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 Solution for a normally loaded infinite isotropic plate containing five cracks with coalesced yield zones 
is obtained using a complex variable method. Influence of coalesced yield zones on the load bearing 
capability of the infinite plate is analyzed. Analytical expressions for stress intensity factors, 
displacement components and crack opening displacement (COD) are obtained. Numerical study is 
carried out to determine the yield zone length, applied load ratio and COD. The numerical results are 
reported graphically between some important parameters. 
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1. Introduction 

        
       The problem of yield zones coalescence has not received extensive theoretical treatment in fracture mechanics yet. The 
large multi-site damage (MSD) problem has been discussed without considering this effect. The subject of eventual concern 
therefore is to study the effect of coalesced yield zones on the load bearing capability of the structures. Multi-site damage is 
a big concern for the integrity and durability of the life-dependent structures like aircraft, buildings, bridges, etc. (Swift, 1994). 
Various accidents have taken place in the past due to decreasing residual strength of engineering materials on the sudden link-
up of several small cracks (Findlay & Harrison, 2002). Thus, the fracture mechanics-based analysis of these structures is 
important for their safe operations (Liu et al., 2019). 
  
       The main objectives of the fracture mechanics-based analysis are to determine the stress intensity factor (SIF), size of 
yield zones, crack-tip opening displacement (CTOD), energy release rate etc. Various analytical and numerical methods have 
been suggested to evaluate these parameters for MSD problems in finite and infinite plates, but the approach of Dugdale 
(1960) and Barenblatt (1962) has been found worthy in the modeling of such problems due to its mathematical simplicity. 
Closed form expressions of the yield zone length at the tips of a single crack in a sheet and the crack opening displacement 
for the same configuration examined experimentally by Burdekin et al. (1966). Also, for linearly varying stress distribution 
Kanninen (1970) and non-linear stress distribution by Harrop (1978). 
  
      Vast applicability of Dugdale-Barenblatt model for single crack problem, motivated various researchers to extended the 
idea to solve multiple crack problems. Some of them are, Theocaris (Theocaris, 1983) extend the model to solve the problem 
of two unequal/equal collinear straight cracks in an infinite plate. The results of Theocaris was further modified by Collins 
and Cartwright (2001). Xu et al. (2011) used a weight function approach to model the problem of two equal collinear straight 
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cracks in an infinite sheet and also for three collinear cracks (Xu & Wu, 2012). A complex variable method was used by 
Hasan and Akhtar (2015) to obtain the yield zone size and CTODs at each crack tip in case of three collinear straight cracks. 
  
     However, these analyses did not consider the effect of coalescence of yield zones between two small cracks, which may 
cause the final failure of the structure. Feng and Gross (2000) suggested a fracture criterion for determining the crack 
propagation for the case of coalescence of collinear cracks in quasi-brittle materials under plane stress conditions. Critical 
coalescence conditions of plastic zones in an infinite plate was calculated by Nishimura (2000). Bhargava and Hasan (2012) 
discussed the problem of four collinear straight cracks with coalesced yield zones in an infinite plate under general yielding 
conditions. Moreover, a number of analytical or numerical methods to predict the residual strength of a cracked plate were 
proposed in the past. For example, Laurent’s expansion method was used by Isida (1965), Complex variable approach by 
Hasan and  Akhtar (2015), Fredholm integral equation method by Chen (1984), Gauss-Chebyshev quadrature method by 
Chang and Kotousov (2012) and Weight function approach by Xu et al. (2017). Among various mathematical methods, the 
complex variable method is a convenient and powerful method to solve multiple cracks problems. 
  
       In the present paper main consideration will be given on the effect of coalescence of yield zones on the load carrying 
capacity and crack opening displacement. The mathematical expression is given for stress intensity factor and crack-tip 
opening displacements ahead of each crack tip when an infinite isotropic plate contains multiple cracks. To do that the complex 
variable method given by Muskhelishvili (1963) is used. The analytical expressions obtained in the subsequent sections show 
a good agreement with previously published works for limited cases. Also, a numerical study is carried out to investigate the 
behavior of yield zone size and CTODs. Graphs are plotted for different crack sizes and different inter crack distances. 
 

 
2.  Formulation of the problem 
 
     It is assumed that there are five collinear straight cracks in an infinite isotropic elastic-perfectly plastic plate as shown in 
Fig.  1. It is further assumed that the boundary of the plate were subjected to uniform tension stresses 𝜎ஶ, resulting the opening 
of cracks in mode-I deformation and growth of yield zones at each crack tip. However, it should be noted that the yield zones 
between two outer pairs of cracks were coalesced due increase in tension 𝜎ஶ. Therefore, the main objective of this problem 
is to investigate the load carrying capacity of the plate due to coalescence of yield zones. The developed yield zones are 
subjected to a constant yield stress distribution, 𝑌௬ = 𝜎௬௘, to detain further cracks propagation.  

 
 

Fig. 1. Configuration of the problem 
 

     The entire configuration of the problem is depicted in Fig. 1. Cracks occupy the intervals 𝐿ଵ = (−𝑎ଵ,−𝑑ଶ), 𝐿ଶ =(−𝑑ଵ,−𝑏ଵ), 𝐿ଷ = (−𝑐ଵ, 𝑐ଵ), 𝐿ସ = (𝑏ଵ,𝑑ଵ), 𝐿ହ = (𝑑ଶ,𝑎ଵ), and yield zones after unification occupy the intervals Γଵ =(−𝑎,−𝑎ଵ), Γଶ = (−𝑑ଶ,−𝑑ଵ), Γଷ = (−𝑏ଵ,−𝑏), Γସ = (−𝑐,−𝑐ଵ) ,Γହ = (𝑐ଵ, 𝑐), Γ଺ = (𝑏, 𝑏ଵ), Γ଻ = (𝑑ଵ,𝑑ଶ), Γ଼ = (𝑎ଵ,𝑎) 
respectively on the 𝑥-axis. 

 
3.  Solution to the problem 
 
      In essence, the solution is obtained by superposing two elastic solutions. The first is that an infinite plate is weakened by 
three straight cracks which are subject to a normal stress distribution at its boundary. Then second that, five cracks with 
coalesced yield zones in an infinite plate when the rims of yield zones (including coalesced yield zones) are subject to uniform 
yield stress distribution. 

 
3.1  Basic solution of the first case (tensile stress distribution) 
 
      In this problem we consider three cracks extending from (−𝑎,−𝑏), (−𝑐, 𝑐) and (𝑏,𝑎) in an isotropic elastic-perfectly 
plastic plate associated with the Cartesian system of coordinates 𝑥𝑜𝑦. The plate is supposed to be deformed by the opening 
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of the cracks when the infinite boundary of the plate is subjected to uniform stresses 𝜎ஶ. The entire configuration of the 
problem is depicted in Fig. 2. 

