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 This study reports the flow stress behavior of three P92 steels with different compositions. Uniaxial 
compression tests were conducted in the deformation temperature range of 575 °C to 650 °C and strain 
rate range of 0.001-0.5 s-1 using a Gleeble® 3500 thermo-mechanical simulator. A simple physically-
based constitutive model was used to analyse the effects of deformation conditions (temperature and 
strain rate) on the metal flow stress behavior during the deformation process. The method accounts for 
the temperature dependence of Young’s modulus and the lattice self-diffusion coefficient of Fe in the 
ferrite. Constitutive equations describing the flow stress behavior of the three P92 steels were 
developed. From the results, the stress exponent n of 26.13(steel A), 21.61(steel B) and 27.55 (steel 
C) were obtained using the self-diffusion activation energy in the physically-based constitutive 
equation. From the results, the three steels had variation in the stress exponent values, which was 
attributed to differences in elemental content, such as chromium and tungsten. The developed 
constitutive equations were verified using statistical parameters: Pearson’s correlation coefficient (R) 
and average absolute relative errors (AARE). Statistical analysis showed that the three steels had the 
same R of 0.98, while AARE was: 1.68 (steel A), 1.72 (steel B), and 1.82 (steel C). The constitutive 
equations developed showed a good correlation between the experimental and predicted flow stress 
data. Hence, the method is applicable in describing flow stress behavior in the metalworking process 
in the industry.  

© 2022 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

         
     Characterisation of the metalworking process is complex due to the various deformation mechanisms (Lin & Chen, 2011; 
He et al., 2014). The flow deformation mechanisms (hardening and softening) are affected by the material response to the 
deformation parameters such as temperature, strain and strain rate (He et al., 2014). The deformation process for a material 
can be well-defined by analysing the flow stress behavior (Lin, Chen & Zhong, 2008b). Constitutive equations provide 
information on the effect of the deformation parameters on the flow stress behaviour. These equations can be input in 
computational simulation software for simulation analysis (Lin, Chen & Zhong, 2008a; Guo et al., 2009). Computer programs 
enhance optimisation of the process parameters, reducing trial and error and large-scale testing in the industrial production 
process, thus reducing the cost of optimisation and improving product quality (Zhang et al., 2009). Therefore, a well-defined 
constitutive equation forms an integral part of the metalworking process by increasing production efficiency (He et al., 2014). 
Hence, establishing accurate constitutive equations is paramount. The equations provide a mean of predicting the flow stress 
behaviour of commonly-used metals. 
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     Constitutive models fall into two broad categories based on the computational parameters. The phenomenological models: 
consider continuum mechanics and thermodynamic irreversibility. The physical models: examine dislocation density theory 
and kinetics of dynamic recrystallisation (Lin & Chen, 2011; He et al., 2015). The phenomenological models based on 
regression methods are used widely because of their simplicity in the application of experiment data (Shi and Liu, 2011,Seol 
et al., 1999; Yang et al., 2016; Hajari et al., 2017; Luan et al., 2014). However, the physically based models (Lin et al., 2014) 
and neural network models (Xiao et al., 2012) have limited applications. The physical models are complex as they incorporate 
the material structure and the deformation micromechanism such as the dislocation movement (Haghdadi et al., 2016). The 
Arrhenius-type phenomenological model has wide application in predicting the flow stress behaviour of various alloys. This 
model has been used to analyse: modified 9Cr-1Mo steel (Samantaray, Mandal and Bhaduri, 2010), P92 steel (Shi and Liu, 
2011), 35CrMo steel (Huang et al., 2017), 20CrMo alloy steel (He et al., 2013), nickel-based superalloys (Zhang et al., 2016), 
aluminium alloys (Lin et al., 2010), magnesium alloys (Luan et al., 2014) and titanium alloys (Jha et al., 2017). However, this 
model does not account for any changes occurring in the microstructure during the deformation process. Hence, the derived 
material constants are called apparent values (Wang et al., 2015). The activation energy calculated using the Arrhenius 
equation differ from the self-diffusion activation energy of iron (Fe) in austenite (270 kJ.mol-1) (Cabrera, Jonas and Prado, 
1996) and ferrite (239 kJ.mol-1) (Ashby, 1972). This variation can be due to the microstructure changes. According to Wang 
et al. (Wang et al., 2015), the variation can be normalised by flow stress normalisation using the deformation-temperature 
dependent Young’s Modulus E(T). Therefore, the constitutive sine hyperbolic equation is as follows (Mirzadeh et al. 2011): 𝜀ሶ𝐷(𝑇) = 𝐵ሾ𝑠𝑖𝑛ℎ(𝛼𝜎/𝐸(𝑇))ሿ (1) 

