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 This paper presents a new search methodology for different sizes of 0-1 Knapsack Problem 
(KP). The proposed methodology uses a modified scatter search as a meta-heuristic algorithm. 
Moreover, rough set theory is implemented to improve the initial features of scatter search. 
Thereby, the preliminary results of applying the proposed approach on some benchmark dataset 
appear that the proposed method was capable of providing better results in terms of time and 
quality of solutions. 
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1. Introduction 

0-1 Knapsack Problem (0-1 KP) is a special case of general 0-1 linear problem in which the allocation 
of items to a knapsack is discussed. Knapsack problems appear in real-world decision-making 
processes in a wide variety of fields such as production, logistics, distribution and financial problems 
(Marchand et al., 1999; Kellerer et al., 2004; Gorman & Ahire, 2006; Wascher & Schumann, 2007; 
Granmo et al., 2007; Nawrocki et al., 2009; Vanderster et al., 2009). Dantzig (1957) is believed to be 
the first who introduced the knapsack problem and proved that the complexity of this problem is NP-
hard (Garey & Johnson, 1979). There are literally many practical applications for knapsack problem 
and it has become the object of numerous studies and a great number of papers have been proposed for 
solving this problem. In this problem, different items with various profits (p) and weights (w) are 
considered. There is also capacity limit in knapsack problem (C). The general KP model is a binary 
problem, stated as follows: 
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In this problem xi is a binary variable, which is one, when the item i is chosen and zero, otherwise. 

In this paper, a scatter search methodology evolved by Rough Sets theory to solve 0-1KP for problems 
in different sizes, is developed. The proposed model of this paper takes advantage of rough sets theory, 
which relies on Meta models to reduce the objective function evaluations. 

The rest of the paper is organized as follows: in the next section, the literature review on 0-1KP is 
presented. Brief description of scatter search and rough sets theory are presented in section 3. Section 
4 describes the proposed RSSS approach for optimization of 0-1KP in more detail and experimental 
results are presented in section 5. Finally, the advantages of the proposed structure, conclusions, and 
possible future work are discussed in section 6. 

2. Literature review 
 
Over the last few decades, there have been extensive studies on the 0-1KP. Martello et al. (2000) 
presented a survey of recently developed solution approaches for 0-1KP. Previous studies of 0-1KP 
have been predominantly focused on the profit decision under certain conditions. In the context of the 
research reported have, research work dealing with the mathematical modeling and solving approach 
aspects of 0-1KP is presented. A majority of 0-1KP problems have been studied using operations 
research techniques classified in two categories: (1) Single objective and (2) Multi objective models, 
but most of the studies are based on single objective models. From the late of 20th century, the 0-1KP 
has captured interests of many researchers. Albano and Orsini (1980) were among the early researchers 
address the 0-1KP with single objective of profit. They developed a tree search approach to solve the 
0-1 KP. Lin and Chen (1994) proposed a systolic algorithm for solving KPs. Pisinger (1995) applied 
an expanding core algorithm for the exact 0-1KP. Wang et al. (1999) suggested a chaotic annealing 
neural network with gain sharping for solving 0-1KP. Martello et al. (1999) applied dynamic 
programming and strong bounds for 0-1KP. Yamada et al. (2005) studied combination of the knapsack 
problem and the minimum spanning tree problem and developed an undirected graph for solving this 
problem. Wilbaut et al. (2008) stated a survey of effective heuristics and their applications to a variety 
of KP. Belgacem and Hifi (2008) proposed sensitivity analysis of the optimum to perturbation of the 
profit of a subset of items in the 0-1KP. Lin (2008) studied the KP with imprecise weight coefficients 
using genetic algorithm. Chunha et al. (2010) proposed a new Lagrangian based Branch and Bound 
algorithm for the 0-1KP. Archetti et al. (2010) proposed α-approximation algorithm bounds for solving 
0-1KP. Kaparis and Letchford (2010) proposed exact and heuristic separation algorithms for 0-1 KP. 
Yang and Wang (2011) presented a rough set based genetic algorithm for solving the 0-1KP. Lin et al. 
(2011) suggested an exact algorithm for the 0–1KP with a single continuous variable. Zou et al. (2011) 
applied a novel global harmony search algorithm for solving the 0-1KP. Layeb (2011, 2013) proposed 
two hybrid approaches based on Harmony Search algorithm and Cukoo Search Algorithm with 
Quantum Computing (QC) for solving 0-1KP. Lasserre and Thanh (2012) solved 0-1 programs (such 
as 0-1KP) using a joint + marginal heuristic. Bansal and Deep (2012) proposed a modified binary 
particle swarm optimization for KP and report promising results. Guler et al. (2012) presented 
algorithm with guarantee value for KPs. Truong et al. (2013) applied chemical reaction optimization 
algorithm with greedy strategy for the 0-1KP. Zhang et al. (2013) proposed amoeboid organism 
algorithm for solving 0-1KP. Bhattacharjee and Sarmah (2014) suggested a shuffled frog-leaping 
algorithm for solving 0-1KP. Kulkarni and Shabir (2014) proposed Cohrt intelligence algorithm for 
solving 0-1KP. 
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Regarding these variations, it is clear that each researcher has studied the KP from different aspects. 
For instance, there could be environmental or social concerns as well as economic goals. Moreover, in 
some cases, KP problem can be studied in the context of portfolio and logistics problems. Silva et al. 
(2006) proposed a scatter search method for bi-criteria 0-1KP.Silva et al. (2006) stated the core concept 
in bi-criteria 0-1 KPs. Beausoleil et al. (2008) suggested multi-start and path re-linking methods to deal 
with multi objective KPs. Taniguchi et al. (2009) applied a virtual pegging approach to the max–min 
optimization of the bi-criteria KP. Kumar and Singh (2010) proposed an assessing solution quality of 
multi-objective 0-1 KP using evolutionary and heuristic algorithms. Sato et al. (2012) applied Variable 
Space Diversity, crossover and mutation in multi objective evolutionary algorithm for solving many-
objective KPs. Lu and Yu (2013) proposed an adaptive population multi objective quantum-inspired 
evolutionary algorithm for multi objective KPs. 
 
