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 The present work aims to investigate the effect of an edge crack on the stress concentration around the 
circular hole surrounded by Functionally Graded Material (FGM) in an infinite plate subjected to 
uniaxial tensile load. The numerical investigation has been carried out using Extended Finite Element 
Method (XFEM). Two cases have been analysed in this work, i.e. the whole plate made up of radial 
FGM and homogeneous material plate having radial FGM layer around the hole. Young’s modulus of 
FGM varies according to exponential and power law function. The relations of stress intensity factor 
(SIF) and stress concentration factor (SCF) with normalised crack length, Young’s modulus ratio, 
FGM layer thickness and power law index have been presented. It has been observed that the FGM 
layer case has low SCF around hole than FGM plate case in presence of an edge crack.  
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1. Introduction 

         
     Materials play a key role in the advancement of modern engineering applications and composite materials are commonly 
used materials for such applications. In the mid of 1980s, a new branch of composite material was discovered by a group of 
Japanese scientists known as Functionally Graded Materials (FGMs) (Koizumi and Niino, 1995). FGMs have varying 
composition of its constituents along spatial dimension(s) which provides the smooth variation in material properties along 
that spatial dimension(s). This smooth variation in material properties eliminates the interfacial problems and makes FGM as 
a potential material for numerous modern engineering applications where the conventional composite materials fail to 
perform.  
 
     Stress concentration in homogeneous materials is independent of material properties, but in FGM it is significantly affected 
by the varying material properties. The first brief SCF analysis in FGM structure was traced in the work of Kim and Paulino 
(2002). A problem of stress concentration in two dimensional FGM plate with circular hole and a pair of shoulder fillets was 
solved and it was found that by tailoring the FGM one can significantly reduce SCF. The isoparametric graded finite elements 
were also presented to model the FGM properties within the finite elements. Kubair and Bhanu-chander (2008) provided a 
detail numerical investigation on an infinite exponential/power law FGM plate for SCF using finite element method (FEM). 
It was reported that by increasing Young’s modulus away from the hole boundary, reduced the SCF and FGM affected the 
magnitude of stresses but the position of maximum stresses does not change. Yang et al.,   (2010) analysed the SCF in an 
infinite FGM plate with circular hole using complex variable theory. Mohammadi et al.,  (2011) analytically investigated the 
stiffness and SCF in exponential FGM plate having central circular hole. Yang et al.,  (2012) reported the effect of varying 
Young’s modulus, plate size and hole eccentricity on SCF in finite FGM plate using complex variable theory. Ashrafi et al.,  
(2013) presented graded boundary elements for three-dimensional elastic field of exponential FGM plate to analyse SCF in 
the vicinity of circular hole. Sburlati (2013) analytically investigated the reduction in SCF by applying homogeneous/FGM 
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layer around the circular hole. Enab (2014) numerically analysed the x-direction, y-direction, radial direction, angular direction 
graded FGM plate for stress concentration due to an elliptical hole using FEM based analysis software ANSYS. Sburlati et 
al.,  (2014) presented analytical as well as FEM analysis of SCF around the circular hole reinforced by power law FGM layer. 
Shi (2015) analytically studied the elastic stress field of exponential FGM plate having elastic inclusion of circular shape. 
Gouasmi et al.,  (2015) presented the FEM analysis of SCF reduction for circular notch in FGM plate as well as in 
homogeneous plate having FGM layer around the notch using ABAQUS software. Dave and Sharma (2016) studied the 
moments and stresses in power law FGM plate with circular/elliptical hole using complex variable theory. Yang and Gao 
(2016) reported the SCF reduction by applying the power law function based FGM layer around an elliptical hole using 
complex variable theory. Goyat et al.,  (2017) investigated the SCF reduction around the rounded rectangular hole by the 
application of power law Titanium-Titanium mono Boride FGM using extended finite element method (XFEM). Yang et al.,  
(2018) evaluated stress field around the arbitrary shape inclusion coated with FGM using the complex variable theory. Goyat 
et al.,  (2018a) analysed the SCF for the pair of circular holes in homogeneous panel having reinforced FGM layer around the 
holes using XFEM. Goyat et al.,  (2018b) reported the effect of different radial FGM materials on SCF using XFEM.   
 
