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 The amount of damage induced by brittle fracture of cracked bodies depends considerably on 
the path of fractures. Therefore, prediction of the trajectory of fracture using suitable theoretical 
fracture criteria is very important for cracked structures. In this paper, using higher-order terms 
of Williams’s series expansion and the maximum tangential stress criterion, the mixed mode 
I/II crack growth path of an angled crack plate subjected to biaxial far field loading is 
investigated theoretically. To evaluate the accuracy of the theoretical results, they are compared 
with the experimentally reported trajectories for the angled crack plate specimen. It is shown 
that by taking into account the higher order terms of the Williams series expansion a very good 
agreement is observed between the experimental and theoretical mixed mode fracture paths in 
the angled crack problem. It was also observed that the theoretically determined initial angle of 
crack growth is consistent with the experimental results. 
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1. Introduction 

Determination of the direction and the path of crack growth can play an important role for predicting 
the amount of damage induced by brittle fracture in the structures or engineering components. In the 
case of mixed mode loading I/II (combined opening and in-plane sliding deformation), crack growth 
does not grow along the direction of initial crack and the fracture trajectory in general is a curvilinear 
path. Several studies have been completed to estimate the initial crack growth direction under mixed 
mode (Aliha & Ayatollahi, 2009, 2012, Ayatollahi & Aliha 2009, Aliha et al. 2010, Ayatollahi et al. 
2011), but little research studies have been performed for estimating the mixed mode crack growth 
path. Studies to determine the crack growth path have led to two main methods (Leevers et al. 1976, 
Maiti & Prasad 1980, Alpa et al. 1980, Maiti & Smith 1983, Sumi 1985): (1) Incremental crack 
growth method and (2) the fracture threshold method. In the first method, the gradual crack growth is 
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modeled based on the one of the critical mechanical parameters, such as the strain energy density, 
strain energy release rate or stress intensity factor. This method involves a large number of small 
crack extensions in appropriate directions. The direction of crack growth for each increment can be 
determined by means of the available mixed mode fracture theories such as the maximum tangential 
stress (Erdogan & Sih, 1963),  the minimum strain energy density criterion (Sih 1974),  the maximum 
energy release rate criterion (Hussain et al. 1974), and the cohesive zone model (Gomez et al. 2009). 
Accordingly, a certain increment of crack growth is chosen and the crack geometry and direction is 
modified in each increment using one of the mentioned criteria until the final fracture path. Due to the 
continuous deformation of a crack relative to its initial shape, the use of numerical analyses such as 
finite element method is often necessary for modeling the trajectory of growing cracks. For example, 
Ayatollahi et al. (2006), Aliha et al. (2010, 2012) and Aliha and Rezaei (2011) determined 
numerically mixed mode fracture path of some test specimens using the finite element simulations by 
means of the incremental crack growth method.. However In the second method (i.e the fracture 
threshold method), regardless of any progressive growth of the crack, the crack growth path is 
estimated based on the distribution of mechanical parameters such as stress, strain or similar 
parameters at the onset of failure.  
 
In this paper, the path of mixed mode fracture growth in a well-known cracked test specimen (called 
the angled center crack plate) is investigated theoretically and for predicting the path of fracture the 
maximum tangential stress (MTS) criterion is used. For this purpose, first the distribution of 
maximum tangential stress should be obtained for the given cracked component using either 
numerical or analytical methods. In the next section following a brief description of the specimen, the 
Williams series expansion for the crack tip stresses is also outlined. It is shown that the number of 
terms considered in the Williams series expansion has a significant influence on the fracture 
trajectory estimated by the MTS criterion. 
 
2. Crack tip stresses for the angled center crack plate 
 
The crack growth in a sheet with a central angle crack and subjected to uniaxial or biaxial far field 
loads (shown in Figure 1) is a typical example of mixed-mode fracture which has been investigated 
by many researchers in the past. This problem was investigated for the first time by Erdogan and Sih 
(1963) where the MTS was applied to predict the initial direction of crack propagation and also the 
critical load of body at the onset of fracture. Based on the MTS criterion, the crack will grow radialy 
along the direction of maximum tangential stress c. The crack growth occurs when the maximum 
value of tangential stress component  reaches a critical value, c which is assumed as a constant 
material property.  

