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 Nowadays, industrial robots are being pervasively used in almost every manufacturing 
organization for improving operational quality, safety and productivity. Depending on the 
nature of task to be performed, many varieties of robots are now commercially available from 
different manufacturers. For efficiently carrying out the designed task, a number of functional 
attributes of an industrial robot are also simultaneously responsible. Therefore, selection of an 
appropriate and competitive robot alternative becomes a complicated and equally challenging 
task for the decision makers. A quite strong model of multi-criteria decision-making is needed 
to deal with this problem of industrial robot evaluation and selection. In this paper, the 
applicability of fuzzy axiomatic design (FAD) principles is explored for solving a real time 
robot selection problem. Seven candidate robots which are commercially available for light 
assembly operations are evaluated with respect to a mix of nine criteria. All these criteria are 
either qualitative in nature or expressed as a range of numerical values. Suitability rankings of 
all the feasible alternatives are derived using FAD methodology, thus establishing it as a 
systematic and dependable tool for solving industrial robot selection problems in fuzzy 
environment. 
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1. Introduction 

 
An industrial robot is a man-made machine having artificial intelligence and can be programmed to 
dexterously carry out a variety of jobs. It also possesses certain anthropometrical features, and its 
mechanical arm is the most important and vital anthropometrical component. Other features, like its 
decision making capability, capacity of responding to various sensory inputs and communicating with 
other machines make it an important tool for diverse industrial applications (Chatterjee et al. 2010). 
The application domain of industrial robots comprises of welding, material handling, component 
assembling, painting, surface treatment and so on (Mondal & Chakraborty, 2013). During the last half 
century, industrial robots have constantly been deployed in all manufacturing organizations worldwide. 
Generally, use of robots does not affect cost of raw materials, such as steel coils or castings that are 
purchased. Mainly, the application of industrial robots assists the manufacturing organizations in a dual 
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manner as reducing the labour costs and increasing productivity (Glaser, 2008). A group of benefits 
achieved from implementing industrial robots also include enhanced operational precision, reduction 
in process changeover and lead time, maintained production capacity, capability to work in hazardous 
conditions and consistent quality output. Due to provision of all these benefits over the extended time 
periods, many varieties of industrial robots with different specifications and capabilities are now 
available for wide range of applications. Therefore, selection of an appropriate industrial robot for a 
given task becomes a difficult endeavour. It involves consideration of numerous attributes from diverse 
fields, like technical specifications, economic viability, environmental compatibility, availability and 
management policies. The nature of all these attributes is also contradictory to each other, thus making 
the selection procedure more tough and cumbersome. Bhangale et al. (2004) identified about 75 
different attributes for selection of the best robot alternative for a given task, which could underline the 
complexity of a robot selection problem.  
 
Until now, for solving robot selection problems, a number of mathematical approaches have been 
proposed by the past researchers. But as a part of the journey towards excellence, there is always a need 
for a simple and systematic tool to guide the decision makers in identifying and selecting the most 
suitable industrial robot from a given set of alternatives, because a wrong choice may often adversely 
affect the productivity and flexibility of the entire manufacturing process. There are a very few 
instances of axiomatic design (AD) principles being used for robot selection problem. Bahadir and 
Satoglu (2012) evaluated the performance of three robot alternatives with respect to axis speed, 
repeatability and investment cost while applying AD principles, wherein all the alternative ratings and 
criteria evaluation values were expressed in crisp form. In this paper, the applicability of fuzzy 
axiomatic design (FAD) principles is explored to evaluate the suitability of seven industrial robot 
alternatives with respect to nine criteria. Some of these criteria are of qualitative nature, whereas, the 
remaining criteria are expressed numerically. Using appropriate fuzzy scales for semantic as well as 
numerical range of data, all the robot alternatives are evaluated in terms of their total information 
content.    
 
