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 In this paper a hybrid algorithm for solving bound constrained optimization problems having 
continuously differentiable objective functions using Fletcher Reeves method and advanced 
Genetic Algorithm (GA) have been proposed. In this approach, GA with advanced operators 
has been applied for computing the step length in the feasible direction in each iteration of 
Fletcher Reeves method. Then this idea has been extended to a set of multi-point 
approximations instead of single point approximation to avoid the convergence of the existing 
method at local optimum and a new method, called population based Fletcher Reeves method, 
has been proposed to find the global or nearer to global optimum. Finally to study the 
performance of the proposed method, several multi-dimensional standard test functions having 
continuous partial derivatives have been solved. The results have been compared with the same 
of recently developed hybrid algorithm with respect to different comparative factors. 
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1. Introduction 

 
Due to the globalization of market economy and competitive market situations, optimization is an active 
research area during the last few decades. In every sector of our real life situation, there are more 
decision making problems which are more and more complex. Most of these problems are multimodal 
and nonlinear in nature. The domains of these problems are non-convex. So, it is very challenging to 
find the global solution of these problems. Since these problems are non-linear, non-convex and 
multimodal, to solve those, powerful optimization techniques are to be applied. In this connection, one 
may apply the faster search techniques like, traditional gradient based iterative methods, which require 
the derivative information of the objective function. However, these methods have some difficulties, 
like, these methods (i) are dependent on the initial guess, (ii) converge to the nearest local optima from 
the initial guess. On the other hand, to solve the same problems, an efficient well known heuristic 
method, say Genetic Algorithm (GA) may be applied. But, this algorithm does not reach to the peak 



  126

always, due to premature convergence as well as the randomness of the algorithm. So, to overcome the 
difficulties of gradient based methods as well as genetic algorithm, researchers are motivated to develop 
an efficient algorithm combining both the methods. This type of algorithm is known as hybrid 
algorithm. 
 
At the end of twentieth century, to increase the efficiency of any algorithm, researchers are motivated 
to develop hybrid algorithms combining one or more algorithms. Chelouah and Siarry (2000) 
developed a continuous GA designed for the global optimization of multimodal functions. Later, Yiu 
et al. (2004) proposed a hybrid decent method for solving global optimization problems. Pal et al. 
(2005) introduced an application of real coded GA for mixed integer non-linear programming in the 
area of inventory problems. Yao et al. (2006) provided an overview of some recent advances in 
evolutionary computation with a wide range of topics in optimization, learning and design using 
evolutionary approaches and techniques. Deep and Thakur (2007) investigated a new crossover 
operator for real coded GA in the area of optimization problems. Karaboga and Basturk (2008) 
introduced artificial bee colony (ABC) algorithm as an optimization algorithm for solving different 
multi-dimensional optimization problems. Luo et al. (2008) developed a hybrid approach for solving 
systems of nonlinear equations by including the global search capabilities of chaos optimization and 
the high local convergence rate of quasi-Newton method. Bhunia et al. (2011) proposed a hybrid real 
coded GA for an inventory model of two warehouse system with some real conditions. Recently, Rao 
and Patel (2012) introduced an elitist teaching-learning-based optimization algorithm for solving 
complex constrained optimization problems. Teaching-Learning-based optimization (TLBO) is one of 
the recently proposed population based algorithms which simulates the teaching-learning process of 
the class room. Ibrahim et al. (2014) proposed a new hybrid method (known as the BFGS-CG method) 
by combining the search direction between conjugate gradient methods and quasi-Newton methods. 
 
In the present days, most of the real life problems, i.e., the problems of business, engineering, medicine, 
etc. are more and more complex. Most of these problems are multimodal and nonlinear and the domains 
of the problems are non-convex. So it is very challenging to find the global optimality of these 
problems. Since these problems are very complex, some powerful optimization algorithms are needed. 
One such technique is gradient based iterative method which needs the derivative information of a 
function and thus it is a faster search technique. Among all the gradient based methods, the steepest 
descent method of Cauchy (1947) is most widely known optimization scheme for the bound constrained 
optimization problems having continuously differentiable objective functions. This method converges 
in a zig-zag way. So to overcome this difficulty, a more improved method called Conjugate Gradient 
(Fletcher-Reeves) method is used in this paper. 
 
