
* Corresponding author. Tel: +91-3213-254112 / +91-9477751512
E-mail address: p5_pal@yahoo.co.in (P. Pal)

© 2015 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.dsl.2015.1.003

Decision Science Letters 4 (2015) 125–136

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

A hybrid of genetic algorithm and Fletcher-Reeves for bound constrained optimization
problems

Asoke Kumar Bhuniaa, Pintu Palb* and Samiran Chattopadhyayc

aDepartment of Mathematics, The University of Burdwan,Burdwan-713104, India
bDepartment of Computer Application, Asansol Engineering College, Asansol - 713305, West Bengal, India
cDepartment of Information Technology, Jadavpur University, Kolkata -700 032, India

C H R O N I C L E A B S T R A C T

Article history:
Received July 10, 2014
Received in revised format:
January 4, 2015
Accepted January 5, 2015
Available online
January 5 2015

 In this paper a hybrid algorithm for solving bound constrained optimization problems having
continuously differentiable objective functions using Fletcher Reeves method and advanced
Genetic Algorithm (GA) have been proposed. In this approach, GA with advanced operators
has been applied for computing the step length in the feasible direction in each iteration of
Fletcher Reeves method. Then this idea has been extended to a set of multi-point
approximations instead of single point approximation to avoid the convergence of the existing
method at local optimum and a new method, called population based Fletcher Reeves method,
has been proposed to find the global or nearer to global optimum. Finally to study the
performance of the proposed method, several multi-dimensional standard test functions having
continuous partial derivatives have been solved. The results have been compared with the same
of recently developed hybrid algorithm with respect to different comparative factors.

Growing Science Ltd. All rights reserved. 5© 201

Keywords:
Hybrid Algorithm
Fletcher Reeves method
Genetic Algorithm
Bound Constrained Optimization
problem
Global-optima

1. Introduction

Due to the globalization of market economy and competitive market situations, optimization is an active
research area during the last few decades. In every sector of our real life situation, there are more
decision making problems which are more and more complex. Most of these problems are multimodal
and nonlinear in nature. The domains of these problems are non-convex. So, it is very challenging to
find the global solution of these problems. Since these problems are non-linear, non-convex and
multimodal, to solve those, powerful optimization techniques are to be applied. In this connection, one
may apply the faster search techniques like, traditional gradient based iterative methods, which require
the derivative information of the objective function. However, these methods have some difficulties,
like, these methods (i) are dependent on the initial guess, (ii) converge to the nearest local optima from
the initial guess. On the other hand, to solve the same problems, an efficient well known heuristic
method, say Genetic Algorithm (GA) may be applied. But, this algorithm does not reach to the peak

 126

always, due to premature convergence as well as the randomness of the algorithm. So, to overcome the
difficulties of gradient based methods as well as genetic algorithm, researchers are motivated to develop
an efficient algorithm combining both the methods. This type of algorithm is known as hybrid
algorithm.

At the end of twentieth century, to increase the efficiency of any algorithm, researchers are motivated
to develop hybrid algorithms combining one or more algorithms. Chelouah and Siarry (2000)
developed a continuous GA designed for the global optimization of multimodal functions. Later, Yiu
et al. (2004) proposed a hybrid decent method for solving global optimization problems. Pal et al.
(2005) introduced an application of real coded GA for mixed integer non-linear programming in the
area of inventory problems. Yao et al. (2006) provided an overview of some recent advances in
evolutionary computation with a wide range of topics in optimization, learning and design using
evolutionary approaches and techniques. Deep and Thakur (2007) investigated a new crossover
operator for real coded GA in the area of optimization problems. Karaboga and Basturk (2008)
introduced artificial bee colony (ABC) algorithm as an optimization algorithm for solving different
multi-dimensional optimization problems. Luo et al. (2008) developed a hybrid approach for solving
systems of nonlinear equations by including the global search capabilities of chaos optimization and
the high local convergence rate of quasi-Newton method. Bhunia et al. (2011) proposed a hybrid real
coded GA for an inventory model of two warehouse system with some real conditions. Recently, Rao
and Patel (2012) introduced an elitist teaching-learning-based optimization algorithm for solving
complex constrained optimization problems. Teaching-Learning-based optimization (TLBO) is one of
the recently proposed population based algorithms which simulates the teaching-learning process of
the class room. Ibrahim et al. (2014) proposed a new hybrid method (known as the BFGS-CG method)
by combining the search direction between conjugate gradient methods and quasi-Newton methods.

