜂1,0(𝑟𝑟2) 𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝜇𝜇1

𝜇𝜇0
�𝑅𝑅𝜂𝜂1,0(𝑟𝑟2) − 𝑓𝑓 𝜕𝜕

𝜕𝜕𝜕𝜕
���𝑈𝑈𝜃𝜃,1

(0) == [1 +

𝑓𝑓2]𝜇𝜇0−1[𝑓𝑓𝑛𝑛𝑠𝑠1
(𝑖𝑖) (𝑧𝑧, 𝑡𝑡)];  

 
 
 
 

(21) 

 
where 

 

𝜂𝜂1,0(𝑟𝑟1) = 𝑙𝑙𝑙𝑙
𝑟𝑟1
𝜉𝜉

;  𝜂𝜂2,0(𝑟𝑟2) = 𝑙𝑙𝑙𝑙
𝑟𝑟2
𝜉𝜉
−

1
4

; (𝑖𝑖 = 1,2). (22) 

 
The derived equations are approximations of the  TV of an elastic shell with a truncated conical shape located in an elastic 

medium. 
 
4.1.1 Truncated conical thin-walled shell equation 
 
     Let us assume that 𝑟𝑟2 = 𝑟𝑟1 + 𝜀𝜀, where 𝜀𝜀 > 0 is a small value that satisfies the condition of thinness of the shell walls. Then, in 
expressions (22), we can assume that 𝑙𝑙𝑙𝑙(𝑟𝑟𝑘𝑘 𝜉𝜉⁄ ) = 0, (𝑘𝑘 = 1,2), taking into account which Eq. (21) are greatly simplified. The 
resulting equations will be the equations of TV of a truncated conical thin-walled shell interacting with an elastic medium. At 𝑅𝑅 =
0, they transform into the well-known vibration equations obtained in (Khudoynazarov et al., 2022). 
 
4.2 TV of a circular cylindrical shell equation 
 
      If 𝑓𝑓 = 0, i.e. the angle of attack is zero, then the conical shell passes within an elastic medium located in a cylindrical shell, and 
the vibration Eq. (21) take the form 

 
𝐿𝐿𝑟𝑟2

(1) � 𝑟𝑟2
𝑛𝑛+2

𝜆𝜆0𝑛𝑛+1𝑈𝑈𝜃𝜃,0
(0) + 𝑟𝑟2𝜉𝜉

𝑛𝑛+2
𝜂𝜂2,𝑛𝑛(𝑟𝑟𝑖𝑖)𝜆𝜆0𝑛𝑛+2𝑈𝑈𝜃𝜃,1

(0)� + �𝜉𝜉
2
�𝜆𝜆0 −

4
𝑟𝑟22
� + + 𝜉𝜉

𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑈𝑈𝜃𝜃,1

(0) =
�1+𝑓𝑓2�
𝜇𝜇0

𝑓𝑓𝑛𝑛𝑠𝑠1
(𝑖𝑖) (𝑧𝑧, 𝑡𝑡) + 𝜇𝜇1

𝜇𝜇0
𝑅𝑅𝑖𝑖 �𝐿𝐿𝑟𝑟2

(1)�2𝜆𝜆0𝑛𝑛𝑈𝑈𝜃𝜃,0
(0) + +𝜉𝜉𝜆𝜆0𝑛𝑛+1𝜂𝜂1,𝑛𝑛(𝑟𝑟2)𝑈𝑈𝜃𝜃,1

(0)� + 𝜉𝜉
𝑟𝑟2
𝑈𝑈𝜃𝜃,1

(0)� ,𝑅𝑅𝑖𝑖 =

�
0,                               𝑖𝑖 = 1,
2
𝑟𝑟2

+ (1 − 𝛾𝛾)𝑟𝑟2𝜆𝜆1;   𝑖𝑖 = 2.    

