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 Cell formation process is one of the first and the most important steps in designing cellular 
manufacturing systems. It consists of identifying part families according to the similarities in 
the design, shape, and presses of parts and dedicating machines to each part family based on the 
operations required by the parts. In this study, a hybrid method based on a combination of 
simulated annealing algorithm and dynamic programming was developed to solve a bi-
objective cell formation problem with duplicate machines. In the proposed hybrid method, each 
solution was represented as a permutation of parts, which is created by simulated annealing 
algorithm, and dynamic programming was used to partition this permutation into part families 
and determine the number of machines in each cell such that the total dissimilarity between the 
parts and the total machine investment cost are minimized. The performance of the algorithm 
was evaluated by performing numerical experiments in different sizes. Our computational 
experiments indicated that the results were very encouraging in terms of computational time 
and solution quality.  
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1. Introduction 

 
In today’s competitive market, manufacturing industries must be able to produce products with low 
production cost and high quality to deliver the products to customers on time. In addition, they should 
be able to respond quickly to changes in product design and demand with low cost. Traditional 
manufacturing systems, such as job shops and flow shops cannot provide the efficiency and flexibility 
simultaneously to adapt to such requirements (Kioon et al., 2009). As a result, cellular manufacturing 
(CM), an application of group technology (GT), has emerged to satisfy such production requirements 
in manufacturing systems producing medium-volume/medium-variety products. GT is a 
manufacturing philosophy that identifies and explores the similarities of product design and 
manufacturing process to decompose a manufacturing system into several subsystems for facilitating 
the production floor control. In fact, CM is a hybrid manufacturing system that joints the advantages 
of flow shops and job shops with characteristics such as reduced cycle times compared to jobs shops 
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and increased flexibility and greater job satisfaction as compared with flow shops (Mungwattana, 
2000). If a cellular manufacturing system (CMS) is designed properly, it leads to shorter cycle times, 
reduced material handling cost, reduced work-in-process inventories, reduced setup times, reduced 
tool requirements, better control over manufacturing processes and improved quality of products 
(Wemmerlöv & Hyer, 1989; Jeon & Leep, 2006). To implement an efficient CMS, several issues 
such as cell formation (CF), facility layout, production planning, scheduling, etc. should be 
considered in the design process. Among these issues, CF process is one of the first and most 
important steps in designing CMSs. It consists of identifying part families according to the 
similarities in the design, shape, and presses of parts and dedicating machines to each part family 
based on the operations required by the parts. This process is also addressed as the machine-part 
grouping problem (MPGP) in the literature. In the context of the CF problem, numerous approaches 
have been developed in the literature. Among those approaches, classification and coding systems, 
similarity coefficient-based methods, array-based clustering methods, mathematical programming, 
graph partitioning, artificial intelligence (AI) based methods and heuristic and meth-heuristic based 
algorithms are the frequently addressed approaches (Singh, 1993; Mungwattana, 2000). 
 
As CF problems belong to the class of NP-hard combinational problems, most researchers have 
focused on implementation of meta-heuristic algorithms such as genetic algorithm (GA), simulated 
Annealing (SA), tabu search (TS), ant colony optimization (ACO), particle swarm optimization 
(PSO), etc. For instance, Boctor (1991) presented a 0-1 linear mathematical model for MPGP and 
aimed to minimize the number of exceptional elements (EEs). A SA algorithm was developed to 
solve the model. The proposed SA seems to able to find the optimal solution for 58 (64.4%) of the 90 
solved problems. Chen and Srivastava (1994) formulated the CF problem as a quadratic programming 
model to maximize the total similarity between machines, subject to cell size limitation. They 
employed SA to solve the problem and concluded that the performance of the SA is better than the 
graph-partitioning heuristic. Balakrishnan and Jog (1995) proposed a parallel genetic TSP algorithm 
to minimize the number of EEs in the MPGP. In this study, the MPGP was represented as two TSPs 
by converting the similarity coefficients between the parts and between the machines into distances. 
Caux et al. (2000) addressed the problem of manufacturing cell formation with alternative processing 
routings, machine capacities, operation times and part demands. A hybrid approach combining the 
SA algorithm for the CF and a branch-and-bound (B&B) method for the routing selection was 
presented to minimize the number of intercellular movements. As the proposed algorithm uses the 
B&B method, it may not be efficient in solving large-sized problems or unconstrained problems both 
in terms of accuracy and computational time. Adil and Rajamani (2000) presented anon-linear 
mathematical model to investigate the trade-off between cell compactness and cell independence in 
terms of inter-cell and intra-cell move costs. A SA algorithm was used to solve the problem. 
Mungwattana (2000) studied the CF problem with alternative processing routings in dynamic and 
stochastic production requirements and utilized SA algorithm to solve the problem. Onwubolu and 
Mutingi (2001) developed a GA to solve the MPGP with two objectives, minimizing the total number 
of EEs and minimizing the total cell load-variation. The proposed GA appears to perform better than 
TSP-based heuristics. Solimanpur et al. (2004) presented a mathematical model for designing 
independent manufacturing cells with multiple objectives of minimizing the total dissimilarity, total 
processing cost, total processing time and total investment in the acquisition of machines. A GA with 
multiple fitness functions was used to find multiple solutions along the Pareto optimal frontier. 
Chiang and Lee (2004) developed a SA algorithm augmented with dynamic programming to solve 
the CF problem with an objective function of minimizing the inter-cell handling cost. Tavakkoli-
Moghaddam et al. (2005) employed GA, SA and TS to solve a modified version of proposed problem 
by Mungwattana (2000). Their computational experiments indicated the superiority of SA over GA 
and TS. In addition, Tavakkoli-Moghaddam et al. (2008) modified the same work by considering 
reconfiguration and employed the SA algorithm to simultaneously minimize the inter-cell movements 
and machine costs. Their computational experiments showed that the gap between optimal and SA 
solutions is less than 4%. Arkat et al. (2007) developed a sequential CF model and solved it by SA 
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and GA. They reported similar results for both methods. However, SA needed less computational 
time. (Saghafian & Akbari Jokar, 2009) extended the work of Chiang and Lee (2004) to intra-cell 
layout and developed a hybrid method based on SA, ACO and dynamic programming to minimize 
the total inter-cell and intra-cell handling cost. Banerjee and Das (2012) defined a new grouping 
efficacy in terms of a linear combination between the operation densities within the cells and the 
number of inter-cellular movements. A predator-prey GA was employed to solve the MPGP by 
considering this measure. Ghezavati and Saidi-Mehrabad (2011) applied queuing theory to formulate 
the CF problem with stochastic parameters. They assumed that each machine works as a server and 
each part is a customer and aimed to maximize the average probability that machines are busy in 
cells. A hybrid method based on combination of SA and GA was proposed to solve the problem 
efficiently. This hybrid method was compared against global solution obtained from B&B algorithm 
and a benchmark heuristic algorithm. They reported successful performance in any size of problems. 
Kao and Lin (2012) proposed a discrete PSO algorithm to minimize the number of EEs in the CF 
problem. They concluded that the PSO algorithm results in better solutions in comparison with the 
SA and TS-based algorithms. 
 
