
* Corresponding author. Tel: +989132839152
E-mail addresses: siamakkh64@yahoo.com (S. Khaksar Haghani)

© 2014 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.dsl.2014.2.002

Decision Science Letters 3 (2014) 411–430

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

An evaluation of the software architecture efficiency using the Clichés and behavioral diagrams
pertaining to the unified modeling language

Siamak Khaksar Haghania*, Yousef Abbasnejada and Ali Harounabadib

aDepartment of Computer Science, International Kish Branch, Islamic Azad University, Kish, Iran

bFaculty of Computer Science, Central Tehran Branch, Islamic Azad University, Kish, Iran

C H R O N I C L E A B S T R A C T

Article history:
Received October 15, 2014
Accepted January 24, 2014
Available online
February 4 2014

 The software architecture plays essential role for the development of the complicated software
systems and it is important to evaluate the software architecture efficiency. One way to evaluate
the software architecture is to create an executable model from the architecture. Unified
Modeling Language (UML) diagrams are used to describe the software architecture. UML has
made it easy to use and to evaluate the necessary requirements at the software architecture
level. It creates an executable model from these diagrams; yet, since the UML is a standard
semi-formal language for describing the software architecture, evaluating the software
architecture is not directly possible through it. Furthermore, in order to evaluate the software
architecture, one needs to turn the actual model into the formal model. In this study, first we
describe the architecture using the UML. Then, some properties of the software architecture are
mentioned using the UML sequence diagram, deployment diagram, use case diagram, and
component diagram. The necessary information associated with the qualitative characteristic of
efficiency will be margined as clichés and labels to these diagrams. The independent and
dependent components will be extracted from the component diagram. Finally, the resulted
semi-formal model will be mapped into a formal model based on the colored Petri net and
finally the evaluation will take place.

© 2014 Growing Science Ltd. All rights reserved.

Keywords:
Software Architecture
Unified Modeling Language
Efficiency Evaluation
Colored Petri Net

1. Introduction

With an increase in the number of complicated software systems usages, it is essential to develop
their principles and methodologies to meet all desired properties. It normally costs less to evaluate
these properties in early stages before the design and implementation phase. The software
architecture, as the first product, plays essential role for the development of the complicated systems.
Therefore, we may evaluate the behavior of the system, i.e. qualitative attributes, such as security,
reliability, changeability, response time and efficiency. One alternative solution strategy for
evaluating the software architecture is to build an executable model from the architecture. An

 412

executable model from the architecture is considered as a formal description of that architecture that
allows us to view and to study the behavior before implementing the architecture (Clements & Klein,
2002; Kogut & Clements, 1995; Wang et al., 2006). The Unified Modeling Language (UML) is a
standard, semi-formal language intended for the easy description of the software architecture, and it is
used to meet the necessary requirements in software engineering. The utilized techniques in UML can
cope with some certain tasks. Since UML is not a formal model, the software systems evaluation is
not directly possible through it. Hence, the actual model should be transformed into the formal model
in order for us to evaluate the efficiency.

There are various formal models to explain an executable architecture such as the colored Petri nets,
queue nets, simulation nets, procedural algebra, etc. Among the pre-mentioned models, the colored
Petri nets have received more attentions because of their simplicity and high capability. The colored
Petri nets can be useful since they have a powerful mathematical support for modeling the behavior in
this field. Efficiency and proper response time are among the important subject matters in designing,
developing, and implementing the systems. Many designers are looking for some special
circumstances to produce software with high efficiency in less production time, cost and necessary
maintenance. One way to tackle this problem is to evaluate and to analyze the software efficiency in
the preliminary stages of the software production process. In fact, the main problem here is to find out
how to evaluate and how to analyze the system architecture using the documentations prior to the
production of a software system. Presenting an effective method to evaluate and to analyze the
efficiency based on the software architecture may contribute in driving a software project
successfully forward (Clements & Klein, 2002; Kumar & Jaspernete, 2012).

2. Research literature

2.1. The software architecture

The software architecture identifies most parts of software as components; but it does not proceed to
the internal parts and data structures. Besides the structure, the architecture looks at the behavior of
the system too. In fact, it can be said that the software architecture builds a relationship between the
structure and the behavior of the components. The primary concern of the software architecture is on
the components and connectors as important elements and parts of the architecture. A set of
components with their own characteristics interact with each other via the connectors, which have in
turn their own descriptive characteristics. They form the architecture of a software system as a
specific configuration (Clements & Klein, 2002; Pettit IV & Gomaa, 2003, 2004; Skene &
Emmerich, 2003).

2.1.1 The software architecture parts

The software architecture parts include components, connectors, interface and configuration.
Components participate as primary blocks and computational entities in system construction. They
perform tasks via their internal computations and external communications. A component
communicates with the environment via one or more ports. Connector defines the interactions among
the components and describes the rules by which they are governed. A connector connects the ports
of two or more components. Interface is the interaction between the components and connectors or
external environments. Configuration is sometimes mentioned as topology is a connected graph made
up of components and connectors, which describes the architecture structure (Clements & Klein,
2002; Musa, 1993).

2.1.2 The Software Architecture Production Phases

The software architecture production phase includes the following activities:

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

413

1. Understanding the requirements: There are several ways to necessary extract the requirements. One
very basic way to understand the requirements of a system under production is to determine the
change domain and the differences of that system compared with the older similar systems.

2. The architecture creation or selection: Generally, in order to create the architecture, a technique is
proposed in which the design method is produced, flexibly. This method is supposed to take a firmer
shape during the designing process according to the requirements of the desired system.

3. The architecture documentation is the most important phase of the architecture production.
Documentation should be tangible for the common users. However, it should have sufficient details
so that it could provide the working program and technical plans to carry out a full analysis of the
system.