In the present days, most of the real life problems, i.e., the problems of business, engineering, medicine,
etc. are more and more complex. Most of these problems are multimodal and nonlinear and the domains
of the problems are non-convex. So it is very challenging to find the global optimality of these
problems. Since these problems are very complex, some powerful optimization algorithms are needed.
One such technique is gradient based iterative method which needs the derivative information of a
function and thus it is a faster search technique. Among all the gradient based methods, the steepest
descent method of Cauchy (1947) is most widely known optimization scheme for the bound constrained
optimization problems having continuously differentiable objective functions. This method converges
in a zig-zag way. So to overcome this difficulty, a more improved method called Conjugate Gradient
(Fletcher-Reeves) method is used in this paper.

In the proposed method the step length of the Fletcher-Reeves method in each iteration is evaluated by
GA. This idea is used to a set of initial points instead of a single point to overcome the convergency of
the problem to a local optimum to form a new method called population based Fletcher Reeves method
(PBFRM). Finally, to study the performance of the proposed method, a set of test functions having
continuously partial differentiable has been solved. The results have been compared with the same of
recently developed hybrid method.

2. Fletcher-Reeves Method

The well-known steepest descent method due to Cauchy is one of the oldest and most widely known
simplest methods for solving unconstrained minimization problem defined as

 min f x

where : nf R R is continuously partial differentiable function.

A. K. Bhunia et al. / Decision Science Letters 4 (2015)

127

This is an iterative method which generates a sequence of points      0 1 2, , ,x x x  belonging to the

domain of definition of  f x for which    *kf x f as k  where *f is the minimum value

of  f x . However, in this method, the search direction     k kd f x  give rise to the sequence of

iterates   kx which converges to the local minimizer x in a zig-zag way i.e., very slowly. So, there

is a need to generate a new search directions  kd which will make the sequence of iterates   kx to

converge rapidly to x . For this purpose, an improved method with better search direction (better in the

sense that this direction produces the sequence of iterates to converge faster to x .) was developed by
Fletcher and Reeves. This method is known as Fletcher and Reeves method. The different steps of this
method are given in Algorithm-1.

Algorithm-1

Step-1 : Start with an initial point (0)x . Set k = 1.

Step-2 : Find the search direction     1 1k kd f x   .

Step-3 : Determine the optimal step length (1)k  by minimizing

       1 1k kf x     .

Step-4 : Compute        1 1 1k k k kx x d    .

Step-5 : Compute        1 1k k k kd g d    

 where  
   

   
    1

1 1

,
 and

,

k k

k k k

k k

g g
g f x

g g
 

 
   .

[... denotes the inner (scalar) product.]

Step-6 : Compute the optimal step length () k in the direction () kd and find the new point

 (1) () () () . k k k kx x d  

Step-7 : Test the optimality of the point (1) .kx  If (1) kx  is optimum, stop the process. Otherwise,
set k = k +1 and go to step-5.

To test the optimality of the point  1kx  , any one condition of the following can be used to terminate
the iterative process in Algorithm – 1.

(i) When the change in function value in two consecutive iterations is very small, i.e.,
     

  
1

1

k k

k

f x f x

f x


 


(ii) When the magnitude of all the partial derivatives (components of the gradient) of f are small,

i.e., 2
i

f

x





, i = 1,2,3,…,n

(iii) When the norm of gradient of f is very small, i.e., 3f  

 128

(iv) When the change in the design vector in two consecutive iterations is small, i.e.,
   1

4
k kx x    ,

where i (i=1, 2, 3,4) are very small positive numbers. In Fletcher Reeves method, the main task is to

find the optimal step length for getting the next better approximations of the decision variables in each
iteration. In the k-th iteration this step length is computed by solving another optimization problem as