In spite of many researches on the CF problem, most of the existing methods or algorithms in this 
area are not general enough to determine the number of machines in the cell design process. These 
approaches usually start with an initial machine-part matrix and then rearrange the columns and rows 
of this matrix to form part families and machine cells. In other words, those methods do not consider 
the capacity of machines and the processing information of parts such as demand and processing 
times in the cell design process. In this study, a bi-objective mathematical model in CMSs is 
presented to design independent manufacturing cells considering duplicate machines. The proposed 
model is to determine the part families and the number of machines in each cell such that the total 
dissimilarity between the parts and the total machine investment cost are minimized. Due to the 
complexity and NP-hard nature of CF problems, a hybrid solution approach based on combination of 
SA algorithm and dynamic programming is developed to solve the problem efficiently. After setting 
the parameters of the proposed algorithm, its performance is evaluated by performing numerical 
experiments in different sizes. 
 
2. Model description 
 
In our problem, parts are grouped into the part families based on the dissimilarity measure defined 
between them and considering the maximum number of parts allowed in a cell. In addition, machines 
are allocated to each part family such that the demand of all parts are satisfied and all the operations 
required by a part family are processed within a cell (i.e., the EEs are eliminated by duplicating 
machines). Two conflicting objective functions are considered in the problem. The first objective 
function, which minimizes the total dissimilarity between the parts are used to control the flow line-
ness of the system. From the other side, the second objective function is used to control the job shop-
ness of the system by minimizing the total machine investment cost. In other words, the designer will 
be able to adjust the job shop-ness or flow shop-ness of the manufacturing system in terms of the 
weight of each objective in the problem. 
 
2.1. Notations 
 
The following notations are used in the formulation of the problem. 
 
Sets: 
݅, ݆  parts index ݅, ݆ ൌ 1,… , ܲ (ܲ is the number of parts) 
݇  machines index ݇ ൌ 1,… ܯ) ܯ, is the number of machine types)
݈  cells index ݈ ൌ 1,… ,  (௠௔௫ is the maximum number of cells allowedܥ) ௠௔௫ܥ
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Parameters: 
݀௜  demand of part ݅ 
 ݇ ௞  available time of machine typeܣ
ܿ௞  purchase price of machine type ݇
ܽ௜௞  =1 if part ݅ visits machine ݇; 0 otherwise 
 ݇ ௜௞  processing time of part ݅ on machine typeݐ
 ݆ ௜௝  dissimilarity coefficient between parts ݅ andݏ
ܰܲ  maximum number of parts permissible in a cell (cell size limit) 
 total dissimilarity between parts  ܦܶ
 total machine investment cost  ܫܶ
ሺݓଵ,  respectively ,ܫܶ and ܦܶ ଶሻ  weights ofݓ
 
Decision variables: 
 ௜௟  =1 if part ݅ is assigned to cell ݈; 0 otherwiseݖ
݇ ௞௟  number of machines of typeݕ assigned to cell ݈
 
2.2. Problem formulation 
 
In context of similarity and dissimilarity coefficients, extensive reviews can be found in (Yin & 
Yasuda, 2005; Yin & Yasuda, 2006; Garbie et al., 2008). Among various similarity coefficients, 
Jaccard similarity coefficient proposed by McAuley (1972) is the most stable and most often used 
similarity coefficient in the literature Yin and Yasuda (2005). It is also a very simple and effective 
measure in designing CMSs. In this study, the dissimilarity coefficient between two parts ݅ and ݆ is 
defined by subtracting Jaccard similarity coefficient from its upper bound of 1, and it is defined as 
follows: 
 

௜௝ݏ ൌ 1 െ
∑ ܽ௜௞ ௝ܽ௞௞

∑ ܽ௜௞ ൅ ௝ܽ௞ െ ܽ௜௞ ௝ܽ௞௞
, ∀ ݅, ݆. 

(1)
 
Now, the proposed bi-objective problem can be formulated as the following non-linear integer model: 
 

minܶܦ ൌ෍ݏ௜௝ݖ௜௟ݖ௝௟
௝வ௜
௟

, 

(2.1)

minܶܫ ൌ෍ܿ௞ݕ௞௟
௞,௟

. 
(2.2)

Subject to: 

෍ݖ௜௟
௟

ൌ 1, ∀	݅, 
(3)

 

෍ݖ௜௟
௜

൑ ܰܲ, ∀	݈, 
(4)

௞௟ݕ ൒
∑ ݀௜ݐ௜௞ݖ௜௟௜

௞ܣ
, ∀ ݇, ݈, 

(5)
௜௟ݖ ∈ ሼ0,1ሽ, ∀	݅, ݈, (6)
,௞௟ is integerݕ ∀	݇, ݈. (7)
 
Objective function (1.1) minimizes the total dissimilarity and objective function (2.2) minimizes the 
total machine investment cost. Constraint (3) ensures that each part is assigned to one cell. Constraint 
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(4) ensures that the cell size limit is not violated. Constraint (5) determines the number of each 
machine type in each cell. Lastly, constraints (6) and (7) indicate the type of decision variables. 
 
The mathematical model presented above is non-linear, due to the presence of the product term ݖ௜௟ݖ௝௟ 
in objective function (2.1). Most non-linear problems are usually much harder to solve optimally than 
linear problems. Here a method from Kaufmann and Broeckx (1978) which has the smallest number 
of variables and constraints is applied to linearize the model. To do this, objective function (2.1) is 
rearranged as follows: ∑ ∑௜௟൫ݖ ௝௟௝வ௜ݖ௜௝ݏ ൯௜,௟ . Now, by introducing a new set of variables ߛ௜௟ to replace 
the ∑ ௝௟௝வ௜ݖ௜௝ݏ  product terms, and also defining constraints (9) and (10), objective function (2.1) is 
linearized as follows: 
 

minܶܦ ൌ෍ߛ௜௟
௜,௟

. 
(8)

Subject to: 

௜௟ߛ ൒෍ݏ௜௝ݖ௝௟
௝வ௜

൅ ሺݖ௜௟ െ 1ሻ෍ݏ௜௝
௝வ௜

, ∀ ݅, ݈,  
(9)

௜௟ߛ ൒ 0, ∀	݅, ݈. (10)
 
To convert the proposed bi-objective model into a single objective one, a weighted sum of objective 
is used as follows: 
 

minݓ′ଵ ൭෍ߛ௜௟
௜,௟

൱ ൅ݓ′ଶ ൭෍ܿ௞ݕ௞௟
௞,௟

൱. 
(11) 

Subject to: (3)–(7), (9) and (10). 
 