 
 

(23) 
 

 

 
As a result, the system exactly coincides with the vibration equations in (Khudoynazarov, 2003). Note that Eq. (23) allow limiting 

cases of a thin-walled cylindrical shell and a round rod (Khudoynazarov, Kholikov et al., 2022). 
 
4.3 Equations of a truncated conical rod 
 
      Let 𝑟𝑟1 = 0, then in accordance with formula (10) the equality will take place 𝜉𝜉 = 0. Then the conical shell under consideration 
will be transformed into a conical rod of radius 𝑟𝑟2′ = ℎ + 𝑓𝑓𝑓𝑓. In this case, the radius of the left end of the rod at point 𝑧𝑧 = 0 will be 
equal to ℎ, i.e. 𝑟𝑟2′ = ℎ. Substituting 𝑟𝑟1 = 0 and 𝜉𝜉 = 0 into (18), we acquire the equations of unsteady TV of a truncated cone rod 
located in an elastic medium 

 

𝐿𝐿𝑟𝑟2
(1) �𝜆𝜆0𝑛𝑛 �

𝑟𝑟2′

𝑛𝑛 + 2
𝜆𝜆0−𝑟𝑟2′𝑓𝑓

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈𝜃𝜃,0

(0)�� =
𝜇𝜇1
𝜇𝜇0
�𝑅𝑅 − 𝑓𝑓

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝐿𝐿𝑟𝑟2

(1)�2𝜆𝜆0𝑛𝑛𝑈𝑈𝜃𝜃,0
(0)� +

Δ0
𝜇𝜇0
𝑓𝑓𝑛𝑛𝑠𝑠1

(2)(𝑧𝑧, 𝑡𝑡),  

𝑟𝑟2′ = ℎ + 𝑓𝑓𝑓𝑓;    

    
(24) 

 
4.4 Equation of S.P. Beridze 
 
    Here, in a particular case, 𝑛𝑛 = 0 in infinite series of the operator 𝐿𝐿𝑟𝑟2

(1), we obtain an approximate equation that is more general than 
the well-known equation of a conical rod proposed by S.P. Beridze. 
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5. Harmonic TV of a truncated conical rod located in an elastic medium 
 

Explore the harmonic TV problem of a conical rod that has been truncated located in an elastic medium. The decisive equation 
of the problem is Eq. (24) in the zero approximation. To solve the problem of harmonic vibrations, external influences should be 
considered absent, which is equivalent to the equality of the right parts of the obtained equations to zero. In addition, if we limit 
ourselves in the infinite series of operator 𝐿𝐿𝑟𝑟2

(1) to the zero approximation (𝑛𝑛 = 0), we get 
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𝜇𝜇1
𝜇𝜇0
��𝑈𝑈𝜃𝜃,0

(0) = 0 

 
 

(25) 

 
     The transition in Eq. (25) to dimensionless variables in accordance with the formulas 
 
𝑧𝑧 = ℎ0𝑧𝑧∗;  𝑡𝑡 = (ℎ0 𝑏𝑏0⁄ )𝑡𝑡∗; 𝑏𝑏1 = 𝑏𝑏0𝑏𝑏1∗;   𝑈𝑈𝜃𝜃,0

(0) = 𝑈𝑈  
 
we get 
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(26) 

      We will look for solutions for the system (26) in the form of 
 
𝑈𝑈 = 𝐴𝐴𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) (27) 

 
where 𝐴𝐴 -is constants; 𝑘𝑘 − wave number; 𝜔𝜔 − circular frequency of vibrations; 𝑖𝑖 − imaginary unit. Substituting (27) into Eq. (25), 
we obtain the frequency equation. 
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𝜇𝜇1
𝜇𝜇0

= 0 
 

 (28) 
 

Eq. (18) solved with Maple 17 application software package for the values that follow of geometrical, physical and mechanical 
parameters of the materials of a truncated conical rod and its environment: 