3. Brief conceptions of scatter search and rough sets theory 
 

3.1 Scatter search 

Glover (1998) is believed to be the first who presented Scatter Search. Unlike other similar algorithms, 
Scatter Search uses results to search in solution space purposefully and deterministically. This 
algorithm, directs vectors with a set of solutions called Reference Set (RefSet) and obtains optimal 
solutions from the prior solutions. RefSet includes a set of solutions that have both variety and quality 
that an algorithm needs them for covering the whole solution space for getting near the optimum 
solution (Glover, 1998).  

Scatter Search methodology has been best known for its flexibility in solving variety of problems. Even 
the internal sub methods of it are very flexible. Consequently, this procedure can be implemented to 
solve different problems in various scales. In this section, we propose a general description of Scatter 
Search steps, but these five steps will be adapted to the proposed problem in the next sections. Note 
that the complexities of these methods are being “changed” and not only “reduced or expanded” 
according to the problem. The general descriptions of these steps are as follows: 

1) Diversification Generation Method: Generates diverse solutions using a random (or a set of 
random) solutions called seed solutions. 

2) Improvement Method: Transforms the diverse solutions produced in the prior method into more 
qualified solutions (neither the input nor the output solutions are required to be feasible, but it 
is rather that outputs be feasible) 

3) Reference Set Update Method: keeps the “best” solution in the RefSet (in the first place and 
during the algorithm). Meaning that, the “best” solution satisfies both quality and diversity of 
solutions. 

4) Subset Generation Method: Produces a subset of RefSet as a basis for Combination Method. 
5) Solution Combination Method: transforms the members of subset generated in the prior step to 

new solutions by combining solution vectors. 
 
3.2 Rough sets theory 

Rough Sets theory is a new mathematical approach to imperfect knowledge that is proposed by Pawlak 
(1992) and works on vague and imprecise environments. The theory works on the notion of sets and 
the relationships among them. The Rough Sets theory has its basis on the information that we have 
about every member of universe, the collection of objects we am interested in, and tries to present a 
way to transform data to knowledge and gives us a useful method for discovering hidden patterns in 
the raw data (Mrozek, 1992). 

The main privilege of Rough Sets theory is that, there is no need for additional knowledge such as 
probability in statistics or membership grade in fuzzy logic. The basis of theory stands on the notions 
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of “upper and lower approximations of set” and set modeling (Slowinski, 1992). In this method, the 
superfluous data in aspect of reasoning will be removed and the indispensable data will be on board to 
derive the decision rules from them. We now describe the fundamental concepts of Rough Sets theory 
that is used in the proposed methodology in this paper. 

3.2.1 Relational Systems (Knowledge Base) 
 

Suppose that there is a finite set U ≠ ∅ (the universe) of subjects, we are observing or interested in. 
Any subset X U⊆  of the universe is called a concept or a category in U and any family of concepts 
in U will be referred to knowledge about U. If R is an equivalence relation over U, then by /U R , we 
mean that family of equivalence classes of R referred to as categories of R and Rx][  denotes a category 
in R containing an element UX ⊆ . 