4. The architecture illustration: The expository model should contain useful unambiguous information
that is easy to read for the individuals in various fields. There are many techniques for displaying and
illustrating the architecture such as the Petri nets for modeling the system. They receive so much
attention due to their simplicity and high capabilities.

5. The architecture evaluation: In order to prevent wasting the time and cost, which occurs due to the
improper selection of the architecture, describing a formal architecture that is evaluative prior to the
system implementation is very essential.

6. The system implementation based on the architecture: In this phase, it is essential that the system
developers are committed to the structure and communicative protocols based on the whole
architecture.

7. Ensuring the proper implementation of the architecture: At the end, when the architecture is
constructed, it could be transferred into the maintenance phase. In this phase, it has to be guaranteed
that the architecture is still committed to its displayed form (Clements & Klein, 2002).

2.1.3 The software architecture evaluation

In order to save the necessary time and cost because of an improper architecture selection, it is
important to describe a formal evaluative architecture prior to the system implementation. Generally,
the advantages of the architecture can be listed as prioritization of the qualitative attributes,
improvements to the architecture documentations quality, improvements to the software architecture
quality, reduction of risks, paying less cost for implementing the necessary changes in the system.

2.1.4 Creating an executable model from the software architecture

After the architecture products have been made using a codified step-by-step approach, it is necessary
to create an executable model to evaluate the software architecture using the created products. We
may utilize the model for logical and behavioral evaluation. An executable model from the
architecture is considered as a formal description to study the behavior of the final system prior to the
architecture implementation. Therefore, we may try to implement the architecture more confidently
and to prevent extra cost and even its failure (Emadi, 2008).

2.1.5 The qualitative properties of the software architecture

The qualitative properties are the irresponsibleness requirements of the system that largely determine
the style of the architecture. Architecture is the first step toward software production in which the

 414

qualitative requirements can be traced. The qualitative attributes are true in all phases of design,
implementation and transfer. The qualitative properties can be classified into two categories in terms
of evaluation.

2.1.6 Efficiency

Efficiency is a qualitative attribute of the software, which indicates how well the software works with
regards to the time-related issues. Efficiency is evaluated using the response time or the operational
power. The response rate and the scalability are the two efficiency criteria with direct relationship
with the system efficiency. The efficiency evaluation in the software development process leads to a
reduction in necessary expenses, development risk, etc.

2.2. The Unified Modeling Language

UML is a modeling language used to evaluate and to design object-oriented systems. UML is a
language for specification, illustration, construction and documentation of the software systems
products, commercial system and other non-software systems.

2.3 The Petri nets

Carl Adam Petri is believed to be the first who proposed the Petri nets theory in 1962. Utilization of
the Petri nets to evaluate the software architecture and construction of a formal model received so
much attention because of the simplicity and capabilities. The Petri nets are displayed graphically and
harbor a defined meaning and a well-defined structure. The Petri nets have a long history and include
numerous algorithms to analyze these nets. There are many software programs for simulation of these
Petri nets, which allow for easy net design, simulation and analysis of the net performance. The Petri
nets have a mathematical framework for analysis, validation, veracity confirmation and efficiency
evaluation (Reisig, 1985).

Fig. 1. A simple Petri net (Reisig, 1985)

2.3.1 The colored Petri nets

The colored Petri nets were introduced as a developed model from the Petri nets. In these nets,
concepts such as ‘terms’, ‘protection’ and ‘color’ are introduced as well. The colored Petri nets take
advantage of the capabilities of simple Petri nets and the programming languages. The data values in
these nets are carried by the tokens. The colored Petri nets present precise models from the
convoluted asynchronous processing systems CPN= (P, T, C, I-, I+, M0) which is as follows:

● P is a finite and non-empty set of locations.
● T is a finite and non-empty set of transitions.
● Intersection of two sets P and T is empty (null).
● C is a color function that is a mapping from the P∪T set to the non-empty set.
● I- and I+ are the progressive and recessive confluence functions that are defined on PൈT.

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

415

● M0 is a function that is defined on P and describes the primary demarcation in a way that for each p
that is a member of P, the M0(p) ε C(p) relation is true (Li & Yu., 2001).

■ The colored Petri nets include colored sets, locations, transitions, arcs, variables, protections and
the code section.

■ The colored sets of the colored Petri nets: In colored Petri net, each token keeps a color set and only
it can take those values defined by the same color set.

■ The locations of the colored Petri nets: In one CPN, a location is represented by an oval. This
location includes zero, one or more tokens from a colored set, which is attributed to each location
from the CPN. This indicates the token type that location can have.

■ The transitions in the colored Petri nets: In a colored Petri Net, a transition is presented with a
rectangle, which have simple behaviors such as moving the tokens from one place to another
(Fukuzawa & Saeki, 2002).

■ The arcs in the colored Petri nets: Arcs connect the locations to the transitions (input arcs) and
transitions to the locations (output arcs). An expression is attributed to each arc and An arc expression
keeps a form of a set, which specifies some characteristics: In input arcs, it is the tokens composition
that should be presented in the input arc so that the transition could be enabled. In output arcs, it is the
tokens composition, which would be created in the output locations when the transition is enabled
(Fukuzawa & Saeki, 2002).

■ The variables in the colored Petri nets are introduced to provide more flexibility when we model a
system, they are defined for a set of colors and used exactly the same way as the colors are used in
the arcs.

■ The protections in the colored Petri nets: A protection is a Boolean expression attributed to a
transition and adds more conditions for enabling, on variables in the input arc expression. A transition
with a protection is enabled when the number of tokens in the input location is similar to the input arc
expression and the protection condition is met.

■ The code section in the colored Petri nets: The code section is a piece of code, which accompanies
a transition (Fukuzawa & Saeki, 2002; Makaruk et al., 2005).