In this paper, the past literature on application of different multi-criteria decision-making (MCDM) 
methods for industrial robot selection is reviewed in Section 2. Concepts of fuzzy set theory and AD 
principles are explained in Section 3. Section 4 contains the methodology adopted for solving an 
industrial robot selection problem. A real time robot selection problem is solved in Section 5 to establish 
the potentiality of the adopted methodology. Finally, conclusions are drawn in Section 6.  
  
2. Literature review 
 
Bhangale et al. (2004) developed a reliable and exhaustive database of robot manipulators to 
standardize the robot selection procedure and help the robot users for selecting the most appropriate 
robot system to meet the operational requirements. Chatterjee et al. (2010) solved two robot selection 
problems using two MCDM methods, i.e. VIsekriterijumsko KOmpromisno Rangiranje (VIKOR) and 
ELimination and Et Choice Translating REality (ELECTRE). Kumar and Garg (2010) developed a 
deterministic quantitative model based on distance-based approach for evaluation, selection and 
ranking of robots. Athawale and Chakraborty (2011) compared the ranking performance of ten most 
popular MCDM methods while selecting the most appropriate robot for some industrial pick-n-place 
operation. It was concluded that for a given robot selection problem, more attention had to be given to 
proper selection of relevant criteria and alternatives, not on choosing the most appropriate MCDM 
method to be employed. Devi (2011) applied an extended VIKOR method for robot selection in 
intuitionistic fuzzy environment where the weights of criteria and ratings of the alternatives were 
considered as triangular intuitionistic fuzzy sets. Koulouriotis and Ketipi (2011) employed a fuzzy 
digraph method for robot evaluation and selection to meet the requirements of a given industrial 
application. For industrial robot selection, Rao et al.  (2011) proposed a method that would consider 
the objective weights of importance of the attributes as well as subjective preferences of the decision 
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maker to decide the integrated weights of importance of the attributes. Vahdani et al. (2011) presented 
a fuzzy modified technique for order preference by similarity to ideal solution (TOPSIS) for robot 
selection wherein the performance ratings of the alternatives with respect to various conflicting criteria 
as well as weights of the criteria were described using linguistic variables. İç (2012) explored the 
applicability of an integrated TOPSIS and design of experiment method to solve an industrial robot 
selection problem. Karsak et al. (2012) developed a decision model based on fuzzy linear regression 
for industrial robot selection and validated the derived results while comparing them with those 
obtained by the past researchers. Tao et al. (2012) presented a hybrid model for robot selection which 
had been consisted of three parts, i.e. a) data envelopment analysis (DEA) to provide the best 
combination on performance parameters, b) application of axiomatic fuzzy set theory and analytic 
hierarchy process to calculate the weight of each attribute, and c) TOPSIS method to provide the final 
ranking order. İç et al. (2013) developed a two-phase robot selection decision support system 
(ROBSEL) to help the decision makers in their robot selection decisions. Mondal and Chakraborty 
(2013) applied four models of DEA, i.e. Charnes, Cooper and Rhodes (CCR); Banker, Charnes and 
Cooper (BCC); additive; and cone-ratio to identify the feasible robots having the optimal performance 
measures. Vahdani et al. (2013) proposed an interval-valued fuzzy modified TOPSIS method for a 
robot selection problem wherein the performance ratings and weights of the criteria were linguistic 
variables expressed as triangular interval-valued fuzzy numbers. Alinezhad and Amini (2014) adopted 
a common weight maximin approach with an improved discriminating power for solving robot 
evaluation problems. Singh and Saha (2014) applied graph theory to select the most convenient robot 
among three alternatives for a given industrial application of packing and palletizing. Rashid et al. 
(2014) employed TOPSIS method wherein the opinions of several decision makers on different robot 
evaluation criteria for a set of alternatives were represented by generalized interval-valued trapezoidal 
fuzzy numbers. Vahdani et al. (2014) proposed an interval-valued fuzzy multi-criteria complex 
proportional assessment method for robot selection wherein the performance ratings with respect to 
various criteria as well as weights of the conflicting criteria were linguistically represented using 
interval-valued triangular fuzzy numbers. Yuen (2014) proposed the application of rectified fuzzy 
TOPSIS method, making use of compound linguistic ordinal scale as the fuzzy rating scale for expert 
judgments and cognitive pair-wise comparison for determining the fuzzy weights while addressing two 
robot selection problems. From this survey of literature related to industrial robot selection, it can be 
concluded that just within a span of 3 to 4 years, extensive work has been carried out in this field while 
using various MCDM techniques and tools. It shows the practical relevance of the topic of industrial 
robot selection and hence, it is quite befitting to explore the applicability of FAD principles to attend 
the robot selection problems. 
 