     The Stress Intensity Factor (SIF) is the measure of fracture toughness of cracked structure. This factor was introduced by 
Irwin (1957) in his well-known work of fracture mechanics. For cracked structure, the stress-based failure analysis, i.e. SCF, 
cannot be used as the cracked structure has an infinite value of SCF near the crack tip even at low or no load condition (Inglis 
1913). Therefore, energy-based Griffith’s energy release rate (Griffith 1921) or Irwin’s SIF (Irwin 1957) are commonly used 
for analysis of cracked structure. SIF is a function of crack geometry, structure geometry and load conditions. In FGM, SIF 
is also a function of variation in material properties. Erdogan and Wu (1997) analysed surface crack problem in an exponential 
FGM plate under different load conditions. Gu and Asaro (1997) analytically investigated the crack in isotropic and 
orthotropic FGM plate. Gu et al.,  (1999) presented a simple approach to calculate SIF in non-homogeneous FGM using FEM. 
The path independent property of conventional J- integral was found invalid in the FGM though, one can find accurate results 
by considerably refining the mesh near crack tip along with a very narrow J-domain. Anlas et al. (2000) and Chen et al.,  
(2000) independently presented the modified J-integral formulation for FGM structure, but their work was limited to mode-I 
fracture problems only. Dolbow and Gosz (2002) proposed a path independent mix mode interaction integral scheme for FGM 
plate. In this scheme, the auxiliary stresses and displacement field near the crack tip were used same as of homogeneous 
material and auxiliary strain field was obtained from the auxiliary stress field by using the constitutive relation of FGM. By 
doing so a new term appears in the formulation to compensate the incompatibility of equations when compared with the work 
of Anlas et al.,  (2000). Rao and Rahman (2003) presented a new path independent interaction integral approach, i.e. constant-
constitutive tensor approach for SIFs of mix mode fracture problems. The displacement and auxiliary strain field around the 
crack tip were assumed same as of homogeneous material case and stress field was obtained using constitutive relation with 
constant constitutive matrix of material properties at the crack tip. Paulino and Kim (2004) gave another approach of path 
independent interaction integral for mixed mode SIFs in FGM structure. In this formulation, the displacement and strain field 
were used same as of homogeneous material, but stress field was obtained by constitutive relation of FGM. This formulation 
violated the equilibrium condition of the relations, therefore, it was known as non-equilibrium formulation. Kim and Paulino 
(2005) reviewed the different formulations of interaction integral. Singh et al.,  (2011) numerically investigated the cracks, 
holes and inclusions in a plane strain FGM plate under mechanical load using XFEM and constant constitutive tensor 
formulation. Hossei et al.,  (2013) numerically analysed the crack propagation in FGM plate under thermo-mechanical load 
condition using XFEM along with non-equilibrium interaction integral formulation.  

     The literature work discussed here is associated either, reduction of SCF or reduction/analysis of SIF(s) in FGM structures. 
The effect of SCF reduction, due to the application of FGM, on fracture properties is not found in the literature and this is 
important in aspect of failure of mechanical structures. In this work, the analysis of SCF and SIF in an infinite plate (FGM 
plate/ homogeneous plate with FGM layer around the hole) having a central circular hole and an edge crack subjected to 
uniaxial tensile load is discussed. This work may provide an insight to researchers/designers for SCF reduction around the 
circular hole without/least affecting the fracture properties.  