       1 1minimize min k kf x f x      where  1kx  is the (k-1)-th approximation. A necessary

and sufficient condition for  to be optimal is that    =0 which is a non-linear equation in  and

can be solved by any method, like, Newton-Raphson, Regular Falsi, Fixed point iteration method, etc.
The main disadvantage for using these methods is to find the location of roots of the non-linear equation
of Fletcher Reeves method. To overcome this difficulty, we shall use genetic algorithm (GA) for finding
the best found step length (By GA, the obtained value of  is either optimal or nearer to the optimal
value. We shall call this value as best found value as we cannot prove the optimality property
analytically). The different steps for finding the best found value of  in each iteration of Fletcher
Reeves method are given in the following algorithm:

Algorithm-2

Step-1: Initialize the parameters of GA,
Step-2: Set 0t  (t represents the current generation),

Step-3: Initialize  P t [ P t represents the current generation],

Step-4: Evaluate the fitness value of each individual of  P t ,

Step-5: Find the best individual from  P t ,

Step-6: If the termination condition is not satisfied, go to Step-7; otherwise, go to Step-11,

Step-7: Recombine  P t to produce offspring  C t using genetic operators (crossover and mutation),

Step-8: Evaluate the fitness value of each individual of  P t ,

Step-9: Select  1P t  from  P t and  C t ,

Step-10: Go to Step-6,
Step-11: Print the result,
Step-12: Stop.

3. Genetic Algorithm

To solve an optimization problem through GA (Holland, 1975; Goldberg, 1989; Michalawicz, 1996;
Mitchell, 1996; Gen et al., 2000; Sakawa, 2002), it is very important to design an appropriate
chromosome representation of solution. There are different types of representations among which
binary and real coding representations are popular. In binary coding representation each variable is
represented as binary substrings with desired precision. In this case the string length of an individual
will be large and GA would perform poorly. In real coding representation each chromosome vector is
encoded as a vector of floating point number of same length as the solution vector. This type of
representation is easy to handle and is capable of representing quite large domains (or case of unknown
domains). In this representation a vector (x1, x2,…, xn) is used as an individual (chromosome) to
represent a solution of the optimization problem. The next step is to initialize the chromosomes which
will take part in the artificial genetic operations like natural genetics. In this way population size of
chromosomes are produced in which each element is initially selected randomly within the desired
domain. Among many processes for selection of a random number, here we have used the uniform
distribution.

A. K. Bhunia et al. / Decision Science Letters 4 (2015)

129

3.1 Evaluation

After initialization of population from any generation of GA, we have to find out the fitness value of
each chromosome. This fitness value of each chromosome is obtained in different ways by considering
different fitness function. Generally the objective function is taken as the fitness function.

3.2 Selection

The main objective of selection operator is to select good solutions for the next generation of GA
replacing the bad solutions based on the well know evolutionary principle “survival of the fittest” by
Charles Darwin keeping the population size as constant. Some commonly used selection procedures
are roulette wheel selection, truncation selection, universal stochastic sampling selection, steady state
selection, ranking selection (linear or exponential), tournament selection etc. In this work, we have
used the well known exponential ranking selection.

3.3 Crossover

In each generation, crossover produces more improved offspring by combining the features of the
parents. In this operation, expected N (the integral part of p_cross×p_size, p_cross being the probability
of crossover) number of chromosomes will take part. In our work, we have used whole arithmetical
crossover. In this crossover, two different linear combinations of two parent chromosomes (vectors)
are considered to produce the offspring. In any generation, if the parent chromosomes vS and wS are

selected randomly from the population for crossover operation, then the produced offspring will be as
follows:

(1)w v wS a S a S     and * (1)v w vS a S a S    where a is a proper fraction which can be chosen

randomly.

