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 This work is interested with a thermoelastic response in a micro-stretch half-space submerged in an 
unlimited non-viscous fluid under rotation, the medium is studied using the theory of Green-Naghdi 
(G-N III) and the model of three-phase-lag (3PHL). The governing equations are formulated in the 
context of G-N theory and the 3PHL model. Analytical solution to the problem is acquired by utilizing 
the normal mode method. The magnesium crystal element is utilized as an application to compare the 
predictions induced by rotation on microstretch thermoelastic immersed in an infinite fluid of G–N 
theory with those for the 3PHL model. Rotation has been noticed to have a major effect on all physical 
quantities. Comparisons were also made for three values of wave number b and three values of the 
real part frequency ω0.   
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Nomenclature  
u  Displacement vector in micro-elongated medium    e  Dilatation 

ντ  Phase lag of thermal displacement gradient            Ω   Rotation 

Ec  Specific heat at the constant strain                          iϕ   Micro-rotation vector          

0 0 1, , , , , ,k α β γ α λ λ  are material constant                     *ϕ  Scalar microstretch function  

0j  Micro-inertia of microelement                                 ijσ Component of stress tensor 

ijm  Component of couple stress tensor                          j   Micro-inertia                                                      
*k  Additional material                                               ,λ μ  Lame’s constants 
*
1k  Thermal conductivity                                               ijrε  Alternate tensor  

θτ   The temperature gradient phase lag                          qτ   The heat flux phase lag 

ρ  Density for microstretch                                            ijδ   Kronecker delta  
fu    Displacement vector for fluid                                   fλ   The bulk modulus         
f

ijσ  Component of stress tensor of fluid                           
fρ   Density of the fluid                                    

1
fc   The velocity of sound of the fluid            

21
,t tα α linear thermal expansion coefficient    where 11 (3 2 ) ,tkβ λ μ α= + +

2
(3 2 ) tkν λ μ α= + +  
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1. Introduction 

        
      Many media, such as animal bones, solids with micro-cracks, porous media with gas-filled pores, foams, and inviscid 
fluids, fall just outside the domain of micropolar elasticity. As a result, scientists needed to develop a mathematical model to 
study these media, and they chose microstretch as a mathematical model for these types of solids. There are seven degrees of 
freedom in microstretch elastic solids: three in rotation, three for translation, and one for the stretch. Microstretch bodies' 
material points can extend and shrink independently of translation and rotating. Sharma et al. (2007) examined the spreading 
of generalized Rayleigh surface waves in an isotropic, homogeneous, thermo-elastic micro-stretch solid half-space underlying 
a non-viscous fluid half-space in the context of classical and non-classical thermoelasticity theories. Kumar and Partap (2009) 
discussed the development and spread of free vibrations in a micro-stretch thermoelastic isotropic homogeneous 
thermodynamically conducting plate bordered on both sides by layers of an inviscid fluid, using the thermoelastic theories of 
the Lord and Shulman (L-S) and the Green and Lindsay (G-L). The spreading of straight and round crested waves in micro-
stretch thermoelastic plates bounded by inviscid fluid layers with different temperatures on two sides using generalized 
thermo-micro-stretch elasticity theory was examined by Kumar et al. (2011). Xu et al. (2011) studied a model based on fluid-
structure interaction theory to describe the thermoelastic generation with laser and spreading of Leaky Lamb waves at the 
interface of water-aluminum. Kumar et al. (2014) explored the spreading of Rayleigh-type surface waves in a micro-stretch 
thermoelastic homogeneous diffusion medium half-space with just a layer of non-viscous fluid. The phenomenon of refraction 
and reflection at a plane interface among a non-viscous liquid medium and a micro-stretch thermoelastic diffusion, medium 
is studied by Kumar (2014). Othman and Ismail (2015) employed the Lord-Shulman theory and the DPL model to investigate 
the impact of gravity on a micro-elongated thermoelastic solid under the fluid load. Deswal et al. (2022) examined the 
reflection of waves at the free surface of a nonlocal micro-stretch thermoelastic medium under the model of 3PHL with 
temperature-dependent properties. 
  
