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 The article presents solution procedure of geometric programming to solve the structural model 
with imprecise coefficients. We have considered a single objective structural optimization 
model with weight as an objective function. Geometric programming provides a powerful tool 
for solving a variety of imprecise optimization problems. Here we use nearest interval 
approximation method to convert a triangular fuzzy number to an interval number. In this 
paper, we transform this interval number to a parametric interval-valued functional form and 
then solve the parametric problem by geometric programming technique. The advantage of 
this technique is that we can find directly optimal solution of the objective function without 
solving two-level mathematical programs.  Numerical example is given to illustrate the model 
through this approximation method. 
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1. Introduction 

 
Structural optimization is a critical activity that has received considerable attention in the last four 
decades. Usually, structural optimization problems involve searching for the minimum of the structural 
weight. This minimum weight design is subject to various constraints on performance measures, such 
as stresses and displacements. Optimum shape design of structures is one of the challenging research 
areas of the structural optimization field. That is why the application of different optimization technique 
to structural problems has attracted the interest of many researchers. For example, artificial bee colony 
algorithm (Sonmez, 2011), particle swarm optimization (Luh et al., 2011), genetic algorithm (Dede et 
al., 2011), ant colony optimization (Kaveh et al., 2010) etc.  
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In practice, the problem of structural design may be formed as a typical non-linear programming 
problem with non-linear objective functions and constraints functions in fuzzy environment. Zadeh 
(1965) first introduced the concept of fuzzy set theory. Then Zimmermann (1978) applied the fuzzy set 
theory concept with some suitable membership functions to solve linear programming problem with 
several objective functions. Some researchers applied the fuzzy set theory to structural model.  For 
example, Wang et al. (1985) first applied α -cut method to structural designs where the non-linear 
problems were solved with various design levelsα , and then a sequence of solutions were obtained by 
setting different level-cut value of .α  Rao (1987) applied the same α -cut method to design a four–bar 
mechanism for function generating problem. Structural optimization with fuzzy parameters was 
developed by Yeh et al. (1990). Xu (1989) used two-phase method for fuzzy optimization of structures. 
Shih et al. (2004) used level-cut approach of the first and second kind for structural design optimization 
problems with fuzzy resources. Shih et al. (2003) developed an alternative α -level-cuts methods for 
optimum structural design with fuzzy resources. 
 
Geometric Programming (GP) method is an effective method used to solve a non-linear programming 
problem like structural problem. It has certain advantages over the other optimization methods. Here, 
the advantage is that it is usually much simpler to work with the dual than the primal one. Solving a 
non-linear programming problem by GP method with degree of difficulty (DD) plays essential role. (It 
is defined as DD = total number of terms in objective function and constraints – total number of decision 
variables – 1). Since late 1960’s, GP has been known and used in various fields (like OR, Engineering 
sciences etc.). Duffin et al. (1967) and Zener (1971) discussed the basic theories on GP with engineering 
application in their books. Another famous book on GP and its application appeared in 1976 (Beightler 
et al., 1976).The most remarkable property of GP is that a problem with highly nonlinear constraints 
can be transformed equivalently into a problem with only linear constraints. In real life, there are many 
diverse situations due to uncertainty in judgments, lack of evidence etc. Sometimes it is not possible to 
get relevant precise data for the cost parameter. The idea of impreciseness (fuzziness) in GP i.e. fuzzy 
geometric programming was proposed by Cao (1987). Yang et al. (2010) discussed about the basic and 
its applications of fuzzy geometric programming.  Ojha et al. (2010) used binary number for splitting 
the cost coefficients, constraints coefficient and exponents and then solved it by GP technique. A 
solution method of posynomial geometric programming with interval exponents and coefficients was 
developed by Liu (2008). Nasseri et al. (2014) solved two bar truss nonlinear problem by using 
geometric programming technique into the form of two-level mathematical programming.  
 