𝐷(𝑇) = 𝐷𝑒𝑥𝑝 (−𝑄௦ௗ 𝑅𝑇)⁄  (2) 𝐸(𝑇) = 𝐸 ቈ1 − 𝑇𝐺 𝑑𝐺𝑑𝑇 (𝑇 − 300)𝑇  (3) 

where D0 is a pre-exponential constant and Qsd is the self-diffusion activation energy, E(T) is the value of Young’s Modulus 
at different deformation temperatures and Tm is the melting temperature of the steel under investigation, 𝜀ሶ is the strain rate (s-

1), B is the hyperbolic sine constant, α is the stress multiplier (α = B∕n'), n is the stress exponent and E0 is the young’s modulus 
at temperature 300K, Tm/G0.dG/dT is the temperature dependence of the modulus. G0 is the shear modulus at 300K, and D is 
the self-diffusion coefficient. The values of D0, E(T) and Qsd are obtained from tables developed for the deformation behaviour 
of metals and alloys by Ashby (Ashby, 1972). The value of E0 in Equation 3 was approximated using the equation E0 = 2G 
(1+ν), in which the Poisson’s ratio (ν) was taken as 0.3. There is limited literature on the application of simple physically-
based constitutive modelling for predicting the flow stress behaviour of P92 steel during deformation. The study aims to 
investigate the possibility of utilising the physically-based constitutive model to predict the flow stress behaviour of three P92 
steels during forging. 

2. Experimental procedure   
 
     The slightly different chemical compositions of the three P92 steels used in this study are given in Table 1.  
Round rod samples of Ø 8 mm and 12 mm length were machined from each of the three ASME P92 steel blocks. Axisymmetric 
compression testing was done using Gleeble® 3500 thermal-mechanical equipment under the following conditions: 
temperatures of 575°C to 650°C, a total strain of 0.7, and strain rates of 0.001 to 0.5 s-1. The deformation temperature was 
controlled using K-type thermocouples welded onto the centre of the sample length. Nickel paste was applied to the graphite 
foil to minimise the friction effect and thermal gradient between the anvil and the specimen. The test specimens were heated 
up to an austenitising temperature of 1100 °C at a heating rate of 5 °C/s and held at this temperature for 180 seconds to 
homogenise the microstructure and reduce thermal gradients before the uniaxial compression test. The test specimens were 
cooled to the deformation temperature at a rate of 10 °C/s and soaked for 60 seconds, and then deformed at a specified strain 
rate until a strain of 0.7, and air-cooled to room temperature. The selection of the austenitisation temperature of 1100 °C was 
to ensure complete dissolution of M23C6 carbides. For these steels, carbide dissolution occurs at 850 °C according to 
ThermoCalc calculations, as shown in Fig. 1. 
 
Table 1. The chemical composition of P92 steels under investigation (wt %) 

Steel  C Mn Si Cr Mo Ni Cu Al V Nb W Co Fe 
Steel A 0.10 0.39 0.20 8.29 0.65 0.19 0.08 0.012 0.16 0.093 2.07 0.015 Bal 
Steel B 0.11 0.51 0.22 9.37 0.50 0.17 0.27 0.006 0.19 0.130 1.76 0.028 Bal 
Steel C 0.11 0.32 0.25 9.48 0.61 0.17 0.00 0.023 0.20 0.076 2.34 0.024 Bal 
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Fig. 1. ThermoCalc diagram showing the phases and their formation temperatures for steel A. 

