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 Polyester fibers are the most used in the manufacture of ropes for mooring systems and offshore 
operation, thus being constantly subjected to different situations. Such requests are implicated in a 
variety of load conditions, and their effects must be studied. This work presents data referring to an 
experimental study on the behavior of the quasi-static and dynamic stiffness of polyester yarns 
considering different mechanical levels of degradation and use. The study is performed with five 
different types of multifilament samples, these were extracted from a virgin spool and sub-ropes tested 
for tension and fatigue. The experimental procedure is carried out through an initial characterization 
where the linear density, the Yarn Break Load - YBL and the linear tenacity of the samples are 
determined. Continuing with the experimental tests, a procedure standardized by ISO 18962-2 is then 
carried out, consisting of three quasi-static stages and three dynamic stages, where the data acquired 
in the tests allow the determination of a dimensionless stiffness value. The results showed an increase 
in the quasi-static stiffness, tending to a plateau, and a linear increase in the dynamic stiffness, but 
with somewhat similar behavior between the samples. The results related to the total quasi-static 
stiffness also show that the specimens extracted from sub-ropes that underwent fatigue present greater 
total non-dimensionalized stiffness, this is indicative of the mechanical fatigue procedure as an 
improvement of the specimens, giving them greater stiffness, and consequently greater stresses 
rupture, a behavior that should be explored in future studies.  

© 2023 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

        
       In the early 1990s, Del Vecchio (1992) proposed mooring systems made entirely of polymeric fibers. In addition to 
replacing steel with synthetic fibers, it also represented a change in technique, moving away from steel catenaries and towards 
Taut-Leg systems. Over time, and advances in the offshore area, polymeric fibers are no longer an alternative material, and 
have become a consecrated material for such uses. Consequently these materials are widely studied, both in analytical, 
numerical and experimental approaches.  
 
       Synthetic ropes are used for offshore anchoring, mooring, and other marine applications (De Pellegrin, 1999; Rossi et al., 
2010; Bastos & Silva, 2020). It was applied to offshore structures in Brazil by Del Vecchio (1992), and is now being used in 
West Africa, the Gulf of Mexico, and on almost every oil rig. Usually, they manufacture polyester (Flory et al., 2007; Bastos 
et al., 2017; Louzada et al., 2017; Melito et al., 2019), high modulus polyethylene (HMPE) (Vlasblom et al., 2012; Stumpf et 
al., 2016; Cofferri et al., 2017; Belloni et al., 2021) and polyamide (Humeau et al., 2018; Nadalin et al., 2019; da Cruz et al., 
2020; Civier et al., 2022). Polyester ropes still dominate the market. They are used due to their low cost, simple processability, 
easy blending with other fibers, and recyclability (Louzada et al., 2017; Duarte et al., 2019; Melito et al., 2019; Jaffe et al., 
2020; Khalid et al., 2020; Zorzanelli et al., 2023). It has good performance when submitted to cyclic loads, and its fatigue life 
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increases as the amplitude decreases (Louzada et al., 2017). However, if the traction load in the polyester yarn is high, the 
fatigue life of the yarn is reduced (Louzada et al., 2017).  

      Moreover, its fatigue life in low load traction is not affected by the submersion in sea water (Louzada et al., 2017; Duarte  
et al., 2019), which is great for the mooring application. However, it was observed that when immersed in water at a 
temperature above 80º C, polyester undergoes hydrolysis that leads to chain splits in the amorphous phase, changing the 
material characteristics. This phenomenon causes a change in mechanical proprietie and, besides that, degradation can cause 
ocean pollution by microplastics (Arhant et al., 2019). Therefore, knowing the material in different applications is important 
because any change in load and environmental conditions can cause a change in its properties. 