3. FAD principles 
 
Some of the commercial as well as technical specifications of industrial robots are stated more suitably 
in terms of linguistic terms and ranges of values. Hence, it is necessary to integrate fuzzy set theory 
concepts with AD principles as follows. 
 
3.1 Fuzzy set theory 
 
It is being observed that in day-to-day life, human beings are exposed to imprecise information more 
regularly than the quantum of precise information while taking real time decisions. Fuzzy set theory 
was introduced by Zadeh (1965) to deal with the uncertainty and imprecision related to information in 
an efficient manner to arrive at the logical conclusions in a more scientific manner. It is used to convert 
imprecise linguistic terms into numerical values using triangular or trapezoidal fuzzy numbers. Fuzzy 
logic has been proved to be an effective and robust tool for solving complex problems arising from a 
variety of fields, which include industrial applications too.  
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Mathematically, fuzzy set theory states that in a universe of discourse X, a fuzzy subset A
~

 of X is 
defined by a membership function )(~ xf

A
, which maps each element x in X to a real number R in unit 

interval of [0,1]. The function value )(~ xf
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~
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Fig. 1 depicts the membership function of a TFN denoted by (a, b, c). 
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Fig. 1. Membership function for a TFN 

3.2 AD principles 
 
The concept of AD principles was proposed by Suh (1990) as a scientific and engineering approach for 
design of products. As a result, the design process has become more systematic and logical. It takes 
into consideration the customer needs related to a product to be incorporated in terms of functional 
requirements (FRs) and establishes the relation with the final design parameters (DPs) of the product. 
In the present context of decision-making, FRs represent various criteria with respect to which 
suitability of an alternative robot is to be judged for its intended function. 
 
According to AD theory, the design process consists of some important steps as establishment of design 
goals to satisfy a given set of customer needs, conceptualization of design solutions, analysis of the 
proposed design solutions, selection of the best design solution from amongst those proposed and 
implementation of the selected solution. These steps occur in and between different design domains, 
such as customer domain, functional domain, physical domain and process domain, as illustrated in 
Figure 2. Customer domain consists of customer needs or attributes (CA) that the customer is looking 
for in a product or system to be designed. These customer needs are translated into a set of FRs and 
constraints in the functional domain. These FRs are then mapped into physical domain, where the DPs 
are conceived to satisfy the FRs. The DPs represent physical properties that define the design solution 
in the physical domain. The DPs are then mapped into process variables (PVs) in process domain. The 
PVs can generate the specified DPs. The process of mapping is the systematic way of synthesis and 
transformation of factors from previous to the next domain.  
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Fig. 2. Different design domains 

 
 In AD theory, the DPs are expressed in terms of range of values. Usually, this range is fixed by the 
designer or decision maker and is known as design range (DR). The values of FRs corresponding to 
various alternatives expressed by means of linguistic terms or numerical ranges or numerical 
approximations are known as system range (SR) values of the alternatives. In case of design of 
products, the designer has to choose the best design from different feasible solutions by the application 
of AD principles. This capability of AD theory of selecting the optimal design solution comes as a 
handy tool for decision-making. This task of decision-making is assisted by two underlying axioms of 
AD theory as stated below.  
 