 

3. Results and discussion  

3.1. Flow stress behaviour 
 
3.1.1. Effect of temperature 
 
   The variation of flow stress and the deformation temperature is as given in Fig. 2 a-c) for warm deformation. The flow stress 
increased with a decrease in the deformation temperature and an increase in the strain rate. At a lower strain rate, the flow 
stress decreased with an increase in the deformation temperature. Higher temperature deformation increases the rate and extent 
of dynamic softening. The softening behavior is due to an increased vacancy diffusion, cross-slip and climb of edge dislocation 
(Xiao et al., 2012). Therefore, the dynamic softening mechanism is a thermally activated process which increases at high 
temperature. Metal forming is commonly done for grain refinement, hence improving material strength. However, as forming 
temperature increases, the average grain size increases to form equiaxed grains. The formation of equiaxed grains indicates 
that DRX has occurred. When ‘necklace’ grains (small grains occurring along the grain boundary of a large grain) occur, this 
implies incomplete DRX, but DRV had occurred. Metal forming at lower temperature results in a large plastic deformation 
force and stress, hence suitable for uniform grain refinement (Yanushkevich et al., 2016). Thus, ensure uniform fine grain 
distribution across the deformed sample, improving mechanical properties such as creep strength. Therefore, the effect of 
deformation temperature on the microstructure of the deformed sample is significant. However, forming at lower temperatures 
require high capacity machines. These machines result in high running costs; hence they are unpopular in the industry. 
 

3.1.2. Effect of strain rate 
 
Fig. 2 a-c) shows a plot of flow stress for the three P92 steels at a given strain rate.  It is seen that the flow stress increases 
with an increase in strain rate at a given temperature. This result shows that the flow stress is sensitive to strain rate. According 
to Zhu et al. (2018), deformation at a higher strain rate, there is limited time for the dislocation and rearrangement to 
counteract, resulting in higher flow stress. However, deformation at a lower strain rate, there is sufficient time for dislocation 
motion and an increase of carbide precipitation, hence affecting solid solution and precipitation strength. Therefore, the flow 
stress variation with strain rate occur due to the deformation mechanisms which control the flow stress (Rastegari et al., 2015). 
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Fig. 2.The relationship between maximum flow stress, strain rate and temperature for warm deformation a) steel A, b) steel 
B, c) steel C and d) all the three steels  
 
3.1.3. Effect of composition 
 
The flow stress-strain curves of the three P92 steels showed slightly different flow stress values for all deformation conditions. 
Fig. 2d) shows the difference in flow stress values for the three steels tested at the lowest and the highest strain rates.  Steel C 
had the highest flow stress in all deformation conditions. One reason may be the higher chromium content in steel C, as 
chromium enhances strengthening by forming precipitates that pin dislocation during deformation (Czyrska-filemonowicz et 
al. 2006). In this study, the test temperatures were below the dissolution temperature of M23C6 carbides (850 °C) for the steels 
investigated (Peng et al., 2017). Therefore, a high volume fraction of M23C6 carbides may have occurred during deformation. 
According to Carsi et al.(2011), a small amount of M23C6 carbides hinders dislocation motion, result in higher stress exponent, 
hence an increase in flow stress. Flow stress variation in the three steel was due to chromium content available in the steel to 
form carbides during deformation. 
 
 
3.2. Physically-based constitutive model analysis 
 
    From Eq. (1), the only unknown material constants are B, n, and α. The saturation flow stress values (Table 2) and steel 
values in Table 3 were substituted in Eq. (1) and Eqs. (4-5) to determine the material constants. To determine the value of α, 
the power, and exponential law Eqs. (4-5) are used to determine n’ and B.   

 𝜀ሶ𝐷(𝑇) = 𝐵 ൬ 𝜎𝐸(𝑇)൰ᇱ (4) 𝜀ሶ𝐷(𝑇) = 𝐵𝑒𝑥𝑝 ቆ 𝛽′𝜎𝐸(𝑇)ቇ 
(5) 