     Othman and Atwa (2014) utilized the theory of Green-Naghdi to discuss the influence of gravity and rotating reinforcement 
on overall body deformation and their mutual interaction. Marin and Öchsner (2018) examined an initial boundary value 
problem for modeling a piezo-electric dipolar body. Abouelregal et al. (2021) researched thermo-photovoltaic interactions 
employing a new thermoelasticity mathematical model based on a modification of the G-N theory of type III. Kutbi and 
Zenkour (2021) proposed four thermoelasticity models that could be applied to simulate thermomechanical waves in an 
axisymmetric rotating disc. Youssef and El-Bary (2022) designed a novel mathematical formula for a semiconducting solid 
sphere focused on photo-thermal interaction in the context of the three G-N models: type-I, type-II, and type-III. Lata and 
Himanshi (2022) studied the impact of the fractional order parameter in a 2D orthotropic magneto-thermo-elastic plate in 
generalized thermo-elasticity employing the Green-Naghdi model of type II with fractional order heat transfer throughout the 
context of hall current, two-temperature and rotation due to normal force. 
  
      Roy Choudhuri (2007) established a neoteric theory known as the 3PHL model for a heat transport mechanism in which 
the Fourier law is replaced by a strategy to a modification of the Fourier law with different time's translations for the heat 
flux, temperature gradient, and thermal displacement gradient. Kumar and Chawla (2011) examined the spreading of plane 
waves in anisotropic thermoelastic media utilizing 3PHL and DPL thermoelastic models. One-dimensional thermoelastic 
disturbances in an unlimited, isotropic, functionally graded thermo-viscoelastic medium in the background of G-N model II, 
G-N model III and the 3PHL thermoelastic models, in the existence of variated periodically different heat sources is examined 
by Sur and Kanoria (2014). After five years, the previous theories are used to study two-temperature fiber-reinforced 
thermoplastic isotropic medium with the effect of gravity field by Othman et al. (2019). Sharma et al. (2021) explored the 
influence of the 3PHL generalized thermoelastic model on the perfect evaluation of 3D free vibrations of a viscous 
thermoelastic solid cylinder that is supposed to be undeformed at first and at a uniform temperature. In the context of the 
model of 3PHL, Othman and Abbas (2021) investigated the 2D deformation of the thermoelastic micropolar plate with the 
rotation utilizing the model of 3PHL. Marin et al. (2020) studied the structural stability for an elastic body with voids having 
dipolar structure. The normal mode method was applied to find the solution to the 2D distortion of the thermoelastic micro-
elongated plate under the initial stress and one relaxation time on the model of DPL introduced by Othman et al. (2021). 
Several authors studied about generalized thermoelastic materials by using the normal mode method which can be found in 
some references (Marin et al., 2022; Othman et al., 2021; Sur, 2022; Miszuris & Öchsner, 2013; Abouelregal et al., 2022). 
 

      In this work, we focused our attention to explore the thermoelastic response in a micro-stretch thermoelastic half-space 
submerged in an unlimited non-viscous fluid under rotation as shown in Fig. 1, the medium is studied using the G-N theory 
and the 3PHL model. We started by explaining the basic equations and using non-dimensions. In the second, we employed 
the normal mode method to convert the partial differential equations to the ordinary differential equations. Afterward, we 
establish the boundary conditions at z d= ±  to discover the constant values of the solutions. Finally, the numerical results 
are put into practice, debated, and graphed. 
 
2.  The description of the problem and basic equations 
 
     In a 3PHL model, the system of governing equations of a microstretch thermoelasticity can indeed be expressed as (Kumar 
et al., 2014; Kumar & Chawla, 2011; Singh & Singla, 2020). 



M. I.A. Othman et al. / Engineering Solid Mechanics 11 (2023) 
 

301

The equation of motion  

, , ,[ { ( ) } ( 2 ) ].ji j i tt i t iuσ ρ= + × × + ×Ω Ω Ωu u  (1) 

The equation of micropolar 

, , ,[ ]ijr jr ji j i tt tm jε σ ρ ϕ+ = + ×Ω ϕ  (2) 

The equation of micro-stretch  
* * *

0 , 1 0 , 0 ,
1 1 1 3 .
3 3 3 2ii i ttT u jα ϕ ν λ ϕ λ ρ ϕ+ − − =  (3) 

The equation of heat under 3PHL model 
2

* * * * 2 *
, 1 , 1 , , 0 , 1 0 ,2

1( ) [1 ][ ],
2ii t ttii q q E tt tt ttk T k k T k T c T T T e

t tν θτ τ τ τ ρ ν ϕ β∂ ∂+ + + = + + + +
∂ ∂

 (4) 

where, G-N theory of type III, when ( *0, 0q kν θτ τ τ= = = > ).  