3.4 Mutation

Like other genetic operations, mutation operation takes part to maintain genetic diversity into the
population. These variations are small. It performs with low probability (mutation probability or
mutation rate). Normally, after the crossover, the offspring are mutated. The probability of mutating a
variable is inversely proportional to the number of variables. Thus the mutation rate is independent of
the size of the population. Some methods of mutation are uniform mutation, non-uniform mutation,
boundary mutation etc. In our work we have used non-uniform mutation.
If the gene (element) Vik of chromosome Vi is selected for this operation and if the domain of Vik is an
interval [lk

0, lk
1] then the reduced value of Vik is given by

 V’ik = Vik + ∆(t, lk
1- Vik), if a random digit is 0

 = Vik - ∆(t, Vik - lk
0), if a random digit is 1

where k {1, 2,…,n} and ∆(t, y) returns a value in the range [0, y]. Here, we have taken ∆(t, y) =

1
_

b
t

yr
m gen

 
 

 
, where r is a random value in [0, 1], m_gen and t represent maximum generation

number and the current generation respectively and b is called the non-uniform mutation parameter
which is constant.

4. Population Based Fletcher-Reeves Method (PBFRM)

The solution obtained from genetic algorithm based Fletcher Reeves method may or may not always
converge to the global optimum solution. The reason behind this is that the method is sensitive to the
initial approximation. To overcome this difficulty, we have proposed a new method (we call this
method as population based Fletcher Reeves method) by extending the idea of single-point
approximation search to a multi-point approximation search. The multiple approximations produce a

 130

series of paths among which at least one converges to the global optimum. In this method, all the
chromosomes will be improved by Fletcher Reeves method whereas the step length will be computed
by genetic algorithm. The different steps in this method are given in the following algorithm:

Algorithm-3

Step-1: Set 0,k 

Step-2: Create an initial population  kx , by generating each component/ gene of each individual/

chromosome    1,2, , _
k

ix i p size  randomly from the search space (in case of unconstrained

optimization problems, a large space is considered as search space). [_p size denotes the population size],

Step-3: Compute the function values   k
if x for all i ,

Step-4: Find the best value of f from all   k
if x along with  k

ix and store it in  
old

k
f and  

old
k

x

respectively,
Step-5: Increase the value of k by unity i.e., 1k k  ,
Step-6: Set 1i  ,

Step-7: Find the search direction     1 1k k
i id f x
   ,

Step-8: Find the best found value of step length  using Algorithm-3 and store this value in  1k
i


,

Step-9: Compute        1 1 1k k k k
i i i ix x d    ,

Step-10: Compute        1 1k k k k
i i i id g d    

 where  
   

   
1

1 1

,

,

k k
i ik

i k k
i i

g g

g g
 

 
 and     k k

i ig f x  ,

Step-11: Compute the best found value of step length  k
i in the direction  k

id by using Algorithm-

3 and store this value in  k
i ,

Step-12: Improve the solution        1k k k k
i i i ix x d   ,

Step-13: Compute   1k
if x


,

Step-14: Increase the value of i by unity i.e., 1i i  ,
Step-15: If _i p size , go to step-7,

Step-16: Find the best value of f from all   k
if x along with  k

ix and store it in  
new

kf and  
new
kx

respectively,
Step-17: If the termination criterion is satisfied, go to step-19. Otherwise, go to step-18,

Step-18: If    
new old

kkf f , assign    
newold

k kf f and    
newold

k kx x and then go to step-5,

Step-19: Print the result and stop the process.

5. Numerical Illustration

To test the performance of the proposed hybrid algorithm, numerical experiments have been carried
out considering 13 test problems (bound constrained optimization problems) given in Appendix-1. For
solving these test problems, the algorithm for population based Fletcher Reeves method has been coded

A. K. Bhunia et al. / Decision Science Letters 4 (2015)

131

in C programming and implemented on a Pentium IV, 2.66 GHz with 1 GB RAM PC in LINUX
environment. Each test problem has been solved for different values of n (the number of decision
variables) and in each case, 30 independent runs have been performed and the corresponding results
have been collected. For the statistical analysis of the results, the following characteristics have been
computed and shown in Tables 1-13.

(i) best and worst function values for 30 runs.
(ii) mean and standard deviation (S.D.) of function values in 30 runs.