 

 
   

Fig. 2. Configuration of the auxiliary problem - A 
  

     The problem is subjected to following boundary conditions  
 𝑌௬േ = 𝜎ஶ,𝑋௬േ = 0, for    𝑦 → േ∞,−∞ ൏ 𝑥 ൏ ∞, (1) 𝑌௬േ = 𝑋௬േ = 0, for    𝑦 = 0, 𝑥 ∈ራଷ௜ୀଵ 𝑅௜ , (2) 

      For five cracks with coalesced yield zones in an infinite plate subjected to a remote tension, the stress intensity factor and 
crack opening displacement of the plate could be obtained by means of complex variable method. Using the boundary 
conditions (1-2) and the mathematical formulation given in Appendix 1, the desired complex potential function Φ஺(z) is 
obtained as: 

 Φ஺(z) = 𝜎ஶ2 ൤ 1𝜒(z) ሼzଷ − z(𝑐ଶ ൅ (𝑎ଶ − 𝑐ଶ)𝜆௞ଶ)ሽ − 12൨, (3) 

  
where subscript 𝐴 represent the case of first sub-problem and 𝜒(z), 𝜆௞ଶ  are defined in Appendix 2. 

 
3.1.1  Stress intensity factor 
 
     Opening mode stress intensity factor at the crack tip z = zଵ is evaluated using the formula given as follows,  
 𝐾ூ = 2√2𝜋 lim୸→୸భඥz − zଵΦ(z). (4) 
 
      We evaluate the stress intensity factors at each crack tip by substituting Φ஺(z) from Eq. (3) into Eq. (4). Thus, the 
analytical expressions for stress intensity factors at crack tips 𝑎, 𝑏 and 𝑐 can be written as  

 (𝐾஺ூ)௔ = 𝜎ஶ(1 − 𝜆௞ଶ)ට𝜋𝑎𝑘 , (5) 

 (𝐾஺ூ)௕ = 𝜎ஶ ቆ 𝜆௞ଶ1 − 𝑘ଶ − 1ቇඥ𝜋𝑏(1 − 𝑘ଶ)𝑘 , (6) 

 (𝐾஺ூ)௖ = 𝜎ஶ √𝜋𝑐√1 − 𝑘ଶ 𝜆௞ଶ . (7) 

 
 respectively. Superscript 𝐼 represents the mode-I type deformation. 

 
3.1.2  Components of displacement 
 
      The analytical expressions for displacement components 𝑣஺ due to remotely applied tensile stresses 𝜎ஶ are obtained by 
using Eq. (3) and Eq. (35) as below relations:  

 



 314 𝑣஺േ(േ𝑎ଵ) = േ2𝑎𝑚𝜎ஶ𝑘𝐸 ሾ𝐸(𝜙(𝑎ଵ),𝑘) − 𝜆௞ଶ𝐹(𝜙(𝑎ଵ), 𝑘)ሿ, (8) 

 𝑣஺േ(േ𝑏ଵ) = േ2𝑎𝑚𝜎ஶ𝑘𝐸 ሾ𝐸(𝜙(𝑏ଵ),𝑘) − 𝜆௞ଶ𝐹(𝜙(𝑏ଵ),𝑘)ሿ, (9) 

 𝑣஺േ(േ𝑐ଵ) = ∓ 2𝑎𝑚𝜎ஶ𝑘𝐸 ሾ𝜌(𝜓(𝑐ଵ),𝑘) − 𝜆௞ଶ𝐹(𝜓(𝑐ଵ), 𝑘)ሿ. (10) 

 
    

     Superscripts (േ) refer to the values on the upper and lower edge of the cracks. These results may also be taken directly 
from (Hasan & Akhtar, 2015). 

 
3.2  Basic solution of the second case (closing case) 
 
       It is assumed that there are five quasi-static straight cracks located symmetrically on the real axis in an infinite isotropic 
plate. Yield zones at the tips of outer pairs of cracks get coalesced due to increase in stresses acting at the boundary of the 
plate. Outer pairs of cracks together with coalesced yield zones are treated as two fictitious cracks. The geometry of the 
cracked body is shown in Fig . 3. These yield zones are subjected to uniform stress distribution 𝜎௬௘ whose magnitude is equal 
to the yield stress of the plate. The basic idea of this stress distribution is to prevent the cracks from further opening. 

 

 
 

Fig. 3. Configuration of the auxiliary problem - B(Yield Case) 
  

       In the present problem, we are considering the case of uniform stress distribution 𝜎௬௘ acting over the rims of yield zones. 
Then, the boundary conditions for the problem of five cracks with coalesced yield zones are as follows:  

 𝑌௬ = 0,    𝑋௬ = 0, for    𝑦 → േ∞,−∞ ൏ 𝑥 ൏ ∞, (11) 
 𝑌௬ = 𝜎௬௘,    𝑋௬ = 0, for    𝑦 → 0, 𝑥 ∈ ራ଼௡ୀଵ Γ௡, (12) 

 
       The desired complex potential function Φ஻(z) due to coalesced yield zones is obtained by using mathematical formulation 
given in Appendix 1 and boundary conditions of (11-12) as below equation 

 Φ஻(z) = 𝜎௬௘2𝜋𝑖𝜒(z) ൥න௅ᇱ 𝜒(𝑡)𝑑𝑡𝑡 − z ൅ 𝑖(𝐷ଵzଶ ൅ 𝐷ଶz ൅ 𝐷ଷ)൩, (13) 

 
 where 𝐿′ is the union of yield zones including coalesced yield zones. Subscript 𝐵 stands for second sub-problem. 
 
       Using the well known conditions:  
 𝜒(𝑡) = 𝜒(−𝑡) = 𝑖ඥ𝑎ଶ − 𝑡ଶඥ𝑡ଶ − 𝑏ଶඥ𝑡ଶ − 𝑐ଶ, when    − 𝑎 ൏ 𝑡 ൏ −𝑏 or 𝑏 ൏ 𝑡 ൏ 𝑎, (14) 𝜒(𝑡) = 𝜒(−𝑡) = −𝑖√𝑎ଶ − 𝑡ଶ√𝑏ଶ − 𝑡ଶ√𝑐ଶ − 𝑡ଶ, when −𝑐 ൏ 𝑡 ൏ 𝑐, (15) 
  
       Integrals given in Eq. (13) are evaluated using Eq. (14) and Eq. (15) over the rims of yield zones. Thus, 

 12zන௅ᇱ 𝜒(𝑡)𝑑𝑡𝑡 − z = න௔௔భ 𝜒(𝑡)𝑡ଶ − zଶ 𝑑𝑡 ൅ න௕భ௕ 𝜒(𝑡)𝑡ଶ − zଶ 𝑑𝑡 ൅ නௗమௗభ
𝜒(𝑡)𝑡ଶ − zଶ 𝑑𝑡 ൅ න௖௖భ 𝜒(𝑡)𝑡ଶ − zଶ 𝑑𝑡, 

  

(16) 
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315= 𝑖𝑎ଶ ቈ𝑚ଷ𝑘 ൜𝐼ଵଵ + ൬1 − 1𝑛ଶ(z)൰𝐻ଵଵ(z)ൠ − 𝑚ଶ𝑘ଶ ቊ𝐼ଶଶ + ቆ1 − 1𝑛ଶଶ(z)ቇ𝐻ଶଶ(z)ቋ቉. 
 