      When designing a rope for stationkeeping, knowing only the yarn breaking load is not sufficient. Generally, parameters 
such as fatigue, creep, and stiffness should also be used in the material’s characterization and monitoring (De Pellegrin, 1999; 
Stumpf et al., 2016; Louzada et al., 2017; Cofferri et al., 2017; Duarte et al., 2019; Melito et al., 2019; Belloni et al., 2021; da 
Cruz et al., 2022b). Stiffness is a fundamental parameter because it describes the load-elongation behavior. However, stiffness 
does not behave linearly on polymeric yarns, and it cannot be determined in a simple tensile test because the behaviour of 
synthetic material is not linear and verified in the data obtained. So, it was necessary to develop empirical-logarithmic 
equations to predict said behavior (Del Vecchio, 1992). Later on, these equations were used to determine the materials’ 
stiffness modulus, at which time they were usually dimensioned in GPa and N/tex. Currently, stiffness modulus is non-
dimensional according to the technical standard, which has specific criteria for stiffness determination (ISO, 2019). 

      Polymeric yarns stiffness primary data (load and elongation) should be measured in two different situations portrayed in 
reality (Stumpf et al., 2016). The first is quasi-static, representing a mooring condition, and the second is dynamic, 
representing a storm or a condition of severe wave frequency (Del Vecchio, 1992; Casey & Banfield, 2002; Liu et al., 2014). 
In 1999, a characterization of the polyester stiffness using mean load, load amplitude and frequency was developed. In the 
present study was demonstrated that the mean load is the main parameter determining the dynamic modulus (Bosman & 
Hooker, 1999). In the same year, another study about polyester stiffness using elasticity modulus, cross section area and length 
was published showing that an increase in load on the dynamic stiffness hardened the material (Fernandes et al., 1999). Also, 
a series of real-scale tests and experimental studies in the laboratory were carried out to obtain the approval and certification 
of the ropes and the behavior of the fibers that compose them. 

      With the standardized stiffness tests (ISO, 2019), several other studies began to emerge. The first research concluded that 
polyester yarns had an increase in dynamic stiffness with an increase in mean load (François & Davies, 2008). One second 
study compared polyester (PET) to polyethylene naphthalate (PEN) in stiffness and tenacity of fiber, stating that PEN can 
also be used instead of PET (Davies et al., 2008). Third, for the dynamic condition, stochastic loadings were used, and longer 
steps were used for the quasi-static condition, resulting in an increase in dynamic stiffness with increasing load in polyamide 
fibers (François et al., 2010). HMPE showed stable results by using the same methodology. The first phase tests for quasi-
static and dynamic stiffness presented the lowest results, followed by a considerable increase in the second phase test, and 
finally, a smaller increase was found in the last test (Stumpf et al., 2016). Another study quantified the mean and time-varying 
axial stiffness properties of a polyamide mooring rope using similar stiffness standards, noting that the load history on the 
rope significantly influences its performance (Weller et al., 2014). Therefore, quasi-static and dynamic stiffness can become 
a way to monitor synthetic rope applied to mooring and other offshore applications. 

      Observing the highlighted studies, and the state-of-the-art as a whole, there is a scarcity of works focused on comparing 
quasi-static and dynamic stiffness at different levels of mechanical use. Therefore, the objective of this work is to compare 
quasi-static and dynamic stiffness of polyester yarns at different load levels or mechanical degradation. Having as material 
the polyester of different parts of tested sub-ropes, and applying for the experimental procedure the technical standard ISO 
18692-2: Fiber ropes for maintenance of the offshore station-Technical standard of polyester. 

