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 Fault detection process (FDP) and Fault correction process (FCP) are important phases of 
software development life cycle (SDLC). It is essential for software to undergo a testing phase, 
during which faults are detected and corrected. The main goal of this article is to allocate the 
testing resources in an optimal manner to minimize the cost during testing phase using FDP 
and FCP under dynamic environment. In this paper, we first assume there is a time lag between 
fault detection and fault correction. Thus, removal of a fault is performed after a fault is 
detected. In addition, detection process and correction process are taken to be independent 
simultaneous activities with different budgetary constraints. A structured optimal policy based 
on optimal control theory is proposed for software managers to optimize the allocation of the 
limited resources with the reliability criteria. Furthermore, release policy for the proposed 
model is also discussed. Numerical example is given in support of the theoretical results.  
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1. Introduction 
 

In recent years, software has become a driving force and there has been an increase in human 
dependence on computer systems. We use computer for the simplest calculations and, in any 
organization, the role of computer system has become a necessity. Thus, the failure of computer system 
troubles the social life leading to loss of resources, time and money, i.e., failure of a software leads to 
great loss in terms of money and time. Nowadays, more investment is accomplished on testing software 
rather than on building software. Testing plays a very important role in defining the quality of software. 
The success of testing lies in detecting bugs, removing the detected bug and consequently, improving 
the reliability of the software. Every software company aims to minimize the testing cost, give high 
quality product and meet the target deadline.  
 
Software reliability modeling and prediction during software development process is an area that is 
getting more focus from software firms. The use of software reliability growth models (SRGMs) plays 
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a key role in improving reliability and also used to establish the relation among failure observation and 
fault removal process. Many software reliability growth models (SRGMs) have been proposed during 
the last fifty years to minimize the cost and to maximize the reliability during testing phase of a software 
development life cycle (SDLC). Goel and Okumoto (1979) are believed to be the pioneer whose models 
describe the failure phenomenon by an exponential curve. Yamada et al. (1983) described the S-shaped 
failure pattern. While some of the SRGMs are flexible in the sense that they can be described by both 
exponential and S-shaped failure patterns (Ohba, 1984).  Numerous proposed SRGMs only consider 
the fault detection process and are based on the assumption that a fault is removed instantly as soon as 
it is detected. However, this theory may not be logical as the detected faults are rarely corrected 
instantly (Gokhale et al., 1998; Schneidewind, 1975, 2003; Ohba, 1984; Xie & Zhao, 1992). Generally, 
whenever a fault is detected, it is reported first, then diagnosed and finally it is removed. Therefore, the 
delay time between detection of a fault and correction of a fault should not be neglected during the 
modeling.  
 
Schneidewind (1975) proposed the model in which FCP was modeled as a separate process followed 
the FDP with a constant time-lag. Later, Xie and Zhao (1992) used time dependent delay function, and 
proposed a model to find the expected time lag between detection and correction of a fault. Yamada et 
al. (1983) proposed a model with two stage processes using time lag concept. Later, Huang and Lin 
(2006) in their pioneer work discussed the dependency of faults and time- lag between the failure 
observation and fault removal. Based on FDP/FCP, Xie et al. (2007) and Wu et al. (2007) proposed 
several paired FDP and FCP models through incorporating other variants of debugging delay. Later, 
Huang and Pham (2009) proposed a generalized NHPP model considering quasi-renewal time-delay 
fault removal. Jia et al. (2010) developed a Markovian software reliability model considering the fault 
correction process. 
 
However, the influence of testing effort during the modeling cannot be ignored due to its necessity for 
improvement of the modeling. The time-lag is less if more testing effort is allocated during the period 
between detection and correction of the fault. Therefore, it is reasonable to integrate the testing effort 
function into the modeling framework on both FDP and FCP.  Also it is well known, testing process 
consumes a major portion of resources such as manpower and CPU hours which are limited. Optimal 
allocation of resources may reduce the testing cost. Huang et al. (1997), Pillai and Nair (1997), Kapur 
et al. (2006) and Kapur et al. (2007) discussed the impact of testing effort in their work. Peng et al. 
(2014) studied the FDP/FCP with the testing effort function and imperfect debugging.  
 
As discussed above, many SRGMs minimize the cost of software during the testing phase but most of 
them are under static assumptions. The problem becomes more complicated when the nature of the 
development process is not static, but dynamic. The detection and correction processes are dependent 
on the nature and quantity of resources utilized. Su and Huang (2007) proposed a model based on neural 
network approach to build a dynamic weighted combinational model (DWCM) and applied neural 
network to predict software reliability by designing different elements of neural networks. Li et al. 
(2012) discussed two Ada Boosting based combination approaches for improving the parametric 
SRGMs. In the first approach authors selected several variations of one original SRGM for obtaining 
the self-combination model and secondly they have selected several various candidate SRGMs for 
obtaining the multi-combinational model. Kapur et al. (2010) proposed a model to allocate the 
resources and minimize the testing cost during the testing phase under dynamic condition. Kapur et al. 
(2013) discussed the problem to minimize the cost and maximize the reliability during the testing phase. 
Kapur et al. (2013) used exponential shaped SRGM and proposed a technique to find the optimal time 
to release of software. Kapur et al. (2010, 2013) did not mention the concept of time lag during the 
modeling.  Kumar et al. (2014) proposed a resource allocation model for detection and correction 
purpose with fixed budgetary constraint with the assumption that detection and correction are two 
concurrent activities. Also, they have assumed detection effort and correction effort are interdependent. 
However, practically it may be possible that different activities, i.e., detection and correction can have 
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different budgetary constraints. Therefore, software manager can have different budget for detection 
and different budget for correction. Keeping this condition in mind we have proposed a resource 
allocation model for detection and correction process to minimize the testing cost. We have assumed 
that detection and correction are concurrent activities and have taken detection effort and correction 
effort to be independent. Finally, the paper is divided into the following sections: modeling, optimal 
solution, special cases, numerical analysis, release policy and lastly a conclusion is drawn.  
 