3.2.1 Independence axiom 
 
Independence axiom states that a particular FR should be fulfilled independently by a certain DP 
without affecting the other FRs (Kulak, 2005). In real time situations too, a given complex design or a 
decision task is decomposed into smaller components and the independent solution for each of them is 
sought so as to simplify the process. So, the independence axiom is based on this analogy. In context 
of decision-making, shortlisting of different feasible alternatives for carrying out a designated task is 
the outcome of the application of independence axiom.  
 
3.2.2 Information axiom 
 
Under the preview of this axiom, information content (IC) is calculated for all the design solutions 
satisfying the independence axiom. Information axiom states that the alternative with minimum IC 
value is the optimal choice (Suh, 2001; Kulak, 2005). The IC is related in its simplest form to the 
probability of satisfying a given FR. It determines that the design with the highest probability of success 
is the best design. The ICi value for a given FRi is defined using the following equation: 
 

  ICi = 








ip

1
log2  

 
(2) 

         
where pi is the probability of satisfying FRi. The information is expressed in units of bits. The 
logarithmic function is chosen so that the IC values are additive when there are many FRs that must be 
satisfied simultaneously (Suh, 2001) and the logarithm is based on 2 which is the unit of bits. For the 
value of pi equal to zero, the IC value becomes infinite and the concerned alternative gets rejected. 
Conversely, for the value of pi equal to one, the IC value is zero and it is the ideal case of the selected 
alternative solution. The DR is decided by the designer or decision maker and it is the ideal range of 
values to be tried to achieve in the design process. The SR denotes the capability of the considered 
robot alternative for a particular FR. As shown in Fig. 3, the overlap between the designer-specified 
DR and the SR is known as ‘common range’ (CR), where the acceptable solutions exist. 
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Fig. 3. Design range, system range and common range for FR 

Therefore, in case of uniform probability distribution function, the value of pi is given as follows: 
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So, the value of IC can now be expressed as below: 
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If FRi is a continuous random variable, as shown in Fig. 4, then the probability of achieving FRi in DR 
is given as: 

ip =   i

dr

dr

is dp

u

l

FRFR , 
 

(5) 

where ps(FRi) is the system probability density function (pdf) of FRi. drl and dru
 are the lower and upper 

bounds of DR. The probability of success is calculated by integrating the system pdf over the complete 
DR. In Figure 4, the area of system pdf over the common range (Acr) is equal to the probability of 
success pi (Suh, 1990). Therefore, the IC can be expressed as follows: 
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Fig. 4. Design range, system range, common range and system pdf for a FR (Celik et al., 2009)  
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4. Methodology based on FAD principles 
 
Fig. 5 shows the hierarchical structure developed for this industrial robot selection problem with respect 
to a set of nine conflicting criteria. For solving this problem based on FAD principles, the following 
procedural steps are proposed. 
 

a) A five point fuzzy scale with triangular membership function is devised for rating the 
performance of the robot alternatives. 

b) The total range of values for each criterion, whether quantitative or qualitative, is subdivided 
into five classes and they are assigned with appropriate values of fuzzy ratings. In case of 
beneficial criteria, these fuzzy ratings are assigned in ascending order of criteria values, 
whereas, for non-beneficial criteria, the reverse order is followed. For example, for payload 
capacity of a robot (a beneficial criterion), the fuzzy ratings of ‘Poor’ to ‘Excellent’ are assigned 
to range classes having minimum to maximum values respectively. On the other hand, for 
repeatability (a non-beneficial criterion), the fuzzy ratings of ‘Poor’ to ‘Excellent’ are assigned 
to range classes having maximum to minimum values respectively.             

c) Another fuzzy scale is devised for assigning DR values to the considered criteria. 
d) Total IC values are calculated for all the industrial robot alternatives. 
e) Finally, the robot alternatives are ranked in the order of their ascending values of total IC and 

the most appropriate robot for the given application is identified. 
 