2. Materials and Methods 

      In this investigation, PET samples were extracted from a virgin spool and also from sub-ropes. The mechanical tests 
carried out on the sub-ropes from which the samples were extracted were in uniaxial tension until failure and it was also tested 
only in fatigue. Thus, five different specimens of PET wires were used for stiffness testing. The first was a virgin wire 
(extracted from the coil), and the other four specimens were taken from the understring test, adding the five different samples. 
The four samples were taken from the sub-rope in regions selected to theoretically show damage. These chosen regions were 
the center and splicing hands.Such samples were chosen because they emulated various levels of mechanical usage of a rope 
applied to a mooring operation. The tensile tested as a comparison to a rope prior to breaking, and the fatigued as a rope with 
a normal usage. And by taking samples not only from the body but from the eye splice it is also possible to emulate a bending 
condition. 
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     First, a mechanical characterization was necessary to compare the different wires. For this purpose, tensile tests were 
performed to determine their rupture or Yarn Break Load - YBL (ASTM, 2014). The tests were carried out on an Instron 3365 
(Fig. 2B), with a load cell capacity of 5 kN and equipped with a rope and wire gripper, with a capacity of 2 kN, initial length 
between fixation of 500 mm and speed of 250 mm/min. Before the test, the specimens (Fig. 1A) were stretched out on a table, 
secured with a glued joint at both ends, followed by sixty (60) twists per meter around its axis, as it is recommended by the 
standard (ASTM, 2014), and a twist value that, according to the literature, homogenizes and optimizes the breaking value of 
polyester yarns (da Cruz et al., 2022a). Thirty (30) specimens were tested for each YBL determination, thus reducing the 
standard deviation. 

 

Fig. 1. (A) Specimens ready to be twisted; (B) Sample ready for QSS and DS test. 

 

Fig. 2. (A) OHAUS Adventurer scale; (B) Instron 3365. (C) Instron ElectroPuls E3000. 

     Later on, the fibers’ linear density was determinated according standard 2060: Textiles –Yarn from Packages- 
Determination of linear density (mass per unit length) by the skein method (Weller et al., 2014). Samples were one meter long 
and ten specimens per material were weighted on the precision scale (Fig. 2A) during a stabilization time of 5 minutes. After 
the YBL (in Newtons) and Linear Density (in tex – tex is g/km) are determined, it is possible to find the Linear Tenacity in 
Newtons per tex. 

     To determine the Quasi Static and Dynamic Stiffness (QSS and DS, respectively) the tests are not so straightforward, 
various controlled forces have to be applied throughout specific time periods. In order to achieve that an Instron ElectroPuls 
E3000 testing machine (Fig. 2C) with a 5 kN load cell and a 1 kN wedge action grip was used. Three samples per type of yarn 
were tested, they had 250 mm in length and were secured on both ends with a sandwich type bond (Fig. 1B). 

     The test routine, based on the ISO 18692-2 standard: Fiber Ropes for Offshore Station Maintenance, consists of 21 different 
steps (Fig. 3). It is divided into two sections: the first section is quasi-static and the second is dynamic. The routine is described 
in Table 1 and represented in Fig. 3. 
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Table 1. Test routine for quasi-static and dynamic stiffness (ISO 18692-2) 
  Step Description 

Pre-Test 
 R1 Ramp to 10% YBL in 1 minute 
 H1 Hold of 10% YBL for 1 minute (this represents the process called “bedding in” the modification of 

the mechanical properties in the first loading, as stated by Lian et al. (2018)) 

Quasi-Static 

QSS 1 

R2 Ramp to 30% YBL in 2 minutes 
H2 Hold at 30% YBL for 30 minutes 
R3 Ramp to 10% YBL in 2 minutes 
H3 Hold at 10% YBL for 30 minutes 

QSS 2 

R4 Ramp to 30% YBL in 2 minutes 
H4 Hold at 30% YBL for 30 minutes 
R5 Ramp to 10% YBL in 2 minutes 
H5 Hold at 10% YBL for 30 minutes 

QSS 3 

R6 Ramp to 30% YBL in 2 minutes 
H6 Hold at 30% YBL for 30 minutes 
R7 Ramp to 10% YBL in 2 minutes 
H7 Hold at 10% YBL for 30 minutes 

Preparation  R8 Ramp to 30% YBL in 2 minutes 

Dynamic 

DS 1 C1 Cyclic load between 30-40% YBL 
Frequency of 0.1 Hz, 100 cycles (16.67 minutes) 

 R9 Ramp to 40% YBL in 1 minutes 

DS 2 C2 Cyclic load between 40-50% YBL 
Frequency of 0.1 Hz, 100 cycles (16.67 minutes) 

 R10 Ramp to 50% YBL in 1 minutes 

DS 3 C3 Cyclic load between 50-60% YBL 
Frequency of 0.1 Hz, 100 cycles (16.67 minutes) 

Unloading  R11 Ramp to 0% YBL in 5 minutes 
Total time=253 minutes (15180 seconds) 

 
Fig. 3. Test routine based on ISO 18692: Fiber ropes for offshore stationkeeping. 