2. Modeling 
 
The fundamental activities of software testing are detection and correction of faults. Once a failure is 
reported, the fault correction team needs a certain time period to detect the fault and accordingly, they 
modify/change the codes so as to remove the faults. Thus, it is a very common experience of having a 
time-lag between both the processes. Certain factors like the number of faults detected, fault 
complexity, structural complexity of the software and the knowledge and experiences of the correction 
team influence this time lag. Thus, this correction lag cannot be ignored. Correction lag causes latent 
faults in the software. These faults are not corrected. They lie dormant in the software and reflect the 
relationship between the fault detection and correction processes. With the objective of creating a 
mathematical model for optimal allocation of resources, we have considered detection and correction 
as simultaneous activities. During software testing life cycle (STLC), we have two separate teams; a 
team of tester for detection purpose and another team of debugger for correction purpose. Kumar et al 
(2014) assumed that detection and correction effort are interdependent and they have divided total 
available resources into two portions for detection and correction.  
 
Contrary to this we have considered the resources available for each activity, i.e., detection and 
correction to be explicitly independent. This assumption of considering independent activities within 
their respective budgetary ranges help in better investment for a company. Our approach makes both 
the variables as two distinct control variables which will influence the overall policy decisions. Thus, 
making it easier for the software manager to decide the budget of detection and correction separately 
so as to allocate the resources optimally. This means that the tester and debugger can separately dedicate 
their resources and time for detection and correction tasks for well controlled expenditure which in turn 
would minimize the total cost and maximize the reliability in a much better way.  
 
2.1 FDP and FCP Modeling 
 
Resource allocation means division of the resources in an optimal manner. Allocating the resources 
decides the modeling of any project. To take care of resources during allocation, strategic planning is 
very important. Generally, the expected number of faults corrected is the same as the expected number 
of faults detected when the fault removal process is instantaneous and perfect. However, if we consider 
the time-lag, the expected number of corrected faults at any given point of time will always be less than 
the expected number of detected faults. To propose fault detection-correction model, we assume that 
the removal of a fault is done in two stages. In first stage detection is done and in the second stage 
correction/debugging is done. Therefore, in line with Huang et al. (2007), it is reasonable to assume the 
following differential equations for detection and correction process 
 
 

𝑥𝑥(𝑡𝑡) =
𝑑𝑑𝑚𝑚𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑏𝑏1𝑤𝑤1(𝑡𝑡) �𝑎𝑎 −𝑚𝑚𝑓𝑓(𝑡𝑡)� 
                                                              (1)  

𝑦𝑦(𝑡𝑡) =
𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑏𝑏2𝑤𝑤2(𝑡𝑡) �𝑚𝑚𝑓𝑓(𝑡𝑡) −𝑚𝑚𝑟𝑟(𝑡𝑡)� 
(2)                                                           

 



 146 

where, 
 
 𝑚𝑚𝑓𝑓(0) = 0 ,𝑚𝑚𝑟𝑟(0) = 0, 𝑏𝑏1 is the fault detection rate and 𝑏𝑏2 is the fault correction rate. 
 
Apart from the above notations, we have used following notations in our analysis. 
 
𝑇𝑇 The planning period 
𝑤𝑤1(𝑡𝑡) The portion of total resources utilized for detection purpose at time 

‘t’ (0 ≤ 𝑤𝑤1(𝑡𝑡)  ≤ 1) 
𝑤𝑤2(t) The portion of total resources utilized for correction purpose at time ‘t’ (0 ≤

𝑤𝑤2(𝑡𝑡)  ≤ 1) 
𝑚𝑚𝑓𝑓(t) Expected number of faults detected till time ‘t’ 
𝑚𝑚𝑟𝑟(t) Expected number of faults removed till time ‘t’ 
a Initial amount of faults present in the software 
𝑐𝑐1 �𝑚𝑚𝑓𝑓(𝑡𝑡),𝑤𝑤1(𝑡𝑡)� Per unit detection cost associated with detection efforts 𝑤𝑤1(𝑡𝑡)  and cumulative 

fault detected is 𝑚𝑚𝑓𝑓(𝑡𝑡) at any time ‘t’ 
𝑐𝑐2�𝑚𝑚𝑟𝑟(𝑡𝑡),𝑤𝑤2(𝑡𝑡)� Per unit correction cost associated with correction efforts 𝑤𝑤2(𝑡𝑡) and cumulative 

fault corrected is 𝑚𝑚𝑟𝑟(𝑡𝑡) at any time ‘t’ 
 
2.2 Cost Optimization Modeling 
 
The main objective of any software firm is to minimize the cost. During the cost function modeling we 
have only considered detection cost and correction cost to reduce the complexity of dynamic model. 
Thus, the total cost at any point of time ‘t’ during the testing phase of SDLC is the sum of detection 
cost 𝑐𝑐1(𝑡𝑡)𝑥𝑥(𝑡𝑡) and correction cost 𝑐𝑐2(𝑡𝑡)𝑦𝑦(𝑡𝑡) neglecting other administrative costs. Therefore, 
mathematical model can be written as: 
 
min ∫ [𝑐𝑐1(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑐𝑐2(𝑡𝑡)𝑦𝑦(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 
 
subject to 
 

𝑥𝑥(𝑡𝑡) =
𝑑𝑑𝑚𝑚𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑏𝑏1𝑤𝑤1(𝑡𝑡) �𝑎𝑎 −𝑚𝑚𝑓𝑓(𝑡𝑡)� 

𝑦𝑦(𝑡𝑡) =
𝑑𝑑𝑚𝑚𝑟𝑟(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑏𝑏2𝑤𝑤2(𝑡𝑡) �𝑚𝑚𝑓𝑓(𝑡𝑡) −𝑚𝑚𝑟𝑟(𝑡𝑡)� 
𝑚𝑚𝑟𝑟(𝑇𝑇)
𝑎𝑎