 
     From the flow stress experimental data, the plots of 𝑙𝑛 𝜀ሶ 𝐷(𝑇)⁄ − 𝑙𝑛 (𝜎 𝐸(𝑇)⁄  and 𝑙𝑛 𝜀ሶ 𝐷(𝑇)⁄ − (𝜎 𝐸(𝑇)⁄  were plotted and 
used to determine the material constant values of n’ and B respectively. Then, the value of stress multiplier was calculated 
using the relationship of α = B/n’. According to Equation 1, the slope and the intercept of the plot of 𝑙𝑛 𝜀ሶ 𝐷(𝑇)⁄ −𝑙𝑛 (𝑠𝑖𝑛ℎ (𝜎 𝐸(𝑇)))⁄  were used to determine the value of stress exponent n and the intercept ln B respectively. The plots for 
determining material constants for the three steels (A, B and C) are shown in Fig. 3. The material constants for each steel have 
been summarised in Table 4. 
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Table 2. The flow stress data for the three P92 steel investigated for all the deformation conditions 
Steel  Strain rate (s-1) 575 600 625 650 
 
 
Steel A 

0.001 457 434 412 369 
0.01 476 456 430 397 
0.1 499 481 454 429 
0.5 519 496 475 450 

 
 
Steel B 

0.001 470 440 386 369 
0.01 489 462 415 392 
0.1 508 485 440 425 
0.5 524 505 467 448 

 
 
Steel C 

0.001 487 466 432 394 
0.01 508 480 457 426 
0.1 529 499 472 442 
0.5 546 518 489 459 

 
Table 3. Data for analysing the physically based model for P92 steel (Ashby, 1972)  

    D0/(m2/s) Qsd (KJ/mol)   η G0 (MPa) 
2.0 × 104       251 -0.81 6.4 × 104 

 
 
Table 4. The material constants of hot deformation analysis of P92 steels investigated 

Steel       α    n lnB 
Steel A 344.80 26.23 38.86 
Steel B 346.21 21.61 39.89 
Steel C 326.90 27.55 39.53 

 

Therefore, the resultant constitutive equation for the three steels can be written as follows: 
 

For steel A:  𝜀 ሶ 𝑒𝑥𝑝 ቂଶହଵோ் ቃ = 1.3578 × 10ଵଶሾ𝑠𝑖𝑛ℎ(344.8 × 𝜎௦௦ 𝐸(𝑇)⁄ )ሿଶ.ଶଷ  (6) 

For steel B:  𝜀 ሶ 𝑒𝑥𝑝 ቂଶହଵோ் ቃ = 3.7804 × 10ଵଶሾ𝑠𝑖𝑛ℎ(346.21 × 𝜎௦௦ 𝐸(𝑇)⁄ )ሿଶଵ.ଵ (7) 

For steel C: 𝜀ሶ𝑒𝑥𝑝 ቂଶହଵோ் ቃ = 2.6375 × 10ଵଶሾ𝑠𝑖𝑛ℎ(326.90 × 𝜎௦௦ 𝐸(𝑇)⁄ )ሿଶ.ହହ (8) 

 
     The values of material constants α, B and n were summarised as shown in Table 5. The values were obtained through linear 
regression fitting under different deformation conditions. Using hyperbolic sine function properties Eq. (1) can be expressed 
mathematically as Eq. (9): 
 ൬𝑍𝐵൰భ = 𝑠𝑖𝑛ℎ ൬𝛼 𝜎௦௧𝐸(𝑇)൰ =  𝑒ఈఙೞೌ ா(்)⁄2 −−𝑒ఈఙೞೌ ா(்)⁄2  

(9) 

 
By solving Eq. (9) this leads to Eq. (10): 
 

𝜎௦௧ = 𝐸(𝑇)𝛼 𝑙𝑛 ൬𝑍𝐵൰భ + ൭൬𝑍𝐵൰మ + 1൱൩భమ  
(10) 

 
                                           
Table 5. Calculated material constants for warm deformation 

Material constants Steel A Steel B Steel C 
α 344.8 346.2 326.9 
n 26.2 21.6 27.6 
B 1.36 × 1012 3.78 × 1012 2.64 × 1012 
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Fig. 3. The plot used to determine the material constants at saturation flow stress (a) B (b) n’ (c) n using a simple physical 
based constitutive model for the three P92 steels.  
 