3.2.2 Indiscernibility relation 
 

If RP ⊆  and φ≠P  then intersection of all equivalence relationships of P is also an equivalence 
relation, which is shown by ( )IND P  (indiscernibility relation over P); so we have  

( )[ ] [ ]IND P R
R P

x x
∈

=


. (2) 

Thus / ( )U IND P or in short /U P , denotes knowledge associated with the family of equivalence 
relations P, called P-basic knowledge about U. In fact, P-basic categories have those of basic properties 
of the universe, which can be expressed employing knowledge P. 

3.2.3 Approximation of sets 
 

As we have demonstrated before, some categories cannot be expressed exactly by employing available 
knowledge. By Rough Sets theory, we are able to make an approximation of a set by other sets. These 
sets are called lower and upper approximations. The lower and upper approximations can be presented 
in an equivalent form as follows, 

}][:{ XxUxXR R ⊆∈=  
}X]x[:Ux{XR R φ≠∈=   

XRXR)X(BN R −=  

(3) 

 

The set XR is the set of all elements of U, which can be certainty classified as elements of X, in 

knowledge R. The Set XR  is the set of elements of ,U which can be possibly classified as elements of 
X, employing knowledge R and Set )X(BN R  is the set of elements, which cannot be classified to X or 
to -X having knowledge R. 

The positive region )(xPOS R  or lower approximation of X is the collection of those objects that can 
be classified with full certainty as members of the set X, using knowledge R. Similarly, the negative 
region ( )RNEG X is the collection of objects with which it can be determined without any ambiguity, 
employing knowledge R that belongs to the compliment of X (Pawlak, 2002). Fig. 1 shows a schematic 
overview to the notion of approximations. 
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Fig. 1. Schematic overview of approximations 

4. Proposed algorithm 
 

Scatter Search is a meta-heuristic algorithm that applies a global search in solution space with a set 
called RefSet. Three methods of five general scatter search methods depend on the type and complexity 
of the problem including Diversification Generation Method, Improvement Method, and Combination 
Method. Therefore, it is essential to introduce the problem I am going to solve so that I can justify three 
methods referred. 

4.1 Diversification generation method 

As mentioned before, in Scatter Search methodology first step is to generate a set of diverse solution 
with a random mechanism. To this end, we applied a systematic mechanism proposed by Glover (1977) 
to produce a diverse set of binary vectors. First consider max2,3,...,h h= , which max 1h n≤ − , which 
must be assigned a value of one or a set of seed solutions to build up the other answers on it. Our seed 
solution is a vector that picks zero for every array of it. “div” number of random solutions is being 
produced here and they are presented by 'x that: 

'
1 11hk hkx x+ += −     for    0,1,..., ([ ] 1)nk

h
= −  (4) 

As it can be noticed, the proposed method creates “
2

div ” of diverse solutions and other “
2

div ” will be 

the complement of these solutions so that: 

'' '1i ix x= − . (5) 
Now, we have our diverse solutions that they might be feasible or not. Finally, in the last step of this 
method, we make them feasible by a random technique. We randomly choose variables that accepted 
one and switch them to zero until the solution becomes feasible. Therefore, the idea of random solution 
creation in Diversification Generation Method will stay untouched. 

4.2. Improvement method 

We apply this step to enhance the quality of provided answers. First, the proposed method calculates a 
ratio as a criterion for each variable’s importance in solution quality. As the approach is black box, so 
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we just used objective function evaluation for computing ratio as below which ix  represents the 
decision variable that picks 0 or 1 in the diverse solutions. 

{ | 1}i iA x x= =  ,    { | 0}i iB x x= =  

Ratio(i) i iA B

i

f f
wco
−

=  

(6) 

iAf is the average of objective function in “
2

div ” of solutions that have a better objective value when 

the i’th decision variable picks 1.  

iBf is the average of objective function in “
2

div ” of solutions that have a better objective value when 

the i’th decision variable picks 0.  

𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 represents weight coefficient or the coefficient of i’th variable in constraint.   

Consequently, we have a ratio for each decision variable, which helps us decide about every variable. 
However, the procedure goes like this that in first step in case of infeasible solutions; the proposed 
study sorts the ratios of variable and variables with values of one with the least ratio transform to zero 
and this procedure continues until the solutions become feasible. In the next step, variables with value 
of zero with the most ratio are switched to one. The feasibility is required in both conditions. 

4.3 Reference Set Update Method 
 

This method first sorts the solutions according to their objective function values. As mentioned in 
general scatter search description, RefSet is a set of “b” ( 1 2b b b= + ) solutions that 1b  number of them 
are solutions with high quality and 2b  number of solutions are the most diverse solutions in solution 
space. Because of sorting these solutions, 1b is updated with the solutions that have the best objective 
function value. In this step, the ratio is updated based on the new members of 1b .Next step is to update

2b . For maximum diversity according to high quality solutions; we define a distance function that 
calculates the “distance” of two solutions and by using the function. Regarding these values, we will 
be able to figure out which solutions in population have the maximum distance from the members of 

1b . The proposed study calculates the minimum distance of every solution in population with the 
members of 1b and solutions that have the maximum of minimum distances will be chosen to fill 2b . 