In objective function (11), parameters ݓ′ଵ and ݓ′ଶ are defined as follows:  
 

ଵ′ݓ ൌ
ଵݓ

Uܦܶ െ Lܦܶ
, ଶ′ݓ ൌ

ଶݓ
Uܫܶ െ Lܫܶ

. 
(12)

 
where ܶܦL and ܶܦU respectively denote the lower and upper bounds of ܶܦ, and ܶܫL and ܶܫU 
respectively shows the lower and upper bounds of ܶܫ. To determine ܶܦL and ܶܫU we can solve the 
problem with the following objective function: min ߝ ൈ ܦܶ ൅  is a small enough ߝ Where) ܫܶ
number). Also, ܶܦU and ܶܫI can be obtained by solving the problem with the following objective 
function: minܶܦ ൅ ߝ ൈ  .ܫܶ
 
3. Proposed enhanced SA algorithm 
 
SA is a stochastic search method, which imitates the physical annealing of solid for solving 
combinatorial optimization problems. It has been known that the CF problem is one of the NP-hard 
combinational problems (Kazerooni et al., 1997). It means that obtaining optimal solution in a 
reasonable computational time is difficult, especially for large-scale problems. In recent years, SA 
algorithms have been successfully applied by researchers for solving the CF problems (Chiang & 
Lee, 2004; Tavakkoli-Moghaddam et al., 2005; Arkat et al., 2007; Ghosh et al., 2011). These have 
motivated us to employ the SA algorithm for solving the proposed problem. In addition, a dynamic 
programming algorithm is developed to improve the performance of the SA. The main elements of 
the proposed solution approach are explained below. 
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3.1. Generating initial solution 
 
In the SA implementation, each solution must be represented by a coding scheme. In this work, a 
string of randomly generated integer values is used to represent a solution. If a problem involves ܲ 
parts, a permutation of integer values with the length of ܲ bits is needed to encode the solution. This 
string is associated with the sequence of parts at the machine-part matrix, which must be partitioned 
into part families and machine cells. In this way, a dynamic programming algorithm is developed to 
solve the partitioning problem. It should be noted that applying this coding scheme yields only 
feasible solutions and also leads to the reduction of the string length needed to represent a solution 
Chiang and Lee (2004). The proposed solution approach has been illustrated in Fig. 1. 
 

 
Fig. 1. Proposed hybrid solution approach 

 
3.2. Evaluating solutions by dynamic programming 
 
The proposed scheme for encoding the solutions gives only the permutation of parts in the machine-
part matrix and not the part families and the number of machines required in each cells. As it has 
been assumed that the machine cells must be formed independently (i.e., no material movement is 
allowed between the cells), the partition problem can be solved by dynamic programming algorithm. 
Here, a dynamic programming algorithm is presented to partition the permutation of parts into the 
part families and determine the number of machines in each cell under the cell size limit (ܰܲ) and the 
maximum number of cells (ܿ௠௔௫) constraints. 
 
3.2.1 Dynamic programming algorithm 
 
In this section, we show how a dynamic programming approach can be used to solve the partition 
problem. Let ߨ denotes a permutation of ܲ parts. Now, the partition problem can be stated as follows. 
In a permutation of ܲ parts, a breaking node is the part, which forms a part family (or one cell) and 
the node after the breaking node is the beginning for forming the next part family. Let ܾ௟ be the order 
index of node ݈ in permutation ߨ, and ߨሺܾ௟ሻ denotes the part index which has placed in order ܾ௟. The 
partition problem is to find a set of ܮ breaking nodes (ܮ ൑ ܿ௠௔௫) which partition the permutation of 
parts into ܮ part families in such a way that the weighted sum of the total dissimilarity and the total 

2 6 10 7 8 3 9 5 4 1

Cell ௞௟ݕ M/P 2 6 10 7 8 3 9 5 4 1 
1 1 4 0.2 0.2 0.3        
 1 8 0.1 0.3 0.6        
2 1 3     0.4 0.3     
 1 7    0.1 0.5 0.3     
 1 6    0.2  0.2     
3 1 1       0.1 0.4 0.3 0.2
 1 2       0.5  0.2 0.3
 1 3         0.6  
 2 5       0.2 0.2 0.1  

 

Creating a 
permutation of 
parts using SA

Partitioning the permutation of parts 
into the part families and determining 
the number of each machine type in 

each cell using dynamic programming

Design factors: ܥ௠௔௫ ൌ 4	, ܰܲ ൌ ଵݓ,4 ൌ 0.5, ଶݓ ൌ
0.5 
& 

Input parameters: 
M/P 1 2 3 4 5 6 7 8 9 10 ௞ܣ ܿ௄

1 0.2   0.3 0.4   0.1  15 110
2 0.3   0.2     0.5  15 110
3   0.3 0.6    0.4   15 120
4  0.2   0.2    0.3 15 140
5    0.1 0.2    0.2 15 100
6   0.2    0.2    15 130
7   0.3 → ௜௞  0.1ݐ 0.5   15 140
8  0.1   0.3    0.6 15 120
݀௜ 14 10 13 19 10 13 19 16 16 12
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machine investment cost are minimized. Based on these definitions, the partition problem can be 
formulated as the following integer programming model: 
 

min ሻߨሺܥܶ ൌ෍ݓ′ଵܵ௕೗షభ,௕೗ ൅ ௕೗షభ,௕೗ܤଶ′ݓ

௅

௟ୀଵ

. 
(13) 

subject to:  
1 ൑ ܾଵ ൏ ⋯ ൏ ܾ௅ ൌ ܲ, (14) 
ܾ௟ െ ܾ௟ିଵ ൑ ܰܲ, ∀	݈ ൌ 1,… ,  (15) ,ܮ
ܮ ൑ ܿ௠௔௫, (16) 
ܾ଴ ൌ 0, (17) 
 
where ܵ௕೗,௕೗షభ calculates the increased dissimilarity from breaking node ܾ௟ିଵ ൅ 1 to breaking node ܾ௟, 
and ܤ௕೗,௕೗షభ calculates the increased machine investment cost from breaking node ܾ௟ିଵ ൅ 1 to 
breaking node ܾ௟. These parameters are calculated as follows: 
 

ܵ௕೗షభ,௕೗ ൌ ෍ ෍ݏగሺ௜ሻ,గሺ௝ሻ

௕೗

௝வ௜

௕೗ିଵ

௜ୀ௕೗షభାଵ

, 
(18)

௕೗షభ,௕೗ܤ ൌ ෍ܿ௞ අ
∑ గሺ௜ሻ,௞݀గሺ௜ሻݐ
௕೗
௜ୀ௕೗షభାଵ

௞ܣ
ඉ

௞

. 
(19)

 
In Eq. (19) the symbol ۀݔڿ indicates the smallest integer value bigger than ݔ. 
 