 
1) angle of attack values -0.50, 10, 1.50 , 20; 
2) shell materials: а) steel (E=2⋅108 kPa; ν=0.25; ρ=7850 kg/m3), b) aluminum (E=7⋅107 kPa; ν=0.35; ρ=2750 kg/m3), c) 

copper (E=1⋅108 kPa;  ν=0.31; ρ=8940 kg/m3); 
3) environmental materials: а) sand (E=4⋅107 Pa;  ν=0.31;  ρ=2000 kg/m3), b) dense clay  (E=7.6⋅109 Pa;  ν=0.32;  ρ=2120 

kg/m3),  c) loam (E=1.8⋅109 Pa;  ν=0.35;  ρ=1650 kg/m3). 
 

6. Numerical results and discussions. 
 

The quantitation results obtained are presented in Figs. 2-6 in the form of graphs of the dependencies of the circular frequency 
𝜔𝜔 of a truncated conical rod on the wave number 𝑘𝑘. Fig. 2 shows the dependences of the dimensionless vibration frequency 𝜔𝜔 on 
the wave number 𝑘𝑘 for various materials of a truncated conical rod at an angle of attack of 0.5 degrees. At the same time, the physical 
and mechanical characteristics of Aluminium, Copper and Steel listed above are used as materials for the shell. For calculations, it 
is assumed that there is no interacting medium (𝜇𝜇1 = 0 in Eq. (24)). It can be seen that the higher the value of the elastic modulus 
of a material (steel), the lower the frequency of vibrations of this material, and vice versa, the shell, the material of which has a lower 
value, has a higher frequency of vibrations. For example, with a wave number value of 𝑘𝑘 = 2, the difference between the vibration 
frequencies of aluminium and steel shells is 27%. With the growth of the wave number, this difference increases and reaches, for 
example, at 𝑘𝑘 = 4, 32%. 

 
For comparative analysis, Fig. 3 shows the vibration frequencies of a round cylindrical rod, when the angle of attack is zero 

(𝑓𝑓 = 0 in Eq. (24)), made of the same materials and also in the absence of an interacting medium (𝜇𝜇1 = 0). As can be seen from the 
above graphs, which are straight lines coming from the origin, in the absence of an interacting medium and the angle of attack is 
zero, we get a classic result (a directly proportional dependence of the vibration frequency of a circular elastic rod on the 
wavenumber). This result confirms the fact that the obtained equations of vibrations of a circular conical elastic rod in Eq. (24), in 
the unique instance of a circular elastic rod where there  is no external environment, correctly describe the harmonic process of TV. 
In addition, it follows from the comparisons of Fig. 2 and Fig. 3 that the presence of a taper (𝑓𝑓 ≠ 0 in Eq. (24)) leads to a violation 
of the direct proportionality between the vibration frequency and the wave number in the case of a conical rod. 
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      Fig. 4 shows the dependences of the dimensionless vibration frequency 𝜔𝜔 on the wave number 𝑘𝑘 for various materials of a 
truncated conical rod located in loam at an angle of attack of 0.5 degrees.  From comparing the numerical results obtained with the 
results in Fig. 2, it follows that the presence of an external interacting medium leads to an even greater violation of the above-
mentioned property of proportionality between the vibration frequency and the wavenumber. In this case, even the order of the 
frequency curves for different materials is violated. For example, in this case, the curves of the dependence of the oscillation 
frequency of an aluminium truncated conical rod in the entire range of values of the wave number 𝑘𝑘 became smaller than the 
frequencies of the copper and steel shells. In addition, the nature of the function of the wavenumber also changes. If, in the absence 
of an external elastic medium, the concavity of the frequency curves is directed downward, then in the case of an external elastic 
medium, the concavity of the frequency curves is directed upward. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Dependences of the dimensionless 
vibration frequency on the wave number for 

various materials of a truncated conical rod at 
the angle of attack 0.5 degree.  