2.  Extended Finite Element Method (XFEM) 
 
     The XFEM came into the picture from the work of Belytschko and Black (1999) and Moes et al.,  (1999). They presented 
a FEM technique to model the crack growth without re-meshing by using partition of unity approach based discontinuous 
enrichment functions those were derived from the exact solution of displacement field. These enrichment functions handle 
the mechanics of crack tip and require additional degree of freedoms to the related nodes. This technique has a high degree of 
accuracy with comparatively coarse mesh. The XFEM method has widely been used in recent years for investigating the 
cracking behaviour and fracture trajectory of different cracked components and materials (e.g. Afshar et al.,  2015; Ham and 
Hong 2018; Ameri et al.,  2021; Asferg et al.,  2007;  Golewski et al.,  2012; Bergara et al.,  2017; Agathos et al.,  2018; Aliha 
et al.,  2021, 2022; Mirmohammad et al.,  2018; Zeleke et al.,  2021; Arora et al.,  2018; Agwai et al.,  2011; Heidari-Rarani 
and Sayedain 2019). 
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Governing Equation 
 

      Consider a two-dimensional linear elastostatic domain 2ℜ⊂Ω ( 2ℜ : 2D Euclidian domain) has a set of boundaries Γ 
as depicted in Fig. 1. Set Γ contains traction free crack surface cΓ , prescribed displacement boundary uΓ , traction free hole 
boundary hΓ  and traction boundary tΓ .  

 
Fig. 1. A linear elastostatic 2D domain having hole and crack subjected to traction (T) and prescribed displacement ( 0u ). 

The equilibrium equation of an elastostatic domain Ω  can be stated in terms of body force vector (b ), stress tensor (σ ) and 
gradient operator ( ∇ ) as (Moes et al., 1999): 

0=+∇ bσ   (1) 

     The boundary conditions of Eq. 1 may be expressed as: 

cn Γ=⋅  on   0ˆσ  

u on  Γ= 0uu  

hn Γ=⋅  on   0ˆσ  
tTn Γ=⋅  on   ˆσ  

where,u  is displacement field vector, T  is traction, n̂  is unit normal vector in outward direction to the domain Ω  and 0u  is 
prescribed displacement. The stress tensor may be written as: 

εσ :)(xD=   (2) 

us∇=ε   (3) 

where, ∇ s
, ε  and D(x) are symmetric gradient operator, strain tensor and constitutive matrix respectively. The constitutive 

matrix D(x) for FGM can be expressed in terms of Young’s modulus ( )(xE ) and Poisson’s ratio ( )(xν ) as: 

    For plane stress: 
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     For plane strain: 
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(5) 

     To model the continuous varying Young’s modulus ( )(xE ) and Poisson’s ratio ( )(xν ) within the finite element space 
isoparametric graded finite elements (Kim & Paulino, 2002) are used in this work. This scheme utilizes nodal shape function 
( )iN  to determine Young’s modulus and Poisson’s ratio within the finite element as: 


=

=
m

i
ii ENxE

1
)(    (6) 


=

=
m

i
iiNx

1
)( νν    (7) 

     Moes et al.,  (1999) described the weak form of Eq.1 in terms of test function ( hv ) and trial displacement function ( hu ) as: 

 
Ω ΓΩ

Γ⋅+Ω⋅=Ω
t

dvTdvbdvu hhhh )(:)( εσ   
 

(8) 

     To model the holes in XFEM following test and trial function are used.  
 

= )(xVuNu ii
h

  (9) 

where, iN , iu and )(xV  are nodal shape function, nodal displacement and nodal enrichment function of the finite element 
respectively. The basic idea of hole enrichment function )(xV  is to define the hole boundary within the finite element space. 
The value of this function is one for the domain body and zero inside the hole i.e.:   
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(10) 

     In this work, the hole enrichment function is only employed in the vicinity of hole as shown in Fig. 2. To further enhance 
the computational efficiency and to reduce the computational time, the integrals of those nodes which fall inside the hole 
boundary are simply omitted and set to zero.  