In this paper, we transform interval number to a parametric interval-valued functional form and then 
structural model becomes parametric structural model, which is solved by geometric programming 
technique. The proposed procedure is more effective and easy to calculate the different value of the 
objective function for different value of the parameter. The main benefit of this approximation 
procedure is that it is not required to create two-level mathematical programming.  
 
2. Structural Optimization Model 
 
 

In sizing optimization problems, the aim is to minimize a single objective function, usually the weight 
of the structure, under certain behavioral constraints on stress and displacements. The design variables 
are most frequently chosen to be dimensions of the cross-sectional areas of the members of the 
structure. Due to fabrication limitations the design variables are not continuous but discrete since cross-
sections belong to a certain set. A discrete structural optimization problem can be formulated in the 
following form 

( )
( )

min          

subject to 0, 1,2,..., .

, 1, 2,...., .
i

d
j

f A

g A i m

A R j n

≤ =

∈ =

 

(1) 
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where ( )f A  represents objective function, ( )g A  is the behavioral constraint, m and n are the number 

of constraints and design variables, respectively. A given set of discrete values is expressed by dR  and 
design variables jA  can take values only from this set. 
In this paper, objective function is taken as 
 

( )
1

m

i i i
i

f A Alρ
=

=∑  
(2) 

and constraints are chosen to be stress of structures as follows, 

( ) 0 1 0i
i

i

g A σ
σ

= − ≤ ,   1, 2,...,i m=  (3) 

where iρ  and il  are weight of unit volume and length of thi  element, respectively, m  is the number 
of the structural elements, iσ and 0

iσ  are the thi  stress and allowable stress, respectively. 
 

3. Mathematical Analysis 
 
3.1 Geometric Programming  
 
Geometric program (GP) can be considered as an innovative modus operandi to solve a nonlinear 
problem in comparison with other nonlinear technique. It was originally developed to design 
engineering problems. It has become a very popular technique since its inception in solving nonlinear 
problems. The advantages of this method is that ,this technique provides us with a systematic approach 
for solving a class of nonlinear optimization problems by finding the optimal value of the objective 
function and then the optimal values of the design variables are derived. Also this method often reduces 
a complex nonlinear optimization problem to a set of simultaneous equations and this approach is more 
amenable to the digital computers. GP is an optimization problem of the form: 
 

( )0min g x   
subject to (4) 

( ) 1, 1,2,...,

0 1,2,.....,
j

i

g x j m
x i n

≤ =

> =
 

 

where ( )jg x  ( )0,1,2,...,j m=  are posynomial or signomial functions ,  x  is  decision variable vector 
of n components ( )1,2,...,ix i n= . 
 
3.2. Geometric Programming Problem 
 

( )0min g x   
subject to  

( ) ( ), 1, 2,.....,j j jg x b j mδ≤ =  (5) 

( )0, 1,2,...,ix i n> =   

where ( ) ( )
1 1

0,1, 2,...,
j jki

N n

j jk jk i
k i

g x c x j m
α

δ
= =

= =∑ ∏  

( ) ( )1 1,2,..., , 1 0,1,2,..., ; 1, 2,...,j jk jj m j m k Nδ δ= ± = = ± = = , ( )1 2, ,....., T
nx x x x≡  
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3.3 Dual Problem 
 
The dual problem of the primal problem (5) is as follows, 

( )
0

0
0

0

max ;
jk jkw

m
jk j

j jk

c w
d w

w

δα

λ δ
=

  
 =      
∏  

subject to 
0

0 0 0
1

N

k k
k

wσ δ
=

=∑                                        (normal condition) 

               ( )
0 1

0 1,2,...,
jNm

jk jki jk
j k

w i nδ α
= =

= =∑∑  (Orthogonality condition). 

where ( ) ( )1, 1,2,..., , 1 1,2,...., ; 1, 2,...,j jk jj m j m k Nδ δ= ± = = ± = = and 0 1, 1δ = + −  and non-

negativity conditions, 0
1

0, 0,
jN

j j jk jk jk
k

w w wδ δ
=

= ≥ ≥∑ ( )1,2,..., ; 1, 2,..., jj m k N= =  and 00 1w = . 