2.4. The efficiency evaluation of the software architecture using the sub-index of properties such as
efficiency, time and their clichés

Fig. 2 shows a general efficiency model (Group, 2005), which shows the basic abstractions and the
relationships that are used in efficiency analysis. This model maps the domain model class onto the
existing clichés in the modeling language. According to this figure, the class attributes will be
mapped onto the mapping labels.

Fig. 2. The general model of efficiency (Group, 2005)

 416

The primary objective of this index is to identify the requirements associated with the timing analysis
and the efficiency of UML models. The main clichés under the time and efficiency index are as
follows:

<<PAclosedload>> ،<<PAopenload>> ،<<PAresource>> ،<<PAhost>> ،<<PAstep>>

2.4.1 cliché <<PAcontext>>

This cliché models a field of efficiency analysis. The basic classes for which this cliché is used are
shown in Table 1. This cliché lacks any labels.

Table 1
Cliché <<PAcontext>> and its labels

Base class Stereotype
Collaboration
Collaboration Instance Set
Activity Graph

<<PAcontext>>

2.4.2 The clichés <<PAopenload>>, <<PAcloseload>>

In the efficiency models, each scenario is performed by the users with a specific intensity called the
‘workload’. In other words, the workload specifies the requesting intensity for executing a specific
scenario and the required response time or estimation for that workload, which incorporates the close
or open workload. A closed workload has a fixed number of tasks, which move along the scenario
executions. If the number of requests to the system is unlimited, the system has an open workload and
shows a population in which the input rate to the system is depicted as predefined patterns with
population being a variable. Table 2 and Table 3 show the <<PAclosedload>> and <<PAopenload>>
respectively along with their labels.

Table 2
The cliché <<PAcloseload>> with its labels
Stereotype Base Class Tags
<<PAclosedload>> Method

Stimulus
Message
Action State
Subactivity State
Action
Operation
Method
Reception

PArespTime
PApriority
PApopulation
PAextDelay

Table 3
The cliché <<PAopenload>> with its labels

Stereotype Base Class Tags

<<PAopenload>> Message
Stimulus
Action State
Subactivity State
Action
Action Execution
Operation
Method
Reception

PArespTime
PApriority
PAoccurrence

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

417

2.4.3 The cliché <<PAhost>>

This cliché models a processing source. In the first phase, this cliché is used in the field of efficiency.
Table 4 includes the basic classes and the labels pertaining to the cliché.

Table 4
The cliché <<PAhost>> with its labels
Stereotype Base Class Tags
<<PAhost>> Classifier

Node
ClassifierRole
Instance
Partition

PAutilization
PAschdpolicy
PArate
PActxtswT
PAprioRange
PApreemptable
PAthroughput

2.4.4 The cliché <<PAstep>>

This cliché models an inactive source in an efficiency analysis scenario. The scenarios will be
combined with the previous and next relationships with the help of levels. A level is a basic operation
that is defined by a sub-scenario. Meanwhile, each level has a limited time for execution, the
probability of execution, repetition count and an arbitrary time interval between each two repetitions.
The basic classes and their defined labels are shown in Table 5.

Table 5
The cliché <<PAstep>> with its labels
Stereotype Base Class Tags
<<PAstep>> Message

Stimulus
Action State
Subactivity State

PAdemand
PArespTime
PAprob
PArep
PAdelay
PAextOp
Painter
Val

3. Research background

According to Motameni et al. (2008), it is possible to turn the fuzzy activity diagram into the fuzzy
Petri net using an algorithm. This diagram is applied to illustrate the actions existing in the fuzzy
nondeterministic systems which is indicative of the dynamic aspect of the software architecture. Also
the resulted Petri net applies it to analyze and evaluate the runtime bevahior of the software
architecure.

Zhang (2006) indicated that the software architecture can be described with an architecture
description language called XSADL4PE. This language adds the responsibleness and
irresponsibleness requirements to the software architecture characteristics and then evaluates the
software architecture efficiency by adding the random process algebra, the architecture description
language and using the 3COCASETOOL tool.

According to Balsamo et al. (1998), it is possible to describe the software architecture using the
CHAM model and then we can analyze it using the queue net. Marco (2003) suggested that in this
method, the fotware architecture is described using the message sequence diagram and then it turns
into the efficiency model automatically based on the queue net. After that, designers will evaluate the

 418

system efficiency by evaluating the queue net. Emadi (2008) stated that in recent years, evaluating the
irresponsibleness requirements and the qualitative attributes in the preliminary levels of the software
development process especially in the architecture phase from the engineering and designing phases
have received so much attentions. In research groups, the evaluation of the efficiency requirements in
the preliminary levels of the software development and in the software architecture level has been
studied and various methods have been proposed. Hadipour Sanati (2005) suggested that using the
index 1+4 concept and the CPN/Design tool, it is possible to change these indices into the colored
Petri nets. Focusing on the qualitative attributes of the time efficiency, resource efficiency, memory
and file security and also the response time, we can proceed to evaluating the software architecture.

Shirazi (2008) indicated that we could describe the software architecture using the UML diagrams
and then using the CPN Tools and the conducted simulations, we can predict the efficiency metrics.
Sharafi (2005) declared that we could describe the software architecture uing the UML 2.o software
and evaluate the software architecture efficiency by developing the general model of the team
automata and introducing an efficiency model on the developed team automata. Motameni et al.
(2009) suggested that we could change the fuzzy state diagram, one of the diagrams existing in the F-
UML model, into the fuzzy colored Petri net using an algorithm. Using the fuzzy state diagram, we
can display the static aspect of the nondeterministic systems software architecture. Changing it into
the fuzzy Petri net create an executable model from the software architecture with which we can
structurally analyze the software arhictecture.