 
Fig. 2. Representation of enriched nodes for modelling of hole in XFEM 

Modelling of Cracks with XFEM: The test and trial function to model the crack is given by Moes et al.,  (1999).  
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     The first term of the Eq. 11 is well known classical FEM term of displacement field in finite element space. The second 
term is heaviside enrichment term which enables the finite element space to handle the crack faces inside the finite element. 
The third term is crack tip enrichment term to model the displacement behaviour of crack tip. In the Eq.11, iu  is the classical 

FEM nodal displacement or in another word, it is classical degree of freedom, ia  represents the additional heaviside degree 

of freedom, )(xH s  is the heaviside enrichment function, l
ib  is the additional degree of freedoms for crack tip, iN  is the 

finite element shape function, and )(xFl  is the crack tip enrichment function. 

     Heaviside enrichment function is also known as step function or jump function. It applies to those elements which have 
the crack face in such a way that the crack split the element into two. This split in the element’s domain causes jump behaviour 
in the displacement field and by incorporating heaviside enrichment function jump behaviour can be modelled easily. 
Heaviside enriched nodes are shown by circle in Fig. 3. The value of )(xH s  is +1 for nodes above the crack face (green 
circled nodes) and -1 for nodes below the crack face (red circled nodes). To employ heaviside function one additional degree 
of freedom ( ia ) per node per dimension is required. 

     Element(s) which contain the crack tip are enriched by crack tip enrichment functions. These functions are derived from 
the exact solution of displacement field. The mathematical representation of these functions in crack tip in polar coordinate 
system is as follows: 
 

{ } ( ) ( ) ( ) ( ){ }θθθθθθθ sin2cos,sin2sin,2sin,2cos),( 4
1 rrrrrF l

l ==  
(12) 

 

In Eq. 12, r  and θ  represents crack tip  polar coordinates and the second enrichment function i.e. ( )2sin θr  is 

discontinuous around crack tip that provides the desired effect to approximate the displacement field near the crack. Other 
three functions are continuous around the crack tip and used for improvement in the solution of displacement field. Each crack 
tip enriched node requires eight extra degrees of freedoms. Further, the crack tip enriched nodes are represented by square in 
Fig. 3. 

 
Fig. 3. Illustration of enrichment for modelling of crack in XFEM. 

       After substituting the trial function hu  of hole (Eq. 9) and crack (Eq. 11) in Eq. 8, one can get the discrete form as: 

[ ]{ } { }ijij fdk =   (12) 

where, d  is nodal displacement vector, k  is stiffness matrix  and f  represents the nodal force vector. The stiffness matrix 
can be obtained as: 
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     In Eq. 13 the B represents basis matrix which can be written as: 

( )
( )

( ) ( ) 















=

xiyi

yi

xi
u
i

NN
N

N
B

,,

,

,

0
0

   

 

(15) 

( )
( )

( ) ( ) 















=

xisyis

yis

xis
a
i

NHNH
NH

NH
B

,,

,

,

0
0

  

 

(16) 

( )
( )

( ) ( ) 















=

xilyil

yil

xil
b
i

NFNF
NF

NF
B

,,

,

,

0
0

  

 

(17) 

     The subscript ( x, ) and ( y, ) represents the derivative with respect to x-dimension and y-dimension respectively. Further, the 
nodal force vector is expressed as: 
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      A different numerical integration scheme is used in XFEM. The enriched elements are subdivided into triangles and then 
sixth-order triangular Gauss quadrature is applied on crack tip element and forth-order triangular Gauss quadrature is used for 
heaviside and hole enriched elements. Further, for non-enriched near tip elements the standard forth-order Gauss quadrature 
and for rest of elements the standard third-order Gauss quadrature is used.  

3.  Level Set Method 

    The hole and crack boundaries are traced with the level set method in this work. Level set method was introduced by Osher 
and Sethian in 1988. This method represents the crack and hole boundaries by a higher dimension function of XFEM mesh. 
Consider a domain Ω  having an arbitrary crack cΓ  as shown in Fig. 4. To model the crack in XFEM, normal and tangential 
level set functions are required. As the name suggests the normal level set function (φ ) is evaluated in normal direction of 
the crack and tangential level set function (ψ ) is formed along the tangential direction of the crack. 

 
Fig. 4. Level set functions for a crack. 