Case I: For 1N n≥ + , the dual program presents a system of linear equations for the dual  variables 
where the number of linear equations is either less than or equal to the number of dual variables. A 
solution vector exists for the dual variable (Beightler et al., 1976). 
 
Case II: For 1N n< + , the dual program presents a system of linear equations for the dual variables 
where the number of linear equation is greater than the number of dual variables. In this case, generally, 
no solution vector exists for the dual variables. However, one can get an approximate solution vector 
for this system using either the least squares or the linear programming method. 
 
3.4 Fuzzy number and its nearest interval approximation 
 
3.4.1 Fuzzy number  
 
A real number A  described as fuzzy subset on the real line ℜ  whose membership function 



( )A xµ  has 
the following characteristics with 1 2 3a a a−∞ < ≤ ≤ < ∞  
 

                                    


( )


( )


( )
1 2

2 3

0

L
A
R

A A

x if a x a

x x if a x a
otherwise

µ

µ µ

 ≤ ≤
= ≤ ≤



 

 

where 


( ) [ ] [ ]1 2: , 0,1L
A x a aµ → is continuous and strictly increasing; 



( ) [ ] [ ]2 3: , 0,1R
A x a aµ → is 

continuous and strictly decreasing. 
α − level set: The α − level of a fuzzy number A  is defined as a crisp set ( )



( ): ,AA x x x Xα µ α = ≥ ∈   

where [ ]0,1α ∈ . ( )A α  is a non empty bounded closed interval contained in X  and it can be denoted 

by ( ) ( ),L RA A Aα α α=    . ( )LA α  and ( )RA α  are the lower and upper bounds of the closed interval 
,respectively.  
 

3.4.2 Interval number 
 

 

An interval number A  is defined by an ordered pair of real numbers as follows 
[ ] { }, : ,L R L RA a a x a x a x= = ≤ ≤ ∈ℜ  where La  and Ra are the left and right bounds of interval A , 

respectively. The interval A , is also defined by center ( )Ca  and half-width ( )Wa as follows 
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{ }, : ,C W C W C WA a a x a a x a a x= = − ≤ ≤ + ∈ℜ  where 
2

R L
C

a aa +
= is the center and 

2
R L

W
a aa −

= is 

the half-width of A . 
 
3.4.3 Nearest interval approximation  
 
Here we want to approximate a fuzzy number by a crisp model. Suppose A and B  are two fuzzy 
numbers with α −cuts are ( ) ( ),L RA Aα α    and ( ) ( ),L RB Bα α   respectively. Then the distance 

between A  and B  is  
 

                        ( ) ( ) ( )( ) ( ) ( )( )1 12 2

0 0
, .L L R Rd A B A B d A B dα α α α α α= − + −∫ ∫  

 
Given A  is a fuzzy number. We have to find a closed interval ( )dC A , which is the nearest to A  with 

respect to metric d . We can do it since each interval is also a fuzzy number with constant α −cut for 
all [ ]0,1α ∈ . Hence ( )( ) [ ],d L RC A C Cα = . Now we have to minimize  

                          ( )( ) ( )( ) ( )( )1 12 2

0 0
, .d L L R Rd A C A A C d A C dα α α α= − + −∫ ∫    

with respect to LC and RC . 

In order to minimize  ( )( ), dd A C A , it is sufficient to minimize the function 

 ( )  ( )( )( )2, ,L R dD C C d A C A= . The first partial derivatives are  

       ( )( ) ( )
1

0
, 2 2L R L L

L

D C C A d C
C

α α∂
= − +

∂ ∫ . 

and  ( )( ) ( )
1

0
, 2 2L R R R

R

D C C A d C
C

α α∂
= − +

∂ ∫  . 