It is to be noted that the population size  _p size of GA for calculating the step length in each iteration

of Fletcher Reeves method is considered as 30 in each problem whereas the maximum number of
generation  _m gen of GA and also the population size  popsize of the proposed method are

different for different values of n , the number of variables of each problem. These are mentioned in
Table 1 -13. In all cases, the probability of crossover (p_cross) and mutation (p_mute) are taken as 0.9
and 0.15 respectively. To compare the performance of our proposed method (PBFRM) with the method
HX-NUM-GA of Deep & Thakur (2007), we have done a comparative analysis with respect to different
characteristics, such as average number of function evaluation, average execution time, mean and
standard deviation of the objective function value. The results have been shown in Table 14. In order
to compare the quality of the solution found among these two methods, a list of various characteristics
like mean, standard deviation of the best objective function value, average number of function
evaluation and average execution time corresponding to each test problem as shown in Appendix-1 has
been given. It is observed from this Table that for each test problem, in our proposed method, the
average number of function evaluations of PBFRM is significantly lesser than the same of HX-NUM-
GA method. It is also found that out of 13 test problems, PBFRM takes lesser execution time in 9 test
cases and in one test case it is almost equal. Again, out of 13 test problems it is observed that in most
of the cases our proposed method shows that the best and worst objective function values are same
with global objective function values which have been shown in Appendix-1. However, for test
problem 11, the best and worst objective function values are very close to global objective function
value.

Table 1
Computational Results of Problem -1

n Mean S.D.
Best

Value
Worst
Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 0.0 0.0 0.0 0.00002 8723 6.33 10 20
5 0.0 0.0 0.0 0.0 10300 10.76 10 20
10 0.0 0.0 0.0 0.0 4070 9.01 10 20
50 0.0 0.0 0.0 0.0 9613 200.17 200 50

100 0.0 0.0 0.0 0.0 7853 847.05 200 50

Table 2
Computational Results of Problem -2

n Mean S.D.
Best

 Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 -0.2 0.0 -0.2 -0.2 24 0.01 10 20
5 -0.5 0.0 -0.5 -0.5 25 0.02 10 20
10 -1 0.0 -1 -1 26 0.04 10 20
50 -5 0.0 -5 -5 25 0.43 10 20

100 -10 0.0 -10 -10 24 0.93 10 20
1000 -100 0.0 -100 -100 38 3.42 10 20
2000 -200 0.0 -200 -200 33 4.99 10 20
3000 -300 0.0 -300 -300 34 7.22 10 20
4000 -400 0.0 -400 -400 35 9.40 10 20
5000 -500 0.0 -500 -500 32 10.74 10 20

10000 -1000 0.0 -1000 -1000 35 21.97 10 20

 132

Table 3
Computational Results of Problem -3

n Mean S.D.
Best

 Value

Worst

 Value

Function

Evaluation

CPU Time

(in s)
popsize m_gen

2 -1.0 0.0 -1.0 -1.0 30 0.01 10 20
5 -1.0 0.0 -1.0 -1.0 32 0.01 10 20

10 -1.0 0.0 -1.0 -1.0 30 0.03 10 20
50 -1.0 0.0 -1.0 -1.0 86 2.21 10 20
100 -1.0 0.0 -1.0 -1.0 79 4.88 10 20
500 -1.0 0.0 -1.0 -1.0 283 86.34 100 20
1000 -1.0 0.0 -1.0 -1.0 500 324.69 200 20

Table 4
Computational Results of Problem -4

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 0.0 0.0 0.0 0.0 36933 27.97 10 20
5 0.00002 0.00003 0.0 0.00011 75447 79.56 200 20

Table 5
Computational Results of Problem -5

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 0.0 0.0 0.0 0.0 80 0.03 10 20
10 0.0 0.0 0.0 0.0 410 3.50 100 100
50 0.0 0.0 0.0 0.0 1360 104.70 200 100

100 0.0 0.0 0.0 0.0 1400 264.06 300 100

Table 6
Computational Results of Problem -6

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 -3.5 0.0 -3.5 -3.5 29 0.02 10 10
5 -3.5 0.0 -3.5 -3.5 23 0.02 10 10