      The φ  is described in such a way that the value of this function found positive above the crack, negative below the crack 
and zero on the crack. The ψ  is calculated in the tangential direction from the normal drawn of the crack tip in such a way 
that in front of crack tip it is positive and behind the crack tip it is negative. Normal and tangential level set function for an 
edge crack can be written as: 
 

nxx ˆ⋅−= Γφ    (22) 
 

txx
n

ˆ
1 ⋅−= Γψ   (23) 

where, n̂ , t̂ , x , Γx  and 
n

xΓ  are normal direction vector,  tangential direction vector, arbitrary point, neariest point on the 
crack face and nearest point on the normal of crack tip respectively. The elements which require the enrichments can easily 
be traced by the level set functions. Heaviside enriched elements can be traced by the following conditions: 
 0;0maxmin <≤∗ max  and  ψφφ         
    The crack tip enriched element can be found by the following conditions: 
 0;0maxmin ≤∗≤∗ maxmin  and  ψψφφ        

    The value of heaviside function can also be described by φ  as: 
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     Further, one can calculate the crack tip polar coordinates as: 
 

22 ψφ +=r   
(25) 
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φθ 1tan   

(26) 

 
     For modelling of hole the static level set function ξ  is used. It divides the domain Ω  into two subdomains in such a way 
that subdomain 1Ω  represents outside the hole boundary and subdomain 2Ω represents inside the hole as well as on the hole 

boundary. By equating the level set function ξ  with zero one can trace the hole boundary ( hΓ ). For an arbitrary shape hole, 
the level set function can be written in form of sign distance function as: 

nxx
h

ˆ⋅−= Γξ   
(27) 

    The ξ  for a circular hole can be evaluated easily by using following equation: 

( ) ( ) Ryyxx cc −−+−= 22ξ    
(28) 

where, x and y represent an arbitrary point coordinates. The xc, yc and R are the coordinates of centre and hole radius 
respectively.  

4  Interaction Integral 

     To evaluate the SIF, the path independent non-equilibrium interaction integral formulation (Paulino & Kim 2004) is used 
in this work. This formulation uses the same auxiliary displacement and strain field as of homogeneous materials with Young’s 
modulus and Poisson’s ratio of crack tip, but the auxiliary stress field is obtained by using constitutive relation with 
constitutive matrix of FGM material as: 
 

22 )( klijklij xC εσ =  (29) 

     It is clear from the Eq. 29 that it does not satisfy the equilibrium condition which is given by:  
 

( ) 22
kltipijklij C εσ =   (30) 

     According to this formulation the interaction integral (M) over a close path Γ ( 3210 Γ+Γ+Γ+Γ=Γ ) around the crack 
tip (as shown in Fig. 5) can be expressed as: 
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, )()( jkltipijklijklkljijkljkltipijkljij DxDxDD εεεσ −++=  (32) 

 
Fig. 5. Illustration of a closed path 3210 Γ+Γ+Γ+Γ=Γ  for interaction integral in a cracked domain. 

     The superscript (1 and 2) denotes the actual and auxiliary fields respectively. The subscript (  1, ) represents the derivative 

with dimension 1x . The q represents plateau-type weight function varying from 0Γ  to 2Γ  as 1=q  at 0Γ  and 0=q  at 2Γ . 
The underline terms of Eq. 31 appeared to compensate the non-equilibrium condition and underline term of Eq. 32 vanishes. 
To obtain the SIFs the Eq. 31 is compared with the following standard equation.  



V. Goyat et al.  / Engineering Solid Mechanics 10 (2022) 
 

333

 

( )( ) ( )( )[ ]21212
IIIIII KKKK

E
M +

′
=  

(33) 

    The SIF of mode-I is evaluated by putting 12 =IK  and 02 =IIK  
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    Similar for mode-II 
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where, )1/( 2
tiptiptip vEE −=′ for plane strain and tiptip EE =′ for plane stress. 