Solving  ( )( ), 0L R
L

D C C
C
∂

=
∂

 and ( )( ), 0L R
R

D C C
C
∂

=
∂

, we get  

                  ( )
1

0L LC A dα α= ∫  and ( )
1

0R RC A dα α= ∫ . 

Again since ( )( )
2

* *
2 , 2 0L R
L

D C C
C
∂

= >
∂

, ( )( )
2

* *
2 , 2 0L R
R

D C C
C
∂

= >
∂

 and   

( ) ( )( ) ( )( ) ( )( )
22 2 2

* * * * * * * *
2 2, , . , , 4 0L R L R L R L R
L R L R

H C C D C C D C C D C C
C C C C

 ∂ ∂ ∂
= − = > ∂ ∂ ∂ ∂ 

. 

So ( ),L RD C C  i.e.  ( )( ), dd A C A is global minimum. Therefore, the interval 

( ) ( ) ( )
1 1

0 0
,d L RC A A d A dα α α α =   ∫ ∫  is the nearest interval approximation of fuzzy number A  with 

respect to the metric d . 
Let  ( )1 2 3, ,A a a a=  be a triangular fuzzy number. The α −cut interval of A  is defined as 

( ) ( ),L RA A Aα α α=     where ( ) ( )1 2 1LA a a aα α= + −  and ( ) ( )3 3 2RA a a aα α= − − . By nearest 
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interval approximation method the lower limit of the interval is 

( ) ( )
1 1

1 2
1 2 10 0 2L L

a aC A d a a a dα α α α +
= = + − =  ∫ ∫  and the upper limit of the interval is  

( ) ( )
1 1 3 2

3 3 20 0 2R R
a aC A d a a a dα α α α +

= = − − =  ∫ ∫ . 

Therefore, the interval number corresponding A is [ ]3 21 2 , ,
2 2

a aa a m n++  =  
. In the centre and half –

width form the interval number of A  is defined as ( ) ( )1 2 3 3 1
1 12 ,
4 4

a a a a a+ + − . 

4. Parametric Interval-valued function 
 
Let [ ],m n be an interval, where 0, 0m n> > . From analytical geometry point of view, any real number 
can be represented on a line. Similarly; we can express an interval by a function. The parametric 
interval-valued function for the interval [ ],m n can be taken as ( ) [ ]1 0,1s sg s m n for s−= ∈ , which is 
strictly monotone, continuous function and its inverse exits. Let ψ be the inverse of ( )g s , then 

log log
log log

ms
n m
ψ −

=
−

 . 

 
5. Geometric Programming with fuzzy coefficient 
 
When all coefficients of Eq. (6) are triangular fuzzy number, then the geometric programming problem 
is of the form 
 

 ( )
0

0000
1 1

min ki

T n

kk i
k i

g x c xαδ
= =

=∑ ∏  
 

subject to  

 ( )
1 1

j
jki

N n

jk jjk i jj
k i

g x c x bαδ δ
= =

= ≤∑ ∏   for 1, 2,3,..., .j m=                                    
(6) 

0ix >  for 1, 2,.., .i n=   

where ( )1 2 3
0 0 0 0, ,k k k kc c c c= , ( )1 2 3, ,

jk jk jkjkc c c c=  and ( )1 2 3, ,j j j jb b b b=  

Using nearest interval approximation method, we transform all triangular fuzzy number into interval 
number i.e. 0 0, , ,L U L U

k k jk jkc c c c       and ,L U
j jb b   . The geometric programming problem with imprecise 

parameters is of the following form 
 

 ( )
0

0000
1 1

min ki

T n

kk i
k i

g x c xαδ
= =

=∑ ∏  
 

subject to  

 ( )
1 1

j
jki

N n

jk jjk i jj
k i

g x c x bαδ δ
= =

= ≤∑ ∏   for 1, 2,3,..., .j m=                                    
(7) 

0ix >  for 1, 2,.., .i n=   
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where 0 ,k jkc c  and jb  denote the interval counterparts i.e. 0 0 0, , , , ,L U L U L U
k jk jk k jk jk j jc c c c c c b b b     ∈ ∈ ∈     
  