≥ 𝑅𝑅 
 
where,  
𝑚𝑚𝑓𝑓(0) = 0,𝑚𝑚𝑟𝑟(0) = 0 

0 ≤ 𝑤𝑤1(𝑡𝑡) ,𝑤𝑤2(𝑡𝑡) ≤ 1                                                                                                                                                         (3) 

 
 SRGMs provide a method to estimate the reliability during the testing progress. Reliability of software 
is defined as ‘‘The probability that the system will not fail during (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡)  (∆𝑡𝑡 ≥ 0) given that the 
latest failure occurred at t”. (Huang et al., 2004) defines software reliability as “the ratio of the 
cumulative number of detected faults at time t to the expected number of initial fault content of the 
software”, which is given by 

𝑅𝑅(𝑡𝑡) =
𝑚𝑚𝑟𝑟(𝑡𝑡)
𝑎𝑎

 
                                                               (4) 
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Using Eq. (4), the reliability of the software at time ‘t’ can be estimated  and verified that whether it is 
equal to the desired reliability objective. Hence, it provides a very useful insight to the software 
managers whether they meet the desired reliability level as specified by the company. In the above 
optimization problem described in Eq. (3), 𝑚𝑚𝑟𝑟(𝑇𝑇)

𝑎𝑎
≥ 𝑅𝑅 implies the criteria for the release of software, 

where the desired portion i.e. 𝑚𝑚𝑟𝑟(𝑇𝑇)
𝑎𝑎

 of the faults to be removed. It means that with the planning period 
[0,T], firm aims to achieve a unique number 𝑚𝑚𝑅𝑅(= 𝑎𝑎𝑎𝑎) for which  𝑚𝑚𝑟𝑟(𝑇𝑇) ≥ 𝑚𝑚𝑅𝑅.  
 
3. Optimal Solution 
 
We have applied optimal control theoretic technique to solve the dynamic optimization problem 
proposed in section2.2. It is a technique, widely accepted in many areas of engineering, management, 
economics etc. to solve the dynamic optimization problems. In order to solve the above control 
problem, we start with the Hamiltonian (Sethi & Thompson, 2005; Kapur et al., 2012; 2013) which can 
be written as 
 
𝐻𝐻�𝑚𝑚𝑓𝑓(𝑡𝑡),𝑚𝑚𝑟𝑟(𝑡𝑡), 𝜆𝜆(𝑡𝑡), 𝜇𝜇(𝑡𝑡),𝑤𝑤1(𝑡𝑡),𝑤𝑤2(𝑡𝑡), 𝑡𝑡� =  −[𝑐𝑐1(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑐𝑐2(𝑡𝑡)𝑦𝑦(𝑡𝑡)] + 𝜆𝜆(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝜇𝜇(𝑡𝑡)𝑦𝑦(𝑡𝑡) ,  (5) 

 
where, 𝜆𝜆(𝑡𝑡) & 𝜇𝜇(𝑡𝑡) are the adjoint variables, which satisfy the following differential equations: 
   
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜆𝜆 ̇ = −𝐻𝐻𝑚𝑚𝑓𝑓     
                                                               (6) 

 
For the terminal condition at t=T, 𝜆𝜆(𝑇𝑇) = 0. 
 
Similarly 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜇̇𝜇 = −𝐻𝐻𝑚𝑚𝑟𝑟 
                                                               (7) 

 
For the transversality condition, 𝜇𝜇(𝑇𝑇) ≤ 0 (= 0 𝑖𝑖𝑖𝑖 𝑚𝑚𝑟𝑟(𝑇𝑇) > 𝑚𝑚𝑅𝑅). 
 
The adjoint variable 𝜆𝜆(𝑡𝑡) represents per unit change in the objective function for a small change in 
𝑚𝑚𝑓𝑓(𝑡𝑡) i.e. 𝜆𝜆(𝑡𝑡) can be interpreted as marginal cost of faults detected at time t. Similarly, 𝜇𝜇(𝑡𝑡) can be 
interpreted as marginal cost of fault removed at time‘t’.  𝜆𝜆(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇(𝑡𝑡) in software testing context can 
be defined as follows:  𝜆𝜆(𝑡𝑡) stands for future cost of detection incurred as one more fault is detected at 
time ‘t’. 𝜇𝜇(𝑡𝑡)  stands for future cost of correction incurred as one more fault is corrected by the debugger 
at time ‘t’. Thus, the Hamiltonian is the sum of total current cost (𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑦𝑦) and the total future cost 
(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇). In short, 𝐻𝐻 represents the instantaneous total cost of the firm at time ‘t’. The necessary 
conditions are given by: 
 
𝐻𝐻𝑤𝑤1 = 0 ; 𝐻𝐻𝑤𝑤2 = 0 
⇒ −𝑐𝑐1𝑤𝑤1(𝑡𝑡)𝑥𝑥(𝑡𝑡) − [𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)]𝑥𝑥𝑤𝑤1(𝑡𝑡) = 0                                                         (8) 
⇒ −𝑐𝑐2𝑤𝑤2(𝑡𝑡)𝑦𝑦(𝑡𝑡) − [𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡)]𝑦𝑦𝑤𝑤2(𝑡𝑡) = 0            (9) 

 
Solving Eq. (8) and Eq. (9) we have 

𝑤𝑤1(𝑡𝑡) =
−[𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)]

𝑐𝑐1𝑤𝑤1(𝑡𝑡)
 

                                                            (10)  

𝑤𝑤2(𝑡𝑡) =
−[𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡)]

𝑐𝑐2𝑤𝑤2(𝑡𝑡)
 

                                                            (11) 
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Other optimality conditions are 𝐻𝐻𝑤𝑤1𝑤𝑤1 ≤ 0 and �
𝐻𝐻𝑤𝑤1𝑤𝑤1 𝐻𝐻𝑤𝑤1𝑤𝑤2
𝐻𝐻𝑤𝑤2𝑤𝑤1 𝐻𝐻𝑤𝑤2𝑤𝑤2