 

Fig. 3. Dependence of the dimensionless 
vibration frequency on the wave number for 
various materials of a round cylindrical rod 
(the angle of attack is zero). 

 

a) b)
 Fig. 5. materials: a) aluminium b) copper, at an angle of attack of 0.5 degrees. The 

dependences of the dimensionless vibration frequency 𝜔𝜔 on the wave number 𝑘𝑘 located in an 
elastic medium (sand, loam and dense clay) of a truncated conical rod for its various. 
 

Fig. 4. The dependences of the dimensionless vibration frequency on the wavenumber for 
various materials of a truncated conical rod located in loam at an angle of attack of 0.5 degrees. 
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      Fig. 5a,b shows the dependences of dimensionless vibration frequencies 𝜔𝜔 on the wave number 𝑘𝑘 located in an elastic medium 
(sand, loam and dense clay) of a truncated conical rod for its various materials: a) aluminium b) copper, at an angle of attack of 0.5 
degrees. It follows from the above graphs that in the case of aluminium (Fig. 5a) and in the case of copper (Fig. 4b), the graphs of 
the dependences of the dimensionless vibration frequency 𝜔𝜔 on the wave number 𝑘𝑘 located in the sand medium (red lines) are 
straight lines. This effect is explained by the fact that the modulus of elasticity of sand (E=4⋅107 Pa) is several thousand times less 
than the modulus of elasticity of the rod material: aluminium (E=7⋅1010Pa) or copper (E=1.0⋅1011 Pa). 

 
      The graphs show that the higher the density of the surrounding elastic medium, the higher the vibration frequencies of the conical 
rod. For instance, in the case of aluminium with a wave number value of 𝑘𝑘 = 4, the frequency value of a rod located in dense clay 
is 54% higher than a rod located in loam (Fig. 5a). In the case of a copper rod, the oscillation frequency curves of a conical rod are 
arranged from bottom to top when the densities of the media surrounding the rod are located from small to large (Fig. 5a, b). At the 
same time, it should be noted that the value of the frequency of TV everywhere, in the region of modifications in the wave number, 
is different from zero, even if the wave number is 0, i.e. at 𝑘𝑘 = 0, (Fig. 4a, b). Only when the external environment is sand (red lines 
in Fig. 5a, b) these values are close to zero. In addition, it can be seen that the “softer” the material (aluminium Fig.4a), the higher 
the vibration frequency of the conical rod made of this material. On the contrary, if the material is “tougher”, then the vibration 
frequencies of a conical rod made of such a material are much lower compared to a soft material 

 
     Fig. 6a,b demonstrates the curves of the dependence of the dimensionless vibration frequency 𝜔𝜔 on the wave number 𝑘𝑘 of a 
truncated conical rod for various materials: a) aluminium b) copper, at different angles of attack and in the absence of an external 
environment. Of these it follows that regardless of the material (Fig.5a, b) of the conical rod, without taking into account the external 
interacting medium, with increasing values of the angle of attack, the torsional vibration frequencies of the circular conical elastic 
rod increase. For example, in the case of an aluminium rod (Fig.5a) with a wavenumber value of 𝑘𝑘 = 3, the frequency value for 
𝑓𝑓 = 20 differs from the value for 𝑓𝑓 = 0.50  by 13.4%, and in the case of a copper rod by 15%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

7. Conclusion 

 
- TV problem of a TCS interacting with an external elastic medium is formulated and solved; 
- For a “certain” intermediate shell surface for main components of torsional displacement, the basic and approximated equations 
for TV of a TCS are obtained; 
- derived system of differential equations of TV of a TCS, in special case, passes into thin-walled shell and rod vibration 
differential equation; 
- based on the derived rod equations, the problem of harmonic TV of a truncated conical elastic rod interacting with an external 
elastic medium is solved; 
- the obtained numerical results make it possible to conclude that the applied theory of the specified rods in a deformable medium 
characterizes the vibratory motion at different angles of attack quiet well. 
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