In the proposed method the step length of the Fletcher-Reeves method in each iteration is evaluated by 
GA. This idea is used to a set of initial points instead of a single point to overcome the convergency of 
the problem to a local optimum to form a new method called population based Fletcher Reeves method 
(PBFRM). Finally, to study the performance of the proposed method, a set of test functions having 
continuously partial differentiable has been solved. The results have been compared with the same of 
recently developed hybrid method. 
 

2. Fletcher-Reeves Method 

The well-known steepest descent method due to Cauchy is one of the oldest and most widely known 
simplest methods for solving unconstrained minimization problem defined as 

 min  f x  

where : nf R R  is continuously partial differentiable function. 
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This is an iterative method which generates a sequence of points      0 1 2, , ,x x x   belonging to the 

domain of definition of  f x  for which    *kf x f  as k   where *f  is the minimum value 

of  f x . However, in this method, the search direction     k kd f x   give rise to the sequence of 

iterates   kx  which converges to the local minimizer x  in a zig-zag way i.e., very slowly. So, there 

is a need to generate a new search directions  kd  which will make the sequence of iterates   kx  to 

converge rapidly to x . For this purpose, an improved method with better search direction (better in the 

sense that this direction produces the sequence of iterates to converge faster to x .) was developed by 
Fletcher and Reeves. This method is known as Fletcher and Reeves method. The different steps of this 
method are given in Algorithm-1.  
 
Algorithm-1 

Step-1 :  Start with an initial point (0)x . Set  k = 1. 

Step-2 :  Find the search direction     1 1k kd f x   . 

Step-3 :  Determine the optimal step length ( 1)k  by minimizing  

        1 1k kf x     . 

Step-4 :  Compute        1 1 1k k k kx x d    . 

Step-5 :  Compute        1 1k k k kd g d      

     where  
   

   
    1

1 1

,
 and 

,

k k

k k k

k k

g g
g f x

g g
 

 
   . 

[ ... denotes the inner (scalar) product.] 

Step-6 :  Compute the optimal step length ( )  k in the direction ( )  kd  and find the new point  

        ( 1) ( ) ( ) ( )     . k k k kx x d     

Step-7 : Test the optimality of the point ( 1) .kx   If ( 1)  kx   is optimum, stop the process.   Otherwise, 
set  k = k +1 and go to step-5. 
 

To test the optimality of the point  1kx  , any one condition of the following can be used to terminate 
the iterative process in Algorithm – 1.   

(i) When the change in function value in two consecutive iterations is very small, i.e., 
     

  
1

1

k k

k

f x f x

f x


 
  

(ii) When the magnitude of all the partial derivatives (components of the gradient) of f are small, 

i.e.,  2
i

f

x





, i = 1,2,3,…,n 

(iii) When the norm of gradient of f is very small, i.e., 3f     
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(iv) When the change in the design vector in two consecutive iterations is small, i.e., 
   1

4
k kx x    ,  

where i  (i=1, 2, 3,4) are very small positive numbers. In Fletcher Reeves method, the main task is to 

find the optimal step length for getting the next better approximations of the decision variables in each 
iteration. In the k-th iteration this step length is computed by solving another optimization problem as  

       1 1minimize min  k kf x f x       where  1kx   is the (k-1)-th approximation. A necessary 

and sufficient condition for   to be optimal is that    =0 which is a non-linear equation in   and 

can be solved by any method, like, Newton-Raphson, Regular Falsi, Fixed point iteration method, etc. 
The main disadvantage for using these methods is to find the location of roots of the non-linear equation 
of Fletcher Reeves method. To overcome this difficulty, we shall use genetic algorithm (GA) for finding 
the best found step length (By GA, the obtained value of   is either optimal or nearer to the optimal 
value. We shall call this value as best found value as we cannot prove the optimality property 
analytically). The different steps for finding the best found value of  in each iteration of Fletcher 
Reeves method are given in the following algorithm: 
 