, 0 0, 0, 0L L L
k jk jc c b> > >  for all j and k . Using parametric interval-valued functional form, the problem 

(7) reduces to 

( ) ( ) ( )( )0
0

1

0 0 0 0
1 1

min ; ki

N ns sL U
k k k i

k i

g x s c c xαδ
−

= =

=∑ ∏  
 

subject to  

( ) ( ) ( )( ) ( ) ( )( )1 1

1 1

;
j

jki

N ns s s sL U L U
j jk jk jk i j j j

k i

g x s c c x b bαδ δ
− −

= =

= ≤∑ ∏  
(8) 

0ix >  for 1, 2,.., .i n= , 1, 2,3,..., .j m=   
                                
This is a parametric geometric programming problem. We get different solutions of this problem for 
different value of the parameter s . 
 
6. Two Bar Truss Structural Model 
 
The symmetric two-bar truss (Nasseri et al., 2014) shown in Fig. 1 is considered here. The objective is 
to minimize the weight of truss subject to the stress σ constraints of each bar. There are two design 
variables- mean tube diameter (d) and height (h) of the truss. 

 

Fig. 1. Two bar truss under load 

The weight of the structure is ( )2 22d t b hρ π +  and stress is ( )2 2 /( )P b h d thπ+ . The structural 

model can be written as  

( ) ( )2 2min , 2WT d h d t b hρ π= +   

subject to  

( )
2 2

0, P b hd h
d th

σ σ
π
+

≡ ≤  
(9) 

, 0d h >   

Let 2 2b h y+ = ⇒ 2 2 2b h y+ = . Hence the new constraint is 2 2 2 2 2 2 2 1.b h y b y h y− −+ ≤ ⇒ + ≤

 

Hence 
the crisp structural model is 
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( )min , , 2WT d h y td yρ π=   

subject to  

( )
1

0, , Pyhd h y
d t

σ σ
π

−

≡ ≤  
(10) 

2 2 2 2 1b y h y− −+ ≤   
, , 0d h y >   

where 2P = applied load; t = thickness of the bar; d = mean diameter of the bar (decision variable); 2b= 
the distance between two hinge. Model (11) is a standard posynomial geometric programming problem 
i.e. 0 1δ = , 01 1δ =  and 1 1δ = . When ( )1 2 3, ,t t t t= ,  ( )1 2 3, ,P P P P=  and  ( )0 01 02 03, ,σ σ σ σ=  are triangular 
fuzzy number .then  the fuzzy structural model is   

( )min , , 2WT d h y td yρ π=    

subject to  

( )




1

0, , Pyhd h y
d t

σ σ
π

−

≡ ≤


 
(11) 

2 2 2 2 1b y h y− −+ ≤   
, , 0d h y >   

Using nearest interval approximation method, the interval number corresponding triangular number 

( )1 2 3, ,t t t t=  is [ ]3 21 2 , ,
2 2 L U

t tt t t t++  =  
.Similarly interval number corresponding P and  0σ  are 

[ ]3 21 2 , ,
2 2 L U

P PP P P P++  =  
and [ ]01 02 03 02

0, ,
2 2 L oU

σ σ σ σ σ σ+ +  =  
 respectively. The problem (11) 

reduces to  

( ) [ ]min , , 2 ,L UWT d h y t t d yρ π=   

subject to  

( ) [ ]
[ ] [ ]

1

0 0

,
, , ,

,
L U

L U
L U

P P yh
d h y

d t t
σ σ σ

π

−

≡ ≤  
(12) 

2 2 2 2 1b y h y− −+ ≤   
, , 0d h y >   

which is equivalent to 

( )min , , 2WT d h y td yρ π=    

subject to  

( )




1

0, , Pyhd h y
d t

σ σ
π

−

≡ ≤


 
(13) 

2 2 2 2 1b y h y− −+ ≤   
, , 0d h y >   

 where [ ],L Ut t t∈ ,  [ ],L UP P P∈ and  [ ]0 0 ,L oUσ σ σ∈ . 