� ≥ 0 

 
where, 
𝐻𝐻𝑤𝑤1𝑤𝑤1 = −𝑐𝑐1𝑤𝑤1𝑤𝑤1𝑥𝑥(𝑡𝑡) − 2𝑐𝑐1𝑤𝑤1(𝑡𝑡)𝑥𝑥𝑤𝑤1(𝑡𝑡) − [𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)]𝑥𝑥𝑤𝑤1𝑤𝑤1(𝑡𝑡) ≤ 0 
 

 

⇒ 𝑐𝑐1𝑤𝑤1𝑤𝑤1𝑥𝑥(𝑡𝑡) + 2𝑐𝑐1𝑤𝑤1(𝑡𝑡)𝑥𝑥𝑤𝑤1(𝑡𝑡) + [𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)]𝑥𝑥𝑤𝑤1𝑤𝑤1(𝑡𝑡) ≥ 0 (12) 
𝐻𝐻𝑤𝑤1𝑤𝑤2 = 0 (13) 
𝐻𝐻𝑤𝑤2𝑤𝑤1 = 0   (14) 
𝐻𝐻𝑤𝑤2𝑤𝑤2 = −𝑐𝑐2𝑤𝑤2𝑤𝑤2𝑦𝑦(𝑡𝑡) − 2𝑐𝑐2𝑤𝑤2(𝑡𝑡)𝑦𝑦𝑤𝑤2(𝑡𝑡) − [𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡)]𝑦𝑦𝑤𝑤2𝑤𝑤2(𝑡𝑡) ≤ 0    
⇒ 𝑐𝑐2𝑤𝑤2𝑤𝑤2𝑦𝑦(𝑡𝑡) + 2𝑐𝑐2𝑤𝑤2(𝑡𝑡)𝑦𝑦𝑤𝑤2(𝑡𝑡) + [𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡)]𝑦𝑦𝑤𝑤2𝑤𝑤2(𝑡𝑡) ≥ 0 (15) 

Thus   �
𝐻𝐻𝑤𝑤1𝑤𝑤1 𝐻𝐻𝑤𝑤1𝑤𝑤2
𝐻𝐻𝑤𝑤2𝑤𝑤1 𝐻𝐻𝑤𝑤2𝑤𝑤2

� ≥ 0 
(16) 

 
Taking time derivative of Eq. (8) and Eq. (9) we get, 

𝑤𝑤1̇ =
�−𝑐𝑐1𝑤𝑤1(𝑡𝑡)𝑥𝑥𝑚𝑚𝑓𝑓

(𝑡𝑡) − 𝑐𝑐1𝑤𝑤1𝑚𝑚𝑓𝑓
(𝑡𝑡)𝑥𝑥(𝑡𝑡) − (𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡))𝑥𝑥𝑤𝑤1𝑚𝑚𝑓𝑓

(𝑡𝑡) − 𝑐𝑐1𝑚𝑚𝑓𝑓
(𝑡𝑡)𝑥𝑥𝑤𝑤1(𝑡𝑡)�𝑚𝑚𝑓𝑓̇

𝑐𝑐1𝑤𝑤1𝑤𝑤1(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 2𝑐𝑐1𝑤𝑤1(𝑡𝑡)𝑥𝑥𝑤𝑤1(𝑡𝑡) + �𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)�𝑥𝑥𝑤𝑤1𝑤𝑤1(𝑡𝑡)
 

 

(17) 

𝑤𝑤2̇ =
Amḟ − Bmṙ

2c2w2(t)yw2(t) + y(t)c2w2w2(t) + �c2(t) − μ(t)�yw2w2(t)
 (18) 

 
where, 
𝐴𝐴 = �−c2w2(t)ymf

(t) − c2(t)yw2mf
(t) + μ(t)yw2mf(t)� 

 
𝐵𝐵 =  �c2w2(t)ymr(t) + c2w2mr(t)y(t) + �c2(t) − μ(t)�yw2mr(t) + c2mr(t)yw2(t)� 
 

where the subscript on a variable denotes the partial derivative with respect to that variable, i.e. 
 

𝑐𝑐1𝑤𝑤1𝑤𝑤1 =
𝛿𝛿2𝑐𝑐1
𝛿𝛿𝑤𝑤12

, 𝑐𝑐2𝑤𝑤2𝑤𝑤2 =
𝛿𝛿2𝑐𝑐2
𝛿𝛿𝑤𝑤22

,    𝑐𝑐1𝑤𝑤1 =
𝛿𝛿𝑐𝑐1
𝛿𝛿𝑤𝑤1

,      𝑐𝑐2𝑤𝑤1 =
𝛿𝛿𝑐𝑐2
𝛿𝛿𝑤𝑤1

 

 

𝑥𝑥𝑤𝑤1𝑤𝑤1 =
𝛿𝛿2𝑥𝑥
𝛿𝛿𝑤𝑤12

,   𝑦𝑦𝑤𝑤2𝑤𝑤2 =
𝛿𝛿2𝑦𝑦
𝛿𝛿𝑤𝑤22

,     𝑥𝑥𝑤𝑤1 =
𝛿𝛿𝛿𝛿
𝛿𝛿𝑤𝑤1

,    𝑦𝑦𝑤𝑤2 =
𝛿𝛿𝛿𝛿
𝛿𝛿𝑤𝑤2

  

 
Integrating Eq. (6) with the terminal condition, the future cost of detecting one more fault from the 
software is given by 
 

𝜆𝜆(𝑡𝑡) =  −� �
𝛿𝛿𝑐𝑐1
𝛿𝛿𝑚𝑚𝑓𝑓

𝑥𝑥(𝑡𝑡) + �𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)�
𝛿𝛿𝛿𝛿
𝛿𝛿𝑚𝑚𝑓𝑓

+ (𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡))
𝛿𝛿𝛿𝛿
𝛿𝛿𝑚𝑚𝑓𝑓

� 𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
 

 (19) 