       Further, the constants 𝐷ଵ,𝐷ଶ,𝐷ଷ given in Eq. (13) are calculated using the condition of single valued of displacement 
components. Since, the cracks are under symmetric loading condition, therefore, 𝐷ଵ and 𝐷ଷ constants are equal to zero and 𝐷ଶ is evaluated using the Eq. (40) as:  

 𝐷ଶ = − 2𝑎𝑚𝑘 ሾ𝑎𝑚ଶ(𝐽ଵଵ − 𝜆௞ଶ𝐽ଵଶ) + 𝑐ଵ𝜏(𝜓(𝑐ଵ), 𝑘) + ℧ଵ − ℧ଶ + 𝜆௞ଶ℧ଷሿ. (17) 

 
Finally, the complex potential function Φ஻(z) for the second sub-problem is evaluated by substituting Eq. (16) into Eq. (13) 
as:  

 Φ஻(z) = z𝑎ଶ𝜎௬௘𝜋𝜒(z) ቈ𝑚ଷ𝑘 ൜𝐼ଵଵ + ൬1 − 1𝑛ଶ(z)൰𝐻ଵଵ(z)ൠ − 𝑚ଶ𝑘ଶ ቊ𝐼ଶଶ + ቆ1 − 1𝑛ଶଶ(z)ቇ𝐻ଶଶ(z)ቋ + 𝐷ଶ2𝑎ଶ቉. (18) 

 
3.2.1  Stress intensity factors 
 
      Stress intensity factors at each crack tip are extremely important parameters to study the effect of coalesced yield zones 
on the residual strength of the plate. Therefore, the stress intensity factors at crack tips 𝑎, 𝑏 and 𝑐 are determined by using Eq. 
(18) and Eq. (4) as:  

 (𝐾஻ூ )௔ = 2𝑎𝑘𝜎௬௘𝑚ଶ√𝑎𝜋 ቈ𝑚ଷ𝑘 (𝐼ଵଵ + 𝐻ଵଵ(𝑎)) −𝑚ଶ𝑘ଶ ቊ𝐼ଶଶ + ቆ1 − 1𝑚ଶଶቇ𝐻ଶଶ(𝑎)ቋ + 𝐷ଶ2𝑎ଶ቉, (19) 

 (𝐾஻ூ )௕ = −2𝑎𝑘𝜎௬௘𝑚√𝑏𝜋ඥ1 − 𝑘ଶଶ ቈ𝑚ଷ𝑘 𝐼ଵଵ − 𝑚ଶ𝑘ଶ ቊ𝐼ଶଶ + ቆ1 − 1𝑘ଶଶቇ𝐻ଶଶ(𝑏)ቋ + 𝐷ଶ2𝑎ଶ቉, (20) 

  (𝐾஻ூ )௖ = −2𝑎𝑚ଶ𝑘ଶ𝜎௬௘𝑚ଶ√𝑐𝜋√1 − 𝑘ଶ ቈ𝑚ଷ𝑘 ൜𝐼ଵଵ + ൬1 − 1𝑘ଶ൰𝐻ଵଵ(𝑐)ൠ − 𝑚ଶ𝑘ଶ 𝐼ଶଶ + 𝐷ଶ2𝑎ଶ቉. (21) 

 
3.2.2  Components of Displacement  
 
      Opening of cracks take place in mode-I type of deformation due to yield stresses 𝜎௬௘ acting on the rims of the yield zones. 
Therefore, components of displacement 𝑣஻ at crack tips ±𝑎ଵ, ±𝑏ଵ and ±𝑐ଵ were calculated using equations (35) and (18). 
Hence, the analytical expressions of components of displacement are:  

 𝑣஻±(±𝑎ଵ) = ∓2𝜎௬௘𝜋𝐸 ൤𝐴ଵ(𝜙(𝑎ଵ)) + 𝐴ଶ(𝜙(𝑎ଵ)) − 2𝑘𝐷ଶ𝑎𝑚 𝐹(𝜙(𝑎ଵ),𝑘)൨, (22) 

 𝑣஻±(±𝑏ଵ) = ± 2𝜎௬௘𝜋𝐸 ൤𝐵ଵ(𝜑(𝑏ଵ)) + 𝐵ଶ(𝜑(𝑏ଵ)) − 2𝑘𝐷ଶ𝑎𝑚 𝐹(𝜑(𝑏ଵ),𝑘)൨, (23) 

 𝑣஻±(±𝑐ଵ) = ∓2𝜎௬௘𝜋𝐸 ൤𝐶ଵ(𝜓(𝑐ଵ)) + 𝐶ଶ(𝜓(𝑐ଵ)) + 2𝑘𝐷ଶ𝑎𝑚 𝐹(𝜓(𝑐ଵ),𝑘)൨. (24) 

 
      These analytical expressions given in Eqs. (19), (20), (21), (22), (23) and (24) will play an important role for calculating 
the analytical expressions of applied load ratio and crack tip opening displacement. 

 
4.  Analytical Results 
 
      In this section, analytical expressions of applied load ratio and crack tip opening displacements are evaluated and written 
as non-linear equations. 

 
4.1  Size of yield zones 
 
     Dugdale hypothesis that the stresses remains finite in the vicinity of each crack tip. Therefore, equating to zero, the stress 
intensity factors given in Eqs. (5), (6), (7), (19), (20), (21) at the respective crack tip. Hence, 

 (𝐾஺ூ)௔ + (𝐾஻ூ )௔ = 0,    (𝐾஺ூ)௕ + (𝐾஻ூ )௕ = 0,    (𝐾஺ூ)௖ + (𝐾஻ூ )௖ = 0. (25) 
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      As a result, three non-linear equations are obtained.  
 𝑚ଶ𝑘ଶ (1 − 𝜆௞ଶ)ቆ𝜎ஶ𝜎௬௘ቇ௔ + 2𝜋 ቈ𝑚ଷ𝑘 (𝐼ଵଵ + 𝐻ଵଵ(𝑎)) −𝑚ଶ𝑘ଶ ቊ𝐼ଶଶ + ቆ1 − 1𝑚ଶଶቇ𝐻ଶଶ(𝑎)ቋ + 𝐷ଶ2𝑎ଶ቉ = 0, (26) 

 𝑚ଶ𝑘ଶ (1 − 𝑘ଶ − 𝜆௞ଶ)ቆ𝜎ஶ𝜎௬௘ቇ௕ + 2𝜋 ቈ𝑚ଷ𝑘 𝐼ଵଵ − 𝑚ଶ𝑘ଶ ቊ𝐼ଶଶ + ቆ1 − 1𝑘ଶଶቇ𝐻ଶଶ(𝑏)ቋ + 𝐷ଶ2𝑎ଶ቉ = 0, (27) 

  𝑚ଶ𝑘ଶ 𝜆௞ଶ ቆ𝜎ஶ𝜎௬௘ቇ௖ − 2𝜋 ቈ𝑚ଷ𝑘 ൜𝐼ଵଵ + ൬1 − 1𝑘ଶ൰𝐻ଵଵ(𝑐)ൠ − 𝑚ଶ𝑘ଶ 𝐼ଶଶ + 𝐷ଶ2𝑎ଶ቉ = 0. (28) 

  
      It is almost impossible to determine the yield zone length in terms of applied load ratio. Thus, the yield zone lengths |𝑎 −𝑎ଵ|, |𝑏ଵ − 𝑏| and |𝑐 − 𝑐ଵ| are calculated numerically and reported graphically. 