10 -3.5 0.0 -3.5 -3.5 38 0.07 10 10
50 -3.5 0.0 -3.5 -3.5 212 2.69 100 20
100 -3.5 0.0 -3.5 -3.5 227 6.47 100 20
500 -3.5 0.0 -3.5 -3.5 440 124.5 200 50

Table 7
Computational Results of Problem -7

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 0.0 0.0 0.0 0.0 74 0.02 10 20
5 0.0 0.0 0.0 0.0 87 0.03 10 20

10 0.0 0.0 0.0 0.0 92 0.08 10 20
50 0.0 0.0 0.0 0.0 100 1.08 10 20
500 0.0 0.0 0.0 0.0 116 3.36 10 20
1000 0.0 0.0 0.0 0.0 120 4.16 10 20
2000 0.0 0.0 0.0 0.0 120 5.59 10 20
3000 0.0 0.0 0.0 0.0 121 7.05 10 20
4000 0.0 0.0 0.0 0.0 130 9 10 20
5000 0.0 0.0 0.0 0.0 130 10.6 10 20
10000 0.0 0.0 0.0 0.0 130 18.49 10 20

A. K. Bhunia et al. / Decision Science Letters 4 (2015)

133

Table 8
Computational Results of Problem -8

n Mean S.D. Best Worst Function CPU Time popsize m gen
2 0.0 0.0 0.0 0.0 78 0.04 10 20
5 0.0 0.0 0.0 0.0 288 0.18 10 20

Table 9
Computational Results of Problem -9

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 0.0 0.0 0.0 0.0 71 0.04 10 20
5 0.0 0.0 0.0 0.0 90 0.06 10 20
10 0.0 0.0 0.0 0.0 101 0.11 10 20
50 0.0 0.0 0.0 0.0 130 1.44 10 20

100 0.0 0.0 0.0 0.0 140 3.55 10 20
1000 0.0 0.0 0.0 0.0 180 6.44 10 20
2000 0.0 0.0 0.0 0.0 190 9.08 10 20
3000 0.0 0.0 0.0 0.0 190 11.3 10 20
4000 0.0 0.0 0.0 0.0 200 14.25 10 20
5000 0.0 0.0 0.0 0.0 200 16.61 10 20
10000 0.0 0.0 0.0 0.0 186 26.65 10 20

Table 10
Computational Results of Problem -10

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

 2 0.0 0.0 0.0 0.0 68 0.02 10 20
5 0.0 0.0 0.0 0.0 81 0.03 10 20

10 0.0 0.0 0.0 0.0 120 0.11 10 20
20 0.0 0.0 0.0 0.0 185 0.2 10 20
30 0.0 0.0 0.0 0.0 312 1.48 10 20

Table 11
Computational Results of Problem -11

n Mean S.D.
Best

Value
Worst
 Value

Function
Evaluation

CPU
Time (in s)

popsize m_gen

2 0.00347 0.00127 0.00022 0.005 17795 11.96 10 20

Table 12
Computational Results of Problem -12

n Mean S.D.
Best

Value

Worst

 Value

Function

Evaluation

CPU Time

(in s)
popsize m_gen

10 -45.7785 0 -45.7785 -45.7785 24 0.22 10 20

Table 13
Computational Results of Problem -13

n Mean S.D.
Best

Value
Worst
Value

Function
Evaluation

CPU Time
(in s)

popsize m_gen

2 0.0 0.0 0.0 0.0 430 0.25 10 20
5 0.0 0.0 0.0 0.0 799 0.80 10 20
10 0.0 0.0 0.0 0.0 1198 3.21 10 20
50 0.0 0.0 0.0 0.0 1189 25.42 10 20
100 0.0 0.0 0.0 0.0 1681 85.36 10 20
500 0.0 0.0 0.0 0.0 3843 400.65 10 20
1000 0.0 0.0 0.0 0.0 5376 921.00 10 20