     To determine the Quasi Static and Dynamic Stiffness the data was to be put on an Eq. (1), which needs six different 
parameters: The Yarn Breaking Load (YBL) (in N), the initial length of the sample (𝐿) (in mm), the load applied at the 
beginning of the step being tested (𝐹ଵ) (in N), the variation in the length of the sample then (𝐿ଵ) (in mm), the load applied at 
the end of the step being tested (𝐹ଶ) (in N) and the variation in length of the sample then (𝐿ଶ) (in mm). This equation delivers 
a non-dimensional stiffness, which can be found in more recent papers, as (Casey & Banfield, 2002; François & Davies, 2008; 
Davies et al., 2008; Weller et al., 2014), in comparison to other equations that deliver a modulus in N/tex or other dimensions 
(Liu et al., 2014; Bosman & Hooker, 1999). These moduli were also described by Del Vecchio (1992) and in the compilation 
done by De Pellegrin (1999). 

𝑄𝑆𝑆,𝐷𝑆 = ቂሺிమିிభሻ ቃቂሺమିభሻሺబିమሻቃ 
(1) 
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3. Results and Discussions 

      Table 2 presents the initial data regarding the mechanical characterization of the PET samples tested here. It can be seen 
from the mechanical characterization that YBL, Linear Density and Linear Tenacity did not change much among the five 
samples. But it is possible to observe a decrease in Linear Density in all samples except the spool samples, which is expected, 
and another slight decrease in YBL in the samples tested in tension. In Table 2, in addition to the failure force values, the 
values in terms of stress in MPa are also presented. In fact, the mathematical definition of force over area is difficult to apply, 
due to the lack of accuracy in determining the area of a set of wires. Thus, a mathematical device is used for this determination, 
where the stress calculation is based on the rupture force (𝐹), on the linear density (𝜌) and on the specific gravity (𝜌) of the 
material, Eq. (2). In this case, for polyester, its specific gravity corresponds to 1.38 g/cm3, and the other data are corresponding 
to each group. 

𝜎ሾ𝑀𝑃𝑎ሿ = 𝐹ሾ𝑁ሿ ∙ 𝜌ሾ𝑔/𝑐𝑚ଷሿ𝜌ሾ𝑔/𝑚ሿ  
(2) 

 
Table 2. Samples’ Mechanical Characterization 

Sample Spool (Virgin) Eye Splice Sample 
Tensile Tested 

Body Sample Tensile 
Tested 

Eye Splice Sample 
Fatigued 

Body Sample 
Fatigued 

YBL [N] 174.4 ± 3.2 167.4 ± 4.3 168.9 ± 5.0 172.7 ± 4.2 174.0 ± 4.2 
Linear Density [tex] 233.8 ± 0.8 225.3 ± 1.3 224.6 ± 1.1 227.2 ± 1.3 225.3 ± 1.8 

Tension [MPa] 1029,39 1025,35 1037,76 1048,97 1065,78 
Linear Tenacity 

[N/tex] 0,746 ± 0,016 0,743 ± 0,024 0,752 ± 0,026 0,760 ± 0,023 0,772 ± 0,025 

      For each of the five types of samples, three specimens were tested following the test routine indicated in Table 1, and in 
Fig. 3. The data acquired during the test are applied in Equation 1 to determine the quasi-static stiffnesses: QSS 1 , QSS 2, 
QSS 3 and QSS Total, and also the dynamic stiffnesses: DS 1, DS 2 and DS 3. Table 3 shows the mean and standard deviation 
for all five sample types across all seven stiffnesses. The data are plotted in four different graphs, the QSS for the tensile tested 
samples, the QSS for the fatigued samples, the DS for the tensile tested samples and the DS for the fatigue tested samples, all 
compared with the virgin samples. Shown here in Fig. 4, Fig. 5, Fig. 6 and Fig. 7, respectively. 