Algorithm-2 

Step-1:   Initialize the parameters of GA, 
Step-2:   Set 0t   (t represents the current generation), 

Step-3:   Initialize  P t  [  P t  represents the current generation], 

Step-4:   Evaluate the fitness value of each individual of  P t , 

Step-5:   Find the best individual from  P t , 

Step-6:   If the termination condition is not satisfied, go to Step-7; otherwise, go to Step-11,  

Step-7:   Recombine  P t  to produce offspring  C t using genetic operators (crossover and mutation), 

Step-8:   Evaluate the fitness value of each individual of  P t , 

Step-9:   Select  1P t   from  P t  and  C t , 

Step-10: Go to Step-6, 
Step-11: Print the result, 
Step-12: Stop. 
 

3. Genetic Algorithm 

To solve an optimization problem through GA (Holland, 1975; Goldberg, 1989; Michalawicz, 1996; 
Mitchell, 1996; Gen et al., 2000; Sakawa, 2002), it is very important to design an appropriate 
chromosome representation of solution. There are different types of representations among which 
binary and real coding representations are popular. In binary coding representation each variable is 
represented as binary substrings with desired precision. In this case the string length of an individual 
will be large and GA would perform poorly. In real coding representation each chromosome vector is 
encoded as a vector of floating point number of same length as the solution vector. This type of 
representation is easy to handle and is capable of representing quite large domains (or case of unknown 
domains). In this representation a vector (x1, x2,…, xn) is used as an individual (chromosome) to 
represent a solution of the optimization problem. The next step is to initialize the chromosomes which 
will take part in the artificial genetic operations like natural genetics. In this way population size of 
chromosomes are produced in which each element is initially selected randomly within the desired 
domain. Among many processes for selection of a random number, here we have used the uniform 
distribution. 
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3.1 Evaluation 

After initialization of population from any generation of GA, we have to find out the fitness value of 
each chromosome. This fitness value of each chromosome is obtained in different ways by considering 
different fitness function. Generally the objective function is taken as the fitness function. 
 

3.2 Selection  

The main objective of selection operator is to select good solutions for the next generation of GA 
replacing the bad solutions based on the well know evolutionary principle “survival of the fittest” by 
Charles Darwin keeping the population size as constant. Some commonly used selection procedures 
are roulette wheel selection, truncation selection, universal stochastic sampling selection, steady state 
selection, ranking selection (linear or exponential), tournament selection etc. In this work, we have 
used the well known exponential ranking selection.  
 

3.3 Crossover  
 

In each generation, crossover produces more improved offspring by combining the features of the 
parents. In this operation, expected N (the integral part of p_cross×p_size,  p_cross being the probability 
of crossover) number of chromosomes will take part. In our work, we have used whole arithmetical 
crossover. In this crossover, two different linear combinations of two parent chromosomes (vectors) 
are considered to produce the offspring. In any generation, if the parent chromosomes vS and wS are 

selected randomly from the population for crossover operation, then the produced offspring will be as 
follows: 
 

(1 )w v wS a S a S      and * (1 )v w vS a S a S     where a is a proper fraction which can be chosen 

randomly. 
 