 
Similarly, integrating Eq. (7), the future cost of removing one more fault from the software is given by 
 

𝜇𝜇(𝑡𝑡) = 𝜇𝜇(𝑇𝑇)  −� �
𝛿𝛿𝑐𝑐2
𝛿𝛿𝑚𝑚𝑟𝑟

𝑦𝑦(𝑡𝑡) + (𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡))
𝛿𝛿𝛿𝛿
𝛿𝛿𝑚𝑚𝑟𝑟

� 𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
 

 (20) 
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4. Special Cases 
 
The following two scenarios depict the behavior of the proposed model. We have assumed the different 
functional forms of detection cost and correction cost to analyze behavior of the control model and 
related optimal policies: 
 
4.1 Case 1 
 
In this case we have consider 
 
𝑐𝑐1(𝑡𝑡) = 𝑐𝑐1 (𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)& 𝑐𝑐2(𝑡𝑡) = 𝑐𝑐2(𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 

The Hamiltonian for this case is given by 
 
𝐻𝐻 =  −[𝑐𝑐1𝑥𝑥(𝑡𝑡) + 𝑐𝑐2𝑦𝑦(𝑡𝑡)] + 𝜆𝜆(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝜇𝜇(𝑡𝑡)𝑦𝑦(𝑡𝑡)           (21) 

 
where,  𝜆𝜆(𝑡𝑡)  satisfies the following differential equation: 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜆𝜆 ̇ = −𝐻𝐻𝑚𝑚𝑓𝑓 = −(𝑐𝑐1 − 𝜆𝜆)𝑏𝑏1𝑤𝑤1(𝑡𝑡) + (𝑐𝑐2 − 𝜇𝜇)𝑏𝑏2𝑤𝑤2(𝑡𝑡) 
          (22) 

 
with the terminal condition at 𝑡𝑡 = 𝑇𝑇 , 𝜆𝜆(𝑇𝑇) = 0 
 
Solving Eq. (22) together with the terminal condition, we get 
 

𝜆𝜆(𝑡𝑡) = � ��𝑐𝑐1 − 𝜆𝜆(𝑡𝑡)�𝑏𝑏1𝑤𝑤1(𝑡𝑡) − �𝑐𝑐2 − 𝜇𝜇(𝑡𝑡)�𝑏𝑏2𝑤𝑤2(𝑡𝑡)�𝑑𝑑𝑑𝑑 
𝑇𝑇

𝑡𝑡
 

 

          (23) 

 
Similarly 𝜇𝜇(𝑡𝑡) satisfies the following differential equation: 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜇̇𝜇 = −𝐻𝐻𝑚𝑚𝑟𝑟 = −�𝑐𝑐2 − 𝜇𝜇(𝑡𝑡)�𝑏𝑏2𝑤𝑤2(𝑡𝑡) 
          (24) 

 
Solving Eq. (24) together with the terminal condition we get 
 

𝜇𝜇(𝑡𝑡) = 𝜇𝜇(𝑇𝑇) + � ��𝑐𝑐2 − 𝜇𝜇(𝑡𝑡)�𝑏𝑏2𝑤𝑤2(𝑡𝑡)�𝑑𝑑𝑑𝑑            
𝑇𝑇

𝑡𝑡
 

 

          (25) 

For optimal policy, let us assume the following: 
 
𝛼𝛼(𝑡𝑡) =  [−𝑐𝑐1 + 𝜆𝜆(𝑡𝑡)]𝑏𝑏1 �𝑎𝑎 − 𝑚𝑚𝑓𝑓(𝑡𝑡)� 
 
𝛽𝛽(𝑡𝑡) = [−𝑐𝑐2 + 𝜇𝜇(𝑡𝑡)]𝑏𝑏2 �𝑚𝑚𝑓𝑓(𝑡𝑡) −𝑚𝑚𝑟𝑟(𝑡𝑡)� 
 
 

Thus, Hamiltonian becomes 
 
𝐻𝐻 = 𝛼𝛼(𝑡𝑡)𝑤𝑤1(𝑡𝑡) + 𝛽𝛽(𝑡𝑡)𝑤𝑤2(𝑡𝑡)                                                             (26) 
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Since Hamiltonian is linear function in control variables 𝑤𝑤1(𝑡𝑡) & 𝑤𝑤2(𝑡𝑡). Therefore, we have the 
following optimal policies for 𝑤𝑤1(𝑡𝑡) & 𝑤𝑤2(𝑡𝑡) which maximize the objective function. 
 
Table 1  
The optimal policy for detection effort and correction effort for various values of  𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽  

Subcases Condition on 𝜶𝜶 & 𝜷𝜷 Optimal Controls Characterization 
1 𝛼𝛼 = 0            𝛽𝛽 = 0  𝑤𝑤1∗ = 𝑛𝑛.𝑑𝑑 ,              𝑤𝑤2∗ = 𝑛𝑛.𝑑𝑑 Bang-Bang 
2 𝛼𝛼 > 0            𝛽𝛽 > 0 𝑤𝑤1∗ = 1 ,                 𝑤𝑤2∗ = 1 Bang-Bang 
3 𝛼𝛼 < 0            𝛽𝛽 < 0 𝑤𝑤1∗ = 0 ,                𝑤𝑤2∗ = 0 Bang-Bang 
4 𝛼𝛼 < 0            𝛽𝛽 > 0 𝑤𝑤1∗ = 0 ,               𝑤𝑤2∗ = 1 Bang-Bang 
5 𝛼𝛼 > 0            𝛽𝛽 < 0 𝑤𝑤1∗ = 1 ,                𝑤𝑤2∗ = 0 Bang-Bang 
6 𝛼𝛼 > 0            𝛽𝛽 = 0 𝑤𝑤1∗ = 1 , 0 ≤ 𝑤𝑤2∗ ≤ 1 Singular 
7 𝛼𝛼 = 0            𝛽𝛽 > 0 0 ≤ 𝑤𝑤1∗ ≤ 1 , 𝑤𝑤2∗ = 1 Singular 
8 𝛼𝛼 < 0            𝛽𝛽 = 0 𝑤𝑤1∗ = 0 , 0 ≤ 𝑤𝑤2∗ ≤ 1 Singular 
9 𝛼𝛼 = 0            𝛽𝛽 < 0 0 ≤ 𝑤𝑤1∗ ≤ 1, 𝑤𝑤2∗ = 0 Singular 

𝑛𝑛.𝑑𝑑 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 
 

 
 

Fig. 1.  Graph showing optimal policy of detection effort (𝑤𝑤1) and correction effort (𝑤𝑤2) at any time ‘t’. 
 