4. The proposed method for evaluating the software architecture efficiency

The colored Petri net model is composed of T transition, which shows the resources are working and
C different colors which are indicative of the customers classes. Every resource can offer its services
with numerous methods. So, the service rate is different for sifferent services. We show this
difference in the service rate with different colors that we attribute to the tokens. If the workload of
the system is closed, the agent is defined with the cliché <<PAclosedload>> which in this case an
extra transition will be defined in CPN. This extra transition indicates the elapsed time between an
interaction and the start of its next repetition.

Since numerous agents have different workloads in the system, the CPN model includes various sub-
models that are independet from one another each of which will have their own workloads. Besides,
the requests related to a sub-model can have numerous classes each of which is shown with a
different color in the CPN. Each color is unique and can not be repeated in other classes. As it was
mentioned earlier, the open Petri net is a net that has an input and an output to the outside
environment which corresponds to the use case diagram with the cliché <<PAopenload>>. But, the
closed Petri net lacks an input and an output to the outside environment which its corresponsing use
case has the cliché <<PAclosedload>>.

In the CPN model, the following definitions were employed:
- The system resources set: RESOURCES= {R1,R2,…,Rt}
Identity [Ri] =i ,for each Ri ε RESORCES

- For each resource, the attribute COUNT [R] is defined that indicates the number of requests made
from R.
- The set of methods that use the resource R: METHODS = {mthd1, mthd2, …, mthdm}

- Therefore, we will have: COUNT [R] = m

- For each resource R ε RESOURCES and for each Mthd ε METHODS in the set (1-4), we define the
attribute INDEX [mthd], which is a unique number in the interval [1, 2, …, COUNT[R]]. This
unique number in each level indicates the number of methods reference to a specific resource from
the beginning.

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

419

{mthd ε METHODS | resource (mthd) =R} (1)

We attribute a natural number to each of the system methods in the sequence diagram in order of
execution from the top to the bottom. As we specify the first executed method with 1, the second one
with 2 and etcetera. We assume that the total number of executed methods in the system equals ‘n’:
TOTALmthd = {mthd1,mthd2,…,mthdn}.

With regards to the components in the component diagram and the interactions existing between the
collaborative components, we can define the interactions set in terms of synchronization as the
following ordered pairs:

z=0 if mthdj is independent

(mthdj,z) z=1 if mthdj is dependent, (1 j n)
DEPENDENCIES


   

If an operation is carried out independently by a component and without expecting any response from
the collaborative component, the value of z equals 0. Also, if an operation is dependently performed
and it depends on receiving some response from the collaborative component, the value of z will
equal ato 1. Input in the open Petri net will enter a transition that the first transition in the sequence
diagram used that resource.

4.1 The algorithm for converting the UML semi-formal model to the CPN formal model

For the agent ‘x’ with the cliché <<PAopenload>>, the following attribute values should be specified:

COUNT [R] ∀ R ε RECOURCES (2)
INDEX [mthd] ∀ mthd ε METHODS (3)
C = MAX R ε RESOURCES {COUNT [R]} and T (4)

With regards to the sequence diagram, the related number for each method out of the total number of
the executed methods should be specified(1൑ j൑n).

With regards to the component diagram, the independence or dependece component of the method
execution (0 or 1) should be specified:

(mthd j ,z) ∀ mthd ε TOTALmthd (5)

In order to show the customers service rate with class ‘c’ in the transition ‘i’, we will use
ServiceRate[i,c]. ‘m’ is a method in the sequence diagram.

ServiceRate [i ,c] =rate [R]/ demand [mthd] (6)

where i =Identity [resource[m]]

c = INDEX [mthd] (7)

We consider the vector ߣ[c] to show the customers input rate with class ‘c’ which is defined as the
Eq. (8):

ArrivalRate [x]= [c]ߣ (8)

 420

The input rate will be calculated with regards to the use case with the label PAoccurence which led to
the utilization of the sequence diagram.

If the agent ‘x’ with the cliché <<PAclosedload>> is margined, we should add the following changes
to the algorithm:

- We consider the number of transitions one unit more than the resources existing in the deployment
diagram.

T =|R| + 1 (9)

The added transition will be specified with 0 and is used to consider the delay. The fire rate of this
transition for all customer classes is as what follows (‘s’ is a class from customers):

ServiceRate[0,s] =1 / extdelay[x] (10)

Regarding the label PApopulation of the desired agent, the value N which equals the total number of
requests existing in the system, will be calculated. The above label in the Petri net is shown with the
attribute ‘population’ as the following:

N = population [x] (11)

Combining the two states of open and closed workloads in the above algorithm, a complete algorithm
will be created. The number of CPN sub-models in it equals the total number of agents in the two
labels, namely <<PAopenload>> and <<PAclosedload>>.

5. A case study

In this section, we used the online shopping system as the case study. In online shopping, the main
event is as follows: first, the customer finds their required item or service on a desired webpage and
adds them to their shopping basket. Then, they select their desired bank via the interbank network
cards. The desired form to the bank terminal appears. On this page, the customer should insert the
card number, secondary password, CVV2 code and the security code shown in the bank terminal
form. Bank verifies the inserted information. If the inserted security code is not valid, the S1 lateral
event occurs. If the card related information is not correct, the S2 lateral event occurs. In case of the
validity of all information, bank verifies the account balance connected to the customer card. If the
withdrawal account balance is less than the customer’s requested amount, the S3 lateral event occurs.
If the acconut balance is enough, the customer’s requested amount will be deducted from it and a
message will be sent meaning the transaction has been successfully done and the new balance will be
issued for the customer.