 
Fig. 1. Geometry of problem. 

The constitutive relations 
*

, 0 1 , , ,( ) ( ) ( ),ij r r ij i j j i j i ijr ru T u u k uσ λ λ ϕ β δ μ ε ϕ= + − + + +  (5) 

, , , ,ij r r ij i j j im α ϕ δ β ϕ γ ϕ= + +  (6) 

*
0 , ,, .k k k ke uλ α ϕ= =  (7) 

From Eq. (1) and Eq. (5) for 1 3( , , )= ( , 0, )x z t u u uu and ( 0, , 0 ),Ω=Ω the equations of motion can be written as 
* 2

, 1, 0 , 2, 1 , 1, 1 3,( ) ( ) [ 2 ],x ii x z x tt te k u k T u u uλ μ μ λ ϕ ϕ β ρ Ω Ω+ + + + − − = − +  (8) 

* 2
, 3, 0 , 2, 1 , 3, 3 1,( ) ( ) [ 2 ].z ii z x z tt te k u k T u u uλ μ μ λ ϕ ϕ β ρ Ω Ω+ + + + − − = − +  (9) 

 From Eqs. (5) and (6) into Eq (2) for 2( 0, , 0 ),ϕ=ϕ the equation of micropolar is given by 

2, 1, 3, 2 2,( ) 2 .ii z x ttk u u k jγ ϕ ϕ ρ ϕ+ − − =  (10) 

   We employ the following dimensionless variables  
*

1

( , ) ( , ),x z x z
c
ω′ ′ =   

*
1

1 0

,i
i

c uu
T

ρ ω
β

′ =    *( , , , ) ( , , , ),q qt tν θ ν θτ τ τ ω τ τ τ′ ′ ′ ′ =     
2
1 2

2
1 0

,c
T

ρ ϕϕ
β

′ =    
0

,TT
T

′ =  

2 *
* 1

1 0

,c
T

ρ ϕϕ
β

′ =      
1 0

,ij
ij T

σ
σ

β
′ =      

*

1 1 0

,ij
ij

m
m

c T
ω

β
′ =        

*

1 1 0

,k
k c T

ω λλ
β

′ =       * ,ΩΩ
ω

′=        2
1

2 .kc λ μ
ρ

+ +=  
(11) 

   After introducing the displacement potentials ( , , )x z tΦ  and ( , , )x z tψ  which correspond to displacement components, 
we acquire 

1 , , 3 , ,, .x z z xu uΦ ψ Φ ψ= + = −  (12) 

    Substituting Eqs. (11) and (12) in Eqs. (3), (4), (8), (9) and (10), we obtain 
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2
2 2 *

1 2 , 32[ ( ) ] 2 0,ta a a T
t

Ω Φ Ωψ ϕ∂+ ∇ + − + + − =
∂

 (13) 

2
2 2

2 , 4 22[ ] 2 0,ta a
t

Ω ψ Ω ϕ∂∇ + − − Φ − =
∂

 (14) 

2
2 2

5 6 2 52[ 2 ] 0,a a a
t

ϕ ψ∂∇ − − + ∇ =
∂

 (15) 

2
2 * 2

7 3 10 8 92
1 3 1 1[ ] 0,
3 2 3 3

a a a a T a
t

ϕ Φ∂∇ − − + − ∇ =
∂

 (16) 

2
2 2 2 2 * 2

11 , 11 , 12 , 13 , 14 ,2
1( ) [1 ][ ].
2t tt q q tt tt ttT a T a T a T a a

t tν θτ τ τ τ ϕ Φ∂ ∂∇ + + ∇ + ∇ = + + + + ∇
∂ ∂

 (17) 

3.  Normal mode analysis  
  
     The solution of the considered physical variable can be decomposed in terms of the normal mode method take the following 
form: 