4.4. Subset generation and Combination method 
 

We simply choose two of solutions using permutation for combining in next method. Suppose we have 
two solutions from RefSet selected by Subset generation method. For creating new solutions, we assign 
a value of 1 for variables that have the value of 1 in both picked solutions and pick 0 or 1 randomly for 
the rest of variables. To make new solution, the feasibility is a required condition. In the next step, the 
Improvement Method improves generated solutions and their objective function values will be 
compared with the members of 1b  and in the case of improvement in new solutions, the replacement 
will be settled with the worst member of 1b . For diverse solutions, we compare the distance of new 
solutions from the 1b with the temporary members of 2b  and in case of improvement in diversity, new 
solutions will be substituted. As it can be noticed, this method is a loop and the algorithm ends when b 
is not updated during a loop. In this condition, new Population will be produced to run the entire method 
again. 
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4.5 Pop size update with rough sets theory 

As mentioned before, if b is remained unchanged, the population will be reproduced and all of methods 
will be repeated on new set of solutions in population but in case of speed and quality of obtained 
solutions, the population update can be very important. To this end, we use Rough Sets Theory for 
updating Population and the idea is described as follows. 

Suppose that we have an n sized problem, meaning the objective function has n variables, say 
1 2, ,..., nx x x . After a loop, we have an imprecise knowledge about every variable’s effect in objective 

function and the knowledge is obtained from the best solutions in b1, so in Rough Sets Theory terms, 
if my universe is 1 2{ , ,..., }nU x x x=  that classifies b1members to two equivalent classes, respectively, 
variables which picked value of one in b1, and variables which picked value of zero in b1. Therefore, 
for every solution we have a Relational System as follows, 

( , )i iK U R= 11, 2,...,i b= , (7) 
where / iU R denotes knowledge associated with the family of equivalence relations iR , called iR - 
basic knowledge about U in iK . Equivalence classes of iR are called basic categories (concepts) of 
knowledge iR . In other words, the equivalence relations of iR  are the basic concept of universe that 
can be represented in iR . To illustrate the idea we will serve an example. 

Consider that we have 10 decision variables (n=10), 1 3b = which is as follow, 

1Re {0,1,1,1,0,0,0,0,1,1}fset =  (8) 

2Re {1,0,1,1,0,0,0,0,0,0}fset =   

3Re {0,1,1,1,1,0,0,0,1,0}fset =   
By classification of (1 or 0), we define three equivalence relations 1/U R , 2/U R  and 3/U R  that have 
the following classes, 

1 2 3 4 9 10 1 5 6 7 8/ {{ , , , , },{ , , , , }}U R x x x x x x x x x x= , (9) 

2 1 3 4 5 2 6 7 8 9 10/ {{ , , , },{ , , , , , }}U R x x x x x x x x x x= ,  

3 2 3 4 5 9 1 6 7 8 10/ {{ , , , , },{ , , , , }}U R x x x x x x x x x x= .  
These are elementary categories (concepts) in the knowledge based 1 2 3( ,{ , , })K U R R R= . 
Theoretically, basic concepts are sets that are intersections of elementary categories, so we have

1 2 3{ , , }S R R R= . According to the set of variables that values are one we have: 

{1,1,..,1}X =  (10) 

1 2 3 3 4{ | [ ] } {[1] [1] [1] } { , }S R R RS X x U x X x x= ∈ ⊆ = ∩ ∩ =   

1 2 3 1 2 3 4 5 9 10{ :[ ] [1] [1] } { , , , , , , }S R R RS X x U x X x x x x x x x= ∈ ∩ ≠∅} ={[1] ∪ ∪ =   

6 7 8( ) { , , }SNEG X U S X x x x= − =   
As we can notice, some categories ( 1 2 5 9 10, , , ,x x x x x ) cannot be expressed exactly by employing 
available knowledge. Consequently, a rough set arrives at the idea of approximation of a set by other 
sets. Let us define X ⊆  U as a set of variables where all of them having the value of one, considering 
the general tendency of algorithm for maximizing the objective function value. With each subset X ⊆  
U and an equivalence relation S, we associate the subsetS X . As demonstrated before, according to the 
obtained knowledge, the variables 3 4{ , }x x can certainly classified as elements of X, in the knowledge 
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S. Now we can calculate 6 7 8( ) { , , }SNEG X x x x= that refers to variables, which cannot be a member 
of set X, in the knowledge of S. 