Objective function (13) minimizes the weighted sum of the total dissimilarity between the parts and 
the total machine investment cost. Constraint (14) ensures that each part family must contain at least 
one part. Constraint (15) makes sure that the cell size limit is not violated. Constraint (16) restricts the 
number of cells allowed to be formed. Finally, constraint (17) represents that the first cell must be 
partitioned from the first breaking node. 
 
By using the dynamic programming, the partition problem can be sequentially solved in stages from 1 
to ܿ௠௔௫. Let ݈ be the index of stages, ௟݂ሺܾ௟, ܾ௟ିଵሻ indicates the objective function value at stage ݈, 
when at this stage the permutation of parts is partitioned from node ܾ௟ିଵ ൅ 1 to ܾ௟, and ௟݂ିଵ

∗ ሺܾ௟ିଵሻ be 
the optimum objective function value at stage ݈ െ 1, when its breaking node is ܾ௟ିଵ. Therefore, the 
partition problem at stage ݈ can be stated as follows:  
 
௟݂ሺܾ௟, ܾ௟ିଵሻ ൌ ௟݂ିଵ

∗ ሺܾ௟ିଵሻ ൅ ଵܵ௕೗షభ,௕೗′ݓ ൅ ௕೗షభ,௕೗ܤଶ′ݓ . (20)
Subject to: 
maxሼ݈, ܲ െ ሺܿ௠௔௫ െ ݈ሻܰܲሽ ൑ ܾ௟ ൑ minሼܲ, ݈ ൈ ܰܲሽ, (21)
maxሼ݈, ܲ െ ሺܿ௠௔௫ െ ݈ሻܰܲ, ܾ௟ െ ܰܲሽ ൑ ܾ௟ିଵ ൑ minሼܲ, ݈ ൈ ܰܲ, ܾ௟ െ 11ሽ, (22)
 
where ܾ଴ ൌ 0, ଴݂

∗ሺܾ଴ሻ ൌ 0 and ௟݂
∗ሺܾ௟ሻ ൌ min

௕೗షభ
௟݂ሺܾ௟, ܾ௟ିଵሻ. In addition, constraints (21) and (22) 

control the cell size limit and the maximum number of cells constraints to avoid infeasible solution. 
 
Note that, the proposed dynamic programming approach partitions a string of solution into exactly 
 ሻ, and the optimum number ofߨሺ∗ܥܶ ,௠௔௫ cells. Therefore, the optimum objective function valueܥ
cells, ܮ∗ሺߨሻ, for permutation ߨ are obtained as follows: 
 

ሻߨሺ∗ܥܶ ൌ min
ሼ௟|௕೗ୀ௉ሽ

ሼ ௟݂
∗ሺܾ௟ሻሽ and ܮ∗ሺߨሻ ൌ ሼ݈|ܾ௟ ൌ ܲ, ௟݂

∗ሺܾ௟ሻ ൌ ሻሽ. (23)ߨሺ∗ܥܶ
 



  268

The pseudo code of the proposed dynamic programming algorithm is given in Fig. 2. 
Function ܶܥ∗ሺߨሻ 
ሻߨሺ∗ܥܶ — ← ∞ 
— For ݈ ൌ 1 to ܿ௠௔௫ do 
—— For ݅ ൌ maxሼ݈, ܲ െ ሺܿ௠௔௫ െ ݈ሻܰܲሽ to minሼܲ, ݈ ൈ ܰܲሽ do 
——— ௟݂

∗ሺ݅ሻ ← ∞ 
——— For ݆ ൌ maxሼ݈ െ 1, ܲ െ ሺܿ௠௔௫ െ ݈ ൅ 1ሻܰܲ, ݅ െ ܰܲሽ to minሼܲ, ሺ݈ െ 1ሻܰܲ, ݅ െ 1ሽ do 
———— If ௟݂

∗ሺ݅ሻ ൐ ௟݂ିଵ
∗ ሺ݆ሻ ൅ ଵݓ ௝ܵ,௜ ൅  ௝,௜ thenܤଶݓ

————— ௟݂
∗ሺ݅ሻ ← ௟݂ିଵ

∗ ሺ݆ሻ ൅ ଵݓ ௝ܵ,௜ ൅  ௝,௜ܤଶݓ
———— End if 
——— End for 
——— If ݅ ൌ ܲ and ܶܥ∗ሺߨሻ ൐ ௟݂

∗ሺ݅ሻ then 
ሻߨሺ∗ܥܶ ———— ← ௟݂

∗ሺ݅ሻ 
ሻߨሺ∗ܮ ———— ← ݈ 
——— End if 
—— End for 
— End for 
End function 

Fig. 2. Pseudo code of the proposed dynamic programming algorithm for evaluating the optimal 
objective function value of a permutation of parts 

 

3.2.2. An illustration 
 

To illustrate the implementation of the dynamic programming algorithm, an example with 10 parts 
and 10 machines is solved. The input parameters for this example are given in Table 1. For 
simplicity, the purchase prices of all machines are assumed to be 1$. Also, the design factors are 
assumed as follows: ܰܲ ൌ ௠௔௫ܥ ,4 ൌ ଵݓ ,4

′ ൌ 0.2 and ݓଶ
′ ൌ 0.8. The proposed dynamic 

programming algorithm is implemented on typical solution ߨത ൌ ሺ10, 5, 1, 7, 9, 3, 2, 6, 4, 8ሻ to partition 
it into part families and determine the number of machines in each cell. For this permutation, the 
increased dissimilarity, ௜ܵ,௝, and the increased machine investment cost, ܤ௜,௝ of partitioning a cell 
from breaking node ݅ to breaking node ݆ were calculated and reported in Table 2. 
 