 134

Table 14
Comparative Study among the methods HX-NUM-GA and PBFRM

Problem
number

Methods
Average number of
 function evaluation

Average time
of execution

Mean
Standard
derivation

1 HX-NUM-GA 232901 4.134 1.28E-03 1.39E-03
PBFRM 8723 6.33 0.0 0.0

2 HX-NUM-GA 304671 5.207 -2.98E+00 5.11E-02
PBFRM 24 0.01 -0.2 0.0

3 HX-NUM-GA 60651 0.681 -9.99E-01 3.86
PBFRM 30 0.01 -1.0 0.0

4 HX-NUM-GA 92131 2.172 1.43E-08 7.38E-08
PBFRM 36933 27.97 0.0 0.0

5 HX-NUM-GA 426651 7.358 3.11E-13 5.01E-13
PBFRM 80 0.03 0.0 0.0

6 HX-NUM-GA 142751 3.774 -3.41E+00 4.56E-01
PBFRM 29 0.02 -3.50E+00 0.0

7 HX-NUM-GA 210791 5.060 2.86E-01 1.55E+00
PBFRM 87 0.03 0.0 0.0

8 HX-NUM-GA 107581 1.165 3.64E-04 2.69E-04
PBFRM 78 0.04 0.0 0.0

9 HX-NUM-GA 140451 1.521 4.67E-04 3.28E-04
PBFRM 71 0.04 0.0 0.0

10 HX-NUM-GA 811 0.2 8.20E-05 2.91E-04
PBFRM 68 0.2 0.0 0.0

11 HX-NUM-GA 415081 4.412 3.20E+00 6.25E+00
PBFRM 17795 11.96 3.47E-03 1.27E-03

12 HX-NUM-GA 31461 0.608 -9.97E+05 1.86E+02
PBFRM 24 0.22 -4.58E+01 0.0

13 HX-NUM-GA 354201 8.570 3.11E-02 8.67E-02
PBFRM 430 0.25 0.0 0.0

6. Concluding Remarks

In the proposed method, the well known Fletcher Reeves method has been applied repeatedly in each
chromosome of a population which is generated initially from the search domain of the problem. The
proposed method is a multipoint approximation method. As a result, it requires more execution time
and more function evaluations than single point approximation methods. Due to the random selection
of initial approximations from the search space, the proposed method possesses the merits of global
exploration and fast convergence. As the proposed method is gradient based, the method will be
applicable only to those problems where the search space is continuous and the objective function is

differentiable in nR , n being the number of decision variables. The proposed method may be applied
in solving some real life decision making problems in the areas of structural optimization, inventory
control, robotics, circuit decision etc.

References

Baker, J. E. (1985, July). Adaptive selection methods for genetic algorithms. In Proceedings of an

International Conference on Genetic Algorithms and their applications (pp. 101-111).
Bhunia, A., Pal, P., Chattopadhyay, S., & Medya, B. (2011). An inventory model of two-warehouse

system with variable demand dependent on instantaneous displayed stock and marketing decisions
via hybrid RCGA. International Journal of Industrial Engineering Computations, 2(2), 351-368.

Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization
of multimodal functions. Journal of Heuristics, 6(2), 191-213.

Jana, R. K., & Biswal, M. P. (2004). Stochastic simulation-based genetic algorithm for chance
constraint programming problems with continuous random variables. International Journal of
Computer Mathematics, 81(9), 1069-1076.

A. K. Bhunia et al. / Decision Science Letters 4 (2015)

135

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in
applied mechanics and engineering, 186(2), 311-338.

Deb, K., Anand, A., & Joshi, D. (2002). A computationally efficient evolutionary algorithm for real-
parameter optimization. Evolutionary computation, 10(4), 371-395.

Deep, K., & Thakur, M. (2007). A new crossover operator for real coded genetic algorithms. Applied
Mathematics and Computation, 188(1), 895-911.

Gen, M. & Cheng, R. (2000). Genetic Algorithms and Engineering Optimization. John Wiley & Sons
Inc.

Goldberg, D. E. (1989). Genetic Algorithms: Search, Optimization and Machine Learning, Addison
Wesley.