We use this procedure for updating Population. First, we put the b members of RefSet in new 
Population, then by applying rough Sets Theory data reasoning on 1Re fset , we calculate the RX and 
pick value of one for the members of RX and oppositely pick value of zero for the members of 

( )SNEG X . Other variables, in terms of rough Sets Theory, are called ( )SBOUNDRY X  pick 0 or 1 
with a random procedure. Now we have a new Population that the whole Scatter Search must be 
implemented on. 

5. Experimental results 

We have coded the proposed Rough Sets based modified Scatter Search (RSSS) algorithm in Matlab 
on an Intel Core i3, 1.736 Ghz processor with 4Gb RAM. To evaluate the performance of RSSS 
algorithm, two sets of Ill-known benchmark problems in the 0-1KP literature have been considered: 
 
(1) Small sizes: The data set consists of ten collected instances [f1-f10] from Zou et al.(2011) with 
number of items ranging from 4 to 23 and ten instances [f11-f20] from Kulkarni and Shabir (2014) with 
number of items ranging from 30 to 75. 
 
(2) Large-scale sizes: The data set consists 96 problems from Pisinger (1995) with a variety of variable 
sizes (n= 100, 300, 1000, 3000). To cover all kinds of possible conditions, the problems have been 
categorized into different classes. We have run this algorithm 20 independent times for each instance 
from Zoa data and 10 independent times for each instance from Pisinger data. 
 
5.1. Results of small and medium size problems 
 

The first data set under study includes small-scale problems. The proposed model can be optimally 
solved within noticeable time for small instances. Thus, to solve these problems, we have considered a 
global optimum value of objective function (GOV) obtained from branch and bound algorithm (B&B) 
to compare with the solution of the RSSS algorithm. 

The following ranges of parameter values from the scatter search literature were tested 
pop_size=[10,100], b=[3-21], b1=[2-14], b2=[1-7]. Based on experimental results, Table 1 shows the 
best parameter settings.  

Table 1 
RSSS parameter settings 
Parameter Pop_size b b1 b2 
Value 20 18 12 6 

 
To judge the effectiveness of the proposed algorithm, the following three criteria were evaluated 
(Rezazadeh et al., 2011): 
 
1. BS=[(BSRSSS-GOV) /GOV]*100: gap between GOV and best solution obtained from RSSS (BSRSSS). 
 
2. MS=[(MSRSSS-GOV) /GOV]*100: gap between GOV and mean solution obtained from ten repeated 
times of RSSS (MSRSSS). 
 
3. Avg(|BSRSSS-MSRSSS|)= Average of the absolute difference between BSRSSS and MSRSSS. 
 



H. Rezazadeh / Decision Science Letters 4 (2015) 
 

433 

The obtained results and comparison of B&B and RSSS algorithms corresponding to the 20 problems 
are shown in Table 2.  
 

Table2 
The obtained results and comparison from B&B and RSSS runs 
NO. 

Problem info.  B&B   RSSS   RSSS GAP 
Objects Capacity  GOV TBB  BSRSSS MSRSSS TBSRSSS  BS % MS % (|BSRSSS-MSRSSS|)% 

1 10 269  295 .12  295 295 1.26  0 0 0 
2 20 878  1024 .04  1024 1018 1.32  0 -.59 .59 
3 4 20  35 .03  35 35 1.20  0 0 0 
4 4 11  23 .03  23 23 1.21  0 0 0 
5 15 375  481.069 .18  481.069 480.25 1.14  0 -.17 .17 
6 10 60  52 .14  52 51 1.25  0 -1.92 1.92 
7 7 50  107 .04  107 105 1.25  0 -1.86 1.86 
8 23 10000  9767 .18  9767 9767 1.27  0 0 0 
9 5 80  130 .03  130 130 1.24  0 0 0 
10 20 879  1025 .45  1025 1019 1.29  0 -.58 .58 
11 30 577  1437 .156  1437 1437 1.28  0 0 0 
12 35 655  1689 .0624  1689 1686 1.28  0 -.18 .18 
13 40 819  1821 .0156  1821 1819 1.34  0 -.11 .11 
14 45 907  2033 .0312  2033 2033 1.28  0 0 0 
15 50 882  2440 .0312  2440 2438 1.31  0 -.08 .08 
16 55 1050  2440 .0312  2440 2651 1.92  0 0 0 
17 60 1006  2917 .0312  2917 2917 2.33  0 0 0 
18 65 1319  2818 .0624  2818 2817 2.29  0 -.04 .04 
19 70 1426  3223 .078  3223 3221 2.29  0 -.06 .06 
20 75 1433  3614 .0312  3614 3614 2.31  0 0 0 