3.4 Mutation 

Like other genetic operations, mutation operation takes part to maintain genetic diversity into the 
population. These variations are small. It performs with low probability (mutation probability or 
mutation rate). Normally, after the crossover, the offspring are mutated. The probability of mutating a 
variable is inversely proportional to the number of variables. Thus the mutation rate is independent of 
the size of the population. Some methods of mutation are uniform mutation, non-uniform mutation, 
boundary mutation etc. In our work we have used non-uniform mutation. 
If the gene (element) Vik of chromosome Vi is selected for this operation and if the domain of Vik is an 
interval [lk

0, lk
1] then the reduced value of Vik is given by 

 

                           V’ik = Vik + ∆(t, lk
1- Vik), if a random digit is 0 

                                  = Vik - ∆(t, Vik - lk
0), if a random digit is 1 

 

where k {1, 2,…,n} and ∆(t, y) returns a value in the range [0, y]. Here, we have taken ∆(t, y) =

1
_

b
t

yr
m gen

 
 

 
, where r is a random value in [0, 1], m_gen and t represent maximum generation 

number and the current generation respectively and b is called the non-uniform mutation parameter 
which is constant. 
 

4. Population Based Fletcher-Reeves Method (PBFRM) 
 
The solution obtained from genetic algorithm based Fletcher Reeves method may or may not always 
converge to the global optimum solution. The reason behind this is that the method is sensitive to the 
initial approximation. To overcome this difficulty, we have proposed a new method (we call this 
method as population based Fletcher Reeves method) by extending the idea of single-point 
approximation search to a multi-point approximation search. The multiple approximations produce a 
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series of   paths among which at least one converges to the global optimum. In this method, all the 
chromosomes will be improved by Fletcher Reeves method whereas the step length will be computed 
by genetic algorithm. The different steps in this method are given in the following algorithm:  
 
Algorithm-3 

Step-1: Set 0,k    

Step-2: Create an initial population  kx , by generating each component/ gene of each individual/ 

chromosome    1,2, , _
k

ix i p size   randomly from the search space (in case of unconstrained 

optimization problems, a large space is considered as search space). [ _p size  denotes the population size],  

Step-3: Compute the function values   k
if x  for all i , 

Step-4: Find the best value of f  from all   k
if x  along with  k

ix  and store it in  
old

k
f  and  

old
k

x  

respectively, 
Step-5: Increase the value of k by unity i.e., 1k k  , 
Step-6: Set 1i  , 

Step-7: Find the search direction      1 1k k
i id f x
   , 

Step-8: Find the best found value of step length   using Algorithm-3 and store this value in  1k
i


, 

Step-9: Compute        1 1 1k k k k
i i i ix x d    , 

Step-10: Compute        1 1k k k k
i i i id g d       

 where  
   

   
1

1 1

,

,

k k
i ik

i k k
i i

g g

g g
 

 
  and     k k

i ig f x  , 

Step-11: Compute the best found value of step length  k
i  in the direction  k

id  by using Algorithm-

3 and store this value in  k
i ,  

Step-12: Improve the solution        1k k k k
i i i ix x d   ,    

Step-13: Compute   1k
if x


, 

Step-14: Increase the value of i by unity i.e., 1i i  ,  
Step-15: If _i p size , go to step-7, 

Step-16: Find the best value of f  from all   k
if x  along with  k

ix  and store it in  
new

kf  and  
new
kx  

respectively,  
Step-17: If the termination criterion is satisfied, go to step-19. Otherwise, go to step-18,  

Step-18: If    
new old

kkf f , assign    
newold

k kf f  and    
newold

k kx x  and then go to step-5, 

Step-19: Print the result and stop the process.  
 
5. Numerical Illustration  

To test the performance of the proposed hybrid algorithm, numerical experiments have been carried 
out considering 13 test problems (bound constrained optimization problems) given in Appendix-1. For 
solving these test problems, the algorithm for population based Fletcher Reeves method has been coded 
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in C programming and implemented on a Pentium IV, 2.66 GHz with 1 GB RAM PC in LINUX 
environment. Each test problem has been solved for different values of n (the number of decision 
variables) and in each case, 30 independent runs have been performed and the corresponding results 
have been collected. For the statistical analysis of the results, the following characteristics have been 
computed and shown in Tables 1-13. 
 