 

5.  Results and Analysis 

     A XFEM based MATLAB computer code has been developed to solve the problem of SCF and SIF in an infinite plate 
subjected to uniaxial tensile load. Eight node isoparametric graded quadrilateral elements are used to model the 
nonhomogeneous behaviour of FGM. Two thin square plates of dimension 20 times to the diameter of the hole are assumed 
with a central circular hole and an edge crack. First plate is made up of radial FGM and second consist FGM layer around the 
circular hole as illustrated in Figs. 6(a) and 6(b) respectively. Young’s modulus of FGM varies according to exponential and 
power law function along the radial direction of hole, whereas the Poisson’s ratio is kept constant (Yang et al., 2010).   

 
                          (a)      (b) 

Fig. 6. (a) FGM plate with hole and edge crack (b) homogeneous plate having edge crack and hole reinforced with FGM 
layer subjected to uniaxial tensile far-field stress. 
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( ) 3.0==vrv  
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    The r , 0r , 1E , 2E , *E , v , n and t represent radial coordinate, hole radius, Young’s modulus of material-I, Young’s modulus 
of material-II, Young’s modulus ratio, Poisson’s ratio, power law index and FGM layer thickness respectively.   

5.1  Validation of computer code 

     The reliability and accuracy of developed computer code have been tested with published literature. For this purpose, the 
computer code is tuned to solve the problems of Yang et al.,  (2010) – FGM plate with hole subjected to uniaxial tensile load, 
Sburlati et al.,  (2014) – homogeneous plate having circular hole reinforced with FGM layer subjected to uniaxial tensile load 
and Gross and Srawley (1964) – homogeneous plate with edge crack under tensile load shown in Figs. 7(a), 7(c) and 7(e) 
respectively.  

 
(a)                                              (b) 

 
(c)                                                 (d) 
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(e)                                   (f) 

Fig. 7. Problem configuration and obtained results for validation (a) FGM plate with circular hole subjected to uniaxial tensile 
load (b) stress distribution along x-axis around circular hole in FGM plate (c) homogeneous material plate having circular 
hole reinforced with FGM layer subjected to tensile load (d) variation of normal stress x-axis due to FGM layer (e) 
homogeneous material plate with edge crack subjected to tensile far field stress (f) variation of SIF with normalised crack 
length. 

     The obtained results of validation problems, i.e. stress distribution along normalised x-axis in FGM plate, variation of 
normal stress with normalised x-axis due hole reinforced with FGM layer and variation of SIF with normalised crack length 
are reported in Figs. 7(b), 7(d) and 7(f) respectively, along with the results of published references. A good agreement is 
found between the results obtained from developed computer code and the results reported in the literature and a maximum 
error of < 2% is noticed. 

5.2  FGM plate with hole and edge crack 
     The effect of FGM functions, Young’s modulus ratio ( *E ), power law index (n) and normalised crack length (a/W) on 
SCF and SIF is analysed for FGM plate with circular hole and edge crack  subjected to uniaxial tensile load (see Fig. 6(a)).  
Fig. 8 shows the variation of SIF of mode-I (KI) and SCFs (KtR and KtL) with normalised crack length (a/W) for different 
values of n in power law FGM plate of *E = 5. It is observed that KI increases with increase in a/W irrespective of the value 
of n. For n = 0.2 and 0.5, the value of KI is found higher than homogeneous plate case i.e. n = 0. The value of KI for FGM 
plates having n = 1, 2 and 5 is observed to be higher than that of homogeneous plate for lower values of a/W but, for higher 
values of a/W, the KI is found lower than the homogeneous plate.  
 