Avg.           0 -.28 .28 

 
We have also compared the performance of the RSSS algorithm with recently proposed algorithm 
including Cohort Intelligence Algorithm (CI) (Zhang, 2013), Shuffled Frog Leaping Algorithm 
(MDSFLA) (Bhattacharjee & Sarmah, 2014), Novel Global Harmony Search Algorithm (NGHS) (Zou 
et al., 2011), Quantum Inspired Cuckoo Search Algorithm (QICSA) (Layeb, 2011), Quantum  Inspired 
Harmony Search Algorithm(QIHSA) (Layeb, 2013). The detail results are listed in Table 3.  
 
In Table 3, the first column symbolizes the name for each instance; the second column shows the 
information of instance; the third column lists the global optimum solution (GOV) and the remaining 
columns describe the computational results of RSSS, CI, MDSFLA, NGHS, QICSA and QIHSA 
respectively. 
 
 
Table 3 
Results Comparison from CI, MDSFLA, NGHS, QICSA, QIHSA and RSSS 
No. Problem info. GOV RSSS CI MDSFLA NGHS QICSA QIHSA 

objects capacity 
f1 10 269 295 295 295 295 295 295 340 
f2 20 878 1024 1024 1024 1024 1024 1024 1024 
f3 4 20 35 35 35 35 35 35 35 
f4 4 11 23 23 23 23 23 23 23 
f5 15 375 481.07 481.07 481.07 481.07 481.07 481.07 481.07 
f6 10 60 52 50 51 52 50 52 52 
f7 7 50 107 107 105 107 107 107 107 
f8 23 10000 9767 9767 9759 9767 9761 9767 9767 
f9 5 80 130 130 130 130 130 130 130 
f10 20 879 1025 1025 1025 1025 1025 1025 1025 
f11 30 577 1437  1437     
f12 35 655 1689  1689     
f13 40 819 1821  1816     
f14 45 907 2033  2020     
f15 50 882 2440  2440     
f16 55 1050 2651  2643     
f17 60 1006 2917  2917     
f18 65 1319 2818  2814     
f19 70 1426 3223  3221     
f20 75 1433 3614  3614     
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5.2. Results of Large scale problems 
 
The second data set investigated is associated with Pisinger data (Pisinger 1995). We have compared 
the results of proposed RSSS algorithm with commercial software’s like OptQuest, Solver, Evolver and 
the methods proposed in Gortázar et al. (2010) called BinarySS and Pisinger (1995) called Expknp. In 
a similar vein, we have used the range of data sets as R = 100, 1000, 10000 and used Pisinger’s exact 
method, which uses the objective function coefficients as a best-known value solver. By solving the 
problems with various variable numbers (n) and proposed ranges (R), the number of feasible solutions 
in each method is shown in Table 4. 
 
Table 4 
Number of feasible solutions that solved 

   

  

Method Number of feasible solutions Method Number of feasible solutions 
OptQuest 96 Binary SS 96 
Evolver 40 ExpKnp 96 
Solver 47 RSSS 96 

 
As far as the knowledge of researchers is concerned, one of the features of algorithm quality is the 
number of objective function evaluations that solver uses to find the best solution. In Table 5, the 
numbers of function evaluations for the problems in different sizes are proposed. It is obvious that by 
using the Rough Sets theory, the superfluous evaluations have been eliminated and there are a 
reasonable number of objective function evaluations. 

 

Comparing to the last research in this field, there is a great progress in our results regarding the fact 
that we used only one Diversification Generation Method and one Combination Method while in 
Gortázar et al. (2010), three Diversification Generation Methods and seven Combination Methods were 
used and we obtained better results. Best-known values and results of commercial software such as 
OptQuest, Evolver, Solver and  ExpKnap, Binary SS and RSSS algorithms are shown in Tables 6-17. 

Table 6 
n=100, R=100   

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 3352 3352 3332 3352 3265 3329 3322 
 3132 3132 3102 3132 3050 3094 3102 
weakly correlated 3083 3083 3079 3083 3008 2957 3051 
 2945 2945 2942 2945 2873 2815 2917 
Subset sum 2647 2647 2647 2646 2647 2647 2647 
 2583 2583 2583 2582 2583 2583 2583 
Uncorrelated 4218 4218 4218 4218 4115 4214 4208 
 4149 4149 4149 4149 4089 3984 4099 

 
 

Table 5 
Number of function evaluations by RSSS 
Type of data n Function evaluations 