* * ( )
2 2[ , , , , , , , , , ]( , , ) [ , , , , , , , , , ] ( ) .f f f f i b x t

i ij ij i ij i ij ij i iju T m u x z t u T m u z e ωΦ ψ ϕ ϕ σ σ Φ ψ ϕ ϕ σ σ −=  (18) 

where, ω  is the frequency, 1i = −  is the complex number and b  is the wave number in the x − direction. Using Eq. (18) 
in Eqs. (13)-(17), we have  

2 *
1 2 3 3( D ) 0,a Tδ δ Φ δ ψ ϕ+ − + − =  (19) 

2
5 2 4 4 2( D ) 0,a aδ Φ δ ψ ϕ+ + − =  (20) 

2 2 2
5 5 6 2( D ) (D ) 0,a a b ψ δ ϕ− + + =  (21) 

2 2 *
8 9 7 7 10( D ) ( D ) 0,a Tδ δ Φ δ ϕ δ+ + + + =  (22) 

2 * 2
12 13 16 14 15( D ) ( D ) 0,Tδ δ Φ δ ϕ δ δ− + + + =  (23) 

      The existence of non-trivial solutions demands the following necessary and sufficient condition to be hold, i.e., the 
determinant of the above Eqs. (19-23) needs to be zero, we get  

10 8 6 4 2 *
2(D D D D D ){ ( ), ( ), ( ), ( ), ( )} 0.A B C E F z z z z T zΦ ψ ϕ ϕ− + − + − =  (24) 

     Eq. (24) can be factorized as: 
2 2 2 2 2 2 2 2 2 2 *

1 2 3 4 5 2(D )(D )(D )(D )(D ){ ( ), ( ), ( ), ( ), ( )} 0.k k k k k z z z z T zΦ ψ ϕ ϕ− − − − − =  (25) 

where, 2 , ( 1, 2, 3, 4, 5 )nk n = are the roots of the characteristic equation of Eq. (25). 
The solution of Eq. (25) has the shape: 

5 5

5
1 1

( ) ,k z k zn n
n n

n n
z M e M eΦ −

+
= =

= +   (26) 

5 5

1 1( 5) 5
1 1

( ) ,k z k zn n
n n n n

n n
z H M e H M eψ −

+ +
= =

= +   (27) 

5 5

2 2 2( 5) 5
1 1

( ) ,k z k zn n
n n n n

n n
z H M e H M eϕ −

+ +
= =

= +   (28) 

5 5

3 3( 5) 5
1 1

( ) ,k z k zn n
n n n n

n n
T z H M e H M e −

+ +
= =

= +   (29) 

5 5
*

4 4( 5) 5
1 1

( ) .k z k zn n
n n n n

n n
z H M e H M eϕ −

+ +
= =

= +   (30) 

      Substituting from Eqs. (26) and (27) in Eq. (12) we acquire 
5 5

1 1 1( 5) 5
1 1

( ) [ ] [ ] ,k z k zn n
n n n n n n

n n
u z i b k H M e i b k H M e −

+ +
= =

= + + −   (31) 

5 5

3 1 1( 5) 5
1 1

( ) [ ] [ ] .k z k zn n
n n n n n n

n n
u z k i b H M e k i b H M e −

+ +
= =

= − − +   (32) 

     By compensation from Eqs. (11-18) into Eqs. (5-7) and by using Eqs. (28-32) we infer that the components of the stress 
tensor, the following components  
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5 5

5 5( 5) 5
1 1

( ) ,k z k zn n
xx n n n n

n n
z H M e H M eσ −

+ +
= =

= +   (33) 

5 5

6 6( 5) 5
1 1

( ) ,k z k zn n
yy n n n n

n n
z H M e H M eσ −

+ +
= =

= +   (34) 

5 5

7 7( 5) 5
1 1

( ) ,k z k zn n
zz n n n n

n n
z H M e H M eσ −

+ +
= =

= +   (35) 

5 5

8 8( 5) 5
1 1

( ) ,k z k zn n
xz n n n n

n n
z H M e H M eσ −

+ +
= =

= +   (36) 

5 5

9 9( 5) 5
1 1

( ) ,k z k zn n
zx n n n n

n n
z H M e H M eσ −

+ +
= =

= +   (37) 