The S1 lateral event: A message will be displayed to the customer based on the invalidity of the
security code and a new security code will be displayed on the screen.
The S2 lateral event: A message related to the incorrectness of the information related to the card will
be issued for the customer. Usually, in this event, due to security considerations and hackers success
rate reduction, it is not exactly mentioned which inserted information related to the card is incorrect.
The S3 lateral event: Inadequateness of the withdrawal balance of customers account is announced
and the transaction will be aborted.

In this case study, the customer is in connection with the system as an agent. The web page plays the
role of an interface between the system and the customer. Bank is of a control class that controls the
card-related information and makes decisions on perfoming or aborting the transaction. The customer

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

421

account is of entity class that contains information such as the information related to the bank card,
account number and account balance.

In order to describe the static structure of the system, we employed the component diagram extracted
from the CRC cards. In order to describe the physical resources of the system, we utilized the
deployment diagram and also we used the use case and sequence diagrams in order to describe the
system’s dynamic structure and the existing interactions. Moreover, the dependent and independent
components were extracted from the component diagram.

5.1 The case study diagram and its cliches

The case study diagram is considered as a ground for efficiency and is margined with the cliché
<<PAcontext>>. We Assume that our net is an open Petri net and has input and output to the outside
environment. Therefore, we use the cliché <<PAopenLoad>> for which we use the label
PAoccurence in the use case diagram which indicates the time interval between two successive
requests of the user. In order to show the time, we use an attribute that indicates the type of input (e.g.
exponential or infinite). Fig. 3 shows the margined use case diagram pertaining to the online
shopping.

Fig. 3. The margined use case diagram pertaining to the online shopping

5.2 The sequence diagram and its cliches

In order to add the efficiency information in the sequence diagram, we use the cliché <<PAstep>>.
Among this cliché labels, we use the labels PAhost and PAdemand. PAhost refers to the name of the
requesting resource and PAdemand refers to the requesting rate of the service from the resource. Fig.
4 shows the sequence diagram in which the efficiency information is added. In this diagram, all of the
system interactions are shown.

5.3 The deployment diagram and its cliches

For this diagram, we use the cliché <<PAhost>> which indicates the resource name (server) used in
the system. This cliché has numerous labels too from which the PArate and PAschedPolicy labels are
used here. PArate and PAschedPolicy are the process rate of the resource processor and the timing
policy that the processor has for allocating the resource, respectively. First, we define the value of
each of these labels for these resources so that the deployment diagram could be margined with the
information related to the efficiency. Fig. 5 shows the deployment diagram related to the online
shopping system.

 422

Fig. 4. The sequence diagram together with the efficiency information related to the online shopping

system

Fig. 5. The margined deployment diagram pertaining to the online shopping system

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

423

5-4 The CRC cards and the component diagram for describing the static structure of the system

The CRC cards related to the online shopping system are shown in Fig. 6. Each card includes the
component name, its responsibilities and collaborators. Next, we will consider a component in the
diagram for each card and map the relationships between the components. In this case study, we have
four components that are: ‘customer’,’webpage’,bank’,’account’. Each component has
responsibilities and they get help from the collaborating components for some of these
responsibilities.

Then it specifies the information added to the component diagram, the service center type, the rate of
the services provided by the component and their timing policy for extracting the tasks from the
waiting line (queue). Therefore, the cliché <<PAhost<< is used. In order to specify the timing policy,
we use the label PAschedpolicy and we have to use the cliché <<PAstep>> along with the label
PAdemand in order to specify the required time for executing a component. Fig. 7 shows the
component diagram with the margined efficiency information.

Component name: Customer
Collaborators Responsibilities
Web page
Web page
Web page
Web page

Add items to list
Remove items from list
Enter card info
Enter security code

Component name: Web page

Collaborators Responsibilities

Customer
Customer

Bank
Bank

Show items list
Receive card info
Receive security code
Check security code
Send card info
Receive transaction status
Show notifications

Component name: Bank

Collaborators Responsibilities
Web page
Account
Account

Account
Account

Receive card info
Check card info
Receive card info validity status
Withdraw request
Receive credit validity
Receive deposit
Transaction status

Component name: Account

Collaborators Responsibilities
Bank

Bank

Receive card info check request
Check card info validity
Receive withdraw request
Check credit validity
Notify credit status
Calculate deposit
Fig. 6. The CRC cards of the online shopping system

 424

Fig. 7. The component diagram together with the efficiency information pertaining to the online

shopping system

5.5 Extracting the colored Petri net from the online shopping system’s UML diagrams

Now, we should map our desgined diagrams onto the colored Petri net. To do this, first we should
design a directed graph called the middle graph. Each node in this graph includes 3 items. R or the
resources which will correspond to the locations in the colored Petri net. Indices are indicators of
colors and the ordered pair (mthdj ,z) indicates whether the j-th method is dependent or indpendent,

 depending on the extracted z value according to the suggested algorithm. Fig. 8 shows the middle
graph’s structure. The colored Petri net is designed from the middle graph. You can see the the
middle graph’s structure in figure (8) which was designed according to the sequence diagram and the
component diagram. The number related to R varies from 1 to 4 which will be assigned to the system
resources. The index ‘INDEX’ is the counter of the total number of reference to a specific reource in
each level. Therefore:

Web Client 1

Web Server 2

Bank DB Server 3

Bank DB Backup 4

R



 



On the other hand, the parameter ‘z’ in the ordered pair (mthdj, z) in each level indicates the
dependence and independece of the j-th mehtod. For example, if we have (mthd5 0), this means that
executing the method number 5 is independent and if we have (mthd5,1), this means that executing
the method number 5 is dependent to recieving another method from the collaborating component. If
a method is dependent, it should be delayed until we receive the response method from the
collaborating component. The delay time can be extracted from the label PAdemand of the cliché
<<PAstep>> which is margined to the response method. With regards to the sequence diagram,
totally 23 methods are executable from the beginning to the end of the system activity. Looking at the
component diagram of Figs. (5-9), we can understand that 7 methods out of the total 23 are dependent
and the rest of the methods are independent. The dependent methods in some of the nodes existing in