Strongly correlated 

100 7708 
300 27289 
1000 41585 
3000 36470 

weakly correlated 

100 18966 
300 28611 
1000 50247 
3000 77496 

Subset Sum 

100 4607 
300 4237 
1000 3844 
3000 3475 

Uncorrelated 

100 24945 
300 65722 
1000 104447 
3000 93397 
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Table 7 
n=100, R=1000 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 26692 26692 26682 26681 26551 26498 26527 
 24942 24942 24902 24940 24791 24902 24809 
Weakly correlated 27992 27992 27950 27977 27533 27939 27718 
 27229 27229 27229 27166 26336 26984 27171 
Subset sum 26347 26347 26347 26335 26347 26347 26347 
 24383 24383 24383 24372 24383 24383 24383 
Uncorrelated 38795 38795 38795 38795 37979 38660 38680 

 
Table 8 
n=100,R=10000 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 267182 267592 267152 267162 267005 267057 266991 
 252932 252932 252902 252713 252741 252788 252742 
Weakly correlated 274437 274437 274227 274349 266623 274046 273005 
 274588 274588 274395 274588 268696 274108 272438 
Subset sum 270847 270847 270847 270499 270836 270847 270846 
 258883 258883 258883 258864 258882 0 258876 
Uncorrelated 423809 423809 423809 423809 420486 423777 418785 
 415239 415239 415239 414552 409984 0 411183 
 
Table 9 
n=300,R=100 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 10060 10060 9810 10060 9570 9467 9819 
 9715 9715 9496 9715 9273 9368 9456 
Weakly correlated 8550 8550 8527 8549 7899 8024 8325 
 8721 8721 8700 8720 8128 7940 8484 
Subset sum 7492 7492 7492 7492 7492 7492 7492 
 7556 7556 7556 7556 7556 7556 7556 
Uncorrelated 12059 12059 12009 12055 10104 11563 11610 
 12251 12251 12239 12250 10416 11492 11996 

 
Table 10 
n=300, R=1000 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 78380 78380 78210 78379 77828 78067 77857 
 77356 77356 77266 77356 76862 0 76823 
Weakly correlated 85278 85278 84978 85278 79683 83620 83038 
 77637 77637 77476 77630 71730 76091 75897 
Subset sum 75242 75242 75242 75241 75241 75242 75242 
 76006 76006 76006 76005 76005 76006 76005 
Uncorrelated 121294 121294 121072 121261 103405 109845 118037 
 120727 120727 117842 117922 102417 102498 114706 

 
Table 11 
 n=300, R=10000 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 792840 792678 792525 792837 792243 0 792305 
 758876 758752 758675 758812 758183 758444 758310 
Weakly correlated 838118 835319 833559 838005 772371 798541 820433 
 794763 791693 791465 794643 748288 754892 772016 
Subset sum 796242 796242 796242 796221 796238 796238 796235 
 745006 745006 745006 744955 744973 744984 745004 
Uncorrelated 1207003 1207003 1206852 1207003 1019380 1161232 1185688 
 1249781 1247645 1247645 1249687 1078371 0 1234197 
        

Table 12 
n=1000,R=100 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 32351 32201 30671 32351 30420 0 0 
 31977 31817 30327 31977 30072 30848 0 
Weakly correlated 27511 27349 27343 27509 25176 0 0 
 27913 27710 27748 27913 25375 0 0 
Subset sum 25099 25099 25099 25099 25094 25099 0 
 24637 24637 24637 24637 24636 24637 0 
Uncorrelated 41024 40017 40011 41024 28081 34924 0 
 40250 39368 39368 40249 27258 34097 0 
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Table 13 
n=1000, R=1000  

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 259061 258591 257401 259060 257081 0 0 
 263847 263377 262447 263844 262071 262392 0 
Weakly correlated 266807 265385 265314 266784 244404 0 0 
 266198 264359 264500 266188 242238 0 0 
Subset sum 252399 252399 252399 252397 252098 252399 0 
 250987 250987 250987 250987 250951 0 0 
Uncorrelated 407145 395677 395677 407129 293063 0 0 
 406291 396950 395878 406287 274276 0 0 

 
Table 14 
n=1000, R=10000  

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 2480601 2479643 2478720 2480583 2478222 0 0 
 2503917 2503899 2502256 2503910 2501056 0 0 
Weakly correlated 2697872 2669364 2684938 2697823 2465875 2573734 0 
 2681419 2665841 2664817 2681281 2453269 2555126 0 
Subset sum 2502899 2502899 2502899 2502897 2502854 2502899 0 
 2509987 2509987 2509987 2509987 2509702 2509987 0 
Uncorrelated 4124595 4011754 4003030 4124551 2776044 0 0 
 4101915 4009395 3994678 4101457 2945780 0 0 

 
 