 
4.2  Crack tip opening displacement (CTOD) 
 
Crack-tip opening displacement (CTOD) 𝛿(𝑡) at crack tips 𝑡 = 𝑎ଵ,𝑏ଵ and 𝑐ଵ is to be determined using the formula given AS 
follows,  

 δ(𝑡) = (𝑣ஶା(𝑡) + 𝑣௬௘ା (𝑡)) − (𝑣ஶି(𝑡) + 𝑣௬௘ି(𝑡)). (29) 
 
      Finally, the mathematical expressions for CTOD at crack tips 𝑥 = ±𝑎ଵ, ±𝑏ଵ, ±𝑐ଵ are calculated by putting the 
corresponding values of components of displacements 𝑣ஶ±(𝑡) from the equations (8-10) for opening case and 𝑣௬௘± (𝑡) from 
equations (22-24) for closing case in Eq. (29). After a long mathematical calculation one can obtained,  

 δ(𝑎ଵ) = 4𝜎௬௘𝐸 ቈ𝑎𝑚𝑘 ቆ𝜎ஶ𝜎௬௘ቇ௔ 𝜏(𝜙(𝑎ଵ),𝑘) − 1𝜋 ൜𝐴ଵ(𝜙(𝑎ଵ)) + 𝐴ଶ(𝜙(𝑎ଵ)) − 2𝑘𝐷ଶ𝑎𝑚 𝐹(𝜙(𝑎ଵ), 𝑘)ൠ቉, (30) 

 δ(𝑏ଵ) = 4𝜎௬௘𝐸 ቈ𝑎𝑚𝑘 ቆ𝜎ஶ𝜎௬௘ቇ௕ 𝜏(𝜙(𝑏ଵ),𝑘) + 1𝜋 ൜𝐵ଵ(𝜑(𝑏ଵ)) + 𝐵ଶ(𝜑(𝑏ଵ)) − 2𝑘𝐷ଶ𝑎𝑚 𝐹(𝜑(𝑏ଵ),𝑘)ൠ቉, (31) 

 δ(𝑐ଵ) = 4𝜎௬௘𝐸 ቈ𝑎𝑚𝑘 ቆ𝜎ஶ𝜎௬௘ቇ௖ (𝜆௞ଶ𝐹(𝜓(𝑐ଵ),𝑘) − 𝜌ଶ(𝜓(𝑐ଵ), 𝑘)) − 1𝜋 ൜𝐶ଵ(𝜓(𝑐ଵ)) + 𝐶ଶ(𝜓(𝑐ଵ)) + 2𝑘𝐷ଶ𝑎𝑚 𝐹(𝜓(𝑐ଵ),𝑘)ൠ቉. (32) 

 
  

5.  Verification of analytical expressions 
 
      It can be easily verified that the analytical results given in Eq. (26) and Eq. (27) are agreed with the results given by Collins 
and Cartwright (2001) for two equal cracks taking 𝑐 = 𝑐ଵ → 0 and 𝑑ଵ = 𝑑ଶ, and all the results may also be verified for a 
limiting case (Hasan &  Akhtar, 2015) by taking 𝑑ଵ = 𝑑ଶ. 

 
6.  Numerical illustration 
 
      In order to study the behaviour of yield zone length and CTOD at each crack tip against the applied load ratio, a numerical 
illustration is presented in the next two subsections. In the first subsection we analyze yield zone length and in second CTOD 
values. 

 
6.1  Yield zone length 
 
      In general, numerical analysis is required to compute the yield zone length using Eqs.  (26)-(28) for the case of multiple 
cracks. In the present analysis, five straight cracks with coalesced yield zone are considered and behaviour of normalized 
yield zone length against applied load ratio, ఙಮఙ೤೐, for different inter-crack distances ቀ ଶ௖భ௕భା௖భ = 𝑝𝑧)ቁ. The value 𝑝𝑧 = 0.1 

indicates that the fictitious cracks 𝑅ଵ, 𝑅ଶ and 𝑅ଷ are situated far away from each other and 𝑝𝑧 = 0.9 means that these cracks 
are situated close to each other. The results from this analysis are presented with help of Figs. 4 to 7.  
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Fig. 4. Variation between ௥ಲ௥బ  and ൬ఙಮఙ೤೐൰௔ Fig. 5. Variation between ௥ಳ௥బ  and ൬ఙಮఙ೤೐൰௕ 

 
      Yield zone length at each crack tip is normalized with the yield zone length of a single Dugdale crack of same length 𝑟଴ =z ൤sec ൬గఙಮଶఙ೤೐൰ − 1൨. 

 
      Fig. 4 shows the behaviour of normalized yield zone length, ௥ಲ௥బ  at crack tip 𝑎ଵ, with applied stress ratio for different values 
of 𝑝𝑧, where 𝑟஺ = |𝑎 − 𝑎ଵ|. Behaviour of load bearing capacity is studied depending on the positions of cracks. When cracks 
are situated far away from each other (i.e.𝑝𝑧 =  0.1, 0.2, 0.3 etc.) effect of applied load on the length of yield zones is 
negligible. However, a significant increase in yield zone length is seen when cracks are situated close to each other (i.e. 𝑝𝑧 = 0.9, 0.8, 0.7). 
 

      

 
 

Fig.  6. Variation between ௥಴௥బ  and ൬ఙಮఙ೤೐൰௖ Fig.  7. Variation between ௥ಲ௥ಳ and ఙಮఙ೤೐ 
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     Normalized yield zone length at the crack tip 𝑏, ௥ಳ௥బ , where 𝑟஻ = |𝑏ଵ − 𝑏| is plotted in Fig. 5 against the applied load ratio ൬ఙಮఙ೤೐൰௕. Almost similar behaviour is seen at the crack tip 𝑏ଵ for 𝑝𝑧 =  0.1, 0.2, 0.3. But, when cracks are situated close to each 

other (i.e. 𝑝𝑧 =  0.9, 0.8, 0.7) it is seen from the Fig. 1 and Fig. 2 that the yield zone length at the inner crack tip 𝑏ଵ is much 
larger as compared to outer tip 𝑎ଵ. 
 
      In Fig. 6, the ratio of yield zones ௥಴௥బ , where (𝑟஼ = |𝑐 − 𝑐ଵ|) at crack tip = 𝑐ଵ is plotted against the applied load ratio ൬ఙಮఙ೤೐൰௖. 
It is observed that the length of normalized yield zone at crack tip 𝑐ଵ is approximately same to the length of normalized yield 
zone at crack tip 𝑏ଵ when applied stress 𝜎ஶ is significantly less than the yield stress 𝜎௬௘ of the plate. However, a remarkable 
difference in the length of normalized yield zones at both the tips is captured when applied stress is close to yield stress of the 
plate. 

 
       Further, to study the variations in yield zones lengths, ratio of lengths of outer yield zone 𝑟஺ and inner yield zone 𝑟஻ with 
respect to applied stress ratio ఙಮఙ೤೐ over a range of crack configurations is depicts in Fig. 7. Almost same yield zone length is 

seen at outer and inner crack tips of out cracks when these cracks are situated far away from the central crack. On the other 
hand, the size of yield zone at inner crack tip 𝑏ଵ is bigger than the yield zone at outer crack tip 𝑎ଵ. This shows that the load 
bearing capacity is affected by the presence of central crack. 