   
(a) (b) (c) 

 
Fig. 8. variation of (a) KI (b) KtR and (c) KtL with normalised crack length (a/W) for different values of power law index (n). 
Two SCFs KtR i.e. for right half plate and KtL i.e. for the left half plate, are used in this work. The left half plate consists edge 

crack and crack properties may affect the stress concentration of left half plate. Therefore, two SCFs are convenient to 
describe this work. These SCFs are calculated as: 
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     The KtR and KtL are observed constant up to a/W = 0.2, beyond that KtR and KtL increase with increase in a/W for all values 
of n. For n ≤ 1, it can be stated that the value of KtR and KtL are found lower than homogeneous plate. For n > 1, the value of 
KtR and KtL are noticed to be lower for lower values of a/W and slightly higher for higher values of a/W as compared to 
homogeneous plate.  When comparing the value of KtR with KtL, it is found that the value of KtL is slightly higher than KtR for 
a/W ≥ 0.3 and for rest values of a/W, the KtR  and KtL are found same. It is also noticed that the n = 0.5 shows the least value 
of SCFs. The effect of Young’s modulus ratio ( *E ) on KI, KtR and KtL is analysed for power law index n = 0.5 and shown in 
Figs. 9(a), (b) and (c) respectively. It is observed that the KI increases with increase in *E  and a/W. The difference in KI of 
FGM plate and homogeneous plate is found decreasing with increase in a/W. The SCFs (KtR and KtL) decrease with increase 
in *E  for a particular value of a/W. The KtR and KtL are noted to be constant for a/W < 0.2 and then sharp increase is noticed 
with further increase in a/W. The KtL has higher value than KtR for a/W > 0.25 for all values of *E .  
 

  
 

(a) (b) (c) 
  

Fig. 9. effect of Young’s modulus ratio on the variation of (a) KI (b) KtR and (c) KtL with normalised crack length (a/W) for 
power law index (n = 0.5). 

For radial exponential FGM plate, the effect of Young’s modulus ratio ( *E ) on KI, KtR and KtL is shown in the Figs. 10(a), 
(b) and (c) respectively. The KI increases with increase in a/W for all values of *E . The difference in the value of KI of FGM 
plate and homogeneous plate ( *E  = 1) decreases with increase in a/W further, this difference is positive for a/W ≤ 0.35 and 
negative for a/W > 0.35. The trend of KtR and KtL are found similar to the case of power law FGM with n = 0.5 but, the amount 
of reduction in the value of SCFs is found less in exponential FGM case.  
 

5.3  Homogeneous plate with edge crack and hole reinforced with FGM layer 
 

     In this section, the effect of different FGM layers (power law and exponential) and their properties such as power law 
index, FGM layer thickness and Young’s modulus ratio is analysed on KI, KtR and KtL for a homogeneous plate with edge 
crack and circular hole reinforced by a FGM layer under to uniaxial tensile far-field stress (see Fig. 6(b)).  
 

 
  

(a) (b) (c) 
  

Fig. 10. effect of Young’s modulus ratio on the variation of (a) KI (b) KtR and (c) KtL with normalised crack length (a/W) for 
exponential FGM 
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     Fig. 11(a) shows the relation of KI with a/W for different values of n, while *E  and FGM layer thickness (t) are taken as 
5 and 0r  respectively. It is noticed that the KI increases with increase in a/W and n. Though, the amount of increase in the 
value of KI with n is found insignificant for a/W < 0.25.  
 

 

   
(a) (b) (c) 

Fig. 11. effect of power law index (n) on the variation of (a) KI (b) KtR and (c) KtL with normalised crack length (a/W) for 
power law FGM layer with *E = 5 and t = 0r . 

   The variation of SCFs KtR and KtL with a/W for different values of n are shown in Fig. 11(b) and (c) respectively. It is noted 
from the figures that the KtR and KtL are first constant and then increase with increase in a/W. For a particular value of a/W, it 
can be stated that the KtR and KtL are first decrease and then increase with increase in power law index n. Further, it is found 
that the power law index n = 0.5 has least value of KtR and KtL for maximum range of a/W. 
     The effect of *E  on relation of KI, KtR and KtL with a/W for power law FGM layer with n = 0.5 and layer thickness t = 0r  
is reported in Figs. 12(a), (b) and (c) respectively. It is noticed that the KI increases with increase in a/W. The KI of FGM 
layer cases follows the KI of homogeneous plate ( *E  = 1) for a/W < 0.3 and then increases with increase in *E . The KtR and 
KtL are found constant up to a/W = 0.2 and then sharply increase with further increase in a/W. For a particular value of a/W, 
the KtR decreases with increase in *E up to *E  = 5 and no further significant decrease is observed for *E = 10. For a/W ≤ 
0.3, the KtL decreases with increase in *E up to *E  = 5 and *E = 10 has same value as of *E  = 5. Further, for a/W > 0.3, it 
is found that KtL of *E  = 5 and 10 are slightly higher than that of *E = 2. 
 