(i) best and worst function values for 30 runs. 
(ii) mean and standard deviation (S.D.) of function values in 30 runs. 

 

It is to be noted that the population size  _p size  of GA for calculating the step length in each iteration 

of Fletcher Reeves method is considered as 30 in each problem whereas the maximum number of 
generation  _m gen  of GA and also the population size  popsize of the proposed method are 

different for different values of n , the number of variables of each problem. These are mentioned in 
Table 1 -13. In all cases, the probability of crossover (p_cross) and mutation (p_mute) are taken as 0.9 
and 0.15 respectively. To compare the performance of our proposed method (PBFRM) with the method 
HX-NUM-GA of Deep & Thakur (2007), we have done a comparative analysis with respect to different 
characteristics, such as average number of function evaluation, average execution time, mean and 
standard deviation of the objective function value. The results have been shown in Table 14. In order 
to compare the quality of the solution found among these two methods, a list of various characteristics 
like mean, standard deviation of the best objective function value, average number of function 
evaluation and average execution time corresponding to each test problem as shown in Appendix-1 has 
been given. It is observed from this Table that for each test problem, in our proposed method, the 
average number of function evaluations of PBFRM is significantly lesser than the same of HX-NUM-
GA method. It is also found that out of 13 test problems, PBFRM takes lesser execution time in 9 test 
cases and in one test case it is almost equal. Again, out of 13 test problems it is observed that in most 
of the cases our proposed method shows that the best and worst objective  function values are same 
with global objective function values which have been shown  in  Appendix-1.  However, for test 
problem 11, the best and worst objective function values are very close to global objective function 
value.         
 
Table 1 
Computational Results of Problem -1 

n Mean S.D. 
Best 

Value 
Worst 
Value 

Function 
Evaluation

CPU Time 
(in s) 

popsize m_gen 

2 0.0 0.0 0.0 0.00002 8723 6.33 10 20 
5 0.0 0.0 0.0 0.0 10300 10.76 10 20 
10 0.0 0.0 0.0 0.0 4070 9.01 10 20 
50 0.0 0.0 0.0 0.0 9613 200.17 200 50 

100 0.0 0.0 0.0 0.0 7853 847.05 200 50 
 

Table 2   
Computational Results of Problem -2 

n Mean S.D. 
Best 

 Value 
Worst 
 Value 

Function  
Evaluation 

CPU  Time 
(in s) 

popsize m_gen 

2 -0.2 0.0 -0.2 -0.2 24 0.01 10 20 
5 -0.5 0.0 -0.5 -0.5 25 0.02 10 20 
10 -1 0.0 -1 -1 26 0.04 10 20 
50 -5 0.0 -5 -5 25 0.43 10 20 

100 -10 0.0 -10 -10 24 0.93 10 20 
1000 -100 0.0 -100 -100 38 3.42 10 20 
2000 -200 0.0 -200 -200 33 4.99 10 20 
3000 -300 0.0 -300 -300 34 7.22 10 20 
4000 -400 0.0 -400 -400 35 9.40 10 20 
5000 -500 0.0 -500 -500 32 10.74 10 20 

10000 -1000 0.0 -1000 -1000 35 21.97 10 20 
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Table 3   
Computational Results of Problem -3 

n Mean S.D. 
Best 

 Value 

Worst 

 Value 

Function  

Evaluation 

CPU Time

(in s) 
popsize m_gen 

2 -1.0 0.0 -1.0 -1.0 30 0.01 10 20
5 -1.0 0.0 -1.0 -1.0 32 0.01 10 20

10 -1.0 0.0 -1.0 -1.0 30 0.03 10 20
50 -1.0 0.0 -1.0 -1.0 86 2.21 10 20
100 -1.0 0.0 -1.0 -1.0 79 4.88 10 20
500 -1.0 0.0 -1.0 -1.0 283 86.34 100 20
1000 -1.0 0.0 -1.0 -1.0 500 324.69 200 20

 