 
6.2  Crack tip opening displacement 
 
      The section deals with the opening of cracks under the applications of remote stresses working at the infinite boundary 
the plate. Closed form expressions for CTODs are given in Eqs. (30–32) at crack tips 𝑎ଵ, 𝑏ଵ and 𝑐ଵ, respectively. These results 
are normalized by the crack tip opening displacement 𝛿଴ of a single isolated Dugdale crack of same length, where 𝛿଴ =଼௧ఙ೤೐ாగ log ൤sec ൬గఙಮଶఙ೤೐൰൨. Variations in CTODs are plotted for different values of the ratio ቀ ଶ௖భ௕భା௖భ (say 𝑝𝑧)ቁ. As mentioned earlier, 

this ratio shows the inter crack distance, means, small value of 𝑝𝑧 represents that cracks shown in Fig. 2 are situated away 
from each other. Hence, the cracks do not interact with each other. While the bigger value of 𝑝𝑧 shows that the cracks are 
situated close to each other, therefore, it is assume that the cracks interact to each other and this condition influenced the load 
bearing capacity and opening of cracks as well. 
 

  
Fig. 8. Variation of ఋೌభఋబ  with load ratio ൬ఙಮఙ೤೐൰௔ Fig. 9. Variation of 

ఋ್భఋబ  with load ratio ൬ఙಮఙ೤೐൰௕ 

 
      The normalized CTOD at crack tip 𝑎ଵ has been shown in Fig. 8 against the applied load ratio ఙಮఙ೤೐ for different inter-crack 

distances 𝑝𝑧. It can be noticed that the opening of crack at the tip 𝑎ଵ is approximately equal to the opening of a single isolated 
central crack of length 2𝑎ଵ when cracks are placed far away from each other. However, a large opening of cracks is seen at 
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tip 𝑎ଵ when cracks are situated in close proximity. 
 

       Behaviour of opening of crack at the tip 𝑏ଵ with respect to applied stress ratio has been plotted in Fig. 9. It is noticed that 
the opening of the crack at tip 𝑏ଵ more than the crack tip 𝑎ଵ and single central crack of length 2𝑏ଵ when cracks are placed 
close to each other (𝑝𝑧 = 0.9,0.8 etc.). However more or less same opening is seen when 𝑝𝑧 = 0.1,0.2. This shows that the 
closely located cracks with coalesced yield zones are more catastrophic. 

 
       Fig. 10 shows the variation of opening of central crack against the applied stress ratio. Since, inner crack tip is very 
sensitive due the presence of outer cracks, therefore, it will open more for all values of 𝑝𝑧 when the applied stress 
approximately equal to yield stress. 

 

 
Fig.  10. Variation of ఋ೎భఋబ  with load ratio ఙಮఙ೤೐. 

 
  

7.  Conclusion 
 
      This paper proposes an analytical model to solve the problem of five collinear straight cracks with unified yield zones in 
an elastic-perfectly plastic plate. The problem considered in this paper is an extension of Dugdale model (Dugdale, 1960) and 
may be considered as the prelude situation just before formation of three collinear straight cracks. Analytical expressions of 
various fracture parameters were obtained after a long and complicated mathematical calculation using Muskhelishvili’s 
complex variable method. Stress intensity factors and crack tip opening displacements were obtained. 
 
      Numerical study is carried out in section 6 to investigate the load bearing capacity of the plate for different crack lengths 
and different inter crack distances. It is observed from the study that the situation when the cracks are located close to each 
other the plate can bear less load. Also, the opening of yield zones are affected by the presence of other neighbouring cracks. 
If the crack lengths are much bigger than the inter crack distance, then the yield zone length increases rapidly. On the other 
side, increase in yield zone length is slow when lengths of cracks are much smaller than the inter crack distance. In case of 
equal cracks, all the yield zones at each crack tip start to propagate simultaneously, while for the case of unequal cracks the 
yield zones at the longer cracks propagate slowly in comparison to the shorter crack.  Mathematical expressions for parameters 
stress intensity factors and crack tip opening displacement have been calculated using a complex variable method. On the 
basis of numerical study carried out in section 6 following conclusion have been made   
  

1. Length of yield zones are almost same at each crack tip 𝑎ଵ,𝑏ଵ, 𝑐ଵ when inter crack distance is large, whilst the bigger 
yield zones are developed at inner crack tips 𝑏ଵ and 𝑐ଵ in comparison to outer crack tip 𝑎ଵ. 

2. For a fixed yield zone size and fixed value of 𝑝𝑧, load carrying capacity of crack tip 𝑎ଵ is higher in comparison to 
crack tips 𝑏ଵ and 𝑐ଵ both.  

3. Furthermore, the unified yield zone [𝑑ଵ,𝑑ଶ] makes a significant effect on the load bearing capacity of the plate. Also, 
when the size of the unified yield zone increases the bearing capacity of the plate also increases.  
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Appendix 1 
  

Mathematical Formulation 
 
     In two dimensional theory of elasticity, components of stresses 𝑋௫,𝑌௬,𝑋௬ may be expressed in terms of two complex 
potential function Φ(z),Ω(z) as  

 𝑋௫ + 𝑌௬ = 2[Φ(z) + Φ(z)], (33) 
 𝑌௬ − 𝑖𝑋௬ = Φ(z) + Ω(z) + (z − z)Φᇱ(z), (34) 
 2𝜇(𝑢 + 𝑖𝑣) = 𝜅𝜙(z) −𝜔(z) − (𝑥 − z)Φ(z), (35) 
  

 where bar over the function or variable denotes its complex conjugate. 
 
      Consider a homogenous isotropic elastic-perfectly plastic infinite plate weakened by n straight cuts 𝐿௜ (i=1,2,3, n) along 
ox-axis. Let 𝑋௬±,𝑌௬± be the components of stresses acting over the rims of the cracks. Superscript (+) and (−) denoting the 
values of stress components on the upper and lower rims of the cracks. 
 
      Eqs. (33-34) may be converted into two problems of linear relationship  

 Φା(𝑡) + Ωି(𝑡) = 𝑌௬ା − 𝑖𝑋௬ା, (36) 
 Φି(𝑡) + Ωା(𝑡) = 𝑌௬ି − 𝑖𝑋௬ି . (37) 
 

under the assumption lim௬→଴𝑦Φᇱ(𝑡 + 𝑖𝑦) = 0. 
     The general solution of the boundary problems given in Eqs. (36-37) may be written using Sokhotski-Plemelj as:  

 Φ(z) + Ω(z) = 1𝜋𝑖𝜒(z)න௅ 𝜒(𝑡)𝑝(𝑡)𝑑𝑡𝑡 − z + 2𝑃௡(z)𝜒(𝑡) , (38) 

 Φ(z) − Ω(z) = 1𝜋𝑖 න௅ 𝑞(𝑡)𝑑𝑡𝑡 − 𝑥 − Γ′, (39) 

 
where   𝑝(𝑡) = 12 [𝑌௬ା + 𝑌௬ି ] − 𝑖2 [𝑋௬ା + 𝑋௬ି ],    𝑞(𝑡) = 12 [𝑌௬ା − 𝑌௬ି ] − 𝑖2 [𝑋௬ା − 𝑋௬ି ], 

  𝜒(z) = ෑ௡௞ୀଵ ඥ𝑥 − 𝑎௞ඥ𝑥 − 𝑏௞ ,    𝑃௡(z) = 𝐷଴𝑥௡ + 𝐷ଵ𝑥௡ିଵ + 𝐷ଶ𝑥௡ିଶ + ⋯, 
 𝑎௞,𝑏௞ denotes the end points of 𝑘௧௛ crack. 
 