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

425

the middle graph which have the value z=1 in their ordered pair (mthd5, z) are distinguished from
other methods that are dependent (z=0). The extracted delay time should be applied as a delay in
tokens movement with various colors (stamp time) in the timed colored Petri net. Also, the protective
expression of the dependent method’s transition should take the boolean value 1 from the required
response method. When multiple response methods should be produced by a component, in a way
that the methods’ delay times are different, the delay time related to the firing of the component
related transition should be equal to the minimum delay time of the methods produced by the
component. For example, if the method 1’s delay equals 2 time units, the method 2’s delay equals 4
time units and the method 3’s delay equals 5 time units, the transition firing delay related to the
component will at least be equal to 2 time units.

In addition, the token that should be fired with more delay will have the PAdemand – PAdemand MIN
with them as their stamp time.

delay(TransitionR(RESPONSE)) =MIN(PAdemand(mthd1,mthd2,…,mthdm)), ∀ R ε RECOURCES
guard(TransitionR(DEPENDENT)) =1

The components that are completely independent and do not need a response from the collaborating
component in no part in system’s life will not need a protective boolean expression as well. Their
corresponsing transition is always executable. The advantage of separating the independent
components from the dependent ones is that with the decrease in response method’s delay time, the
whole system’s response time decreases as well. This is one of the effective factors in increasing the
efficiency. This is possible when the component corresponds to the resource and via an increase in
the resource processig rate, especially through augmenting the processing rate of resources that are
responsible for producing the highest number of response methods for other components. As it can be
seen from the component diagram, the component ‘Client Web’ produces the highest number of
response methods for other components. In other words, it has the highest number of methods
dependece. Ergo, the reponse time of the whole system decreases with an increase in this
component’s processing time.

5.5.1 Calculating the request rate for the online shopping system

The input in the open Petri net enters a transition that is used by the first message in the sequence
diagram. The input rate to the Petri net (λ) equals the value of the label ‘PAoccurence’ in an agent
that uses this sequence diagram to perform its own user case. According to the use case diagram, the
value of the label ‘PAoccurence’ for the main event ‘Pay online’ equals 12. With regards to this
value, the value ‘λ’ will be 1/12.

PAoccurrence =[“exponential”, 12] → 1/12= ߣ

In the next step, we will define the number of colors existing in the net. This is simply possible
through checking the middle graph. With regards to the middle graph depicted in figure (8), the
number of colors equal the number of references to a resource that had the highest number of
references, i.e. 10 colors. Therefore, the color set for the colored Petri net is defined as C
={c1,c2,c3,c4,c5,c6,c7,c8,c9,c10} .

.

 426

Fig. 8. The middle graph structure (the interface between the semi-formal model and the formal model)

In this level, we extract the label PAdemand value in each reference to the resource from the
sequence diagram from the top to the bottom and we will write them per each resource. Table (6)
shows these values pertaining to each resource.

Table 6
The label PAdemand values for resources

c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 PAdemand
---- ---- ---- ---- ---- ---- ---- 0.7 0.7 0.6 Web Client
---- 0.4 0.4 0.1 0.5 0.1 0.7 0.3 0.3 0.9 Web Server
0.2 0.5 0.1 0.1 0.8 0.4 0.5 0.1 0.1 0.8 Bank DB Server
---- ---- ---- ---- ---- ---- ---- ---- ---- 0.8 Bank DB Backup

5.5.2 Calculating the service rate for the online shopping system

Having the PAdemand values which are depicted in Table 6 and PArate which is specified in the
deployment diagram, we can calculate the service rate (fire rate) using the Eq. (11):

ServiceRate =rate [R]/ demand [method]
ServiceRate1=(4/0.6,4/0.7,4/0.7,1,1,1,1,1,1,1)=(6.6,5.7,5.7,1,1,1,1,1,1,1)
ServiceRate2=(6/0.9,6/0.3,6/0.3,6/0.7,6/0.1,6/0.5,6/0.1,6/0.4,6/0.4,1) =(6.6,20,20,8.5,60,12,60,15,15,1)
ServiceRate3=(14/0.8,14/0.1,14/0.1,14/0.5,14/0.4,14/0.8,14/0.1,14/0.1,14/0.5,14/0.2)=(17.5,140,140,28,35,17.5,
140,140,28,70)
SreviceRate4 =(10/0.8,1,1,1,1,1,1,1,1,1) =(12.5,1,1,1,1,1,1,1,1,1)

(11)

We calculated the service rate values per each resource. These values are summarized in Table 7.

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

427

Table 7
The service rate values per each resource

c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 Service Rate
1 1 1 1 1 1 1 5.7 5.7 6.6 Web Client
1 15 15 60 12 60 8.5 20 20 6.6 Web Server
70 28 140 140 17.5 35 28 140 140 17.5 Bank DB Server
1 1 1 1 1 1 1 1 1 12.5 Bank DB Backup

 In order to draw a colored Petri net, with regards to the relationship between the resources which is
depicted by the middle graph and using the sequence, deployment and component diagrams, we
consider one location in the colored Petri net per resource. Then, considering the sequence diagram,
we specify which method from which resource is related to which method from another resource.
After that, per each relationship, a pointed arrow will be drawn from the source to the destination.

In the CPN net model, the color change related to the token entered into a transition will be specified
by the type of token existing in the destination transition (the next location of transition). Hence, in
this state, the token color will change into the color set 1, namely C1. With the same reasoning, we
can specify the set of colors passed through each transition for all the other transitions. Finally, Fig.
(10) will be obtained as a colored Petri net in this case study and Fig. 11 will show the related Petri
net after the execution.