5 5

18 2 18 2( 5) 5
1 1

( ) ,k z k zn n
xy n n n n

n n
m z i ba H M e i ba H M e −

+ +
= =

= +   (38) 

5 5

19 2 19 2( 5) 5
1 1

( ) ,k z k zn n
yx n n n n

n n
m z iba H M e iba H M e −

+ +
= =

= +   (39) 

5 5

18 2 18 2( 5) 5
1 1

( ) ,k z k zn n
zy n n n n n n

n n
m z a k H M e a k H M e −

+ +
= =

= −   (40) 

5 5

19 2 19 2( 5) 5
1 1

( ) ,n nk z k z
yz n n n n n n

n n
m z a k H M e a k H M e −

+ +
= =

= −   (41) 

5 5

7 4 7 4( 5) 5
1 1

( ) ,k z k zn n
x n n n n

n n
z iba H M e iba H M eλ −

+ +
= =

= +   (42) 

5 5

7 4 7 4( 5) 5
1 1

( ) ,k z k zn n
z n n n n n n

n n
z a k H M e a k H M eλ −

+ +
= =

= −   (43) 

where the coefficients ,ma  ,mδ ′ , , , , ,A B C E F ,n nH ′ (1, 2,......,19 ),m = (1,2,......,16 ),m ′=  (1,2,.....,9 )n ′=  are given 
in Appendix. 
The system of governing equation in the fluid is given by Deswal et al. (2022) 

  ,( . ) ,f f f f
ttλ ρ∇ ∇ =u u  (44) 

, .f f f
ij r r ijuσ λ δ=  (45) 

       Substituting from Eq. (18) into Eqs. (44-45) 
2 2

2
1 32

1

( ) D 0,f f

f

b b u i b u
c

ω − + =  (46) 

2 2
2

3 12
1

(D ) D 0,f f

f

b u i b u
c

ω+ + =  (47) 

where, 
2

1 .
f

f
fc λ

ρ
=  

     Eliminating 1 3,f fu u  between Eqs. (46-47), We obtain 
2 2

1 3[ D ] ( , ) 0.f fr u u− =  (48) 

where 
2 2

2 2
2

1

( ),
f

br b
c

ω= −  is the root of the characteristic equation of Eq. (48), the solution of Eq. (48) has the form 

1 3 11 1 12 2( , ) ( ) (1, ) (1, ) .f f r z r zu u z L R e L R e −= +  (49) 

Substituting from Eq. (18) in Eq. (45) and by using Eq. (49), we acquire the components of stresses in a fluid layer 

21 1 2 2 2( ) ( ) ( ) .f f f r z r z
xx yy zzz z z L R e L R eσ σ σ −= = = +  (50) 

Where, 11 2 2
2

2
1

,
[ ]

f

i b rL
br

c

ω
=

+
12 2 2

2
2

1

,
[ ]

f

i b rL
br

c

ω
−=
+

21 11[ ],fL ib rLλ= + 22 12[ ].fL ib rLλ= −  
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4. Boundary conditions 
 
     The boundary conditions for the problem at z d= ± , to determine the constants ,iM ′  ( 1, 2, ......, 10 ),i ′ =  1R  and 2 ,R  
are  

,f
xx xxσ σ= ( )

1 ,i b x t
xz f e ωσ −=  ( )

2 ,i b x tT f e ω−=  1 1 ,
fu u

z z
∂ ∂

=
∂ ∂

 0,ϕ∗ =  2 0ϕ =  at .z d=±  (51) 

     Using the expressions for 1 1, , , , , ,f f
xx xx xz T u uσ σ σ ϕ∗  and 2ϕ  in (51), we get  

5 5

5 5( 5) 5 22 2
1 1

0,k d k d r dn n
n n n n

n n
H M e H M e L R e− −

+ +
= =

+ − =   (52) 

5 5

5 5( 5) 5 22 1
1 1

0,k d k d r dn n
n n n n

n n
H M e H M e L R e− −

+ +
= =

+ − =   (53) 

5 5

8 8( 5) 5 1
1 1

,k d k dn n
n n n n

n n
H M e H M e f−

+ +
= =

+ =   (54) 

5 5

8 8( 5) 5 1
1 1

,k d k dn n
n n n n

n n
H M e H M e f−

+ +
= =

+ =   (55) 