       Constants 𝐷௜(𝑖 = 0,1,2, . . ,𝑛) shown in 𝑃௡(z) are evaluated using loading condition at an infinite boundary of the plate 
and single-valuedness condition of displacement around the rims of the cracks or cuts,  

 2(𝜅 + 1) න௅೔ 𝑃௡(𝑡)𝜒(𝑡) 𝑑𝑡 + 𝜅 න௅೔ [Φ଴ା(𝑡) −Φ଴ି (𝑡)]𝑑𝑡 + න௅೔ [Ω଴ା(𝑡) −Ω଴ି (𝑡)]𝑑𝑡 = 0. (40) 

 
where  Φ଴(z) = 12𝜋𝑖𝜒(z) න⋃೙೔సభ௅೔

𝜒ା(𝑡)𝑝(𝑡)𝑡 − z 𝑑𝑡 + 12𝜋𝑖 න⋃೙೔సభ௅೔
𝑞(𝑡)𝑡 − z𝑑𝑡, (41) 

 Ω଴(z) = 12𝜋𝑖𝜒(z) න⋃೙೔సభ௅೔
𝜒ା(𝑡)𝑝(𝑡)𝑡 − z 𝑑𝑡 − 12𝜋𝑖 න⋃೙೔సభ௅೔

𝑞(𝑡)𝑡 − z𝑑𝑡. (42) 

 
Notes:   
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• The complex variable formulation given in this section is taken form Muskhelishvili (1963) to make the paper self-
understandable.  

• All the integrals, involved in the solution of problem, are expressed in the form of elliptic integrals using Byrd and 
Friedman (1971).  
 

Appendix 2 
 

Used mathematical expressions 
  𝐽ଵ௜ = 𝑗௜(𝜙(𝑎ଵ),𝑚, 𝑘) − 𝑗௜(𝜙(𝑏ଵ),𝑚, 𝑘) + 𝑗௜(𝜙(𝑏),𝑚,𝑘) + 𝑗௜(𝜙(𝑑ଵ),𝑚,𝑘) − 𝑗௜(𝜙(𝑑ଶ),𝑚,𝑘), 𝐽ଶ௜ = 𝑗௜(𝜗(𝑐ଵ),𝑚ଶ,𝑘ଶ) − 𝑗௜(𝜗(𝑐),𝑚ଶ,𝑘ଶ), 𝐼ଶ௜ = ℓ௜(𝜗(𝑐ଵ),𝑚ଶ,𝑘ଶ) − ℓ௜(𝜗(𝑐),𝑚ଶ,𝑘ଶ), 𝐼ଵ௜ = ℓ௜(𝜙(𝑎ଵ),𝑚, 𝑘) − ℓ௜(𝜙(𝑏ଵ),𝑚, 𝑘) + ℓ௜(𝜙(𝑏),𝑚, 𝑘) + ℓ௜(𝜙(𝑑ଵ),𝑚,𝑘) − ℓ௜(𝜙(𝑑ଶ),𝑚,𝑘), 𝐻ଵ௜(𝑥) = ℎ௜(𝜙(𝑎ଵ),𝑚, 𝑘,𝑛(𝑥)) − ℎ௜(𝜙(𝑏ଵ),𝑚, 𝑘,𝑛(𝑥)) + ℎ௜(𝜙(𝑏),𝑚, 𝑘,𝑛(𝑥)) + ℎ௜(𝜙(𝑑ଵ),𝑚,𝑘,𝑛(𝑥))− ℎ௜(𝜙(𝑑ଶ),𝑚, 𝑘,𝑛(𝑥)), 𝐻ଶ௜(𝑥) = ℎ௜(𝜗(𝑐ଵ),𝑚ଶ,𝑘ଶ,𝑛ଶ(𝑥)) − ℎ௜(𝜗(𝑐),𝑚ଶ,𝑘ଶ,𝑛ଶ(𝑥)), 𝑀ଵ = 𝑀(𝜙(𝑎ଵ),𝑚,𝑘) −𝑀(𝜙(𝑏ଵ),𝑚,𝑘) + 𝑀(𝜙(𝑏),𝑚,𝑘) + 𝑀(𝜙(𝑑ଵ),𝑚,𝑘) −𝑀(𝜙(𝑑ଶ),𝑚,𝑘), 𝐹ଵ = 𝐹(𝜙ଵ(𝑎ଵ),𝑘ଵ) − 𝐹(𝜙ଵ(𝑏ଵ),𝑘ଵ) + 𝐹(𝜙ଵ(𝑏), 𝑘ଵ) + 𝐹(𝜙ଵ(𝑑ଵ),𝑘ଵ) − 𝐹(𝜙ଵ(𝑑ଶ),𝑘ଵ), 𝐸ଵ = 𝐸(𝜙ଵ(𝑎ଵ),𝑘ଵ) − 𝐸(𝜙ଵ(𝑏ଵ),𝑘ଵ) + 𝐸(𝜙ଵ(𝑏), 𝑘ଵ) + 𝐸(𝜙ଵ(𝑑ଵ), 𝑘ଵ) − 𝐸(𝜙ଵ(𝑑ଶ), 𝑘ଵ), ℧௜ = 𝑤௜(𝜉(𝑐ଵ),𝑘ଶ,𝑘ଵ), 𝐹ଶ = 𝐹(𝜗ଵ(𝑐ଵ),𝑘ଵ) − 𝐹(𝜗ଵ(𝑐), 𝑘ଵ), 𝐸ଶ = 𝐸(𝜗ଵ(𝑐ଵ), 𝑘ଵ) − 𝐸(𝜗ଵ(𝑐), 𝑘ଵ), 𝜏(𝑧,𝑝) = 𝐸(𝑧, 𝑝) − 𝜆௣ଶ𝐹(𝑧, 𝑝),    𝜆௣ଶ = 𝐸 ቀగଶ ,𝑝ቁ𝐹 ቀగଶ ,𝑝ቁ , Λ(𝑧,𝑝, 𝑞) = sin2𝑧ඥ1 − 𝑞ଶsinଶ𝑧4ඥ1 − 𝑝ଶsinଶ𝑧 ,   