 

Fig. 5. Hierarchy for industrial robot selection problem 

5. Illustrative example 

For efficiently carrying out light assembly operations in a manufacturing organization, seven types of 
commercially available industrial robots are first shortlisted. In order to accomplish the desired 
assembly task, nine important attributes are then identified for each robot alternative. The technical 
specifications of all the robot alternatives are accumulated from various robot manufacturers’ websites, 
like http://www.abb.com/robotics, http://adept.com, http://www.densorobotics.com, 
http://www.fanuc.co.jp, http://www.kuka-robotics.com, http://motoman.com, http://indutrial. 
panasonic.com/eu/, http://www.staubli.com/robotics etc. Table 1 provides the corresponding decision 
matrix for this industrial robot selection problem. In AD parlance, it is the SR data of the industrial 
robot alternatives. The nine attributes considered are robot mounting position, position repeatability (in 
mm), maximum payload (in kg), weight (in kg), reach (in mm), maximum joint speed (in degree/s), 
working range of joints (in degree), degree of protection and footprint (in cm2). Mounting position 
represents the ability of a robot to fasten it securely on a given surface during the working cycle, while 
position repeatability is articulated as how well a robot can come back to a programmed location and 
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orientation over and over again. Payload indicates the maximum weight (load) a robot can pick up 
without affecting its performance and weight denotes the self weight of the robot. Reach of a robot is 
the maximum distance that can be covered so as to grasp an object for an assembly operation, while 
joint speed is defined as how quickly a robot can position its arm/actuator. Working range represents 
the manoeuvrability of the end effectors. Degree of protection denotes the protection provided by an 
enclosure against access to hazardous parts, ingress of solid foreign objects and water. This protective 
ability of the enclosure is expressed in terms of International Protection (IP) codes. The IP code consists 
of two numerals and two optional extra letters. The first numeral 0, 1, ..., 6, or X defines the protection 
against ingress of solid foreign objects and against access to hazardous parts. The second numeral 0, 
1,..., 8, or X defines the protection against the ingress of water. The higher the number, the more 
stringent is the protection requirement. Footprint is the amount of space required for installing a robot.   
 
Amongst the considered nine attributes, two criteria, i.e. robot mounting position and degree of 
protection are expressed qualitatively and others are expressed numerically. It can also be noted that 
almost all these seven quantitative attributes are stated in terms of range of values. Therefore, in order 
to uniformly express all these FRs, a five point fuzzy scale with ratings as poor, fair, good, very good 
and excellent is considered (Büyüközkan & Ersoy, 2009). Six attributes as robot mounting position, 
maximum payload, reach, maximum joint speed, working range of joints and degree of protection are 
beneficial criteria for which higher values are always desired. The remaining three criteria, i.e. position 
repeatability, weight and footprint are non-beneficial criteria for which lower values are preferred. So, 
taking into account the type of the criteria, the SR data corresponding to all the attributes are divided 
into five range classes of the considered fuzzy scale and their membership functions in terms of TFNs 
are shown in Table 2. Now, considering the membership functions of SRs from Table 2, the 
heterogeneous SR data of this robot selection problem as depicted in Table 1 are fuzzified in Table 3. 
The DRs of the criteria are also expressed in terms of TFNs. The five point fuzzy scale for DR is 
developed as ‘At least poor’ (LP) - (0,1,1), ‘At least fair’ (LF) - (0.1,1,1), ‘At least good’ (LG) - (0.4, 
1, 1), ‘At least very good’ (LVG) - (0.6, 1, 1) and ‘At least excellent’ (LE) - (0.8, 1, 1), and is shown 
in Fig. 6 (Büyüközkan & Ersoy, 2009). As a decision maker, the design ratings for the nine FRs of 
robot mounting position, position repeatability, maximum payload, weight, reach, maximum joint 
speed, working range of joints, degree of protection and footprint are chosen as LG, LG, LG, LG, LF, 
LF, LG, LG and LG respectively.   
 