Table 1  
Data of the example used in the illustration of the dynamic programming algorithm 
M/P 1 2 3 4 5 6 7 8 9 10 ܣ௞  
1 2.95 0 2.2 0 0 0 0 0 0 4.61 230 
2 2.76 5.18 1.89 3.89 0 5.14 0 0 0 0 230 
3 5.54 4.29 0 0 0 0 0 0 0 0 230 
4 2.91 0 0 1.97 2.59 4.01 0 2.7 0 0 230 
5 0 0 0 4.28 0 4.51 0 0 0 0 230 
6 1.92 0 0 0 0 0 2.23 0 5.52 0 230 
7 0 0 0 0 3.4 0 1.16 4.72 0 2.49 230 
8 0 5.32 0 0 0 0 0 3.75 3.85 0 230 
9 0 0 0 0 0 0 4.04 0 0 1.83 230 
݀௜  33 30 20 11 18 17 46 46 16 23  

 
Table 2  
Main inputs of dynamic programming calculated for the illustrative example 
  ௜ܵ,௝   ܤ௜,௝  
 ሺ݅ሻ  ݅/݆  1 2 3 4 5 6 7 8 9 10  1 2 3 4 5 6 7 8 9 10ߨ
10 1 0 0.75 2.44 4.55 — — — — — —  3 4 7 7 — — — — — — 
5 2  0 0.83 2.44 5.02 — — — — —   2 6 7 9 — — — — — 
1 3   0 0.86 2.44 5.04 — — — —    5 7 9 9 — — — — 
7 4    0 0.75 2.75 5.25 — — —     3 4 6 7 — — — 
9 5     0 1 2.5 5.05 — —      2 4 5 8 — — 
3 6      0 0.75 2.3 3.85 —  2 4 7 7 —
2 7       0 0.8 1.6 4        3 6 6 8 
6 8        0 0 1.6         3 3 5 
4 9         0 0.8          3 5 
8 10          0           3 
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As the maximum number of cells is equal to 4 cells (i.e., ܥ௠௔௫ ൌ 4), the dynamic programming is 
solved in 4 stages. The summary of the computations are reported in Tables 3–6. According to the 
results of Tables 5 and 6 we conclude that partitioning permutation ߨത ൌ ሺ10, 5, 1, 7, 9, 3, 2, 6, 4, 8ሻ 
into 3 cells results in better objective function value, because ଷ݂

∗ሺ10ሻ ൏ ସ݂
∗ሺ10ሻ. Therefore, the 

optimal objective function value, ܶܥ∗ሺߨሻ, and the optimal number of cells, ܮ∗ሺߨሻ, are obtained as 
15.33 and 3, respectively. The final solution is shown in Table 7. 
 

Table 3  
Optimal objective function value at stage ݈ ൌ 1 
  ଵ݂ሺܾଵ, ܾ଴ሻ ൌ 0.2 ൈ ܵ௕బ,௕భ ൅ 0.8 ൈ    ௕బ,௕భܤ
ሺܾଵሻ  ܾଵ  0 ଵ݂ߨ

∗ሺܾଵሻ  ܾ଴
∗  

10 1 2.4 2.4 0
5 2 3.35 3.35 0
1 3 6.088 6.088 0
7 4 6.51 6.51 0
 

Table 4  
Optimal objective function value at stage ݈ ൌ 2 
  ଶ݂ሺܾଶ, ܾଵሻ ൌ ଵ݂

∗ሺܾଵሻ ൅ 0.2 ൈ ܵ௕భ,௕మ ൅ 0.8 ൈ    ௕భ,௕మܤ
ሺܾଶሻ  ܾଶ 1 2 3 4 ଶ݂ߨ

∗ሺܾଶሻ  ܾଵ∗

5 2 4 — — — 4 1
1 3 7.366 7.35 — — 7.35 2
7 4 8.488 9.122 8.488 — 8.488 1, 3
9 5 10.604 11.038 9.438 8.11 8.11 4
3 6 — 11.558 11.438 9.91 9.91 4
2 7 — — 12.738 11.01 11.01 4
6 8 — — — 13.92 13.92 4
 
Table 5  
Optimal objective function value at stage ݈ ൌ 3 
  ଷ݂ሺܾଷ, ܾଶሻ ൌ ଶ݂

∗ሺܾଶሻ ൅ 0.2 ൈ ܵ௕మ,௕య ൅ 0.8 ൈ    ௕మ,௕యܤ
ሺܾଷሻ  ܾଷ  2 3 4 5 6 7 8 ଷ݂ߨ

∗ሺܾଷሻ ܾଶ∗

3 6 12.208 12.7 11.888 9.71 — — — 9.71 5
2 7 — 14 12.988 11.46 12.31 — — 11.46 5
6 8 — — 15.898 14.17 14.87 13.41 — 13.41 7
4 9 — — — 14.48 15.03 13.41 16.32 13.41 7
8 10 — — — — 17.11 15.33 18.08 15.33* 7
 
Table 6  
Optimal objective function value at stage ݈ ൌ 4 
  ସ݂ሺܾସ, ܾଷሻ ൌ ଷ݂

∗ሺܾଷሻ ൅ 0.2 ൈ ܵ௕య,௕ర ൅ 0.8 ൈ     ௕య,௕రܤ
ሺܾସሻ  ܾସ  6 7 8 9 10 ସ݂ߨ

∗ሺܾସሻ  ܾଷ∗

8 10 16.91 15.78 17.57 15.81 — 15.78 7 

 
Table 7  
Optimal partitioning of solution ߨത ൌ ሺ10, 5, 1, 7, 9, 3, 2, 6, 4, 8ሻ 
  Number of each machine type in each cell 
 Part families M1 M2 M3 M4 M5 M6 M7 M8 M9 
Cell 1 10, 5, 1, 7 1 1 1 1 0 1 1 0 1
Cell 2 9, 3, 2 1 1 1 0 0 1 0 1 0
Cell 3 6, 4, 8 0 1 0 1 1 0 1 1 0

 
3.3. Cooling schedule and moving to a neighboring solution 
 

SA algorithm works with a controlled cooling schedule, which is also called the annealing schedule. 
Starting from initial temperature ଴ܶ, the temperature is gradually decreased through a pre-determined 
cooling schedule. The most commonly used cooling function is the geometric decrement function, 
௧ܶ ൌ ߙ ൈ ௧ܶିଵ, first proposed by Kirkpatrick et al. (1983). Where ߙ is the cooling rate and takes value 

between 0 and 1. In this study, this function is used to decrease the temperature. The value of the 
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temperature at the beginning of the schedule should be large enough so that most of the initial 
movements are accepted. However, as the temperature reduces, the probability of accepting a non-
improving solution reduces. To calculate the initial temperature, we modify and combine the 
approaches proposed by (Tavakkoli-Moghaddam et al., 2008; Ghezavati & Saidi-Mehrabad, 2011). 
So, the initial temperature can be calculated as follows: 
 

଴ܶ ൌ
∑ หܶܥ∗൫ߨ௡

ଵ൯ െ ௡ߨ൫∗ܥܶ
ଶ൯หଵ଴଴

௡ୀଵ

െ100 ൈ lnሺ0.95ሻ
, 

(24)
 
where ߨ௡

ଵ  and ߨ௡
ଶ  are two randomly generated solutions at ݊th trial. 