Holland, J. H. (1975). Adaptation of Natural and Artificial system, University of Michigan Press, Ann
Arbor.

Ibrahim, M. A. H., Mamat, M., & Leong, W. J. (2014, March). The Hybrid BFGS-CG Method in
Solving Unconstrained Optimization Problems. In Abstract and Applied Analysis (Vol. 2014).
Hindawi Publishing Corporation.

Karaboga, D. & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm.
Applied Soft Computing, 8 (1), 687–697.

 Luo, Y. Z., Tang, G. J., & Zhou, L. N. (2008). Hybrid approach for solving systems of nonlinear
equations using chaos optimization and quasi-Newton method. Applied Soft Computing, 8(2), 1068-
1073.

Makinen, R.A.E., Periaux, J. & Toivanen, J. (1999). Multidisciplinary shape optimization in
aerodynamics and electromagnetic using genetic algorithm, International Journal for Numerical
Methods in Fluids, 30(2),149-159.

Miettinen, K., Mäkelä, M. M., & Toivanen, J. (2003). Numerical comparison of some penalty-based
constraint handling techniques in genetic algorithms. Journal of Global Optimization, 27(4), 427-
446.

Michalawicz, Z. (1996). Genetic Algorithms + Data structure= Evaluation Programs. Springer
Verlog, Berlin.

Mitchell, M. (1996). Introduction to Genetic Algorithms, PHI, New Delhi.
Pal, P., Das, B., Panda, A. & Bhunia, A. K. (2005). An application of real-coded genetic algorithm for

mixed integer non-linear programming in an optimal two-warehouse inventory policy for
deteriorating items with a linear trend in demand and a fixed planning horizon. International Journal
of Computer Mathematics, 82(2), 167-175.

Rao, R. V. & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving
complex constrained optimization problems. International Journal of Industrial Engineering
Computations, 3, 535–560.

Sakawa, M. (2002). Genetic Algorithms and fuzzy multiobjective optimization. USA: Kluwer Academic
Publishers.

Yao, X., & Xu, Y. (2006). Recent Advances in Evolutionary Computation. Journal of Computer
Science and Technology, 21(1), 1-18.

Yiu, K. F. C., Liu, Y., & Teo, K. L. (2004). A hybrid descent method for global optimization. Journal
of Global Optimization, 28(2), 229-238.

 136

Appendix 1
Numerical Examples

Test Functions Search Region
Global

Objective fn.
Value

   2
1

1 1

1 1
20exp 0.2 exp cos 2 20

n n

i i
i i

f x x x e
n n


 

               
  [-30,30] 0

   2
2

1 1

0.1 cos 5
n n

i i
i i

f x x x
 

   [-1,1] -0.1*n

  2
3

1

exp 0.5
n

i
i

f x x


 
   

 
 [-1,1] -1

          

  

1
2 22 2

4 1 1
1

2

0.1 sin 3 1 1 sin 3 1 1

 sin 2

n

i i n
i

n

f x x x x x

x

 








       

 


 [-5,5] 0

   2
5

1

10 10cos 2
n

i i
i

f x n x x


     [-5.12,5.12] 0

      6
1 1

2.5 sin 30 sin 5 30
n n

i i
i i

f x x x
 

 
     

 
  [0,π] -3.5

 
2 4

2
7

1 1 12 2

n n n

i i i
i i i

i i
f x x x x

  

        
   

   [-5.12,5.12] 0

  2
8

1

n

i
i

f x x


  [-5.12,5.12] 0

  2
9

1

n

i
i

f x ix


  [-5.12,5.12] 0

    4
10

1

0,1
n

i
i

f x x rand


  [-10,10] 0

   2

11
1

1
n

i
i

f x x


  [-n,n] 0

       
0.2

2 2

12
1 1

ln 2 ln 10
nn

i i i
i i

f x x x x
 

           
  [2,10] -45.77847

         

 

1
2 22 2

13 1 1
1

10sin 1 1 10sin 1 ,

1
 1 1

4

n

i i n
i

i i

f x y y y y
n

y x

  





          

  


 [-10,10] 0