 
Fig. 1. The angled crack plate subjected to far field biaxial loading 
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The stress field around the crack tip for a center cracked body subjected to far field stress   can be 

written by Williams (1957) series expansion as (Papadopoulos, 1993):  
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where xx, yy, xy are the stress components and r ,  are the crack tip coordinate. The constant 
coefficients Cn were defined as: 
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Other parameters used in Eqs. (1) to (4) are defined as follows: 
- a is the half length of center crack 
-  is the angle between the crack and the Y axis shown in Figure 1  
- r is the radial distance from crack tip 
- n is the number of terms after the first two terms of the Williams series expansion  
- k is the ratio factor of loading in the X direction relative to the loading in the Y direction 
- KI and KII are the modes I and II stress intensity factors that are related to the singular terms of 

the stress series expansion 
In the case of pure mode I loading, the load is applied perpendicular to the crack planes and caused 
them to open without any sliding. Mode II loading is related to shear loading and tends to slide one of 
the planes against the other one. The values of KI and KII are the main parameters for defining the 
state of crack tip stresses in different loading conditions. For a mixed-mode loading problem the 
superposition of KI and KII can be used for deriving the complex mixed mode stress field. For a 
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general angled center crack plate subjected to biaxial loading the stress intensity factors can be 
determined from Papadopoulos (1993) as:  
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Note that using the above relations and the stress relations of Mohr circle by taking into account only 
the first stress term (i.e. singular term), the crack tip stress field can be rewritten in the polar 
coordinate system as pointed out by Erdogan and Sih (1963): 
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However, the effect of other higher order terms has been neglected in the tangential stress component 
provided in Eq. (7). But according to the extensive research studies (Williams & Ewing 1972, Fett 
2001, Kim & Paulino 2003, Molla-abbasi & Schutte 2008, Jogdand & Murthy 2010, Aliha et al. 
2010, Saghafi et al. 2010 Ayatollahi & Aliha 2011, Ameri et al. 2012, Aliha et al. 2013, Zhou et al. 
2013) the other terms of Williams series expansion may also have noticeable influences on the 
fracture behavior of cracked bodies. Hence in the upcoming section of this paper a more accurate 
tangential stress component is derived by considering the effects of higher order terms. 
 

3. Deriving a more accurate formulation for 
 
By using a stress relationship of Mohr circle and considering the linear elastic fracture mechanics 
relations,  could be derived in terms of x, y and xy as below: 

 

(9) 

By replacing the Eqs. (1-3) into Eq. (9), and choosing the number of higher order terms, different 
relations can be derived for . Accordingly, the influence of the first six terms in the Williams 
series expansion was taken into account in this paper to obtain the elastic tangential stress term. Since 
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for the sake of brevity. In order to determine the maximum value of  the obtain relations from Eq. 
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including Maiti and Smith (1983) and Leevers et al. (1976), the direction of initial fracture from the 
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code was able to separate the stress terms of the Williams series given in relations (1), (2) and (3) and 
hence the influence of each term on the value of  was computable. Consequently, the crack growth 
path of the investigated angled crack plate was obtained by connecting the locus of these calculated 
maximum tangential stress points for each crack inclination angle . 
 
4. Results and discussion 
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different angles of () for the investigated cracked plate. Subsequently, the results of the predicted 
crack growth path were compared in Table 1with the experimental results reported by Maiti and 
Smith (1983). In Table 1, W =1corresponds to the conventional conditions where only the singular 
term of stress is used. In the next five columns of Table 1 the calculated crack inclination angles have 
been presented based on the different number of terms used, specified by W = 2,3,4,5,6. For instance, 
W = 2 means the results of fracture initiation angle with sum of the first two terms of Williams series 
and W = 6 presents the results with the whole six terms. 
 
Table 1  
Initial crack growth path (c in degree) calculated based on the maximum tangential stress criterion 
and by considering different terms of Williams series expansion. 
 (degree)


r/a Experimental data for (-c ) (Maiti and Smith, 1983) Theoretical predictions for (-c) 

   W = 1 W = 2 W = 3 W = 4 W = 5 W = 6 
15 0 68.8 65.4 68.8 68.8 68.8 68.8 68.8 
15 0.01 71.8 65.4 72.1 71.7 71.7 71.8 71.7 
15 0.01 73.4 65.4 74 73.3 73.3 73.4 73.4 
15 0.05 77 65.4 79 76.9 76.9 77 76.9 
15 0.1 77.8 65.4 81 77.8 77.8 77.8 77.8 
30 0 61.2 59.9 61.3 61.2 61.2 61.2 61.2 
30 0.01 62.6 59.9 62.9 62.5 62.5 62.5 62.5 
30 0.01 63.2 59.9 63.9 63.2 63.2 63.2 63.2 
30 0.05 64.6 59.9 68 64.6 64.6 64.6 64.6 
30 0.1 64.4 59.9 70.4 64.2 64.4 4.4 64.4 
45 0 53 53.1 53.1 53 53 53 53 
45 0.01 52.8 53.1 53.1 53.1 52.8 52.9 52.9 
45 0.01 52.6 53.1 53.1 52.9 52.5 52.5 52.5 
45 0.05 50.8 53.1 53.1 50.7 50.8 50.8 50.8 
45 0.1 49.2 53.1 53.1 48.9 49.1 49.1 49.1 
60 0 42 43.2 41.9 41.9 41.9 41.9 41.9 
60 0.01 40.4 43.2 40.4 40.3 40.3 40.3 40.3 
60 0.01 39.2 43.2 39.2 39.2 39.2 39.2 39.2 
60 0.05 35 43.2 34.7 35 35 35 35 
60 0.1 32.8 43.2 31.7 32.7 32.7 32.7 32.7 
75 0 24.8 26.7 24.7 24.8 24.8 24.8 24.8 
75 0.01 22.8 26.7 22.6 22.7 22.7 22.7 22.7 
75 0.01 21.4 26.7 21.2 21.5 21.5 21.5 21.5 
75 0.05 17.8 26.7 16.6 17.8 17.7 17.7 17.7 
75 0.1 16.2 26.7 14.2 16.3 16.2 16.2 16.3 