According to the results of Table 1, we can conclude that optimal policies are the combination of 
generalized bang-bang and singular controls. In subcase1, we have optimal controls as 𝑤𝑤1∗ =
𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑤𝑤2∗ = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in accordance with the definition of the bang-bang function. Thus, 
in this case resources are not defined for detection and correction purpose. So we can devoid this case. 
In subcase 2, we have optimal controls as 𝑤𝑤1∗ = 1,𝑤𝑤2∗ = 1 in accordance with the definition of the 
bang-bang function. Thus, in this case software manager should utilize their complete resources for 
detection and correction purpose both simultaneously. In subcase 3, we have optimal controls as 𝑤𝑤1∗ =
0,𝑤𝑤2∗ = 0 according to the definition of bang-bang function. Thus, in this case no portion of resources 
should be allocated for detection and correction purpose both. In subcase 4, we have optimal controls 
as 𝑤𝑤1∗ = 0,𝑤𝑤2∗ = 1 in accordance with the definition of bang-bang function. Thus, in this case 
software manager should allocate total available resources for correction purpose while keeping the 
detection process idle. Similar interpretation can also be drawn for the sub case 5. 
 
In subcase 6, we have 𝛼𝛼 > 0 ,𝛽𝛽 = 0 so optimal controls are 𝑤𝑤1∗ = 1 , 0 ≤ 𝑤𝑤2∗ ≤ 1 . In this case 
detection effort should be utilized with full strength while company may utilize none or any portion of 
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resources for correction purpose. In subcase 8, we have 𝛼𝛼 < 0 ,𝛽𝛽 = 0 and so optimal controls 
are 𝑤𝑤1∗ = 0 , 0 ≤ 𝑤𝑤2∗ ≤ 1. In this case, company should invest any portion of resources for correction 
purpose and no resources to be allocated for detection purpose. In both these cases (i.e. sub case 6 & 
8) optimal controls are singular with respect to 𝑤𝑤2. These cases are termed singular because 
Hamiltonian maximizing condition does not yield a unique value for the control 𝑤𝑤2. In such cases, the 
optimal controls are obtained by conditions required to sustain 𝛽𝛽 = 0 for a finite time interval. 
 
In subcase 7, we have 𝛼𝛼 = 0 ,𝛽𝛽 > 0 so optimal controls are 0 ≤ 𝑤𝑤1∗ ≤ 1 ,𝑤𝑤2∗ = 1.  In this case 
company should allocate any portion of resource for detection purpose and all correction resource 
should be allocated for correction purpose. In subcase 9, we have 𝛼𝛼 = 0 ,𝛽𝛽 < 0 so optimal controls are  
0 ≤ 𝑤𝑤1∗ ≤ 1 ,𝑤𝑤2∗ = 0 .  
 Similarly results of sub case 9 may also be interpreted based on sub case 7. In both these cases (subcase 
7 & 9) the optimal controls are singular with respect to 𝑤𝑤1. To maintain this singular control over a 
finite time period, we must keep 𝛼𝛼 = 0 in the interval. 
 
4.2 Case 2 
 
In contrast with constant detection cost and correction cost discussed in special case 4.1, we have 
considered a scenario when the detection cost and correction cost are dynamic in nature. We have 
incorporated Pegels (1969) functional form for detection and correction cost function, which 
demonstrates the learning curve phenomenon. Kumar et al. (2014) used Pegels (1969) and further 
applied Genetic Algorithm to find the optimum value of single control variable. Many researcher, 
scientists and engineers used this functional form to demonstrate the concept of learning curve 
phenomenon in their pioneer work in the field of management, economics, engineering and science. In 
the software testing concern, learning curve effect can be visualized as: when a new fault has to be 
corrected for the first time it is likely that the team involved in the correction will not achieve maximum 
efficiency immediately. Repetition of the task will make the team more confident and familiar and will 
finally result in a more efficient and quick. In other words, we can say that more often a task is 
performed; the lower will be the cost of doing it. We have assumed that each time cumulative volume 
of fault detected increases, value added costs falls by a constant and predictable percentage. Therefore, 
functional form of detection cost and correction cost are (Pegels 1969) 
𝑐𝑐1 �𝑚𝑚𝑓𝑓(𝑡𝑡),𝑤𝑤1(𝑡𝑡)� = 𝑐𝑐𝑜𝑜(𝑤𝑤1(𝑡𝑡))𝑚𝑚𝑓𝑓(𝑡𝑡) 
 
𝑐𝑐2�𝑚𝑚𝑟𝑟(𝑡𝑡),𝑤𝑤2(𝑡𝑡)� = 𝑏𝑏𝑜𝑜(𝑤𝑤2(𝑡𝑡))𝑚𝑚𝑟𝑟(𝑡𝑡) 
 

 
where 𝑐𝑐𝑜𝑜 &  𝑏𝑏𝑜𝑜 are base detection and base correction cost respectively. 
 