7. Parametric Geometric Programming Technique on Two bar Truss Structural Model 
 

According to section 4, the fuzzy two bar truss structural model (13) reduces to a parametric 
programming by replacing 1 s s

L Ut t t−= ,  1 s s
L UP P P−=  and  1

0 0 0
s s

L Uσ σ σ−= where [0,1]s∈  
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The model (14) takes the reduces form as follows 

( ) ( )1min , , 2 s s
L UWT d h y d y t tρ π −=   

subject to  
( )
( )( )

1 1

1 1
0 0

1
s s

L U

s s s s
L U L U

P P yh

d t tπ σ σ

− −

− −
≤  

(14) 

2 2 2 2 1b y h y− −+ ≤   
, , 0d h y >   

 

Applying Geometric Programming Technique, the dual programming of the problem (14) is  

( ) ( )
( )( ) ( )

01 11
21 22

21 22

1 1 2
( )

21 221 1
01 21 220 0

2 1max ( )

w w w ws s s s
w wL U L U

s s s s
L U L U

t t P P bg w w w
w w wt t

πρ

π σ σ

− −
+

− −

       
   = +             

 
 

subject to  
01 1w =  (Normality condition) 

For primal variable y : 01 11 21 221. ( 2). ( 2). 0w w w w+ + − + − =  (orthogonal condition) (15) 
For primal variable h : 01 11 21 220. ( 1). 0. 2. 0w w w w+ − + + =  (orthogonal condition) 
For primal variable d :  01 11 21 221. ( 1). 0. 0. 0w w w w+ − + + =                            (orthogonal condition) 

01 11 21 22, , , 0w w w w >   
 

This is a system of four linear equation with four unknowns. Solving we get the optimal values as 
follows  

01

* * * *
11 21 221, 1, 0.5 0.5w w w and w= = = =  

From primal dual relation we get  

( )1 *
012 ( )s s

L Ud y t t w g wρ π − =   

( )
( )( )

1
1 1 11

1 1
110 0

s s
L U

s s s s
L U L U

P P wyd h
wt tπ σ σ

−
− −

− −
=  

 

2 2 21

21 22

wb y
w w

− =
+

  

2 2 22

21 22

wh y
w w

− =
+

  

The optimal solution of the model (14) through parametric approach is given by 

( ) ( )
( )( ) ( )

01 11
21 22

21 22

1 1 2
( )*

21 221 1
01 21 220 0

2 1( )

w w w ws s s s
w wL U L U

s s s s
L U L U

t t P P bg w w w
w w wt t

πρ

π σ σ

− −
+

− −

       
   = × +             

  

2
* 21 22

21

( )b w wy
w
+

=   ,  
2

* 22

21

b wh
w

= , 
( )

( )( )
1 2

* 21 22 21
21 1

21 220 0

( )
s s

L U

s s s s
L U L U

P P b w w wd
w b wt tπ σ σ

−

− −

+
= × ×  

Note that the optimal solution of GP technique in parametric approach is depends on s . 
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8. An illustrative example  

The input data for the structural optimization problem (10) is given as follows:  

Load (P) lbs Thickness (t) in Support distance 
(2b) in 

Material density 
( ρ ) 3/lbs in  

Permissible stress 
( 0σ ) psi 

33,000 0.1 60 0.3 60,000 
 

Formulation of the said model is presented as follows  

( )min , , 0.188WT d h y yd=   

subject to  
1 11.75 1yd h− − ≤  (16) 

2 2 2900 1y h y− −+ ≤   
, , 0d h y >   

 

This is a Posynomial Geometric Programming Problem with degree of difficulty (DD) 4 (3 1) 0= − + = . 