 𝜌ଶ(𝑧,𝑝) = 𝐸(𝑧, 𝑝) − tan𝑧ඥ1 − 𝑝ଶsinଶ𝑧,    𝜌ଵ(𝑧,𝑝) = 𝐸(𝑧,𝑝) − sin 𝑧 cos 𝑧ඥ1 − 𝑝ଶsinଶ𝑧, 
𝑆(𝑧, 𝑝, 𝑞) = 𝑝ଶsin2𝑧ඥ1 − 𝑞ଶsinଶ𝑧2(1 − 𝑝ଶsinଶ𝑧) ,    𝜃ଵ(𝑧,𝑝) = tanିଵ ቂඥ1 − 𝑝ଶtan(𝑧)ቃ,     𝑀(𝑧,𝑝, 𝑞) = 1 − 𝑞ଶ𝑞ଶඥ1 − 𝑝ଶ Π(𝜃ଵ(𝑧, 𝑝), 𝑞ଶ,𝑘ଵ) + 1𝑝𝑞 tanିଵ ቈ 𝑝 𝑞 sin 𝑧 cos 𝑧ඥ1 − 𝑝ଶsinଶ𝑧ඥ1 − 𝑞ଶsinଶ𝑧቉, sin𝜙(𝑡) = ඨ𝑎ଶ − 𝑡ଶ𝑎ଶ − 𝑏ଶ ,     sin𝜙ଵ(𝑡) = 𝑏𝑡 sin൫𝜙(𝑡)൯ ,      sin𝜓(𝑡) = ඨ𝑐ଶ − 𝑡ଶ𝑏ଶ − 𝑡ଶ, 
sin𝜑(𝑡) = 1𝑘 sin𝜓(𝑡),   sin 𝜉(𝑡) = sin𝜓(𝑡)𝑘ଶ ,    sin𝜗(𝑡) = 𝑡𝑐 ,    sin𝜗ଵ(𝑡) = ඨ𝑡ଶ(𝑎ଶ − 𝑐ଶ)𝑐ଶ(𝑎ଶ − 𝑡ଶ), 
𝑘 = ඨ𝑎ଶ − 𝑏ଶ𝑎ଶ − 𝑐ଶ ,    𝑚 = ඨ𝑎ଶ − 𝑏ଶ𝑎ଶ ,        𝑘ଵ = 𝑘 × 𝑘ଶ,    𝑘ଶ = 𝑐𝑏 ,    𝑚ଶ = 𝑐𝑎,     
𝑞ଵ = ඨ𝑞ଶ − 𝑝ଶ1 − 𝑝ଶ ,    𝑟ଵ = ඨ𝑟ଶ − 𝑝ଶ1 − 𝑝ଶ , 
𝑛(𝑡) = ඨ𝑎ଶ − 𝑏ଶ𝑎ଶ − 𝑡ଶ ,    𝑛ଵ(𝑡) = 1sin൫𝜙ଵ(𝑡)൯ ,    𝑛ଶ(𝑡) = 𝑐𝑡 ,    𝑛ଷ(𝑡) = 1sin൫𝜓(𝑡)൯,     𝑛ସ(𝑡) = 1sin(𝜑(𝑡)),    𝑛ହ(𝑡) = 1sin(𝜗ଵ(𝑡)), ℓଵ(𝑧, 𝑝, 𝑞) = 1𝑝ଶ [𝑞ଶ𝑀(𝑧,𝑝, 𝑞) − ℓଶ(𝑧,𝑝, 𝑞)], ℓଶ(𝑧, 𝑝, 𝑞) = 𝑞ଶ + 𝑝ଶ − 𝑝ଶ𝑞ଶ2 𝑀(𝑧,𝑝, 𝑞) + 𝑝ଶΛ(𝑧, 𝑝, 𝑞) + ඥ1 − 𝑝ଶ2 𝐸(𝜃ଵ(𝑧, 𝑝), 𝑞ଵ) − (1 − 𝑞ଶ)𝑝ଶ2𝑞ଶඥ1 − 𝑝ଶ 𝐹(𝜃ଵ(𝑧,𝑝), 𝑞ଵ), ℓଷ(𝑧, 𝑝, 𝑞) = 𝐹(𝜃ଵ(𝑧,𝑝), 𝑞ଵ)ඥ1 − 𝑝ଶ − 𝑝ଶℓସ(𝑧,𝑝, 𝑞), ℓସ(𝑧, 𝑝, 𝑞) = −𝑀(𝑧, 𝑝, 𝑞) + 1𝑞ଶඥ1 − 𝑝ଶ 𝐹(𝜃ଵ(𝑧,𝑝), 𝑞ଵ), 