 
At each iteration (temperature), a generation mechanism called Move is applied to transform the 
current solution into a neighboring (new) solution. Three move operators are proposed, namely Swap, 
Change and Inverse operators. The Swap operator swaps the order of two randomly selected parts. 
The Change operator changes the order of a randomly selected part. The Inverse operator reverses the 
order of parts between two randomly selected points. To illustrate these operators assume that the 
current solution is ߨതCurrent ൌ ሺ5, 3, 6, 1, 8, 2, 4, 7ሻ, if the order of part 2 is changed to 3 (Change 
operator), the neighboring solution becomes ߨതNew ൌ ሺ5, 3, 2, 6, 1, 8, 4, 7ሻ. If parts 3 and 8 are chosen 
for swapping (Swap operator), the neighboring solution becomes ߨതNew ൌ ሺ5, 8, 6, 1, 3, 2, 4, 7ሻ. Lastly, 
if the orders between parts 1 and 4 are inverted (Inverse operator), the neighboring solution becomes 
തNewߨ ൌ ሺ5, 3, 6, 4, 2, 8, 1, 7ሻ. It should be noted that these operators are performed on the current 
solution independently to derive a neighboring solution. 
 

Set ሺ ଴ܶ, ,ܫ ܰ௠௔௫,  ሻߙ
௧ܶ ← ଴ܶ 
ݐ ← 1 
generateሺߨതCurrentሻ 
തBestߨ ←  തCurrentߨ
Repeat 
— ݊ ← 0 
— Repeat 
—— ݉ ← ݉൅ 1 
—— Case Randomሼ0, … ,6ሽ of 
തNewߨ :0 ——— ← SwapሺߨതCurrentሻ 
തNewߨ :1 ——— ← ChangeሺߨതCurrentሻ 
തNewߨ :2 ——— ← InverseሺߨതCurrentሻ 
തNewߨ :3 ——— ← Swap and ChangeሺߨതCurrentሻ 
തNewߨ :4 ——— ← Swap and InverseሺߨതCurrentሻ 
തNewߨ :5 ——— ← Change and InverseሺߨതCurrentሻ 
തNewߨ :6 ——— ← Swap, Change and InverseሺߨതCurrentሻ 
—— End case 
—— Δ ← തNewሻߨሺ∗ܥܶ െ  തCurrentሻߨሺ∗ܥܶ
—— If Δ ൏ 0 or ܷሺ0,1ሻ ൏ expሺെΔ ௧ܶ⁄ ሻ then 
തCurrentߨ ——— ←  തNewߨ
——— ݊ ← ݊ ൅ 1 
——— If ܶܥ∗ሺߨതNewሻ ൏  തBestሻ thenߨሺ∗ܥܶ
തBestߨ ———— ←  തNewߨ
——— End if 
—— End if 
— Until ݊ ൌ ܰ௠௔௫ 
ݐ — ← ݐ ൅ 1 
— ௧ܶ ← ߙ ൈ ௧ܶ 
Until ݐ ൌ  ܫ

Fig. 3. Pseudo code of the proposed SA algorithm 
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After generating a neighboring solution, the change in the objective function value is calculated by 
Δ ൌ തNewሻߨሺ∗ܥܶ െ  തCurrentሻ. If the change in each transition represents a reduction in theߨሺ∗ܥܶ
objective function value i.e., Δ ൏ 0, the transition to the new solution is accepted. Otherwise, the non-
improving solution is accepted with a specified probability function expሺെΔ ௧ܶ⁄ ሻ. Accepting non-
improving solutions enables the SA to avoid the entrapment in local optima. This mechanism at each 
temperature is repeated until ܰ௠௔௫ accepted transitions are met. Where ܰ௠௔௫ is proportional to the 
length of string used in the solution encoding (i.e., ܰ௠௔௫ ൌ ܰ ൈ ܲ). 
 
3.4. Stopping criteria 
 
The proposed SA algorithm is terminated when a specified number of iterations, ܫ, is reached. The 
detailed steps in the implementation of the proposed SA algorithm are given in Fig. 3. 
 

4. Experimental studies 
 

The proposed dynamic programming-enhanced SA algorithm was coded in the Embarcadero Delphi 
XE programming language and implemented on a Windows 7 PC with 2.4 GHz CPU and 2 GB 
RAM. As the quality of solution is usually sensitive to the SA parameters, experimental tests are 
conducted to set the SA parameters. Then, the performance of the SA is evaluated in two sections. In 
the first section, a set of randomly generated instances are solved by the SA, and the results are 
compared with the solutions obtained by the B&B method. In the second section, numerical examples 
adopted from the literature are solved by the SA algorithm and the results are compared with those 
from the literature. 
 

4.1. Parameter settings for SA 
 

As widely known, settings of SA parameters critically affect the solution efficiency and effectiveness. 
The parameters of the proposed SA algorithm include: cooling rate (ߙ), number of accepted 
transitions at each iteration (ܰ௠௔௫) and number of iterations (ܫ). The value of each parameter is 
selected from a set of predefined values given in Table 8. It should be noted that these values have 
been obtained based on our initial computational experience and the result of similar algorithms in the 
literature. Five test problems with ܲ ൌ 15, 20, 25, 30, 35 are used in the parameter settings. The input 
parameters of these test problems are generated randomly according to Table 9. In this table, the term 
“ܷ” implies uniform distribution and the term ‘∑ ܽ௜௞௞ ’ denotes the number of operations of each part 
which is selected randomly between 3 and 5. All the problems are investigated for ݓଵ ൌ ଶݓ ൌ 0.5. 
To calculate ݓ′ଵ and ݓ′ଶ, we first determine ܶܦL, ܶܦU, ܶܫL and ܶܫU. In this way, the SA algorithm is 
solved two times regarding the following objective functions: min ߝ ൈ ܦܶ ൅ ܦand minܶܫܶ ൅ ߝ ൈ  ܫܶ
(the first objective function gives ܶܦU and ܶܫL, and the second one gives ܶܫU and ܶܦL). We then 
obtain ݓ′ଵ and ݓ′ଶ using Eq. (12). 
 