Table 4  
Computational Results of Problem -4 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU  Time
(in s) 

popsize m_gen 

2 0.0 0.0 0.0 0.0 36933 27.97 10 20 
5 0.00002 0.00003 0.0 0.00011 75447 79.56 200 20 

 

Table 5  
Computational Results of Problem -5 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU Time
(in s) 

popsize m_gen 

2 0.0 0.0 0.0 0.0 80 0.03 10 20 
10 0.0 0.0 0.0 0.0 410 3.50 100 100 
50 0.0 0.0 0.0 0.0 1360 104.70 200 100 

100 0.0 0.0 0.0 0.0 1400 264.06 300 100 

 

Table 6  
Computational Results of Problem -6 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU Time
(in s) 

popsize m_gen 

2 -3.5 0.0 -3.5 -3.5 29 0.02 10 10 
5 -3.5 0.0 -3.5 -3.5 23 0.02 10 10 

10 -3.5 0.0 -3.5 -3.5 38 0.07 10 10 
50 -3.5 0.0 -3.5 -3.5 212 2.69 100 20 
100 -3.5 0.0 -3.5 -3.5 227 6.47 100 20 
500 -3.5 0.0 -3.5 -3.5 440 124.5 200 50 

 

Table 7   
Computational Results of Problem -7 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU Time
(in s) 

popsize m_gen 

2 0.0 0.0 0.0 0.0 74 0.02 10 20 
5 0.0 0.0 0.0 0.0 87 0.03 10 20 

10 0.0 0.0 0.0 0.0 92 0.08 10 20 
50 0.0 0.0 0.0 0.0 100 1.08 10 20 
500 0.0 0.0 0.0 0.0 116 3.36 10 20 
1000 0.0 0.0 0.0 0.0 120 4.16 10 20 
2000 0.0 0.0 0.0 0.0 120 5.59 10 20 
3000 0.0 0.0 0.0 0.0 121 7.05 10 20 
4000 0.0 0.0 0.0 0.0 130 9 10 20 
5000 0.0 0.0 0.0 0.0 130 10.6 10 20 
10000 0.0 0.0 0.0 0.0 130 18.49 10 20 
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Table 8  
Computational Results of Problem -8 

n Mean S.D. Best  Worst Function CPU Time popsize m gen
2 0.0 0.0 0.0 0.0 78 0.04 10 20
5 0.0 0.0 0.0 0.0 288 0.18 10 20

 
Table 9   
Computational Results of Problem -9 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU Time
(in s) 

popsize m_gen 

2 0.0 0.0 0.0 0.0 71 0.04 10 20 
5 0.0 0.0 0.0 0.0 90 0.06 10 20
10 0.0 0.0 0.0 0.0 101 0.11 10 20 
50 0.0 0.0 0.0 0.0 130 1.44 10 20 

100 0.0 0.0 0.0 0.0 140 3.55 10 20
1000 0.0 0.0 0.0 0.0 180 6.44 10 20 
2000 0.0 0.0 0.0 0.0 190 9.08 10 20 
3000 0.0 0.0 0.0 0.0 190 11.3 10 20
4000 0.0 0.0 0.0 0.0 200 14.25 10 20 
5000 0.0 0.0 0.0 0.0 200 16.61 10 20 
10000 0.0 0.0 0.0 0.0 186 26.65 10 20

 

Table 10  
Computational Results of Problem -10 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU Time 
(in s) 

popsize m_gen 

 2 0.0 0.0 0.0 0.0 68 0.02 10 20 
5 0.0 0.0 0.0 0.0 81 0.03 10 20 

10 0.0 0.0 0.0 0.0 120 0.11 10 20 
20 0.0 0.0 0.0 0.0 185 0.2 10 20 
30 0.0 0.0 0.0 0.0 312 1.48 10 20 

 