 322 ℎଵ(𝑧, 𝑝, 𝑞, 𝑟) = −𝑞ଶ𝑀(𝑧, 𝑝, 𝑞) + 𝑞ଶ − 𝑝ଶ(𝑟ଶ − 𝑝ଶ)ඥ1 − 𝑝ଶ 𝐹(𝜃ଵ(𝑧,𝑝), 𝑞ଵ) + 𝑟ଶ − 𝑞ଶ(𝑟ଶ − 𝑝ଶ)ℎଷ(𝑧, 𝑝, 𝑞, 𝑟), ℎଶ(𝑧,𝑝, 𝑞, 𝑟) = (𝑟ଶ − 𝑝ଶ)ℎଵ(𝑧, 𝑝, 𝑞, 𝑟) + 𝑞ଶ𝑟ଶ𝑀(𝑧, 𝑝, 𝑞), ℎଷ(𝑧,𝑝, 𝑞, 𝑟) = 1ඥ1 − 𝑝ଶ Π(𝜃ଵ(𝑧,𝑝), 𝑟ଵଶ,𝑞ଵ), 
ℎସ(𝑧,𝑝, 𝑞, 𝑟) = 1(𝑟ଶ − 𝑝ଶ) ቈℎଷ(𝑧,𝑝, 𝑞, 𝑟) − 𝐹(𝜃ଵ(𝑧,𝑝), 𝑞ଵ)ඥ1 − 𝑝ଶ ቉, 𝑗ଵ(𝑧,𝑝, 𝑞) = 1𝑝ଶ ቀℓଶ(𝑧,𝑝, 𝑞) − 𝐸(𝑧, 𝑞)ඥ1 − 𝑝ଶsinଶ𝑧ቁ, 𝑗ଶ(𝑧, 𝑝, 𝑞) = 1𝑝ଶ ቀℓଷ(𝑧, 𝑝, 𝑞) − 𝐹(𝑧, 𝑞)ඥ1 − 𝑝ଶsinଶ𝑧ቁ, 𝑤ଵ(𝑧,𝑝, 𝑞) = 𝑏2 [𝐸(𝑧, 𝑞) − (1 + 𝑘ଶ − 2𝑞ଶ)𝐹(𝑧, 𝑞) − (2𝑞ଶ − 𝑝ଶ − 𝑘ଶ)Π(𝑧,𝑝ଶ, 𝑞) − 𝑆(𝑧,𝑝,𝑞)], 𝑤ଶ(𝑧, 𝑝, 𝑞) = 𝑏[𝐸(𝑧, 𝑞) + 𝑘ଶ(𝑝ଶ − 1)𝐹(𝑧, 𝑞) + (𝑝ଶ − 1)(1 − 𝑘ଶ)Π(𝑧, 𝑝ଶ,𝑞)], 𝑤ଷ(𝑧, 𝑝, 𝑞) = 𝑏[𝐹(𝑧, 𝑞) + (𝑝ଶ − 1)Π(𝑧,𝑝ଶ,𝑞)], 𝑇଴(𝜃, 𝑖, 𝑗) = ቆ𝑎𝑚ଶሼ𝐼ଵଵ + 𝑀ଵ(1 − 𝑘ଶ)ሽ + 𝑏(𝐸ଵ + 𝐸ଶ) − 𝑏𝑘𝑚 𝐼ଶଶ − 𝑎ଶ𝑚ଶ𝑏𝑘ଶ (1 − 𝑘ଶ)𝐹ଵቇ𝐹(𝜃,𝑘) − 𝑎ଶ𝐹ଶ𝑏 𝜌௜(𝜃, 𝑘)− ቆ𝑎𝑚ଶ𝑀ଵ + 𝑐ଶ𝑏 𝐹ଵ − 𝑎ଶ𝑚𝑏𝑘 𝐼ଶଷቇ 𝜌௝(𝜃,𝑘), 𝑇ଵ(𝜃,𝛼(𝑧), 𝑞) = 𝑘𝑧𝜒(𝑧)𝑖𝑎𝑚(𝑎ଶ − 𝑧ଶ)Π(𝜃,𝛼ଶ(𝑧), 𝑞), 𝑇ଶ(𝛼(𝑡)) = 2𝑡ଶΛ(𝜙ଵ(𝑡), 0,𝑘ଵ)ቆ 𝑐ଶ𝑡ଶ − 𝑐ଶ 𝐹(𝜑(𝑏ଵ),𝑘) + 𝑡ଶ𝑡ଶ − 𝑏ଶ (1 − 𝑛ଷଶ(𝑡))Π(𝜑(𝑏ଵ),𝛼ଶ(𝑡),𝑘)ቇ, 𝑇ଷ(𝛼(𝑡), 𝑧) = 2(𝑎ଶ − 𝑡ଶ)𝑡ଶ − 𝑐ଶ Λ(𝜗ଵ(𝑡),0, 𝑘ଵ)(𝐹(𝑧,𝑘) + (𝑛ସଶ(𝑡) − 1)Π(𝑧,𝛼ଶ(𝑡), 𝑘)), 𝑇ସ(𝑡) = 2𝑡ଶΛ(𝜙ଵ(𝑡), 0,𝑘ଵ)ቆ 𝑏ଶ𝑡ଶ − 𝑏ଶ 𝐹(𝜓(𝑐ଵ),𝑘) + 𝑡ଶ𝑡ଶ − 𝑏ଶ (𝑛ଷଶ(𝑡) − 1)Π(𝜓(𝑐ଵ),𝑛ଷଶ(𝑡),𝑘)ቇ, 𝑇ହ(𝛼(𝑡), 𝑧) = 2(𝑎ଶ − 𝑡ଶ)𝑡ଶ − 𝑏ଶ Λ(𝜗ଵ(𝑡),0, 𝑘ଵ)(𝑘ଶ𝐹(𝑧,𝑘) + (𝑛ଷଶ(𝑡) − 𝑘ଶ)Π(𝑧,𝛼ଶ(𝑡), 𝑘)), 𝑇଺(𝑥) = 𝑎ଶ𝑏𝑥 [𝑇ଵ(𝜙ଵ(𝑎ଵ),𝑛ଵ(𝑥),𝑘ଵ) + 𝑇ଵ(𝜙ଵ(𝑑ଵ),𝑛ଵ(𝑥), 𝑘ଵ) − 𝑇ଵ(𝜙ଵ(𝑑ଶ),𝑛ଵ(𝑥), 𝑘ଵ)] −𝑚ଶ𝑏 (𝑇ସ(𝑎ଵ) + 𝑇ସ(𝑑ଵ) − 𝑇ସ(𝑑ଶ)), 𝐴ଵ(𝜃) = 2[−𝑇ଵ(𝜃,𝑛(𝑎ଵ), 𝑘) + 𝑇ଵ(𝜃,𝑛(𝑏ଵ),𝑘) − 𝑇ଵ(𝜃,𝑛(𝑑ଵ), 𝑘) + 𝑇ଵ(𝜃,𝑛(𝑑ଶ),𝑘) − 𝑇ଵ(𝜃,𝑛(𝑐ଵ),𝑘)], 𝐴ଶ(𝜃) = 4𝑎Λ(𝜃, 0,𝑘)൭ 𝑛ଶ(𝑎ଵ)√1 −𝑚ଶ Π(𝜃ଵ(𝜃,𝑚),𝑛ଵଶ(𝑎ଵ),𝑘ଵ) + 𝑛ଶ(𝑎ଵ)൫𝐻ଵଷ(𝑎ଵ) −Π(𝜃ଵ(𝜃,𝑚),𝑛ଵଶ(𝑎ଵ),𝑘ଵ)൯

− 𝑚ଷ𝑛ଶଶ(𝑎ଵ)𝑘ଶ𝑘𝑚ଶ 𝐻ଶସ(𝑎ଵ)൱ + 2𝑎 ቈ𝐸(𝜃,𝑘)(𝐼ଵଷ + 𝑚𝑚ଶ𝑘ଶ𝑘 𝐼ଶସ) − 𝐹(𝜃,𝑘)(𝐼ଵଶ − 𝑘𝑚ଶଷ𝑚𝑘ଶ {𝐼ଶଵ + (𝑘ଶଶ − 1)𝐼ଶସ})቉, 
𝐵ଵ(𝜃) = 𝑇଴(𝜃, 2,1) + 𝑏𝑚ଶଶ𝑇ଷ(𝑛ସ(𝑐ଵ),𝜃) − 2𝑚ଶ𝑏ଵସΛ(𝜙ଵ(𝑏ଵ),0,𝑘ଵ)𝑏(𝑏ଵଶ − 𝑏ଶ) (1 − 𝑛ଷଶ(𝑏ଵ))𝐹(𝜃,𝑘), 𝐵ଶ(𝜃) = 𝑇଺(𝑏ଵ) + 𝑎ଶ𝑏𝑏ଵ ቈ𝑇ଵ ൬𝜙ଵ(𝑏ଵ), 𝑘ଵ𝑛ଵ(𝑏ଵ) ,𝑘ଵ൰ − 𝑘𝑏ଵ𝜒(𝑏ଵ)𝑖𝑎𝑚(𝑎ଶ − 𝑏ଵଶ)𝐹(𝜙ଵ(𝑏ଵ),𝑘ଵ) − 𝑇ଵ(𝜗ଵ(𝑐ଵ),𝑛ହ(𝑏ଵ), 𝑘ଵ)቉+ 𝑚ଶ𝑏 𝑇ଶ ൬ 𝑘𝑛ସ(𝑏ଵ)൰, 𝐶ଵ(𝜃) = 𝑇଴(𝜃, 1,2) + 2𝑏𝑚ଶଶ(𝑎ଶ − 𝑐ଵଶ)𝑐ଵଶ − 𝑏ଶ (𝑛ଷଶ(𝑐ଵ) − 𝑘ଶ)𝐹(𝜃, 𝑘) + 𝑏𝑚ଶଶ𝑇ହ(𝑛ସ(𝑐ଵ),𝜃), 𝐶ଶ(𝜃) = 𝑇଺(𝑐ଵ) + 𝑎ଶ𝑏𝑐ଵ ቈ−𝑇ଵ(𝜙ଵ(𝑏ଵ),𝑛ଵ(𝑐ଵ),𝑘ଵ) − 𝑘𝑐ଵ𝜒(𝑐ଵ)𝑖𝑎𝑚(𝑎ଶ − 𝑐ଵଶ)𝐹(𝜗ଵ(𝑐ଵ),𝑘ଵ) + 𝑇ଵ(𝜗ଵ(𝑐ଵ), 𝑘ଵ𝑛ହ(𝑐ଵ) ,𝑘ଵ)቉ + 𝑚ଶ𝑏 𝑇ସ(𝑏ଵ), 
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