Table 3. Quasi-Static and Dynamic Stiffness. 
Sample Spool (Virgin) Eye Splice Tensile 

Tested Body Tensile Tested Eye Splice Fatigued Body Fatigued 

QSS 1 4,26 ± 0,09  4,36 ± 0,12 3,61 ± 0,07 5,05 ± 0,17 4,78 ± 0,14 
QSS 2 14,80 ± 0,09 14,66 ± 0,12 14,86 ± 0,16 14,48 ± 0,17 14,85 ± 0,12 
QSS 3 15,61 ± 0,05 15,21 ± 0,10 15,36 ± 0,22 15,02 ± 0,11 15,25 ± 0,12 

QSS Total 4,20 ± 0,11 4,32 ± 0,05 3,60 ± 0,06 5,02 ± 0,18 4,78 ± 0,13 
DS 1 23,58 ± 0,11 23,20 ± 0,16 23,53 ± 0,41 22,91 ± 0,18 23,19 ± 0,13 
DS 2 25,91 ± 0,05 25,63 ± 0,13 26,13 ± 0,39 25,28 ± 0,14 25,58 ± 0,13 
DS 3 28,63 ± 0,15 28,16 ± 0,17 28,76 ± 0,56 27,83 ± 0,21 28,09 ± 0,16 

 

Fig. 4. Quasi Static Stiffness for the Tensile Tested samples. 
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Fig. 5. Quasi Static Stiffness for the Fatigued samples. 

 

Fig. 6. Dynamic Stiffness for the Tensile Tested samples. 

 

Fig. 7. Dynamic Stiffness for the Fatigued samples. 
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      One can also compile the graphs into two general graphs, one for the dimensionless quasi-static stiffness values, and 
another for the dimensionless dynamic stiffness values. Although it is about 5 curves, and sometimes difficult to interpret, 
this graph allows comparing the dimensionless values between the samples of the sub-rope broken by traction, and the samples 
of the fatigued sub-rope. Fig. 8 shows the curves for dimensionless quase static stiffness, and Fig. 9 shows the curves for 
dimensionless dynamic stiffness. 

 

Fig. 8. Quasi Static Stiffness for all samples type. 

 

 
Fig. 9. Dynamic Stiffness for all samples type. 

       
Other investigations reached similar results for the dynamic stiffness but instead of using an amplitude of 10% YBL, they 
used 0,6% at 40% (Casey & Banfield, 2002). Moreover, Davies et al. (2008) found lower results for DS, around 18 instead of 
a value between 23 and 28, but at a stochastic not synodical loading. And showed a very similar result for QSS Total. François 
& Davies (2008) did a somewhat similar test for QSS and reached a similar value when using sub-ropes and full-size ropes 
which concludes that a study on yarns characterizes the behavior of a sub-rope and rope. There is a clear increase in stiffness 
on the overall Quasi Static and the Dynamic tests, for all materials. Which indicates that upon usage a multi-filament tends to 
get stiffer. In the QSS the results tend to stagnate towards QSS 3, which could indicate that the stiffness reached a “plateau”. 
The same behavior can be seen in other materials as the High Modulus Polyethylene (HMPE) in (Stumpf et al., 2016), further 
studies should increase the number of QSS cycles. A somewhat different procedure was conducted in (Liu et al., 2014) and 
showed that stiffness tends to plateau with the increase in number of cycles.  Even though the Dynamic stiffness on the 
Fatigued samples are lower than the Spool samples, and in the QSS Total for the Body Tensile Tested and the Eye Splice 
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Fatigued are the ones most variant in comparison to the Spool, lower and higher, respectively. It is possible to see that the 
overall behavior is very similar throughout all the different samples. Which indicates that although the samples have been 
used and treated in different ways, their stiffness has not changed significantly. Addressing specifically the QSS Total that 
can be calculated by assigning the data in Eq. (1) that encompasses all three quasi-static steps, one can compare the 
dimensionless values for each of the 5 types of samples. Fig. 10 shows this data, which are the values for QSS Total shown 
in Table 3. 