 
Maiti and  Smith (1983) provided their experimental results up to the ratio r/a=2 for a brittle material 
with Poisson's ratio of 0.35. Figs. 2 to 6, compare the theoretical predicted crack growth paths based 
on the MTS criterion with the experimental results of Maiti and Smith (1983) obtained from the 
angled crack plate specimen. For each crack angle () the experimental results have been compared 
with the theoretical paths with considering two different stress terms (i.e. W= 1 and W = 6). In these  
Figures the vertical axis shows the direction of fracture growth for each increment. It was observed 
that in general the theoretical results comply well with the experimental data when the sum of 6 terms 
of Williams series expansion is used. However, the good agreement between the experimental results 
and theoretical predictions was mostly observed for r/a < 1 and for the higher r/a ratios some 
discrepancies were seen between the experimental and theoretical results. A review of the results 
provided in Figs. 2 to 6 showed that in all mixed modes I/II conditions investigated for the angled 
crack plate subjected to biaxial tension, the predicted path using the higher number of terms of 
Williams series complies better with experimental results compared to using only the first singular 
term. The primary reason for this improvement in the prediction of initial crack growth path, can be 
attributed to the more accurate calculation of tangential stress component when the higher order terms 
of Williams series are used. It should be noted that only for a small region around the crack tip the 
singular terms of stress are dominant and for farther distances from the crack tip, the other terms may 
have significant effects on fracture behavior of the angled crack plate. Thus it can be seen from Figs. 
2 to 6 that in the first increment of crack growth, there was no significant difference between the 
results of  W =1 and W =6 cases, but by increasing the number of increments the deviation between 
the predicted values with one or six terms becomes more. 
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Fig. 2. Comparison of theoretical and experimental 
fracture paths obtained for  =15o 

Fig. 3. Comparison of theoretical and 
experimental fracture paths obtained for  

=30o 

 
Fig. 4. Comparison of theoretical and experimental 
fracture paths obtained for  =45o 

Fig. 5. Comparison of theoretical and experimental 
fracture paths obtained for  =60o 

 

 
Fig. 6. Comparison of theoretical and experimental fracture paths obtained for  =75o 
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Furthermore, as seen from Figs. 2 to 6 some discontinuities in the slope of the predicted paths were 
observed especially for the higher ratios of r/a > 1 and for those cases where more than three terms of 
stress component were considered. These discontinuities could be due to numerically solving the 
problem and the high volume of complex mathematical and numerical calculations. A more important 
reason that could be noted for the discontinuities in the numerical results was related to the accuracy 
limitations of Eq. (4) to define the coefficients of the higher terms of the Williams series. Theocaris 
and Spyropoubs (1983) determined the coefficients (Cn) in Eq. (4) by an experimental photoelastic 
method. Although this method was frequently used for experimental measuring and analyzing of 
stress in the cracked samples, the inherent errors are inevitable in the measurement and analysis of the 
experimental results. In particular, the errors are gradually increased for the higher terms of the 
Williams series. Therefore, the errors can be accumulated on the previously mentioned numerical 
errors, which explain the discontinuities in some parts of the predicted path. Another assumption that 
was used by Theocaris and Spyropoubs (1983) to derive the Eq. (4) was that the cracked plate 
dimensions are very large (i.e. infinite) in comparison with to the center crack dimensions. But since 
the photoelastic tests and brittle fracture experiments were performed on plate specimens with finite 
dimensions, the coefficients (Cn) might also contain other computational errors. In accordance with 
the above explanation, if an accurate method was available to determine the coefficients (Cn) in the 
investigated center cracked plate, a better numerical result could be obtained in the prediction of 
primary crack path, especially in the region where r/a>1. 
 

5. Conclusions 
 

In summary it can be stated that: 
 

1. Mixed mode crack growth path of the angled center crack plate was predicted theoretically by 
the maximum tangential stress (MTS) criterion and by considering different terms of the 
Williams series expansion.  

2. A more accurate description for the tangential stress component in the angled crack plate 
problem subjected to biaxial far field tension was obtained by taking into account the first six 
terms of Williams series expansion. 

3. Good agreements were observed between the experimental fracture paths and theoretical 
fracture trajectory when the effect of higher order terms was also taken into account.  
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