Table 11  
Computational Results of Problem -11 

n Mean S.D. 
Best  

Value 
Worst 
 Value 

Function  
Evaluation 

CPU  
Time (in s) 

popsize m_gen 

2 0.00347 0.00127 0.00022 0.005 17795 11.96 10 20 
 

Table 12  
Computational Results of Problem -12 

n Mean S.D. 
Best  

Value 

Worst 

 Value 

Function  

Evaluation 

CPU Time 

(in s) 
popsize m_gen 

10 -45.7785 0 -45.7785 -45.7785 24 0.22 10 20 

 

Table 13   
Computational Results of Problem -13 

n Mean S.D. 
Best  

Value 
Worst 
Value

Function  
Evaluation

CPU Time
(in s)

popsize m_gen 

2 0.0 0.0 0.0 0.0 430 0.25 10 20
5 0.0 0.0 0.0 0.0 799 0.80 10 20 
10 0.0 0.0 0.0 0.0 1198 3.21 10 20 
50 0.0 0.0 0.0 0.0 1189 25.42 10 20
100 0.0 0.0 0.0 0.0 1681 85.36 10 20 
500 0.0 0.0 0.0 0.0 3843 400.65 10 20 
1000 0.0 0.0 0.0 0.0 5376 921.00 10 20
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Table 14  
Comparative Study among the methods HX-NUM-GA and PBFRM  

Problem  
number 

Methods 
Average number of 
 function evaluation

Average time  
of execution 

Mean 
Standard 
derivation 

1 HX-NUM-GA 232901 4.134 1.28E-03 1.39E-03
PBFRM 8723 6.33 0.0 0.0

2 HX-NUM-GA 304671 5.207 -2.98E+00 5.11E-02
PBFRM 24 0.01 -0.2 0.0

3 HX-NUM-GA 60651 0.681 -9.99E-01 3.86
PBFRM 30 0.01 -1.0 0.0

4 HX-NUM-GA 92131 2.172 1.43E-08 7.38E-08
PBFRM 36933 27.97 0.0 0.0

5 HX-NUM-GA 426651 7.358 3.11E-13 5.01E-13
PBFRM 80 0.03 0.0 0.0

6 HX-NUM-GA 142751 3.774 -3.41E+00 4.56E-01
PBFRM 29 0.02 -3.50E+00 0.0

7 HX-NUM-GA 210791 5.060 2.86E-01 1.55E+00
PBFRM 87 0.03 0.0 0.0

8 HX-NUM-GA 107581 1.165 3.64E-04 2.69E-04
PBFRM 78 0.04 0.0 0.0

9 HX-NUM-GA 140451 1.521 4.67E-04 3.28E-04
PBFRM 71 0.04 0.0 0.0

10 HX-NUM-GA 811 0.2 8.20E-05 2.91E-04
PBFRM 68 0.2 0.0 0.0

11 HX-NUM-GA 415081 4.412 3.20E+00 6.25E+00
PBFRM 17795 11.96 3.47E-03 1.27E-03

12 HX-NUM-GA 31461 0.608 -9.97E+05 1.86E+02
PBFRM 24 0.22 -4.58E+01 0.0

13 HX-NUM-GA 354201 8.570 3.11E-02 8.67E-02
PBFRM 430 0.25 0.0 0.0

 

6.    Concluding Remarks 

In the proposed method, the well known Fletcher Reeves method has been applied repeatedly in each 
chromosome of a population which is generated initially from the search domain of the problem. The 
proposed method is a multipoint approximation method. As a result, it requires more execution time 
and more function evaluations than single point approximation methods. Due to the random selection 
of initial approximations from the search space, the proposed method possesses the merits of global 
exploration and fast convergence. As the proposed method is gradient based, the method will be 
applicable only to those problems where the search space is continuous and the objective function is 

differentiable in nR , n being the number of decision variables. The proposed method may be applied 
in solving some real life decision making problems in the areas of structural optimization, inventory 
control, robotics, circuit decision etc.   
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Appendix 1 
Numerical Examples 
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