Fig. 10. The colored Petri net of the online
shopping system

Fig. 11. The colored Petri net of the online
shopping system after the execution

5.6 A comparison of the suggested method

In this section, we attempt to compare the suggested method with Emadi’s technique in terms of
having some of the desired parameters. The result of this comparison is shows in Table 8.

Table 8
A comparison of methods

Comparison Parameters

The
formality
rate

The structure
coverage

The
uncertainty
coverage

The
fuzzy
coverage

The components
dependence effect on
response time

The type of
Nonoperational
requirements

Method

Formal Static &
Dynamic + - - Efficiency &

Reliability
Emadi
technique

Formal Static &
Dynamic - - + Efficiency The proposed

 428

method

6. Conclusion and future solutions

In this study, we have attempted to evaluate the software architecture efficiency. In the first phase, we
illustrated the software architecture using a semi-formal model. Unified Modeling Language is being
utilized for the total process of the software development, which makes it easy to describe the
software architecture. This language provides different diagrams with, which we can describe various
aspects of the system such as responsibleness, static structure, and dynamic behavior of each
component in the system and their interaction with each other and the physical details existing in the
system. In addition, we can add the information related to the irresponsibleness requirements as
clichés, labels and limitation to the model, which enables us to develop the language in a controlled
way so that it can conform to the desired user domain. In the second phase, we turned the semi-
formal model into a formal model. We chose the Petri nets from among the pre-mentioned models;
because the colored Petri nets are used to describe the software systems by considering the efficiency
attributes with demarcations related to the software description. Besides, these nets use a graphical
structure to describe the systems based on strong and simple mathematical principles that also support
the graphical structure. In the third phase, we attempted to evaluate the software architecture using
the formal model. After evaluating the efficiency criteria in the simulated model, one can make the
best architecture decisions for the actual model that is about to be built. In this study, the mode-based
approaches that are mentioned in order to evaluate the efficiency in the architectural level are
reviewed. We can say that almost none of the pre-mentioned approaches studied the effect of
independence and dependence of the components at the time of response and efficiency.

As suggested works, one can model and evaluate other parameters and the reliability of the software
architecture using other clichés and labels existing in the efficiency and time characteristics index
and/or choose other UML diagrams and assess other metrics using this index. In addition, it is
possible to apply the fuzzification operation on other net elements such as tokens, locations and even
arcs in order to use the fuzzy colored Petri nets optimally.

References

Emadi, S. (2008). Presenting a model in order to study the formal capability of the software

architecture, doctorate dissertation, department of computer, Islamic Azad University, Tehran
Science and Research Branch, Tehran, Iran.

Akbari E., Noorian R. & Motameni H. (2010). Mapping sequence diagram in fuzzy UML to fuzzy
Petri Net. Iranian Journal of Optimization, 3, 492-505.

Aziz M. H., Erik L. J., Parnichkun M., and Saha C., (2010), Classification of fuzzy Petri Nets, and
their applications. World Academy of Science, Engineering and Technology, 72, 394-401.

Balsamo, S. & Grassi V. (2002), Quantitative analysis of software architectures. Research Report,
CS-2002, Department of Information, University Ca Foscari di Venezia.

Balsamo, S., Inverardi, P., & Mangano, C. (1998). An approach to performance evaluation of
software architectures. Workshop on Software and Performance, WOSP'98, Santa Fe, New
Mexico.

Balsamo, S., Di Marco, A., Inverardi, P., & Simeoni, M. (2004). Model-based performance prediction
in software development: A survey. Software Engineering, IEEE Transactions on, 30(5), 295-310.

Balsamo, S. & Marzolla, M. (2003). A simulation based approach to software performance modeling.
ACM SIGSOFT Software Engineering Notes, Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 28(5), 363-366.

S. Khaksar Haghani et al. / Decision Science Letters 3 (2014)

429

Balsamo, B., & Simeoni, M. (2001). Deriving performance models from software architecture
specifications. Proceedings of the 15th European Simulation Multi Conference (ESM2001), SCS-
Society for Computer Simulation.

Banks, J., & Nicol, D. (1999). Discrete-Event System Simulation. Prentice-Hall.
Bass, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice, 2/E. Pearson

Education India.
Bondavalli, A., Majzik, I., & Pataricza, B. (2003). Stochastic sependability analysis of system

architecture based on UML designs. Lecture Notes in Computer Science, 2677, springer.
Clements, P., & Klein, K. (2002). Evaluating Software Architecture Methods and Case Studies.

Addison Wesely.
Cortellessa, V., Marco, A. & Inverardi, P. (2003). Comparing performance models from a software

designer perspective. Technical Report TR SAH/042.
Cortellessa, V., Di Marco, A., & Inverardi, P. (2004). Three performance models at work: a software

designer perspective. Electronic Notes in Theoretical Computer Science, 97, 219-239.
Fukuzawa, K., & Saeki, M. (2002, July). Evaluating software architectures by coloured petri nets.

In Proceedings of the 14th international conference on Software engineering and knowledge
engineering (pp. 263-270). ACM.

Galster, M., Eberlein, A., & Moussavi, M. (2006, June). Transition from requirements to architecture:
A review and future perspective. In Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS International Conference
on (pp. 9-16). IEEE.

Grassi, V., Mirandola, R., & Sabetta, A. (2007, February). A model-driven approach to
performability analysis of dynamically reconfigurable component-based systems. In Proceedings
of the 6th international workshop on Software and performance (pp. 103-114). ACM.

Group, O.M. (1993), UML Profile, for Schedulability, Performance, and Time, OMG document
http:/www.omg.org, 2005.