The Hamiltonian for the above case can be written as 
𝐻𝐻 = −[𝑐𝑐1𝑥𝑥(𝑡𝑡) + 𝑐𝑐2𝑦𝑦(𝑡𝑡)] + 𝜆𝜆(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝜇𝜇(𝑡𝑡)𝑦𝑦(𝑡𝑡)                  (27) 

 
The following are the necessary condition hold for an optimal solution: 
𝐻𝐻𝑤𝑤1 = 0 ; 𝐻𝐻𝑤𝑤2 = 0                                                                                                (28) 

 
The adjoint variables are given by the following differential equations: 

𝜆𝜆(𝑡𝑡) = � ��𝑐𝑐1(𝑡𝑡) − 𝜆𝜆(𝑡𝑡)�𝑏𝑏1𝑤𝑤1(𝑡𝑡) − (𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡))𝑏𝑏2𝑤𝑤2(𝑡𝑡)
𝑇𝑇

𝑡𝑡
− 𝑐𝑐1(𝑡𝑡)𝑥𝑥(𝑡𝑡) log�𝑤𝑤1(𝑡𝑡)��𝑑𝑑𝑑𝑑  

 

     (29) 
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𝜇𝜇(𝑡𝑡) = 𝜇𝜇(𝑇𝑇) + � �(𝑐𝑐2(𝑡𝑡) − 𝜇𝜇(𝑡𝑡))𝑏𝑏2𝑤𝑤2(𝑡𝑡) − 𝑐𝑐2(𝑡𝑡)𝑦𝑦(𝑡𝑡) log�𝑤𝑤2(𝑡𝑡)��𝑑𝑑𝑑𝑑     
𝑇𝑇

𝑡𝑡
 

 

      (30) 

Solving Eq. (28) yields 

𝑤𝑤1(𝑡𝑡) = �
𝜆𝜆(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)
𝑐𝑐𝑜𝑜(𝑚𝑚𝑓𝑓(𝑡𝑡)) �

1
𝑚𝑚𝑓𝑓(𝑡𝑡)

 
                                                           (31) 

𝑤𝑤2(𝑡𝑡) = �
𝜇𝜇(𝑡𝑡) − 𝑐𝑐2(𝑡𝑡)
𝑏𝑏𝑜𝑜(𝑚𝑚𝑟𝑟(𝑡𝑡)) �

1
𝑚𝑚𝑟𝑟(𝑡𝑡)

 
                                                           (32) 

 
5. Numerical Analysis 
 
In this section, we numerically illustrate the behavior of cost model proposed in section 4.2 and 
analyzed the impact of detection effort and correction effort on the cost optimization model. We have 
conducted various simulations using different values of model parameters. Results converged quickly 
and became stable. For the numerical illustrations, some base values were considered and then model 
parameters were varied individually. The base values of parameters are as follows: 
 
𝑎𝑎 = 100, 𝑏𝑏1 = 0.3,  𝑏𝑏2 = 0.3,  𝑤𝑤1 = 0.6,  𝑤𝑤2 = 0.6, 𝜆𝜆(0) = 100, 
 
𝜇𝜇(0) = 100,   𝑚𝑚𝑓𝑓(0) = 0,  𝑚𝑚𝑟𝑟(0) = 0, 𝑐𝑐𝑜𝑜 = 1000, 𝑏𝑏𝑜𝑜 = 1000 
 

Initially, we obtain the number of faults detected and corrected for various values of 𝑤𝑤1  and 𝑤𝑤2 using 
Eq. (1) and Eq. (2). We have taken four values of 𝑤𝑤1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤2 as 0.6, 0.7, 0.8, and 0.9. The following 
four graphs in figure 2 show cumulative faults detected and cumulative faults corrected at any time t. 
Figure 2 shows there  is always a time-lag between detection and correction which can be due to the 
complexity of code, severity of faults and skills of the software engineers. The pattern in Fig. 2 exhibits 
the same pattern as in Kumar et al. (2014) due the nature of Eq. (1) and Eq. (2) but the values are 
different from the Kumar et al. (2014). The same is signified by the gap between the two lines, i.e., 
between the lines showing faults detected and faults corrected. 
 
The numerical example reveals that the cumulative number of detected faults decreases as 𝑤𝑤1 
decreases. The cumulative number of faults corrected increases as the correction efforts 𝑤𝑤2 increases 
and follows S-shaped curve. The S-shaped of curve is due the nature of model in Eq. (1) and Eq. (2). 
 

 
2(a) 

 
2(b) 
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2(c) 

 
2(d) 

 
Fig. 2. Number of detected and corrected faults vs. Time (a) 𝑤𝑤1 = 0.6 ,𝑤𝑤2 = 0.6 (b) 𝑤𝑤1 = 0.7 ,𝑤𝑤2 =
0.7 (c) 𝑤𝑤1 = 0.8 ,𝑤𝑤2 = 0.8  (d)𝑤𝑤1 = 0.9 ,𝑤𝑤2 = 0.9. Here, data 1 represents number of faults detected 
and data 2 represents number of faults corrected. 
 
Further we have extended the numerical analysis to analyze the behavior of future cost of detection for 
various values of 𝑤𝑤1  and 𝑤𝑤2. Figure 3 reveals the pattern of future cost of detection during simulation. 
The future cost of detection is tending to zero. A similar investigation was done to study the behavior 
of future cost of correction, which is displayed in figure 4. The following observation was made during 
the simulation. The future cost of correction is decreasing in nature and approaches to zero with increase 
in time t. Decreasing the nature of the graph shows that with the increase in correction of faults, lesser 
number of faults remains to be corrected and consequently, future cost of correction decreases which 
in turn tends to zero at the end of planning horizon. 
 