)(~ xf
A

 

Fig. 6. Fuzzy scale for DR 

The total IC value for each robot alternative is the summation of individual IC values corresponding to 
its all nine FRs. As a representative case, the calculation of IC value of robot alternative R2 for FR of 
mounting position is demonstrated here. The design rating for FR of mounting position is ‘At least 
good’ with TFN as (0.4, 1.0, 1.0) and the SR of mounting position for alternative R2 is ‘Very good’ 
with TFN as (0.6, 0.75, 0.9). In Fig. 7, the triangles ABC and PQR represent the TFNs of SR and DR 
respectively. 
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Fig. 7. Design range, system range and common range for mounting position of R2 

 
 

Table 1  
System range data 

Robot alternative 
Criteria 

1C 2C 3C  4C 5C 6C  7C  8C  9C 

)1RIRB 120 ( Required position ±0.01 3 25 580 420  ±400 IP30 324 

)2RViper s650 ( Floor, table and ceiling ±0.02 5 28 653 600 ±360 IP65 400 

)3R6242 (-VP Floor and ceiling ±0.02 2.5 15 432 550 ±360 IP54 256 

)4RLR Mate 200iD/4S ( Floor and ceiling ±0.02 4 20 550 900  ±720 IP68 256 

)5RKR 5 arc ( Floor and ceiling ±0.04 5 127 1412 721  ±350 IP54 1050 

)6RManipulator ( HP3 Floor, table and ceiling ±0.03 3 45 701 500 ±360 IP45 484 

)7R80 (-TS Floor and wall ±0.01 8 55 800 2020  ±500 IP54 438 
 

 
Table 2  
Membership functions for system range 

Rating  TFN Robot mounting position  Position repeatability  Maximum payload (m)  Weight (w) Reach (r)  

Poor (P)  (0,0,0.3) Floor only ±0.05  0 < m < 2 w > 55 400 to 500  
Fair  (F) (0.2,0.35,0.5) Floor and wall ±0.04  2 ≤ m < 4 46 to 55 501 to 600  

Good (G) (0.4,0.55,0.7)  Floor and ceiling  ±0.03  4 ≤ m < 6 36 to 45 601 to 700  
Very good (VG)  (0.6,0.75,0.9)  Floor, table and Ceiling ±0.02  6 ≤ m < 8 26 to 35 701 to 800  

Excellent (E) (0.8,1,1) Required position ±0.01  8 ≤ m < 10 15 to 25 r > 800 
 

 
Table 2  
Membership functions for system range (Cont.) 

Rating  TFN Maximum joint speed  (s) Working range of joints (jr) Degree of protection  Footprint ( fp) 

Poor (P)  (0,0,0.3)  s ≤ 525  jr ≤ (±350) IP20 to IP28 fp > 550 
Fair  (F) (0.2,0.35,0.5) 525 < s ≤ 650 (±351) to (±450) IP30 to IP38 476 to 550 

Good (G) (0.4,0.55,0.7) 650 < s ≤ 775 (±451) to (±550) IP40 to IP48 401 to 475 
Very good (VG)  (0.6,0.75,0.9) 775 < s ≤ 900 (±551) to (±650) IP50 to IP58 326 to 400 

Excellent (E) (0.8,1,1)  s > 900 jr > (±650)  IP60 to IP68 250 to 325 

 
Table 3  
System range data in qualitative terms 

Robot alternative 
Criteria 

1C 2C 3C  4C 5C 6C  7C  8C  9C 
1R E E F E F P F F E 
2R VG VG G VG G F F E VG 
3R G VG F E P F F VG E 
4R G VG G E F VG E E E 
5R G F G P E G P VG P 
6R VG G F G VG P F G F 
7R F E E F VG E G VG G 
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Table 4  
Total IC and ranking of robot alternatives 