Table 8  
Experimental factors and their levels 
Parameter Range 
 Cooling rate (0.6, 0.65, 0.7, 0.75, 0.8) :ߙ
ܰ (ܰ௠௔௫ ൌ ܰ ൈ ܲ: No. accepted transitions at each iteration) (2, 3, 4) 
 No. iterations (20, 30, 40) :ܫ

 
Table 9  
Data set generation 
ۀ2/ܲڿ  ܯ ൅ 2  ∑ ܽ௜௞௞   Randomሼ3, 4, 5ሽ  
௜௞ݐ  ۀ5/ܲڿ  ௠௔௫ܥ ܷ~ሺ0.2, 0.8ሻmin, ∀ ܽ௜௞ ൌ 1
݀௜  ܷ~ሺ10, 20ሻ  ܰܲ  7 
,௞  ܷ~ሺ20ܣ 30ሻmin  ݓଵ 0.5 
ܿ௞  ܷ~ሺ500, 1000ሻ	$ ଶݓ 0.5 
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For each combination of parameters, each example was solved 10 times (in total 5 ൈ 10ሺ5 ൈ 3ଶሻ ൌ
2250 experiments were done) and Minitab 16 software was used to analyze the results. The effects of 
parameters on the solution quality and computation time are plotted in Figs. 3 and 4, respectively. To 
select the best combination of parameters, we consider the trade-off between the solution quality and 
computation time. As it can be seen in Figs. 4 and 5, decreasing ߙ from 0.7 to 0.6, increasing ܫ from 
30 to 40 and increasing ܰ from 3 to 4 does not improve the solution quality meaningfully, but it 
significantly increases the computation time. According to these plots, the parameters of the SA 
algorithm are obtained as follows: ߙ ൌ ܫ ,0.7 ൌ 30 and ܰ ൌ 3 (the trade-off points have been 
highlighted in Figs. 4 and 5). 
 

 
Fig. 4. Effect of parameters on solution quality 

 

 
Fig. 5. Effect of parameters on computation time 

 
4.2. Comparison with B&B 
 
Twenty one instances with ܲ ൌ 10,… ,30 are used to evaluate the performance of the proposed SA 
algorithm against B&B algorithm, available in the Lingo 11 optimization package. The parameters of 
these instances are generated randomly according to Table 9. For all the problems we assume that 
ଵݓ ൌ ଶݓ ൌ 0.5, and calculate ݓ′ଵ and ݓ′ଶ as explained in Section 4.1. As it was mentioned before, 
the CF problems are NP-hard. Hence, some problems may not be solved optimally by the Lingo in an 
acceptable amount of time. Thus, the solver is interrupted after 7200 seconds (2 hours) and the 
optimality gap (the relative gap between current feasible solution and best bound on optimal solution) 
is reported. From the other side, due to the stochastic nature of the SA algorithm, each problem is 
solved 30 times and the best result is considered for comparison. Table 10 demonstrates the results of 
comparison. The columns of this table are defined as follows: the best objective function value 
obtained by the Lingo (ܶܥB&B), the bound on the objective function value (ܶܥBound), the time spent on 
solving the problems by the Lingo ( Bܶ&B), the relative gap between the objective function value and 

its bound (Opt. Gap), where Opt. Gap ൌ ቀ
்஼B&Bି்஼Bound

்஼B&B
ቁ ൈ 100, the best objective function value 

found in 30 runs of the SA (ܶܥBest), the mean of CPU times in 30 runs of the SA ( SܶA), the mean of 
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the objective function values (்ߤ஼), the standard deviation of the objective function values (்ߪ஼), the 
number of times that the solution of the SA is better than that obtained by the Lingo (ܴ), and the 

relative gap between ܶܥBest and ܶܥB&B(Gap), where Gap ൌ ቀ
்஼B&Bି்஼Best

்஼B&B
ቁ ൈ 100. 

 
Table 10  
Summary of comparison between the Lingo (B&B) and SA solutions 
 B&B (Lingo)  SA  
Problem size 
(ܲ ൈܯ ൈ  (௠௔௫ܥ

Bound  Bܶ&Bܥܶ  B&Bܥܶ ሺݏሻ  Opt. Gap 
(%) 

஼்ߪ  ஼்ߤ  Best  SܶA(s)ܥܶ    ܴ  Gap 
(%) 

10×7×2 5.0637 5.0637 1 0.00  5.0637 0.054 5.0637 0 30 0.00 
11×8×3 1.7740 1.7740 20 0.00  1.7740 0.113 1.774 0 30 0.00 
12×8×3 1.9420 1.9420 82 0.00  1.9420 0.139 1.942 0 30 0.00 
13×9×3 2.6699 2.6699 286 0.00  2.6699 0.183 2.6713 0.0028 27 0.00 
14×9×3 2.3722 2.3722 520 0.00 2.3722 0.222 2.3864 0.0193 25 0.00
15×10×3 5.3706 5.3706 1584 0.00  5.3706 0.294 5.4134 0.0698 21 0.00 
16×10×4 2.1074 1.6601 >7200 21.23  2.1074 0.417 2.1175 0.0081 26 0.00 
17×11×4 2.1741 1.6307 >7200 24.99  2.1475 0.532 2.1709 0.0290 21 1.22 
18×11×4 2.0623 1.4838 >7200 28.05  2.0384 0.623 2.0486 0.0164 24 1.16 
19×12×4 2.7085 1.9512 >7200 27.96  2.6787 0.733 2.7072 0.0200 21 1.10 
20×12×4 2.2648 1.5771 >7200 30.36  2.2180 0.823 2.2408 0.0224 28 2.07 
21×13×5 1.8171 1.2110 >7200 33.36  1.7632 1.178 1.7812 0.0156 30 2.97 
22×13×5 3.1555 2.1207 >7200 32.79  3.0378 1.177 3.0675 0.0306 30 3.73 
23×14×5 3.0831 1.8643 >7200 39.53  2.9511 1.570 2.9747 0.0185 30 4.28 
24×14×5 2.9922 1.7297 >7200 42.19  2.8923 1.689 2.9205 0.0247 30 3.34 
25×15×5 3.5653 1.9913 >7200 44.15  3.4155 1.915 3.4392 0.0213 30 4.20 
26×15×6 2.1712 1.1261 >7200 48.13  1.9639 2.468 1.9844 0.0217 30 9.55 
27×16×6 2.0906 1.0108 >7200 51.65  1.9469 2.856 1.9621 0.0185 30 6.87 
28×16×6 2.4578 1.2931 >7200 47.39  2.2474 3.039 2.2796 0.0202 30 8.56 
29×17×6 2.5932 1.2535 >7200 51.66  2.3738 3.477 2.4126 0.0304 30 8.46 
30×17×6 2.8376 1.2527 >7200 55.85  2.6225 3.745 2.6641 0.0217 30 7.58 