Gyarmati, E., & Strakendal, P. (2002). Software Performance Prediction-Using SPE (Doctoral
dissertation, Master Thesis Software Engineering, Department of Software Engineering and
Computer Science Blekinge Institute of Technology).

Hadipour Sanati, H. (2003). Presenting an executable model from the software architecture with the
purpose of efficiency evaluation, Master’s thesis, the electrical and computer department, Shahid
Beheshty University, Tehran, Iran.

Happe, J., & Firus, V. (2005, July). Using stochastic petri nets to predict quality of service attributes
of component-based software architectures. In Proceedings of the Tenth Workshop on Component
Oriented Programming (WCOP2005)(Vol. 94).

Harounabadi, A. (2006). Utilizing the FUZZY-UML in order to model the irrational systems. The 7th
conference on the fuzzy systems, Ferdosi University of Mashad.

Harounabadi, A. (2010). Modeling and evaluating the information systems using the fuzzy colored
Petri nets, 16th annual national conference of Iran computer assembly, Sanati Sharif University of
Iran.

Haroonabadi, A., Teshnehlab, M., & Movaghar, A. (2008). A novel method for behavior modeling in
uncertain information systems. World Academy of Science, Engineering and Technology, 41, 959-
966.

Hopcroft, J., & Uliman J. (1997). Introduction to Automata Theory, Languages and Computations.
Addison Wesley.

Kim, H., Kang, S., Baik, J., & Ko, I. (2007, July). Test cases generation from UML activity diagrams.
In Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
2007. SNPD 2007. Eighth ACIS International Conference on (Vol. 3, pp. 556-561). IEEE.

Jasmine, K. S., & Vasantha, R. (2007, August). Identification of software performance bottleneck
components in reuse based software products with the application of acquaintanceship graphs.

 430

In Software Engineering Advances, 2007. ICSEA 2007. International Conference on (pp. 34-34).
IEEE.

Kant, K., & Srinivasan, M. M. (1992). Introduction to computer system performance evaluation.
McGraw-Hill College.

Kogut, P., & Clements, P. (1995). Feature analysis of architecture description languages. In
Proceedings of the Software Technology Conference, Salt Lake City.

Kumar, B., & Jaspernete J. (2012), UML profiles for modeling real-time communication protocols.
Journal of Object Technology, 9(2), 178-198.

Li, X., & Yu, W. (2001). Object oriented fuzzy Petri net for complex knowledge system modeling.
In Control Applications, 2001. (CCA'01). Proceedings of the 2001 IEEE International Conference
on (pp. 476-481). IEEE.

Makaruk, H., Owczarek, R., & Sakhanenko, N. (2005). Systematic method for path-complete white
box testing. arXiv preprint cs/0503050.

Marco A. D., (2003), Starting from message sequence chart for software architecture early
performance analysis. Proceding of 2th International Workshop on Scenarios and State Machines:
Models, Algorithm (ICSE).

Motameni, H., Daneefar, I., Bakhshi, J., & Nematzadeh, H. (2009). Transforming fuzzy state diagram
to fuzzy Petri net. Journal of Computer Engineering, 1(1), 29-44.

Motameni, H., Movaghar, A. & Bakhshi, J. (2008). Mapping to convert activity diagram in fuzzy
UML to fuzzy Petri Net. World Applied Sciences Journal, 3(3), 514-521.

Musa, J. D. (1993). Operational profiles in software-reliability engineering. Software, IEEE, 10(2),
14-32.

Nematzadeh, H., Deris, S. B., Maleki, H., & Nematzadeh, Z. (2009). Evaluating reliability of system
sequence diagram using fuzzy Petri net. International Journal of Recent Trends in
Engineering, 1(1), 142-147.

Pettit IV, R. G., & Gomaa, H. (2003, October). Improving the reliability of concurrent object-oriented
software designs. In Object-Oriented Real-Time Dependable Systems, 2003. WORDS 2003 Fall.
Proceedings. Ninth IEEE International Workshop on (pp. 262-269). IEEE.

Pettit IV, R. G., & Gomaa, H. (2004, June). Modeling behavioral patterns of concurrent software
architectures using Petri nets. In Software Architecture, 2004. WICSA 2004. Proceedings. Fourth
Working IEEE/IFIP Conference on(pp. 57-66). IEEE.

Poukamali, M. (2006). Improving the software architecture evaluation techniques, Master’s thesis,
Amirkabir University of Technology, Tehran, Iran.

Reisig, W. (1985). Petri nets: an introduction, volume 4 of EATCS monographs on theoretical
computer science.

Sharafi, M. (2006). Presenting a technique to extract and evaluate the irresponsibleness properties
based on the formal descriptions of the software architecture. PhD thesis, Islamic Azad University,
Science and Research Branch, Tehran, Iran.

Shirazi, N. (2008). Presenting a technique to evaluate and analyze the efficiency based on the
software architecture using the colored Petri nets, Master’s thesis, Islamic Azad University,
Tehran-South branch, Tehran, Iran.

Skene, J., & Emmerich, W. (2003, October). A model-driven approach to non-functional analysis of
software architectures. In Automated Software Engineering, 2003. Proceedings. 18th IEEE
International Conference on (pp. 236-239). IEEE.

Wang, W. L., Pan, D., & Chen, M. H. (2006). Architecture-based software reliability
modeling. Journal of Systems and Software, 79(1), 132-146.

Xiao, L., Gang, W., Lin, X. & Maosheng, D. (2005). Reliability analysis of digital protection's
software based on architecture. IEEE/PES Transmission and Distribution Conference and
Exhibition: Asia and Pacific Dalian, China.

Zhang, S. (2006, April). Integrating non-functional properties to architecture specification and
analysis. In Information Technology: New Generations, 2006. ITNG 2006. Third International
Conference on (pp. 112-117). IEEE.