5 5
2 2

1 1( 5) 5 2
1 1
[ ] [ ] 0,k d k d r dn n

n n n n n n n n
n n

ib k k H M e ib k k H M e r R e− −
+ +

= =
+ + − + + =   (56) 

5 5
2 2

1 1( 5) 5 1
1 1
[ ] [ ] 0,k d k d dn n

n n n n n n n n
n n

rib k k H M e ib k k H M e r R e− −
+ +

= =
+ + − + − =   (57) 

5 5

3 3( 5) 5 2
1 1

,k d k dn n
n n n n

n n
H M e H M e f−

+ +
= =

+ =   (58) 

5 5

3 3( 5) 5 2
1 1

,k d k dn n
n n n n

n n
H M e H M e f−

+ +
= =

+ =   (59) 

5 5

4 4( 5) 5
1 1

0,n nk d k d
n n n n

n n
H M e H M e −

+ +
= =

+ =   (60) 

5 5

4 4( 5) 5
1 1

0,n nk d k d
n n n n

n n
H M e H M e−

+ +
= =

+ =   (61) 

5 5

2 2( 5) 5
1 1

0,n nk d k d
n n n n

n n
H M e H M e −

+ +
= =

+ =   (62) 

5 5

2 2( 5) 5
1 1

0.n nk d k d
n n n n

n n
H M e H M e−

+ +
= =

+ =   (63) 

 
      By solving the above system of nonhomogeneous equations, we get the values of constants 1, ( 1, 2, ......, 10 ),iM i R′ ′ =  

and 2 ,R  then, we obtain the distribution of the displacement components 1,u 3 ,u  the temperature ,T  the scalar micro-stretch 

,ϕ∗  the microrotation 2 ,ϕ  the components of the stress , ,xx yyσ σ  , , ,zz zxxzσ σ σ  the components of couple stress tensor 

, , , ,xy yx zy yzm m m m  the micro-stress tensor , ,x zλ λ  horizontal displacement for fluid 1 ,fu  the vertical displacement for fluid 

3 ,fu  the stress components for fluid ,f f
xx yyσ σ  and .f

zzσ  
 
5. Numerical results and discussions 
 
    The analysis has been carried out for magnesium crystal-like material (Kumar and Partap, 2009). 

3 31.47 10 kg.m ,ρ −= × 10 29.4 10 N.m ,λ −= ×  10 24 10 N.m ,μ −= ×  19 20.2 10 m ,j −= ×  19 2
0 1.85 10 m ,j −= ×

10 21 10 N.m ,k −= ×  9
0 0.779 10 N,α −= ×  10 2

1 0.5 10 N.m ,λ −= ×  90.779 10 N,γ −= ×  0 298 K,T = 

10 2
0 0.5 10 N.m ,λ −= ×  6 2 1

1 2.68 10 N.m .k ,β − −= ×  6 2 12 10 N.m .k ,ν − −= ×  3 1 11.04 10 J.kg .k ,Ec − −= ×
2 1 1 1

1 1.7 10 J.m .s .k ,k ∗ − − −= ×  0.0171s,ντ =  0.031s,θτ =  0.5s,qτ =  0 1.90013,ω =  5.90018,ζ =  0 ,iω ω ζ= +  1,b =
2,d =  1 0.0201,f =  2 1.0502.f =   
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      As non-viscous fluid, the physical constants for water are given by Othman and Ismail (2022) 
9 22.25 10 N.m ,fλ −= ×  3 310 kg.m .fρ −=   

      In this work, the computations are carried out for the dimensionless time value 0.18t =  on the range 2 2z− ≤ ≤ on the 
surface 2.18x =  on all physical quantities. The numerical technique presented here is used to explain the variation of the 
physical quantities 1,u  3 ,u  ,ϕ∗  2 ,ϕ xxσ  and xzσ  with the distance .z  The graphs depict the theory of G-N III and the model 
of 3PHL predicted curves. Figs. 2-7 depict a comparison between the theory of G-N III and the model of 3PHL in the presence 
and complete absence of rotation. Fig. 2 describes the variation of 1u  versus the distance .z  It is noticeable that the values of 