Robot  
alternative 

Information content 
Total IC Rank 

1C 2C 3C  4C 5C 6C  7C  8C  9C 
1R 0 0 4.4919 0 1.1094 3.1699 4.4919 4.4919 0 17.755 5 
2R 0.2955 0.2955 1.3219 0.2955 0.4288 1.1094 4.4919 0 0.2955 8.534 2 
3R 1.3219 0.2955 4.4919 0 3.1699 1.1094 4.4919 0.2955 0 15.176 4 
4R 1.3219 0.2955 1.3219 0 1.1094 0.1193 0 0 0 4.168 1 
5R 1.3219 4.4919 1.3219 INFINITE 0 0.4288 INFINITE 0.2955 INFINITE INFINITE 7 
6R 0.2955 1.3219 4.4919 1.3219 0.1193 3.1699 4.4919 1.3219 4.4919 21.0261 6 
7R 4.4919 0 0 4.4919 0.1193 0 1.3219 0.2955 1.3219 12.0424 3 

 

The co-ordinates of points M and N are determined as (0.6667, 0.4444) and (0.8, 0.6667) respectively. 
The area of triangle ABC is calculated to be 0.15 sq units and it is the SR area. The common area of 
intersection between SR and DR is the area of the quadrangle AMNC, and is computed as 0.1222 sq 
units. Therefore, using Eqn. (4), the IC value is determined as below for mounting position criterion of 
robot R2.  

   2955.0
0.1222

0.15
loglogIC 22C-R 12
















CR

SR
    

 
Similarly, the IC values of all the robot alternatives for each criterion are computed and are provided 
in Table 4. For robot R1, the SR and DR of mounting position are (0.8, 1, 1) and (0.4, 1, 1) respectively. 
Therefore, SR equals to CR and hence, the IC value becomes equal to zero. For robot alternative R5, 
there is no common area of intersection between SR and DR for criterion of weight, resulting in the IC 
value to be infinite.  
 
All the individual IC values of nine criteria are added together to derive the total IC value for each robot 
alternative, as shown in Table 4. Then, based on the information axiom of AD principles, these 
industrial robot alternatives are ranked in ascending order of their total IC values. As a result, R4-R2-
R7-R3-R1-R6-R5 evolves out as the order of suitability of the robot alternatives, with LR Mate 200iD/4S 
(R4) as the best choice and KR 5 arc (R5) as the worst choice for the intended task of light assembly 
operations. 
     
6. Conclusions 
 
Nowadays, in almost all the manufacturing organizations, the application area of robots is rapidly 
increasing. Use of industrial robots is dictated by various factors, like need for higher precision, speed 
and safety in manufacturing operations. As a natural consequence, many varieties of robots are now 
available in the commercial market for a given industrial task. Therefore, selection of the most suitable 
robot with respect to numerous conflicting criteria of qualitative and quantitative nature becomes a 
more challenging and difficult problem. This paper proposes the application of FAD principles for 
selection of the best suited industrial robot from a group of equally competitive seven feasible 
alternatives for light assembly operations. This methodology is proved to be quite efficient in selecting 
LR Mate 200iD/4S as the most appropriate choice. The derived result seems to be well validated, when 
it is viewed from the perspective of the capabilities of the given robot alternatives and nature of the 
designated task. The beneficial aspect of this methodology is that it selects the robot alternative which 
mostly satisfies the DR values for the assigned task. It is also quite easy to apply and comprehend. But, 
this methodology cannot select a robot alternative if the IC value of any one of the criteria is ‘infinitive’ 
even if it meets the DRs of all other criteria successfully. As a result, it is not possible to evaluate how 
much this alternative deviates from the designed requirement because of its ‘infinitive’ total IC value.  
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