 

Fig. 10. Quasi Static Stiffness Total for all samples type. 

  From the behavior and values presented, it should be highlighted the low value of QSS Total for the sample extracted from 
the body region of the sub-rope tested under tension. This may be due to the fact that in the sub-rope test, the abrupt stretching 
of the chains confers greater stiffness to the multifilament extracted from this part, thus, the elongation evolution in the three 
static steps performed in the routine does not represent an increase in total quasi-static stiffness as significant as for the others, 
works in the literature can be referenced that show the mechanical degradation that rupture tests or other mechanical 
procedures can have on specimens (Dobah et al., 2016; Gagel et al., 2006; Shah, 2016; Khoddami et al., 2009). Still on the 
QSS Total, it should be noted that the highest dimensionless stiffness values are for the specimens extracted from the sub-
rope subjected to fatigue. This is due to a mechanical improvement, there is the formation of an amorphous phase within the 
material that confers greater stiffness (Santos, 2002). The dynamic load makes this ordering better elaborated, in the same 
way that low impact loads in a controlled way can allow this mechanical improvement (Sry et al, 2017; Cruz et al., 2023), 
fatigue loads can have the same effect of conferring greater stiffness (da Cruz et al., 2023; Tate et al., 2018; Baley, 2002; 
Capela et al., 2019), it can also be inferred by intuition that this mechanical improvement can be improved as smaller fatigue 
amplitudes are made but with longer durations as long as the integrity of the wires is still maintained. Making parallels with 
what happens in steels, one can relate a cold work, a work hardening that mechanically improves the material. 

4. Conclusions 

      Complementing the literature on the subject of Quasi Static and Dynamic Stiffness on synthetic materials, this work comes 
as a study of the effects of  mechanical degradation on PET’s Stiffness values, based on the technical standard. Polyester 
being the most used for a variety of marine applications. After analyzing the data, the Quasi Static and Dynamic Stiffness for 
the different samples tested herein did not vary significantly. Even though it is possible to see slight changes in their value, 
specially for the Dynamic Stiffness for Fatigued and Tensile Tested samples, it would be frivolous to say that such small 
variations should be considered a completely different behavior.  Another important conclusion found is that the bedding-in 
process is necessary. The Quasi Static stiffness increases with the number of cycles, until it reaches a plateau. This means that 
without the bedding-in the QSS 1 result would have been wrong, because it would have contained the mechanical properties 
“plastic” variation. What can also be concluded by comparing the results shown herein with the overall results in other papers 
is that the stiffness behavior expressed by a yarn can characterize the behavior of a rope and sub-rope, since they were very 
similar. The results presented here, show the overall behavior of PET samples as for their Quasi Static and Dynamic Stiffness. 
The data for a material’s stiffness, and how it varies, is of the utmost importance for the design of a rope for offshore anchoring, 
mooring or other marine applications. An essential part of the results is related to the QSS Total. Understanding the abrupt 
stretching of a specimen taken from a portion of a sub-rope that underwent rupture as a limiting factor for stiffness gain in the 
procedure, while the sample extracted from a sub-rope that underwent a fatigue process presents the greatest QSS Total values, 
where fatigue works as stiffness gain and mechanical improvement. This result itself should be explored in future studies, 
understanding how dynamic loads (fatigue and impact) can provide such improvement, and even if it can be achieved through 
a static load such as creep, for example. 
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Still along the same lines, the combination of these mechanical tests to determine maximum stiffness can be explored, a 
possible example is the performance of a controlled impact for the main stretching of the chains, followed by a fatigue cycle 
at low load and low amplitude but for long times, and by end as a "refinement" of the mechanical improvement a creep 
procedure with low load that still guarantees the integrity of the sample. 
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