1u  based on the theory of the G-N III are greater than the same values based on the model of 3PHL at the two cases Ω( = 0,1)  
along the distance .z  Fig. 3 shows the variation of  3u  versus the distance .z In the case of the presence of rotation, the two 
curves that represent the two theories begin with positive values, then decrease to vanish over the rang 2 0,z− ≤ ≤  and then 
increase again over the rang 0 2,z≤ ≤  whereas, in the absence of rotation, they begin with positive values and increase along 

the distance .z  Fig. 4 depicts the distribution of scalar micro-stretch ϕ∗  against .z  It is clarified that the values of ϕ∗  based 
on the theory of the G-N III are smaller than the same values based on the model of 3PHL at the two cases ( Ω = 0,1 ) along 
the distance .z  Fig. 5 clarifies the effect of rotation on the variation of the microrotation 2ϕ  against .z  In the presence of 
rotation, the two curves that represent the two theories begin at zero and increase to a maximum value, then decrease up to 
zero over range 2 0,z− ≤ ≤  then decrease to a minimum value and increase up to zero over range 0 2.z≤ ≤  Fig. 6 exhibits 
the distribution of xxσ  with a distance .z  It is noticeable that the values of xxσ  on both theories 3PHL and G-N III in the 
presence of rotation are smaller than the same values in the absence of rotation over the range 2 1,z− ≤ ≤ − and 1 1.5.z≤ ≤  
Fig. 7 illustrates the distribution of xxσ with a distance .z  It is clarified that the values  xxσ  dependent on the 3PHL model 
are smaller than the same values dependent on the G-N III theory in the presence pf rotation over the range 2 1.7z− ≤ ≤ −  
and 0.7 2,z≤ ≤  while the opposite occurs over the range 1.7 0.z− ≤ ≤   
 
     Figs. 8-13 are represented to illustrate the variation of the above quantities against ,z  in the presence of rotation Ω =1  
on the model of 3PHL for the different wave number b  values. These values are as follows 0.9, 1b b= = and 1.1.b =  Fig. 8 
demonstrates the influence of the wave number b  on 1.u  It is observed that the values of 1u  increase with the increase of the 
wave number b  over the range 2 1.5z− ≤ ≤ −  and 1 1.5,z≤ ≤  while the opposite occurs over the range 1.5 0.5.z− ≤ ≤ −   
Fig. 9 shows the influence of  the wave number b  on the vertical displacement 3.u  It is clarified that the values of 3u  decrease 
with the increase of the wave number b  on the range  2 1.4,z− ≤ ≤ −  After that, there is no difference between the three 

values of the wave number .b  Fig. 10 shows the influence of the wave number b  on the scalar micro-stretch .ϕ∗  It is observed 

that the values of ϕ∗  increase with the decrease of the wave number .b  on the range 2 1.75z− ≤ ≤ −  and 1.75 2,z≤ ≤  while 
the opposite occurs on the range 1.75 1z− ≤ ≤ −   and 1 1.75.z≤ ≤   Fig. 11 illustrates  the effect of the wave number b  on the 
microrotation 2.ϕ  With an increased the wave number ,b  the values of 2ϕ  increase on the range 2 1.8z− ≤ ≤ −  and 1 2.z≤ ≤  
Fig. 12 clarifies the influence of the wave number b  on the stress component .xxσ  With an decreased the wave number ,b   
the values of 2ϕ  decrease on the range 2 1.4z− ≤ ≤ −  and 1 2.z≤ ≤  Fig. 13 exhibits the variation of stress component xzσ  
versus z  under the effect of the wave number .b  It is clarified that the values of xzσ  decrease with the increase of the wave 
number b  on the range 2 1.5z− ≤ ≤ − and 1 2,z≤ ≤ while the opposite occurs on the range 1.5 0.5.z− ≤ ≤ −   Figs. 14-19 are 
graphed to describe and demonstrate the distribution of the above quantities versus ,z  in the presence of rotation Ω =1  on 
the model of 3PHL for the different values of the real part of the frequency 0.ω  These values are as follows 0 01, 2ω ω= =  

0 3.ω =  Figs. 14, 15, 16 and 18 show  the effect of the real part of the frequency 0ω  on 1,u  3 ,u  ϕ∗  and .xxσ  It is observed 

that the values of 1 3, ,u u ϕ∗  and xxσ  increase with the decrease of the real part of the frequency 0.ω  Fig. 17 demonstrates the 
variation of microrotation 2ϕ  versus z  under the effect of the real part of the frequency 0.ω  It is noticed that the values of 