Table 15 
n=3000,R=100 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 97734 96514 92114 97734 91527 0 0 
 95462 94162 89752 95462 89324 90603 0 
Weakly correlated 83588 82216 83070 83588 75553 77649 0 
 84163 83677 83677 84162 76130 78298 0 
Subset sum 76159 76159 76159 76159 76055 0 0 
 74673 74673 74673 74673 74441 74673 0 
Uncorrelated 123483 116963 116963 123482 76311 0 0 
 123401 116251 117053 123401 77843 0 0 

 
Table 16 
n=3000, R=1000 

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 766774 764571 761074 766774 759792 0 0 
 777392 774972 771732 777392 770434 0 0 
Weakly correlated 818714 813819 813819 818712 744170 0 0 
 819621 816945 814554 819612 746590 0 0 
Subset sum 752659 752659 752659 752659 748064 0 0 
 746123 746123 746123 746123 745705 746123 0 
Uncorrelated 1216420 1153501 1153501 1216409 770998 914570 0 
 1216952 1157174 1156501 1216942 785440 0 0 

 
Table 17 
n=3000, R=10000  

       

Instance Best Known Value RSSS BinarySS ExpKnap OptQuest Evolver Solver 
Strongly correlated 7444824 7444824 7438812 7444818 7428311 7438649 0 
 7449492 7449492 7443562 7449487 7434434 7443176 0 
Weakly correlated 8196827 8196827 8149319 8196827 7471932 0 0 
 8195660 8195660 8151899 8195619 7452938 7656176 0 
Subset sum 7532159 7532159 7532159 7532156 7531447 7532159 0 
 7465623 7465623 7465623 7465622 7423888 0 0 
Uncorrelated 12216592 12216560 11525746 12216550 7843188 0 0 
 12363244 12363186 11788031 12363178 7791499 0 0 

 

In Table 18 the average GAP between the best-known value and the objective function value obtained 
by RSSS and the discussed methods are demonstrated. Note that if the solution obtained by a method is 
infeasible, for showing the incapability of the solver, the GAP is shown as best known value. 
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Table 18 
The average GAP of several methods 
Range n RSSS BinarySS OptQuest Evolver Solver 
 100 2.5 7.125 59.875 2083.125 22.5 
100 300 44.625 71.875 745.75 8105.125 208.25 
 1000 320.5 694.75 4331.25 12644.625 26817 
 3000 2256 3150.25 15184.875 54680 94832 
 100 11.2875 13.1428 351.4285 14894.5 93.125 
1000 300 306 478.375 6093.5 49766.875 1789.25 
 1000 3125.75 3516 37068.625 232242.5 296591.375 
 3000 16861.375 18086.5 130432.75 681741.5 889331.875 
 100 39.875 109.125 2884.25 84463 1682.625 
10000 300 1028 1324.125 5906.375 657860.75 6953.375 
 1000 31422.5 32731.875 371297.25 1682679.25 2950386.25 
 3000 172928.375 171157.375 1310846.625 5099281.25 8858051.25 

 

According to the results of Table 18, it is obvious that the three methods, RSSS, BinarySS, and OptQuest 
have provided more qualified solutions. For comparing the efficiency of these methods, we have 
defined Absolute Percent Deviation (APD), which divides the GAP to the best-known value for each 
problem as follows, 

100GAPAPD
Best known value

= ×  (11) 

The results of Fig. 2 demonstrates the calculated APD for these three methods in various variable 
numbers. In fact, this figure shows the deviation of obtained solution by each method from the best-
known value, in which the efficiency of RSSS is obvious. 
 
  

Fig. 2. The value of APD for each number of variables 

6. Conclusions 
 
This paper has proposed a Scatter Search based method for solving 0-1KP in different scales and ranges, 
which has a specific approach called RSSS. To achieve a more efficient, a Rough Sets Theory concept 
of “lower and upper approximations” has been combined with two main procedures of Scatter Search. 
We have also studied two sets of Ill-known benchmark problems and solved different sizes of them, 
which were categorized into several types regarding the coherency of objective function coefficients 
and constraint coefficients. For the first data set, results were compared with Zou (2011) and for second 
data set, both feasibility and optimality of commercial software’s and results of Gortázar et al. (2010) 
have been studied. As it is demonstrated in results, the proposed method is more practical and 
successful in solving 0-1KP. In first data set, the RSSS method almost have similar behavior with 
NGHS and the APD calculated on second data set between best-known values and our obtained solution 
is less than comparable methods, especially there is a considerable gap between our idea and 
Commercial software packages. We expect that our idea of combining Rough Sets Theory as a powerful 
tool to improve meta-heuristic features will help researchers discover more efficient methods for 
solving optimization problems. 
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