Applying Geometric Programming Technique, the dual programming of the problem (16) is  

( ) ( )
01 21 22

11 21 22( )
21 22

01 21 22

0.188 900 1max ( ) 1.75
w w w

w w wg w w w
w w w

+     
= +     

    
 

 

subject to (Normality condition) 
01 1w =   

For primal variable y : 01 11 21 221. ( 2). ( 2). 0w w w w+ + − + − =  (orthogonal condition) 
For primal variable h : 01 11 21 220. ( 1). 0. 2. 0w w w w+ − + + =  (orthogonal condition) 
For primal variable d :  01 11 21 221. ( 1). 0. 0. 0w w w w+ − + + =  (orthogonal condition) 

01 11 21 22, , , 0w w w w >   
 
This is a system of four linear equation with four unknowns. Solving we get the optimal values as 
follows  
                                             

01

* * * *
11 21 221, 1, 0.5 0.5w w w and w= = = =  

From primal dual relation we get  

          
*

010.188 ( )yd w g w=  , 1 1 11

11

1.75 wyd h
w

− − = , 2 21

21 22

900 wy
w w

− =
+

 and 2 2 22

21 22

wh y
w w

− =
+  

Solving this we get the optimum solution of the problem (16) by Geometric Programming (GP) 
Technique is presented in Table 1  
                        
Table 1  
Optimal solution of Two Bar Truss Structural Model  

Method Weight
*WT (lbs)  

Diameter 
*d (in)  

Height 
*h (in)  

*y (in)  

GP 19.74 2.474874 30 42.426402 
NLP 19.74 2.474874            30 42.42641 

Schmit (1981) 19.8 2.47 30 -------- 
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When the input data of two bar truss structural model (11) is taken as triangular fuzzy number i.e. 
 ( )28000,32000,34000P = , ( )0.06,0.08,0.12t =  and  ( )0 55000,59000,61000σ = .Using nearest 
interval approximation method , we get the corresponding interval number and interval-valued function 
i.e. [ ]P 30000,33000 ,= ⇒   ( ) ( ) [ ]1 s sP 30000 33000 30000,33000−= ∈ ,  [ ]t 0.07,0.1 ,=

( ) ( ) [ ]10.07 0.1 0.07,0.1s st −⇒ = ∈ and [ ]0 57000,60000σ =
 ( ) ( ) [ ]1

0 57000 60000 57000,60000s sσ −⇒ = ∈  where [0,1]s∈  

The optimal solution of the fuzzy model by interval-valued parametric geometric programming is 
presented in Table 2. 

Table 2  
Optimal solution of Two Bar Truss Structural Model 

s  
Weight 

*WT (lbs)  
Diameter 

*d (in)  
Height 

*h (in)  
*y (in)  

0.0 18.94736842 3.386364548 30 42.42640687 
0.1 19.03952650 3.282125186 30 42.42640687 

0.2 19.11490561 3.181094530 30 42.42640687 

0.3 19.19922892 3.083173808 30 42.42640687 

0.4 19.28392421 2.988267290 30 42.42640687 

0.5 19.36899312 2.896282192 30 42.42640687 

0.6 19.45443731 2.807128588 30 42.42640687 

0.7 19.54025843 2.720719317 30 42.42640687 

0.8 19.62645813 2.626969904 30 42.42640687 

0.9 19.58172288 2.555798472 30 42.42640687 

1 19.80000000 2.477125667 30 42.42640687 

 

For 0s = , the lower bound of the interval value of the parameter is used to find the optimal solution. 
For 1s = , the upper bound of interval value of the parameter is used for the optimal solution. These 
results yield the lower and upper bounds of the optimal solution. The main advantage of the proposed 
technique is that one can get the intermediate optimal result using proper value of s .  

9. Conclusion 

The advantage of this technique is that we can find directly optimal solution of the objective function 
without solving two-level mathematical programs. This method is simple and takes minimal time. Here 
decision maker (engineer) may obtain the optimum results as per his/her requirement .The methodology 
presented in this paper can be applied in other fields of engineering optimization.  
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