2ϕ  increase with the increase of the real part of frequency 0ω  on the range 1.9 1.6z− ≤ ≤ −  and 1.1 1.6,z≤ ≤  while the 
inverse occurs on the range 1.6 1z− ≤ ≤ −  and 1.6 2.z≤ ≤  Fig. 19 illustrates the influence of the real part of the frequency 

0ω  on the stress component .xzσ  It is clarified that the values of xzσ  decrease with the decrease of the real part of frequency 

0ω  on the range 2 1.7,z− ≤ ≤ −  1.5 0.1z− ≤ ≤ −  and 1.8 2,z≤ ≤  while the inverse occurs on the range 1.7 1.5z− ≤ ≤ −  and 
0.1 1.8.z≤ ≤  
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Fig. 2. Variation of the horizontal displacement 1u  against .z  Fig. 3. Variation of the vertical displacement 3u  against .z  

 
 

Fig. 4. Variation of the scalar microstretch *ϕ   against .z  Fig. 5. Variation of the microrotation 2ϕ  against .z  

  

Fig. 6. Variation of the stress component xxσ  against .z  Fig. 7. Variation of the stress component xzσ  against .z  

  

Fig. 8. Influence of wave number b  on the distribution of 1u  in the 
presence  

of rotation 1)Ω( =  on (3PHL) model.  

Fig. 9. Influence of wave number b  on the distribution 3u   in the 

presence of rotation 1)Ω( =  on (3PHL) model.  

 
 

Fig. 10. Influence of wave number b  on the distribution of scalar 

microstretch *ϕ  in the presence of rotation 1)Ω( =  on (3PHL) 
model.   

Fig. 11. Influence of wave number b  on the distribution of microrotation 

2ϕ  in the presence of rotation 1)Ω( =  on (3PHL) model.   
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Fig. 12. Influence of wave number b  on the distribution of stress 

component xxσ  in the presence of rotation 1)Ω( =  on (3PHL) model.  

Fig. 13. influence of wave number b  on the distribution of stress 

component xzσ  in the presence of rotation 1)Ω( =  on (3PHL) model.  

  
Fig. 14. Effect of real part of frequency 0ω  on the variation of 1u  in 

the presence of rotation 1)Ω( =  on (3PHL) model.  

Fig. 15. Effect of real part of frequency 0ω  on the variation of 3u  in the 

presence of rotation 1)Ω( =  on (3PHL) model.  

 

Fig. 16. Effect of real part of frequency 0ω  on the variation of scalar 

microstretch 
*ϕ in the presence of rotation 1)Ω( =  on (3PHL) model.   

Fig. 17. Effect of real part of frequency 0ω  on the variation of 

microrotation 2ϕ in the presence of rotation 1)Ω( =  on (3PHL) model.   

 

  
Fig. 18. Effect of real part of frequency 0ω  on the variation of stress 

component xxσ  in the presence of rotation 1)Ω( =  on (3PHL) model.  

Fig. 19. Effect of real part of frequency 0ω  on the variation of stress 

component xzσ   in the presence of rotation 1)Ω( =  on (3PHL) model.  

 
 
 6. Conclusion 
  
     In this paper, the problem of the thermoelastic response in a micro-stretch thermoelastic half-space submerged in an 
unlimited non-viscous fluid under rotation is considered by employing the theory of G-N III and the model of 3PHL. Utilizing 
the normal mode analysis, the problem has been solved, from the results discussed above, it can be concluded that: 
 
1-  The influence of rotation plays a pivotal role in this study of thermoelastic solid distortion. 
2-  A comparison is made among the theory of G-N III and the model of 3PHL in the presence and complete absence of 
rotation. 
3-  A significant influence of thicknesses of fluid layers is also observed in micro-stretch thermoelastic solids. These results 
can be exploited in designing different devices in contact with the liquid.  
4-  The physical quantities are satisfying all the boundary conditions. 
5-  The wave number and the real part of the frequency parameter have a significant influence on all the physical quantities.  
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6- The study can be applied in the fields of seismology, geomechanics, earthquake, earthquake engineering, solid dynamics, 
etc.  
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