 
  

(a) (b) (c) 
 

Fig. 12. effect of Young’s modulus ratio ( *E ) on the relation of (a) KI (b) KtR and (c) KtL with normalised crack length 
(a/W) for power law FGM layer with n = 0.5 and t = 0r . 

Figs. 13(a), (b) and (c) show the effect of FGM layer thickness (t) on variation of KI, KtR and KtL with a/W respectively. It is 
noted that the effect of t on KI is insignificant for a/W  ≤ 0.25 and for a/W  > 0.25, the KI increases with increase in t. The 
trends of KtR and KtL for FGM layer are found similar as of homogeneous plate, but the values are significantly reduced than 
the homogeneous plate. The value of KtL is observed higher than KtR for a/W  > 0.2. Further, it is noticed that value of KtR and 
KtL decrease with increase in t.  
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(a) (b) (c) 

 
Fig. 13. effect of FGM layer thickness (t) on the variation of (a) KI (b) KtR and (c) KtL with normalised crack length (a/W) 

for power law FGM layer with *E = 5 and n = 0.5. 
     The homogeneous plate having circular hole with exponential FGM layer of t = 0r  and an edge crack has been analysed 

for KI, KtR and KtL. Fig. 14(a) depicts the relation of KI with a/W for various values of *E . It is found that the KI increases 
with increase in *E  and a/W but the increase in KI with *E  is found insignificant for a/W < 0.3. Figs. 14(b) and (c) show 
the relation of KtR and KtL with a/W for various values of *E . The KtR and KtL are noticed to be constant up to a/W = 0.25 and 
increase with further increase in a/W. For a particular value of a/W, the KtR and KtL are first decrease and then increase with 
increase in *E . 
 

   
(a) (b) (c) 

 
Fig. 14. effect of Young’s modulus ratio ( *E ) on the relation of (a) KI (b) KtR and (c) KtL with normalised crack length 

(a/W) for exponential FGM layer of t = 0r . 
 

   
(a) (b) (c) 

 
Fig. 15. effect of FGM layer thickness (t) on the variation of (a) KI (b) KtR and (c) KtL with normalised crack length (a/W) 

for exponential FGM layer with *E = 5. 



V. Goyat et al.  / Engineering Solid Mechanics 10 (2022) 
 

339

The effect of FGM layer thickness (t) on the variation of KI, KtR and KtL with a/W is shown in the Figs. 15(a), (b) and (c) 
respectively, for exponential FGM layer with *E = 5. The KI increases with increase in a/W for all values of t. The KI value 
of FGM layer follow KI value of homogeneous plate for a/W ≤ 0.25, beyond this KI increases with increase in t. The KtR and 
KtL  are observed to be constant up to a/W = 0.2 and then increase with further increase in a/W. The value of KtR and KtL  
decrease with increase in t. 
 

6. Conclusions 
 

     The effect of SCF reduction by the application of FGM (power law and exponential) on SIF of crack has been analysed 
for a plate with a hole and an edge crack subjected to uniaxial tensile load. In this work, two cases have been analysed first 
the whole plate made up of radial FGM and second homogeneous plate having a radial FGM layer around the hole. In both 
cases the power law FGM with power law index n = 0.5 provides the least value of SCFs. The SIF is significantly affected by 
the Young’s modulus ratio (E2/E1) in FGM plate case, but FGM layer has insignificant effect on SIF for smaller crack length. 
Further, an increase in the thickness of FGM layer significantly reduces the SCF without affecting the SIF much for smaller 
crack length. Therefore, it is better to use FGM layer instead of FGM plate to reduce SCF in presence of edge crack.  
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