    From Eq. (9), the saturation flow stress under different deformation conditions can be obtained from the following equations 
for the three steels, and 𝑍 = 𝜀ሶ𝑒𝑥𝑝 ቀଷଵଽ் ቁ 
 

For steel A: 𝜎௦௧ = ா(்)ଷସସ.଼ 𝑙𝑛 ቈቀ ଵ.ଷ×ଵభమቁ భమల.మ + ቆቀ ଵ.ଷ×ଵభమቁ మమల.మ + 1ቇభమ (11) 

For steel B: 𝜎௦௧ = ா(்)ଷସ.ଶ 𝑙𝑛 ቈቀ ଷ.଼×ଵభమቁ భమభ.ల + ቆቀ ଷ.଼×ଵభమቁ మమభ.ల + 1ቇభమ (12) 

For steel C: 𝜎௦௧ = ா(்)ଷଶ.ଽ 𝑙𝑛 ቈቀ ଶ.ସ×ଵభమቁ భమళ.ల + ቆቀ ଶ.ସ×ଵభమቁ మమళ.ల + 1ቇభమ (13) 

3.3. Statistical error analysis of physically based model 
 
The comparison between the predicted and experimental flow stress data for the three steels, as shown in Fig. 4. The statistical 
parameters: Pearson’s correlation coefficient R (Eq. (14)) and average absolute relative error AARE (Eq. (15)) were 
employed. These parameters effectively verifies the accuracy of the developed model in predicting the flow stress of the three 
P92 steels (He et al., 2013; Xiao et al., 2012; Gao et al., 2014).  
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Fig. 4. Comparison between the predicted and the experimental flow stress of the three P92 steel under all the deformation 
conditions (a) steel A (b) steel B (c) steel C. 
 𝑹 = ∑ (𝑬𝒊 − 𝑬ഥ)(𝑷𝒊 − 𝑷ഥ)𝑵𝒊ୀ𝟏ට∑ (𝑬𝒊 − 𝑬ഥ)𝟐 ∑ (𝑷𝒊 − 𝑷ഥ)𝟐𝑵𝒊ୀ𝟏𝑵𝒊ୀ𝟏  

 
(14) 

𝑨𝑨𝑹𝑬(%) = 𝟏𝑵∑ ቂ𝑬𝒊ି𝑷𝒊𝑬𝒊 ቃ𝑵𝒊ୀ𝟏                                                      (15) 

  
where, E is the experimental flow stress, P is the predicted flow stress using the developed physically based constitutive 
equation and, 𝐸ത and 𝑃ത are the average values of E and P respectively. From Fig. 4,  the graph shows that most of the data 
points lie close to the regression line showing a high coefficient of determination R2 of 0.95 (steel A), 0.96 (steel B) and 0.98 
(steel C). The calculated Pearson’s correlation coefficient R for the three steels were: steel A (0.98), steel B (0.98) and steel 
C (0.98), while AARE values were 1.68% (steel A), 1.72% (steel B) and 1.83% (steel C). From this analysis, the results show 
that the developed simple physically-based constitutive model has high accuracy in predicting the flow stress behaviour for 
the three P92 steels investigated. Hence, this model is applicable in determining the saturation flow stress under different 
deformation temperatures and strain rates for P92 steels.  

4. Conclusion  
 
This study investigated the constitutive relationship of three P92 steels using a physically-based method during uniaxial 
compression testing at temperatures from 575 °C to 650 °C and strain rates from 0.001 s-1 to 0.5 s-1.  From the results, these 
were the observations: 
 

1. During forming analysis, the self-diffusion activation energy value can be effectively and efficiently applied to the 
physically-based constitutive model to determine the material parameters.  

2. The material constants α, n and in in the physically-based equation were determined. The results showed that this 
method (physically-based constitutive model) is an alternative method for predicting the flow stress during forming. 
The model is quick and easy to use for analysing flow stress behaviour. The physically-based model has fewer 
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parameters to be determined compared to the Arrhenius equation. Moreover, the model gives a physical and 
metallurgical background for any metal forming processes. 

3. The predicted and experimental flow stress data showed a good correlation. The statistical analysis showed that the 
developed constitutive equations for the three steels had a high accuracy in predicting the flow stress behaviour. 
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