 

 
Fig. 3. Shadow cost for detection vs. time Fig. 4. Shadow cost for correction vs. time 

 
According to Fig. 3 and Fig. 4, data 1 is corresponding to 𝑤𝑤1=0.6 ,𝑤𝑤2 = 0.6; data 2 is corresponding 
to𝑤𝑤1=0.7 ,𝑤𝑤2 = 0.7; data 3 is corresponding to 𝑤𝑤1=0.8 ,𝑤𝑤2 = 0.8 and data 4 is corresponding 
to𝑤𝑤1=0.9 ,𝑤𝑤2 = 0.9. 
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6. Release Policy 
 
A very important aspect in software management is the release time of software. Software companies 
aim at minimizing their cost, maximizing the overall profit and meeting the competitive requirements 
and on the other hand, software users demand   minimum cost and good quality software product. 
Basically, it is a trade-off between conflicting objectives of software users and the software developers. 
Therefore, for a software developer, the most important aspect to be kept in mind is when to stop testing 
and when to release the software system to the users focusing on their necessities. In the software 
reliability engineering literature, such type of problem is known as software release time decision 
(SRTD) problem. Timely release of software offers the software at a reasonable price with high quality 
level whereas the delay in release causes the burden of penalty cost, revenue loss and the product may 
suffer from obsolescence in the market. Testing activities i.e. detection and correction processes play 
an important role in the software release policy. So it is very important to balance and integrate several 
cost incurred due to the detection and correction during the testing phase to find the optimal release 
time of the software maintaining the desired reliability level under minimal cost criterion.  
 
Software release time prediction has remained a key objective of study for many eminent researchers, 
engineers and scientists in software engineering field, reliability modeling and optimization over the 
years. Chang (2004) studied the sequential software release policy based on a state space model, 
considering a Gamma–Gamma-type invariant conditional distribution to define the state space model. 
Huang (2005) developed a software cost model to calculate software project cost and discussed the 
release time based on cost and reliability, considering testing effort and efficiency. Inoue and Yamada 
(2007) proposed a model to find the optimal time to release of software based on the generalized 
discrete binomial-process model. Recently, Kapur et al. (2013) developed an optimal control theoretic 
based cost optimization model and proposed that the optimal release time of the software is the time 
point where the total cost incurred due to correction coincides with the cost of detection maintaining 
the strict reliability constraint. Peng et al. (2014) proposed the optimal release policy under different 
criteria namely reliability, cost and mixed criterion. To determine the release time of software, we have 
considered the detection cost and correction cost and obtained an optimal time to release the software. 
Throughout our analysis we have assumed that the software can be released when the desired reliability 
level (or corrected fault level) 𝑚𝑚𝑅𝑅is achieved. Therefore, in line with Kapur et al. (2013) we have 
proposed the following theorem. 
 
Theorem: The optimum release time is the time where the total cost of correction coincides with the 
total cost of detection, maintaining the strict reliability criteria. Else, the firm should wait for an ideal 
time. 
 
Proof: For the optimization problem (3), the final time T is unspecified, i.e., 𝛿𝛿𝛿𝛿 ≠ 0 and the final state 
𝑚𝑚𝑟𝑟(𝑇𝑇) is specified, i.e., the time to stop testing depends on the value of the final state 𝑚𝑚𝑟𝑟(𝑇𝑇) at that 
time. Clearly, 𝛿𝛿𝑚𝑚𝑟𝑟(𝑇𝑇) = 0. Hence, the transversality conditions are 𝜇𝜇(𝑇𝑇∗) ≤ 0 (= 0 𝑖𝑖𝑖𝑖 𝑚𝑚𝑟𝑟

∗(𝑇𝑇∗) >
𝑚𝑚𝑅𝑅). Therefore,  
 
𝐻𝐻(𝑇𝑇∗) = 0, 
 

 

where 𝐻𝐻(𝑇𝑇∗) = 𝐻𝐻(𝑥𝑥∗(𝑇𝑇∗), 𝑦𝑦∗(𝑇𝑇∗),𝑤𝑤1∗(𝑇𝑇∗),𝑤𝑤2∗(𝑇𝑇∗), 𝜆𝜆∗(𝑇𝑇∗), 𝜇𝜇∗(𝑇𝑇∗),𝑇𝑇∗) = 0 
 

 

 Hence (5) ⇒ [−𝑐𝑐1(𝑇𝑇∗) + 𝜆𝜆(𝑇𝑇∗)]𝑥𝑥(𝑇𝑇∗) = −[−𝑐𝑐2(𝑇𝑇∗) + 𝜇𝜇(𝑇𝑇∗)]𝑦𝑦(𝑇𝑇∗)         (33) 
 
7. Conclusion and Future Scope 
 
This paper has investigated the optimal resource allocation model considering different budgetary 
constraints on fault detection and fault correction processes to minimize the testing cost. This means 
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that the tester and debugger can devote their resources to finish off their tasks separately in a well-
controlled optimal manner. We have used optimal control theoretic approach to solve the dynamic 
optimization model and obtained optimal policies for detection and correction effort considering 
different cost functions. During the analysis, we have observed that the graphs between faults detected 
and corrected versus time depict a time gap. This time gap signifies the time it takes to correct a fault 
after it is detected. For the success of a software product, there is a need to determine the optimal 
stopping time for testing with a desired level of reliability. Based on theoretical study, we observed that 
the optimum release time is the time where the total cost of correction coincides with the total cost of 
detection, maintaining the strict reliability criteria. Else, the firm should wait for an ideal time. A 
method to calculate the testing cost of the software has been discussed. The results were verified using 
simulation technique. From the graph of the future cost of detection, we can conclude that due to 
learning curve phenomenon it eventually reaches zero with time. And consequently, shadow cost of 
detection tends zero.  Also, from the graph of shadow cost of correction we can summarize that the 
shadow cost decreases with time. Moreover the effect of learning curve is exhibited in tending the 
shadow cost to zero.  
 
One constraint of the proposed work is that our model only applies to projects where the testing 
activities are planned. Our work does not apply, where testing and debugging activities are hard to 
separate. Also before implementing the proposed model, software managers must collect all the 
appropriate information of parameters such as initial fault present in the software, detection rate and 
correction rate .The value of model parameters i.e. number of faults present in the software, detections 
rate and correction rate can be estimated outside by the normative model using equation1 and 
equation2. Further, this study has only analyzed the effect of deterministic models for fault detection 
and fault correction. Stochastic model for fault detection and correction may be used for future work. 
Finally, the model can be extended by incorporating the other imperfect debugging models. All these 
issues are worth further investigation. 
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