 
The problems with ܲ ൌ 10, 11, … , 15 were solved optimally by the Lingo. However, the remaining 
problems were not solved optimally in 2 hours. As it can be seen in column “Opt. Gap”, by increasing 
the problem size the optimality gap increases. This implies the complexity of the problem. From the 
other side, the results show that in all the problems the solution of the SA is better than or at least the 
same as that obtained by the Lingo. For these problems, the average times that the SA algorithm 
found better solution than B&B is almost equal to28 out of 30 runs. In addition, the standard 
deviation of the objective function values are very small and the mean of the objectives function 
values are very close to the best objective function values. These demonstrate that the SA algorithm is 
able to consistently produce good solutions. Moreover, the results indicate that the SA algorithm is 
able to solve the problems in a very short time (less than 4 seconds) compared to the B&B algorithm. 
 
4.3. Comparison with other studies 
 
In this section, twelve problems in different sizes have been selected from the literature. For some 
problems all of the necessary information was not available in the source papers, so we added the 
required parameters to the original problems. Table 11 shows the source, size and the parameters 
added to each problem. For all the problems we assume that ݓଵ ൌ ଶݓ ൌ 0.5, and calculate ݓ′ଵ and 
 ଶ as explained in Section 4.1. These problems are solved by the proposed SA algorithm and the′ݓ
results are compared with those reported in the literature. As it was mentioned in Section 2, most of 
studies dealing with the CF problem do not consider machine duplication in the problem formulation, 
hence to be able to compare the results we have to calculate the number of each machine type in each 
cell regarding the part family results available in the literature. The summary of comparison is given 
in Table 12. In this table column “Imp. (%)” shows the improvement percent in the objective function 

value and is defined as follows: Imp ൌ ቀ
்஼Litି்஼SA

்஼Lit
ቁ ൈ 100; where ܶܥSA is the best objective function 



  274

value found in 30 runs of the SA algorithm and ܶܥLit is the objective function value calculated for the 
solution reported in the literature. 
 
Table 11  
Characteristic of the problems selected from the literature  
Problem 
No. 

Source Size 
(ܲ ൈܯ) 

݀௜  ݐ௜௞  ܣ௞  ܿ௞  

1 Solimanpur et al. (2004) 8×10 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ20, 30ሻ  ܷ~ሺ500, 1000ሻ
2 Arıkan and Güngör (2009) 10×9 — — — — 
3 Onwubolu and Mutingi (2001) 15×10 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ20, 30ሻ  ܷ~ሺ500, 1000ሻ
4 Chang and Lee (2000) 18×4 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ 50 500 
5 Balakrishnan and Jog (1995) 19×12 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ20, 30ሻ  ܷ~ሺ500, 1000ሻ
6 Aktürk and Balkose (1996) 20×10 — — — — 
7 Adil and Rajamani (2000) 20×20 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ20, 30ሻ  ܷ~ሺ500, 1000ሻ
8 Saeedi et al. (2010) 25×15 — ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ100, 150ሻ  ܷ~ሺ500, 1000ሻ
9 Filho and Tiberti (2006) 30×15 — — 1000 ܷ~ሺ500, 1000ሻ
10 Chang and Lee (2000) 30×16 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ 50 ܷ~ሺ500, 1000ሻ
11 Saeedi et al. (2010) 35×20 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ20, 30ሻ  ܷ~ሺ500, 1000ሻ
12 Chan et al. (2006) 43×16 ܷ~ሺ10, 20ሻ ܷ~ሺ0.2, 0.8ሻ ܷ~ሺ20, 30ሻ  ܷ~ሺ500, 1000ሻ

 
The results of Table 12 show that in all the problems (except for problems 3, 5 and 9) both the total 
dissimilarity, ܶܦSA, and the total machine investment cost, ܶܫSA, obtained by the SA algorithm are 
better than those obtained for the solution reported in the literature. In addition, it can be seen that in 
all the problems the objective function value of the SA algorithm, ܶܥSA, is considerably better than 
that calculated for the solution reported in the literature. For these problems, the average 
improvement in the objective function value is equal to 13.47%. 
 
Table 12  
Result of Comparison for the problems selected from the literature 
 Design parameters  Literature SA  
Problem No. ܥ௠௔௫  ܰܲ   ܶܦLit  ܶܫLit Litܮ Litܥܶ SAܦܶ SAܫܶ SAܮ  (%) .SA  Time (s) Impܥܶ
1 4 4  4.133 12486 3 2.367 2.1167 11898 4 1.968 0.04 16.86 
2 4 4  9.083 1770340 3 5.015 4.900 1525317 4 4.180 0.09 16.65 
3 4 7  4.333 11477 3 3.564 3.333 12327 4 3.498 0.30 1.86
4 5 10  28.000 4000 2 2.453 3.667 4000 4 1.480 0.36 39.67 
5 5 10  35.535 27063 3 2.584 35.918 22907 3 2.246 0.65 13.06 
6 5 10  35.876 2910 4 1.452 22.287 2448 4 1.140 0.77 21.49 
7 5 10  28.610 32682 4 3.005 27.371 30909 4 2.845 1.45 5.34 
8 6 10  30.431 33844 4 1.764 28.315 30095 4 1.582 2.20 10.32 
9 6 10  14.505 15142 3 1.312 5.600 22908 5 1.295 2.85 1.32 
10 6 10  51.237 28596 4 1.842 46.325 25568 5 1.650 3.56 10.39 
11 6 10  92.458 38836 4 3.231 61.023 35796 6 2.795 6.99 13.49 
12 6 15  108.348 31223 5 2.425 87.783 28131 6 2.153 12.66 11.21 

 
5. Conclusions 
 
In this paper, a SA algorithm was developed to solve a bi-objective CF problem with duplicate 
machines. In the proposed SA algorithm each solution was represented by a permutation of parts and 
a dynamic programming algorithm was employed to partition this permutation into part families and 
determine the number of each machine type in each cell such that the total dissimilarity between the 
parts and the total machine investment cost are minimized. After setting the SA parameters using 
statistical experiments, a set of randomly generated instances were used to compare the SA algorithm 
against the B&B algorithm. The results indicated that the SA algorithm is able to find optimal 
solution in a very short computational time. In addition, several numerical examples adopted from the 
literature were solved by the proposed SA algorithm and the results were compared to those from the 
literature. It was showed that the proposed SA algorithm gives much better results than the others for 
all problems with an average improvement of 13.47% in the objective function value. 
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